: : Use simple structure and bonding models to account for the following. The bond lengths in CO 3

Size: px
Start display at page:

Download ": : Use simple structure and bonding models to account for the following. The bond lengths in CO 3"

Transcription

1 Chem 55 Problem Set #2 Spring 200 Name TA Name Lab Section # ALL work must be shown to receive full credit. Due at the beginning of lecture on Friday, February 2, 200. PS2.. Draw two resonance structures for the nitrite ion, NO 2. - N N - O O O O b) What is the hybridization around the nitrogen atom in this polyatomic ion? The hybridization on the nitrogen atom is sp 2. c) Describe the pi-bonding in the polyatomic ion. σ N O π σ O The pi bonding in this molecule extends over all three atoms. Each atom contributes a p atomic orbital to the extended pi system. d) Label the sigma and pi bonds as either localized or delocalized. The sigma bonds, as shown as lines (bonds) between the nitrogen and O oxygen atoms, are localized N between each N O bond. The bond is extended over all three O atoms through the p orbitals. PS2.2. Use simple structure and bonding models to account for the following. The bond lengths in CO 3 2 are all identical and are shorter than a carbonoxygen single bond. O O C O CO 3 2 can be drawn in three possible resonance hybrid forms. Each atom has an atomic p orbital oriented so there is an extended system for the 2 electrons. There are 2 electrons in the system spread over the three bonds so there is 0.3 of a bond for each C O or an equivalent to a bond order of.3. The larger bond order means the bond distance will be less than an C O single bond. CHEM 55 Spring 200

2 PS2.3. In the boxes below diagram the specified system as viewed at the atomic level in the space provided. Be sure to clearly label each of the substances in your diagram. Label Area A sample of oxygen at 25 C A sample of Br 2 liquid A sample of sodium at 25 C PS2.4. Explain what the terms heat of fusion and heat of vaporization mean. In your explanation include the symbol for each term and provide a chemical equation describing the fusion and vaporization process. Also explain how you could calculate the heat of fusion or heat of vaporization using the table of data in Appendix B on page A-5. The heat of fusion is the amount of heat required to convert one mol of solid at its normal melting point to one mol of liquid. The heat of vaporization is the amount of heat required to convert one mol of liquid at its normal boiling point to one mol of gas. A chemical equation which symbolizes the fusion process is; H 2 O(s) H 2 O(l) We have to be a little careful here. Fusion is the phase change from liquid to solid (freezing), but the heat of fusion is generally thought of a the heat required to convert the solid into it liquid. A chemical equation which symbolizes the vaporization process is; H 2 O(l) H 2 O(g) To calculate either the heat of fusion or the heat of vaporization we can use the relationship; H rxn = S( H f(products) - S( H f(reactants) So we can find the H f for reactants and the products in Appendix B. Finding the difference is the heat of fusion or heat of vaporization depending on the phases we use. CHEM 55 2 Spring 200

3 PS2.5.a) How much heat is produced when 75.0 g of steam at 35 C is converted to water at 20.0 C? Step ) steam at 35 C to steam at 00 C. Step 2) steam at 00 C to liquid at 00 C. Step 3) liquid at 00 C to liquid at 20 C. ).84 g C x 75.0 g x 35 C = 4827 (4.83 x 03 ) 2) 2259 g x 75.0 g = 69,425 (.69 x 05 ) 3) 4.84 g C x 75.0 g x 80 C = 25,04 (2.5 x 04 ) b) How much heat is required to convert 30.0 g of ice at -0.0 C to steam at 05.0 C? Step ) solid at -0 C to solid at 0 C. Step 2) solid at 0 C to solid at 0 C. Step 3) liquid at 0 C to liquid at 00 C. Step 4) liquid at 00 C to steam at 00 C. Step 5) steam at 00 C to steam at 05 C. ) 2.09 g C x 30.0 g x 0 C = 627 (6.27 x 02 ) 2) 334 g x 30.0 g = 0,020 (.00 x 04 ) 3) 4.84 g C x 30.0 g x 00 C = 2,552 (.26 x 04 ) 4) 2259 g x 30.0 g = 67,770 (6.78 x 04 ) 5).84 g C x 30.0 g x 5 C = 276 (3 x 02 ) = 9.2 k PS2.6. Ethyl alcohol melts at -4 C and boils at 78 C. The enthalpy of vaporization for ethyl alcohol at 78 C is 870 g and the enthalpy of fusion is 09 g. If the specific heat of solid ethyl alcohol is taken to be 0.97, and that for the g. C liquid 2.3, how much heat is required to convert 0.0 g of ethyl alcohol g. C at -20 C to the vapor phase at 78 C? Step ) solid at -20 C solid to -4 C soln Step 2) solid at -4 C to liquid at -4 C Step 3) liquid -4 C to liquid 78 C Step 4) liquid at 78 C to vapor at 78 C ) 0.97 x 0.0 g x 6 C g. C = ) 09 g x 0.0 g = 090 3) 2.3 x 0.0 g x 92 C g. C = 4,46 4) 870 g x 0.0 g = 8700 Heat required = 4 k CHEM 55 3 Spring 200

4 PS2.7. Define the term equilibrium vapor pressure. the pressure due to particles of a substance in the vapor phase above its liquid in a closed container at a given temperature. b) Use a vapor-pressure table (check the Database link on the class web site) to look up the equilibrium vapor pressure of a sample of water at 95 C and at 83 C. The vapor pressure of water at 95 C is mmhg and at 83 C the vapor pressure is mmhg. c) Consider two closed containers each partially filled with liquid water one at 95 C and the other at 83 C. Can the pressure of water vapor in the gas phase in either container ever exceed the equilibrium vapor pressure at the particular temperature? Explain why or why not. No. At a given temperature we cannot have a pressure due to the vapor above a liquid greater than the equilibrium vapor pressure. If we attempt to add additional water, in the vapor phase, to a system already at equilibrium, the rate of condensation increases until the vapor pressure re-establishes equilibrium. The net result is there is no change in the vapor pressure. PS2.8. A sample of water in the vapor phase (no liquid present) in a flask of constant volume exerts a pressure of 635 mm Hg at 00 C. The flask is slowly cooled. a) Assuming no condensation, use the Ideal Gas Law to calculate the pressure of the vapor at 95 C; at 83 C P 2 = P T C P 2 = P T 2 = = 635mmHg 368K 373K = 626 mmhg 635mmHg 356K 373K = 606 mmhg b) Will condensation occur at 95 C; 83 C? Since the calculated pressure of the sample in the vapor at 95 C is less than the equilibrium vapor pressure no condensation occurs. Condensation occurs at 83 C because the calculate pressure exerted by the vapor is greater than the equilibrium vapor pressure at that temperature. c) On the basis of your answers in a) and b), predict the pressure exerted by the water vapor at 95 C; at 83 C. d) The pressure due to the vapor at 95 C is 626 mmhg, at 83 C the vapor pressure is mmhg. Can you determine the volume of water which has condensed at 83 C? CHEM 55 4 Spring 200

5 PS2.9. ln (vapor pressure) Consider the following data for the vapor pressure Lithium Magnesium T (K) P v (mm Hg) T (K) a) Use graphing software (Microsoft Excel) to plot ln (P v ) vs. T for each metal and use your graph to determine the slope of the best line through the data. The heat of vaporization of a liquid can be obtained from such a plot. The relationship is given as, H vap slope = 8.34 mol K Calculate the heat of vaporization for lithium and magnesium. (Note Be sure to clearly label the graph.) Slope = 566 K Vapor Pressure Data for Lithium H vap slope = mol K y = -566x K 8.34 mo H vap = 96.2 k /Temperature (K) ln(vp) Linear (ln(vp)) ln (vapor pressure) 7 6 Vapor Pressure of Magnesium y = x ln(vp) 3 Linear (ln(vp)) /Temperature (K) Slope = 934 K H vap slope = 8.34 mol K 934 K 8.34 H vap = 77.4 k mol CHEM 55 5 Spring 200

6 b) In which metal is the bonding stronger? Lithium has stronger bonding than magnesium on the basis of the H vap. That lithium has the higher H vap suggests the stronger bonding. From data in another reference the H vap for lithium is 48 k and 27 k for magnesium. Either the data that I used is funky or such data for metals does not fit the ln (P v ) vs. T relationship as well. c) Determine the temperature of a sample of lithium and of magnesium when the vapor pressure is 350 mmhg. Lithium y =.6 x 0 4 x or ln(vp) =.6 x 0 4 T ln(350) =.6 x 0 4 T =.6 x 0 4 T x 0 4 T = T = x 0 4 = 8.22 x 0 4 T =.22 x 0 3 K Magnesium y = 9.3 x 0 3 x or ln(vp) = 9.3 x 0 3 T ln(350) = 9.3 x 0 3 T = 9.3 x 0 3 T x 0 3 T = T = x 0 3 =.02 x 0 3 T = 9.76 x 0 2 K CHEM 55 6 Spring 200

7 d) Determine the vapor pressure of a sample of lithium and of magnesium at 800. C. Lithium y =.6 x 0 4 x or ln(vp) =.6 x 0 4 T ln(vp) =.6 x ln(vp) = 4.59 e ln(vp) = e 4.59 vp = 98.4 mmhg Magnesium y = 9.3 x 0 3 x or ln(vp) = 9.3 x 0 3 T ln(vp) = 9.3 x ln(vp) = 6.32 e ln(vp) = e 6.32 vp = 557 mmhg PS2.0a. The normal boiling point of acetone, (CH 3 ) 2 CO is 56.2 C and its H vap = 32.0 k mol. Draw a Lewis structure for acetone and calculate the temperature at which acetone has a vapor pressure of 570. mmhg. ln P P 2 = - H ( R - ln = 8.34 T 2 ) mol ( K) mol K ln (0.750) = ( - ) = ( - ) x 0-5 = ( - ) = 3. x 0-3 = 32 K Lewis structure CHEM 55 7 Spring 200

8 b) Using data in part a of this problem, calculate the vapor pressure of acetone when the temperature is 5 C. ln P P 2 = - H ( R - VP ln 760 = 8.34 mol T 2 ) mol K ln VP 760 = (4.35 x 0-4 ) ln VP 760 = ( K) eln VP = e VP 760 = 0.88 vapor 5 C = 43 mm Hg CHEM 55 8 Spring 200

Name TA Name Lab Section # ALL work must be shown to receive full credit. Due at the beginning of lecture on Wednesday, August 29, 2001.

Name TA Name Lab Section # ALL work must be shown to receive full credit. Due at the beginning of lecture on Wednesday, August 29, 2001. Chem 1515 Problem Set #1 Fall 2001 Name TA Name Lab Section # ALL work must be shown to receive full credit. Due at the beginning of lecture on Wednesday, August 29, 2001. PS1.1. Using the Pre-Lecture

More information

Thermochemistry: Heat and Chemical Change

Thermochemistry: Heat and Chemical Change Thermochemistry: Heat and Chemical Change 1 Heat or Thermal Energy (q) Heat is a form of energy Is heat the same as temperature? Heat flows between two objects at different temperatures. Hot Cold 2 Chemical

More information

Chapter 16. Thermodynamics. Thermochemistry Review. Calculating H o rxn. Predicting sign for H o rxn. Creative Commons License

Chapter 16. Thermodynamics. Thermochemistry Review. Calculating H o rxn. Predicting sign for H o rxn. Creative Commons License Chapter 16 Thermodynamics GCC CHM152 Creative Commons License Images and tables in this file have been used from the following sources: OpenStax: Creative Commons Attribution License 4.0. ChemWiki (CC

More information

Thermodynamics Spontaneity. 150/151 Thermochemistry Review. Spontaneity. Ch. 16: Thermodynamics 12/14/2017

Thermodynamics Spontaneity. 150/151 Thermochemistry Review. Spontaneity. Ch. 16: Thermodynamics 12/14/2017 Ch. 16: Thermodynamics Geysers are a dramatic display of thermodynamic principles in nature. As water inside the earth heats up, it rises to the surface through small channels. Pressure builds up until

More information

ENTROPY

ENTROPY ENTROPY 6.2.8 6.2.11 ENTHALPY VS. ENTROPY ENTROPY (S) the disorder of a system - solid liquid gas = entropy - gas liquid solid = entropy - mixing substances always = entropy SPONTANEOUS VS. NONSPONTANEOUS

More information

Chapter 10 Liquids and Solids

Chapter 10 Liquids and Solids The Three States (Phases) of Matter Chapter 10 Liquids and Solids The Phase Changes of Water Changes of State Evaporation and Condensation Enthalpy (Heat) of Vaporization, H vap The energy needed to vaporize

More information

Name Date Class THE FLOW OF ENERGY HEAT AND WORK

Name Date Class THE FLOW OF ENERGY HEAT AND WORK 17.1 THE FLOW OF ENERGY HEAT AND WORK Section Review Objectives Explain the relationship between energy, heat, and work Distinguish between exothermic and endothermic processes Distinguish between heat

More information

Chemical Thermodynamics

Chemical Thermodynamics Quiz A 42.8 ml solution of ammonia (NH 3 ) is titrated with a solution of 0.9713 M hydrochloric acid. The initial reading on the buret containing the HCl was 47.13 ml and the final reading when the endpoint

More information

2 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

2 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved. CHEMISTRY & YOU Chapter 17 Thermochemistry 17.1 The Flow of Energy 17. Measuring and Expressing Enthalpy Changes 17.3 Heat in Changes of State 17.4 Calculating Heats of Reaction Why does sweating help

More information

You might find the following useful. CHEMISTRY 1A Fall 2008 EXAM 3 Key CHAPTERS 7, 8, 9 & part 10

You might find the following useful. CHEMISTRY 1A Fall 2008 EXAM 3 Key CHAPTERS 7, 8, 9 & part 10 You might find the following useful. CHEMISTRY 1A Fall 2008 EXAM 3 Key CHAPTERS 7, 8, 9 & part 10 1 For each of the following, write the word, words, or number in each blank that best completes each sentence.

More information

Chemical Thermodynamics. Chemical Thermodynamics. Changes of State. Chemical Thermodynamics. State Functions. State Functions 11/25/13

Chemical Thermodynamics. Chemical Thermodynamics. Changes of State. Chemical Thermodynamics. State Functions. State Functions 11/25/13 Chemical Thermodynamics n Thermodynamics is the study of the energetics and order of a system. n A system is the thing we want to study it can be a chemical reaction, a solution, an automobile, or the

More information

Unit 6: Energy. Aim: What is Energy? Energy: Energy is required to bring about changes in matter (atoms, ions, or molecules).

Unit 6: Energy. Aim: What is Energy? Energy: Energy is required to bring about changes in matter (atoms, ions, or molecules). Name: Date: Unit 6: Energy Aim: What is Energy? Energy: Energy is required to bring about changes in matter (atoms, ions, or molecules). Physical Changes Chemical Changes Example: Example: Energy is measured

More information

Chapter 14. Liquids and Solids

Chapter 14. Liquids and Solids Chapter 14 Liquids and Solids Review Solid - Has a definite (fixed) shape and volume (cannot flow). Liquid - Definite volume but takes the shape of its container (flows). Gas Has neither fixed shape nor

More information

compared to gases. They are incompressible. Their density doesn t change with temperature. These similarities are due

compared to gases. They are incompressible. Their density doesn t change with temperature. These similarities are due Liquids and solids They are similar compared to gases. They are incompressible. Their density doesn t change with temperature. These similarities are due to the molecules being close together in solids

More information

Chapter 5 Energy and States of Matter. Changes of State. Melting and Freezing. Calculations Using Heat of Fusion

Chapter 5 Energy and States of Matter. Changes of State. Melting and Freezing. Calculations Using Heat of Fusion Chapter 5 Energy and States of Matter Changes of State 5.6 Melting and Freezing 5.7 Boiling and Condensation 1 2 Melting and Freezing A substance is melting while it changes from a solid to a liquid. A

More information

PRACTICE QUESTIONS FOR EXAM I Spring 2014 This has been updated after Monday s lecture (2/17/14)

PRACTICE QUESTIONS FOR EXAM I Spring 2014 This has been updated after Monday s lecture (2/17/14) Page 1 Chem 123 PRACTICE QUESTINS FR EXAM I Spring 2014 This has been updated after Monday s lecture (2/17/14) I AM NT PRVIDING ANSWERS T THESE. PLEASE REVIEW YUR TEXTBK AND LECTURE NTES IF YU DN T KNW

More information

ENTHALPY CHANGE CHAPTER 4

ENTHALPY CHANGE CHAPTER 4 ENTHALPY CHANGE CHAPTER 4 ENTHALPY Is the total energy of a system. E k = Kinetic energy. Vibrational Rotational Translational E due to motion H = E k + E p E P = Potential energy Attractive force b/w

More information

Chem 112 Dr. Kevin Moore

Chem 112 Dr. Kevin Moore Chem 112 Dr. Kevin Moore Gas Liquid Solid Polar Covalent Bond Partial Separation of Charge Electronegativity: H 2.1 Cl 3.0 H Cl δ + δ - Dipole Moment measure of the net polarity in a molecule Q Q magnitude

More information

DATA THAT YOU MAY USE UNITS Conventional Volume ml or cm 3 = cm 3 or 10-3 dm 3 Liter (L) = dm 3 Pressure atm = 760 torr = Pa CONSTANTS

DATA THAT YOU MAY USE UNITS Conventional Volume ml or cm 3 = cm 3 or 10-3 dm 3 Liter (L) = dm 3 Pressure atm = 760 torr = Pa CONSTANTS DATA THAT YOU MAY USE UNITS Conventional S.I. Volume ml or cm 3 = cm 3 or 0-3 dm 3 Liter (L) = dm 3 Pressure atm = 760 torr =.03 0 5 Pa torr = 33.3 Pa Temperature C 0 C = 73.5 K PV L-atm =.03 0 5 dm 3

More information

Thermodynamics is the only science about which I am firmly convinced that, within the framework of the applicability of its basic principles, it will

Thermodynamics is the only science about which I am firmly convinced that, within the framework of the applicability of its basic principles, it will Thermodynamics is the only science about which I am firmly convinced that, within the framework of the applicability of its basic principles, it will never be overthrown - Albert Einstein OFP Chapter 11

More information

Heating and Cooling Curves

Heating and Cooling Curves Heating and Cooling Curves $ Under normal circumstances, particles will undergo more than one type of change when heated or cooled $ During a phase change, the temperature will not change $ Parts of the

More information

Chapter 15 Gases, Liquids, and Solids

Chapter 15 Gases, Liquids, and Solids Free Study Guide for Cracolice Peters Introductory Chemistry: An Active Learning Approach Second Edition www.brookscole.com/chemistry Chapter 15 Gases, Liquids, and Solids Chapter 15 Assignment A: Forces

More information

The graph represents the uniform cooling of water at 1 atmosphere, starting with water as a gas above its boiling point.

The graph represents the uniform cooling of water at 1 atmosphere, starting with water as a gas above its boiling point. Teacher: Mr. gerraputa Print Close Name: 1. Which graph best represents a change of phase from a gas to a solid? 1. 3. 2. 4. 2. The graph represents the uniform cooling of water at 1 atmosphere, starting

More information

g of CO 2 gas is at a temperature of 45 o C and a pressure of 125 kpa. What is the volume of the container? 11 L

g of CO 2 gas is at a temperature of 45 o C and a pressure of 125 kpa. What is the volume of the container? 11 L Name period AP Chemistry Unit 5 answers 1. A fixed quantity of gas at 23⁰C exhibits a pressure of 748 torr and occupies a volume of 10.3 L. Calculate the volume the gas will occupy if the temperature is

More information

Chemistry Heat Review. Heat: Temperature: Enthalpy: Calorimetry: Activation energy:

Chemistry Heat Review. Heat: Temperature: Enthalpy: Calorimetry: Activation energy: Chemistry Heat Review Name Date Vocabulary Heat: Temperature: Enthalpy: Calorimetry: Activation energy: Formulas Heat of phase change Heat for temperature increase Heat of reaction Endothermic/Exothermic

More information

CHEMISTRY - TRO 4E CH.11 - LIQUIDS, SOLIDS & INTERMOLECULAR FORCES

CHEMISTRY - TRO 4E CH.11 - LIQUIDS, SOLIDS & INTERMOLECULAR FORCES !! www.clutchprep.com CONCEPT: INTERMOLECULAR FORCES When looking at a molecular substance such as H 2 O you will discover two types of electrostatic forces at work: forces exist within a molecule and

More information

CHM2045 Exam 3 Review Fall 2015

CHM2045 Exam 3 Review Fall 2015 The steps to solving any chemistry problem 1) Read Question 2) Re-read Question 3) Write down everything you are given 4) Write down what you are trying to find CHM2045 Exam 3 Review 1) Write out the following

More information

Vapor Pressure is determined primarily from!vaph!vaph depends on the intermolecular forces

Vapor Pressure is determined primarily from!vaph!vaph depends on the intermolecular forces What do you remember from last time? What do you remember from last time? You have two containers. one has a total volume of 2 L and one has a total volume of 1 L Into each you place 500 ml of liquid ether

More information

CHEM 1310 Reading Day Study Session. 2. How many atoms of nitrogen are in g Ba(NO3)2?

CHEM 1310 Reading Day Study Session. 2. How many atoms of nitrogen are in g Ba(NO3)2? CHEM 1310 Reading Day Study Session 1. The only two significant isotopes of group 3A element gallium are 69 Ga (68.9256amu) and 71 Ga (70.9247 amu). What are the natural abundances of the two isotopes?

More information

10 States of Matter. Aubrey High School AP Chemistry. Period Date / / 10.2 Problems - Liquids and Gases

10 States of Matter. Aubrey High School AP Chemistry. Period Date / / 10.2 Problems - Liquids and Gases Aubrey High School AP Chemistry 10 States of Matter 1. Use the following table to answer these questions. Vapor Pressures of Various Liquids Temp. ( C) Ethyl alcohol Benzene Methyl salicylate Water Carbon

More information

Chapter 6 The States of Matter. Examples of Physical Properties of Three States of Matter

Chapter 6 The States of Matter. Examples of Physical Properties of Three States of Matter Chapter 6 The States of Matter Examples of Physical Properties of Three States of Matter 1 Three States of Matter Solids: Fixed shape, fixed volume, particles are held rigidly in place. Liquids: Variable

More information

Chem 127, Final Exam December 14, 2001

Chem 127, Final Exam December 14, 2001 I. (55 points) This part of the final corresponds to Exam I. It covers the material in Chapters 1, 2 and 3. A. (8 points) Fill in the empty boxes with the appropriate symbol, number, word or charge. Nuclear

More information

Chapter 12 Intermolecular Forces of Attraction

Chapter 12 Intermolecular Forces of Attraction Chapter 12 Intermolecular Forces of Attraction Intermolecular Forces Attractive or Repulsive Forces between molecules. Molecule - - - - - - Molecule Intramolecular Forces bonding forces within the molecule.

More information

move on if you get stuck on one part

move on if you get stuck on one part Chem 105 Exam 2 Name This exam is schedule for 75 minutes and I anticipate it to take the full time allotted. You are free to leave if you finish. In multiple part problems, points awarded will not be

More information

AAE THERMOCHEMISTRY BASICS

AAE THERMOCHEMISTRY BASICS 5.4 THERMOCHEMISTRY BASICS Ch5 23 Energies in Chemical Reactions Enthalpy of Combustion (Reactions): Q CV H in = H reactant H out = H product REACTANTS Stoichiometric fuel-oxidizer (air) mixture at standard

More information

AGK s Fall 2006 Chem 111 Exam 2 Review Sheet

AGK s Fall 2006 Chem 111 Exam 2 Review Sheet AGK s Fall 2006 Chem 111 Exam 2 Review Sheet *NOTE: This list is fairly comprehensive but designed only as a study aid. You are responsible for all material covered in class and in assigned readings. While

More information

CHEM 10113, Exam 4. All equations must be balanced and show phases for full credit. Significant figures count, and box your answers!

CHEM 10113, Exam 4. All equations must be balanced and show phases for full credit. Significant figures count, and box your answers! CHEM 10113, Exam 4 November 30, 2011 Name (please print) All equations must be balanced and show phases for full credit. Significant figures count, and box your answers! 1. (10 points) Consider the phase

More information

CHEMISTRY 1A Spring 2010 EXAM 3 Key CHAPTERS 7-10

CHEMISTRY 1A Spring 2010 EXAM 3 Key CHAPTERS 7-10 You might find the following useful. CHEMISTRY 1A Spring 2010 EXAM 3 Key CHAPTERS 7-10 For each of the following, write the word, words, or number in each blank that best completes each sentence. (1½ points

More information

UNIT TEST PRACTICE. South Pasadena AP Chemistry 10 States of Matter Period Date 3 R T MM. v A v B

UNIT TEST PRACTICE. South Pasadena AP Chemistry 10 States of Matter Period Date 3 R T MM. v A v B South Pasadena AP Chemistry Name 10 States of Matter Period Date UNIT TEST PRACTICE The following formulas may be helpful. v rms = 3 R T MM v A v B = MM B MM A Part 1 Multiple Choice You should allocate

More information

Upon successful completion of this unit, the students should be able to:

Upon successful completion of this unit, the students should be able to: Unit 9. Liquids and Solids - ANSWERS Upon successful completion of this unit, the students should be able to: 9.1 List the various intermolecular attractions in liquids and solids (dipole-dipole, London

More information

CHEMISTRY 107 Section 501 Exam #3 Version A November 16, 2016 Dr. Larry Brown

CHEMISTRY 107 Section 501 Exam #3 Version A November 16, 2016 Dr. Larry Brown NAME: (print) UIN #: CHEMISTRY 107 Section 501 Exam #3 Version A November 16, 2016 Dr. Larry Brown This is a 50-minute exam, and contains 7 problems. There should be 10 numbered pages, including this one.

More information

Level 2 Chemistry, 2014

Level 2 Chemistry, 2014 91164 911640 2SUPERVISOR S Level 2 Chemistry, 2014 91164 Demonstrate understanding of bonding, structure, properties and energy changes 2.00 pm Tuesday 11 November 2014 Credits: Five Achievement Achievement

More information

Enthalpies of Reaction

Enthalpies of Reaction Enthalpies of Reaction Enthalpy is an extensive property Magnitude of H is directly related to the amount of reactant used up in a process. CH 4 (g) + 2O 2 (g) CO 2 (g) + 2H 2 O(l) H = 890 kj 2CH 4 (g)

More information

Chapter 11. Intermolecular Forces, Liquids, and Solids

Chapter 11. Intermolecular Forces, Liquids, and Solids Sample Exercise 11.1 (p. 450) In which of the following substances is hydrogen bonding likely to play an important role in determining physical properties: methane (CH 4 ), hydrazine (H 2 NNH 2 ), methyl

More information

10. 2 P R O B L E M S L I Q U I D S A N D G A S E S

10. 2 P R O B L E M S L I Q U I D S A N D G A S E S South Pasadena AP Chemistry Name 10 States of Matter Period Date 10. 2 P R B L E M S L I Q U I D S A N D G A S E S 1. Use the following table to answer these questions. Vapor Pressures of Various Liquids

More information

Name: Chemistry 151 INSTRUCTIONS: Complete each question and the answers to the questions are on the last part of the exam

Name: Chemistry 151 INSTRUCTIONS: Complete each question and the answers to the questions are on the last part of the exam Practice Final Exam Name: Chemistry 151 INSTRUCTIONS: Complete each question and the answers to the questions are on the last part of the exam 1. How many protons, neutrons, and electrons are present in

More information

Thermodynamics. 1. Which of the following processes causes an entropy decrease?

Thermodynamics. 1. Which of the following processes causes an entropy decrease? Thermodynamics 1. Which of the following processes causes an entropy decrease? A. boiling water to form steam B. dissolution of solid KCl in water C. mixing of two gases in one container D. beach erosion

More information

Chapter 16 Covalent Bonding

Chapter 16 Covalent Bonding Chemistry/ PEP Name: Date: Chapter 16 Covalent Bonding Chapter 16: 1 26; 28, 30, 31, 35-37, 40, 43-46, Extra Credit: 50-53, 55, 56, 58, 59, 62-67 Section 16.1 The Nature of Covalent Bonding Practice Problems

More information

Remember Chapter 12.1 Introduction to Kinetic Molecular Theory and Intermolecular forces

Remember Chapter 12.1 Introduction to Kinetic Molecular Theory and Intermolecular forces Remember Chapter 12.1 Introduction to Kinetic Molecular Theory and Intermolecular forces 1 To understand properties, we want to connect what we see to what is happening on a molecular level. Start with

More information

S T A T I O N 1 E X O T H E R M I C / E N D O T H E R M I C P R O C E S S E S

S T A T I O N 1 E X O T H E R M I C / E N D O T H E R M I C P R O C E S S E S Name Period Date S T A T I O N 1 E X O T H E R M I C / E N D O T H E R M I C P R O C E S S E S Determine if each statement describes an exothermic process (EXO) or endothermic process (ENDO). surroundings

More information

8. Relax and do well.

8. Relax and do well. CHEM 15 Exam II John II. Gelder March 4, 1999 Name TA's Name Lab Section INSTRUCTIONS: 1. This examination consists of a total of 7 different pages. The last two pages includes a periodic table, a solubility

More information

Chem 1A, Fall 2015, Midterm Exam 3. Version A November 17, 2015 (Prof. Head-Gordon) 2. Student ID: TA:

Chem 1A, Fall 2015, Midterm Exam 3. Version A November 17, 2015 (Prof. Head-Gordon) 2. Student ID: TA: Chem 1A, Fall 2015, Midterm Exam 3. Version A November 17, 2015 (Prof. Head-Gordon) 2 Name: Student ID: TA: Contents: 6 pages A. Multiple choice (10 points) B. Thermochemistry and Equilibria (12 points)

More information

Chapter 14. Liquids and Solids

Chapter 14. Liquids and Solids Chapter 14 Liquids and Solids Section 14.1 Water and Its Phase Changes Reviewing What We Know Gases Low density Highly compressible Fill container Solids High density Slightly compressible Rigid (keeps

More information

Advanced Chemistry Liquid & Solids Test

Advanced Chemistry Liquid & Solids Test Advanced Chemistry Liquid & Solids Test Name: Multiple Choice 1) Which one of the following statements about liquids and solids is generally false? a) The rate of diffusion is lower in solids b) The density

More information

Sample Exercise 11.1 Identifying Substances That Can Form Hydrogen Bonds

Sample Exercise 11.1 Identifying Substances That Can Form Hydrogen Bonds Sample Exercise 11.1 Identifying Substances That Can Form Hydrogen Bonds In which of these substances is hydrogen bonding likely to play an important role in determining physical properties: methane (CH

More information

Example 9.1 Using Lewis Symbols to Predict the Chemical Formula of an Ionic Compound

Example 9.1 Using Lewis Symbols to Predict the Chemical Formula of an Ionic Compound Example 9.1 Using Lewis Symbols to Predict the Chemical Formula of an Ionic Compound For Practice 9.1 Use Lewis symbols to predict the formula for the compound that forms between magnesium and nitrogen.

More information

Advanced Chemistry Practice Problems

Advanced Chemistry Practice Problems Thermodynamics: Review of Thermochemistry 1. Question: What is the sign of DH for an exothermic reaction? An endothermic reaction? Answer: ΔH is negative for an exothermic reaction and positive for an

More information

Chapter 17 Thermochemistry

Chapter 17 Thermochemistry Chapter 17 Thermochemistry Section 17.1 The Flow of Energy Heat and Work OBJECTIVES: Explain how energy, heat, and work are related. 2 Section 17.1 The Flow of Energy Heat and Work OBJECTIVES: Classify

More information

Chapter 11 Spontaneous Change and Equilibrium

Chapter 11 Spontaneous Change and Equilibrium Chapter 11 Spontaneous Change and Equilibrium 11-1 Enthalpy and Spontaneous Change 11-2 Entropy 11-3 Absolute Entropies and Chemical Reactions 11-4 The Second Law of Thermodynamics 11-5 The Gibbs Function

More information

They are similar to each other. Intermolecular forces

They are similar to each other. Intermolecular forces s and solids They are similar to each other Different than gases. They are incompressible. Their density doesn t change much with temperature. These similarities are due to the molecules staying close

More information

Bromine liquid vapor equilibrium vapor pressure temperature intermolecular forces Presentation

Bromine liquid vapor equilibrium vapor pressure temperature intermolecular forces Presentation Bromine liquid vapor equilibrium vapor pressure temperature intermolecular forces Presentation Department of Chemistry & Biochemistry University of Oregon Eugene, Oregon 97403 USA Closed system vs Open

More information

Name Chemistry / / SOL Questions Chapter 9 For each of the following, fill in the correct answer on the BLUE side of the scantron.

Name Chemistry / / SOL Questions Chapter 9 For each of the following, fill in the correct answer on the BLUE side of the scantron. Name Chemistry / / SOL Questions Chapter 9 For each of the following, fill in the correct answer on the BLUE side of the scantron. 1. Which number on the graph to the right represents the effect of the

More information

Kinetics & Equilibrium Review Packet. Standard Level. 1. Which quantities in the enthalpy level diagram are altered by the use of a catalyst?

Kinetics & Equilibrium Review Packet. Standard Level. 1. Which quantities in the enthalpy level diagram are altered by the use of a catalyst? Kinetics & Equilibrium Review Packet Standard Level 1. Which quantities in the enthalpy level diagram are altered by the use of a catalyst? Enthalpy I II III Time A. I and II only B. I and III only C.

More information

They are similar to each other

They are similar to each other They are similar to each other Different than gases. They are incompressible. Their density doesn t change much with temperature. These similarities are due to the molecules staying close together in solids

More information

Chemistry 12 Dr. Kline 7 December 2005 Name

Chemistry 12 Dr. Kline 7 December 2005 Name Test 4 first letter of last name Chemistry 12 Dr. Kline 7 December 2005 Name This test consists of a combination of multiple choice and other questions. There should be a total of 22 questions on eight

More information

MOLECULAR ORBITAL DIAGRAM KEY

MOLECULAR ORBITAL DIAGRAM KEY 365 MOLECULAR ORBITAL DIAGRAM KEY Draw molecular orbital diagrams for each of the following molecules or ions. Determine the bond order of each and use this to predict the stability of the bond. Determine

More information

Entropy Changes & Processes

Entropy Changes & Processes Entropy Changes & Processes Chapter 4 of Atkins: he Second Law: he Concepts Section 4.3 Entropy of Phase ransition at the ransition emperature Expansion of the Perfect Gas Variation of Entropy with emperature

More information

LECTURE 4 Variation of enthalpy with temperature

LECTURE 4 Variation of enthalpy with temperature LECTURE 4 Variation of enthalpy with temperature So far, we can only work at 25 C. Like c v we define a constant pressure heat capacity, c p, as the amount of heat energy needed to raise the temperature

More information

Matter and Energy Homework Problems

Matter and Energy Homework Problems Matter and Energy Homework Problems 1. For each of the following, determine if E is positive, negative, or zero. a. Energy is released b. Energy is consumed c. Water absorbs heat. d. The velocity of an

More information

17/11/2010. Lewis structures

17/11/2010. Lewis structures Reading assignment: 8.5-8.8 As you read ask yourself: How can I use Lewis structures to account for bonding in covalent molecules? What are the differences between single, double and triple bonds in terms

More information

CHEMISTRY 109 #25 - REVIEW

CHEMISTRY 109 #25 - REVIEW CHEMISTRY 109 Help Sheet #25 - REVIEW Chapter 4 (Part I); Sections 4.1-4.6; Ch. 9, Section 9.4a-9.4c (pg 387) ** Review the appropriate topics for your lecture section ** Prepared by Dr. Tony Jacob http://www.chem.wisc.edu/areas/clc

More information

Chapters 11 and 12: Intermolecular Forces of Liquids and Solids

Chapters 11 and 12: Intermolecular Forces of Liquids and Solids 1 Chapters 11 and 12: Intermolecular Forces of Liquids and Solids 11.1 A Molecular Comparison of Liquids and Solids The state of matter (Gas, liquid or solid) at a particular temperature and pressure depends

More information

Ch. 17 Thermochemistry

Ch. 17 Thermochemistry Ch. 17 Thermochemistry 17.1 The Flow of Energy Energy Transformations Thermochemistry: study of energy changes in chemical reactions and changes in state Chemical potential energy: energy stored in bonds

More information

June Which is a closed system? (A) burning candle (B) halogen lightbulb (C) hot water in a sink (D) ripening banana

June Which is a closed system? (A) burning candle (B) halogen lightbulb (C) hot water in a sink (D) ripening banana June 2005 28. Which is a closed system? burning candle halogen lightbulb hot water in a sink ripening banana 29. Which involves the greatest energy change? chemical reaction nuclear reaction phase change

More information

Lecture 20. Phase Transitions. Phase diagrams. Latent heats. Phase-transition fun. Reading for this Lecture: Elements Ch 13.

Lecture 20. Phase Transitions. Phase diagrams. Latent heats. Phase-transition fun. Reading for this Lecture: Elements Ch 13. Lecture 20 Phase ransitions Phase diagrams Latent heats Phase-transition fun Reading for this Lecture: Elements Ch 13 Lecture 20, p 1 Solid-gas equilibrium: vapor pressure Consider solid-gas equilibrium

More information

I. The Nature of Energy A. Energy

I. The Nature of Energy A. Energy I. The Nature of Energy A. Energy is the ability to do work or produce heat. It exists in 2 forms: 1. Potential energy is energy due to the composition or position of an object. 2. Kinetic energy is energy

More information

Chapter 15: Thermochemistry Campbell Chemistry Name: Date In Class Homework (due next class period)

Chapter 15: Thermochemistry Campbell Chemistry Name: Date In Class Homework (due next class period) Date In Class Homework (due next class period) 2/15 Wednesday 2/16 Thursday 2/17 Friday 2/20 Monday 2/21 Tuesday 2/22 Wednesday 2/23 Thursday 2/24 Friday 2/27 Monday LSM 2/28 Tuesday 3/1 Wednesday Chapter

More information

Gas Laws. Bonding. Solutions M= moles solute Mass %= mass solute x 100. Acids and Bases. Thermochemistry q = mc T

Gas Laws. Bonding. Solutions M= moles solute Mass %= mass solute x 100. Acids and Bases. Thermochemistry q = mc T Name Period Teacher Practice Test: OTHS Academic Chemistry Spring Semester 2017 The exam will have 100 multiple choice questions (1 point each) Formula sheet (see below) and Periodic table will be provided

More information

PRACTICE TEST Topic 5: Heating, Cooling, and Phase Diagrams

PRACTICE TEST Topic 5: Heating, Cooling, and Phase Diagrams PRACTICE TEST Topic 5: Heating, Cooling, and Phase Diagrams Directions: Use the heating graph below to answer the following questions. Known Melting Point Data Name of Chemical Lauric Acid Naphthalene

More information

CHAPTER 10 LIQUID & SOLIDS

CHAPTER 10 LIQUID & SOLIDS Advanced Chemistry Name Hour Advanced Chemistry Approximate Timeline Students are expected to keep up with class work when absent. CHAPTER 10 LIQUID & SOLIDS Day Plans for the day Assignment(s) for the

More information

Chapter 6 Chemistry Review

Chapter 6 Chemistry Review Chapter 6 Chemistry Review Multiple Choice Identify the choice that best completes the statement or answers the question. Put the LETTER of the correct answer in the blank. 1. The electrons involved in

More information

Department of Chemistry Memorial University of Newfoundland Chemistry 1050

Department of Chemistry Memorial University of Newfoundland Chemistry 1050 Department of Chemistry Memorial University of Newfoundland Chemistry 1050 FINAL EXAMINATION Fall 017 TIME: 3 hours READ TE FOLLOWING CAREFULLY 1. This examination consists of 13 pages including a Data

More information

1. Choose the CORRECT abbreviated electron configuration for copper. a. [Ar] 4s 1 3d 10 b. [Ar] 4s 1 3d 8 c. [Ar] 4s 2 3d 9 d.

1. Choose the CORRECT abbreviated electron configuration for copper. a. [Ar] 4s 1 3d 10 b. [Ar] 4s 1 3d 8 c. [Ar] 4s 2 3d 9 d. AP Chemistry Fall Practice Semester Exam 3 Write the letter for the correct answer to the following questions on the provided answer sheet. The K f for water is 1.86 C kg/mol and the K b for water is 0.51

More information

FINAL REVIEW QUESTIONS FOR CHM 101

FINAL REVIEW QUESTIONS FOR CHM 101 CHM 1010 FINAL REVIEW QUESTIONS FOR CHM 101 GAGE Wow! It=s almost the end of the semester and you have a head full of chemical concepts. To get ready for the final exam and review those concepts work on

More information

CHEM 1211K Test IV. 3) The phase diagram of a substance is given above. This substance is a at 25 o C and 1.0 atm.

CHEM 1211K Test IV. 3) The phase diagram of a substance is given above. This substance is a at 25 o C and 1.0 atm. CEM 1211K Test IV A MULTIPLE COICE. ( points) 1) A sample of a gas (5.0 mol) at 1.0 atm is expanded at constant temperature from 10 L to 15 L. The final pressure is atm. A). B) 1.5 C) 15 D) 7.5 E) 0.67

More information

S = k log W CHEM Thermodynamics. Change in Entropy, S. Entropy, S. Entropy, S S = S 2 -S 1. Entropy is the measure of dispersal.

S = k log W CHEM Thermodynamics. Change in Entropy, S. Entropy, S. Entropy, S S = S 2 -S 1. Entropy is the measure of dispersal. , S is the measure of dispersal. The natural spontaneous direction of any process is toward greater dispersal of matter and of energy. Dispersal of matter: Thermodynamics We analyze the constraints on

More information

= = 10.1 mol. Molar Enthalpies of Vaporization (at Boiling Point) Molar Enthalpy of Vaporization (kj/mol)

= = 10.1 mol. Molar Enthalpies of Vaporization (at Boiling Point) Molar Enthalpy of Vaporization (kj/mol) Ch 11 (Sections 11.1 11.5) Liquid Phase Volume and Density - Liquid and solid are condensed phases and their volumes are not simple to calculate. - This is different from gases, which have volumes that

More information

Changes of State. Substances in equilibrium change back and forth between states at equal speeds. Main Idea

Changes of State. Substances in equilibrium change back and forth between states at equal speeds. Main Idea Section 4 s Substances in equilibrium change back and forth between states at equal speeds. A liquid boils when it has absorbed enough energy to evaporate. Freezing occurs when a substance loses enough

More information

1 A reaction that is spontaneous.

1 A reaction that is spontaneous. Slide 1 / 55 1 A reaction that is spontaneous. A B C D E is very rapid will proceed without outside intervention is also spontaneous in the reverse direction has an equilibrium position that lies far to

More information

Chem 124 Exam 1 Spring 2016 Version 1 Name

Chem 124 Exam 1 Spring 2016 Version 1 Name Chem 124 Exam 1 Spring 2016 Version 1 Name TOTAL POINTS - 116 MULTIPLE CHOICE 1.4 POINTS EACH 1) A molecule containing a central atom with sp 3 hybridization has a(n) electron geometry. A) linear B) tetrahedral

More information

Chemistry 151 Spring Section 01 MWF 9:10-10:00 am - MWF 9:10-10:00 am. Course Name: Course Code: N/A

Chemistry 151 Spring Section 01 MWF 9:10-10:00 am - MWF 9:10-10:00 am. Course Name: Course Code: N/A Course Name: Chemistry 151 Spring 2018 - Section 01 MWF 9:10-10:00 am - MWF 9:10-10:00 am Course Code: N/A ALEKS Course: General Chemistry (First Semester) Instructor: Prof. Hascall Course Dates: Begin:

More information

Chapter 11 SOLIDS, LIQUIDS AND GASES Pearson Education, Inc.

Chapter 11 SOLIDS, LIQUIDS AND GASES Pearson Education, Inc. Chapter 11 SOLIDS, LIQUIDS AND GASES States of Matter Because in the solid and liquid states particles are closer together, we refer to them as. The States of Matter The state of matter a substance is

More information

Department of Chemistry Memorial University Chemistry 1050

Department of Chemistry Memorial University Chemistry 1050 Department of Chemistry Memorial University Chemistry 1050 Fall 2013 Deferred Examination Time 3 hours NAME: MUN Student Number: Circle your professor s name: Dr. R. Davis Dr. T. Fridgen Dr. C. Kozak Read

More information

Temperature C. Heat Added (Joules)

Temperature C. Heat Added (Joules) Now let s apply the heat stuff to real-world stuff like phase changes and the energy or cost it takes to carry it out. A heating curve...a plot of temperature of a substance vs heat added to a substance.

More information

solid IMF>liquid IMF>gas IMF Draw a diagram to represent the 3 common states of matter of a given substance: solid liquid gas

solid IMF>liquid IMF>gas IMF Draw a diagram to represent the 3 common states of matter of a given substance: solid liquid gas Thermochemistry Part 1 Notes States of Matter and Intermolecular Forces (IMF) Chemistry HP At the end of this unit, students should be able to: Describe the various states of matter in terms of kinetic

More information

P a g e What is the algebraic sign for enthalpy of solution? A. positive B. negative C. not enough information is given

P a g e What is the algebraic sign for enthalpy of solution? A. positive B. negative C. not enough information is given P a g e 1 Chem 123 Practice Questions for EXAM II Spring 2014 Exam II on Wed 3/12/14 This HAS BEEN updated after Monday s lecture (3/10/14) JUST studying these questions is not sufficient preparation.

More information

10/23/10. Thermodynamics and Kinetics. Chemical Hand Warmers

10/23/10. Thermodynamics and Kinetics. Chemical Hand Warmers 10/23/10 CHAPTER 6 Thermochemistry 6-1 Chemical Hand Warmers Most hand warmers work by using the heat released from the slow oxidation of iron 4 Fe(s) + 3 O2(g) 2 Fe2O3(s) The amount your hand temperature

More information

Chapter 11. Liquids and Intermolecular Forces

Chapter 11. Liquids and Intermolecular Forces Chapter 11 Liquids and Intermolecular Forces States of Matter The three states of matter are 1) Solid Definite shape Definite volume 2) Liquid Indefinite shape Definite volume 3) Gas Indefinite shape Indefinite

More information

5. Solve the following a) What energy is required to heat 55.5 g of carbon from -10 C to 47 C (Ccarbon = 0.71 J/g C)

5. Solve the following a) What energy is required to heat 55.5 g of carbon from -10 C to 47 C (Ccarbon = 0.71 J/g C) Ch.10 - Energy 1. How is the concept of energy defined? Name: Period: 2. What does temperature measure? 3. Explain what is meant by the terms exothermic and endothermic. 4. What is meant by the specific

More information

Chapter 5 Thermochemistry

Chapter 5 Thermochemistry Chapter 5 Thermochemistry Section 17.1 The Flow of Energy Heat and Work OBJECTIVES: Explain how energy, heat, and work are related. 2 Section 17.1 The Flow of Energy Heat and Work OBJECTIVES: Classify

More information