Kinetics & Equilibrium Review Packet. Standard Level. 1. Which quantities in the enthalpy level diagram are altered by the use of a catalyst?

Size: px
Start display at page:

Download "Kinetics & Equilibrium Review Packet. Standard Level. 1. Which quantities in the enthalpy level diagram are altered by the use of a catalyst?"

Transcription

1 Kinetics & Equilibrium Review Packet Standard Level 1. Which quantities in the enthalpy level diagram are altered by the use of a catalyst? Enthalpy I II III Time A. I and II only B. I and III only C. II and III only D. I, II and III. Which of the following is (are) important in determining whether a reaction occurs? I. Energy of the molecules II. Orientation of the molecules A. I only B. II only C. Both I and II D. Neither I nor II 3. Consider the reaction between solid CaCO 3 and aqueous HCl. The reaction will be speeded up by an increase in which of the following conditions? I. Concentration of the HCl II. Size of the CaCO 3 particles 1

2 III. Temperature

3 A. I only B. I and III only C. II and III only D. I, II and III 4. Excess magnesium was added to a beaker of aqueous hydrochloric acid on a balance. A graph of the mass of the beaker and contents was plotted against time (line 1). Mass 1 Time What change in the experiment could give line? I. The same mass of magnesium but in smaller pieces II. III. The same volume of a more concentrated solution of hydrochloric acid A lower temperature A. I only B. II only C. III only D. None of the above 3

4 5. Which of the following is (are) altered when a liquid at its boiling point is converted to a gas at the same temperature? I. The size of the molecules II. III. The distance between the molecules The average kinetic energy of the molecules A. I only B. II only C. III only D. I and II only 6. Based on the definition for rate of reaction, which units are used for a rate? A. mol dm 3 B. mol time 1 C. dm time 1 D. mol dm 3 time 1 7. Which of the quantities in the enthalpy level diagram below is (are) affected by the use of a catalyst? Enthalpy I II III Time 4

5 A. I only B. III only C. I and II only D. II and III only 8. In the Haber process for the synthesis of ammonia, what effects does the catalyst have? Rate of formation of NH 3 (g) Amount of NH 3 (g) formed A. Increases Increases B. Increases Decreases C. Increases No change D. No change Increases 9. Which statement is correct about the behaviour of a catalyst in a reversible reaction? A. It decreases the enthalpy change of the forward reaction. B. It increases the enthalpy change of the reverse reaction. C. It decreases the activation energy of the forward reaction. D. It increases the activation energy of the reverse reaction. 5

6 10. The rate of a reaction between two gases increases when the temperature is increased and a catalyst is added. Which statements are both correct for the effect of these changes on the reaction? Increasing the temperature Adding a catalyst A. Collision frequency increases Activation energy increases B. Activation energy increases Activation energy does not change C. Activation energy does not change Activation energy decreases D. Activation energy increases Collision frequency increases 11. What changes occur when the temperature is increased in the following reaction at equilibrium? Br (g) + Cl (g) BrCl(g) H ο = +14 kj mol 1 Position of equilibrium Value of equilibrium constant A. Shifts towards the reactants Decreases B. Shifts towards the reactants Increases C. Shifts towards the products Decreases D. Shifts towards the products Increases 1. The equation for the Haber process is: N (g) + 3H (g) NH 3 (g) ΔH Ө = 9. kj Which conditions will favour the production of the greatest amount of ammonia at equilibrium? A. High temperature and high pressure B. High temperature and low pressure C. Low temperature and high pressure D. Low temperature and low pressure 6

7 13. Sulfur dioxide and oxygen react to form sulfur trioxide according to the equilibrium. SO (g) + O (g) SO 3 (g) How is the amount of SO and the value of the equilibrium constant for the reaction affected by an increase in pressure? A. The amount of SO 3 and the value of the equilibrium constant both increase. B. The amount of SO 3 and the value of the equilibrium constant both decrease. C. The amount of SO 3 increases but the value of the equilibrium constant decreases. D. The amount of SO 3 increases but the value of the equilibrium constant does not change. 14. What is the equilibrium constant expression, K c, for the reaction below? A. K c = B. K c = C. K c = [ NO ] [ N ][ O ] 3 [ NO ] [ N ][ O ] [ NO ] [ N ][ O ] N (g) + O (g) NO (g) D. K c = [ NO ] [ N ] + [ O ] 7

8 15. Consider the following equilibrium reaction in a closed container at 350 C SO (g) + Cl (g) SO Cl (g) ΔH Ө = 85 kj Which statement is correct? A. Decreasing the temperature will increase the amount of SO Cl (g). B. Increasing the volume of the container will increase the amount of SO Cl (g). C. Increasing the temperature will increase the amount of SO Cl (g). D. Adding a catalyst will increase the amount of SO Cl (g). 16. Consider the following equilibrium reaction in a closed container at 350 C. SO (g) + Cl (g) SO Cl (g) ΔH Ө = 85 kj Which statement is correct? A. Decreasing the temperature will increase the amount of SO Cl (g). B. Increasing the volume of the container will increase the amount of SO Cl (g). C. Increasing the temperature will increase the amount of SO Cl (g). D. Adding a catalyst will increase the amount of SO Cl (g). 8

9 17. Iron(III) ions react with thiocyanate ions as follows. Fe 3+ (aq) + CNS (aq) Fe(CNS) + (aq) What are the units of the equilibrium constant, K c, for the reaction? A. mol dm 3 B. mol dm 6 C. mol 1 dm 3 D. mol dm The equation for a reversible reaction used in industry to convert methane to hydrogen is shown below. CH 4 (g) + H O(g) CO(g) + 3H (g) ΔH Ө = +10 kj Which statement is always correct about this reaction when equilibrium has been reached? A. The concentrations of methane and carbon monoxide are equal. B. The rate of the forward reaction is greater than the rate of the reverse reaction. C. The amount of hydrogen is three times the amount of methane. D. The value of ΔH Ө for the reverse reaction is 10 kj. 19. Which statement is always true for a chemical reaction that has reached equilibrium? A. The yield of product(s) is greater than 50%. B. The rate of the forward reaction is greater than the rate of the reverse reaction. C. The amounts of reactants and products do not change. D. Both forward and reverse reactions have stopped. 9

10 0. A sealed container at room temperature is half full of water. The temperature of the container is increased and left for equilibrium to re-establish. Which statement is correct when the equilibrium is re-established at the higher temperature? A. The rate of vaporization is greater than the rate of condensation. B. The amount of water vapour is greater than the amount of liquid water. C. The amount of water vapour is greater than it is at the lower temperature. D. The rate of condensation is greater than the rate of vaporization. 1. (a) An industrial gas mixture is produced by the catalytic reforming of methane using steam. CH 4 (g) + H O(g) CO(g) + 3H (g) ΔH = +06 kj By circling the appropriate letter(s) below, identify the change(s) that would shift the position of equilibrium to the right. A increasing the temperature B decreasing the temperature C increasing the pressure D adding a catalyst E decreasing the pressure F increasing the concentration of H (b) The following graph represents the change of concentration of reactant and product during a reaction [reactant] or [product] / mol dm Product Reactant Time / s 10

11 (i) Calculate the average rate of reaction over the first 15 s, stating the units. (3) (ii) After 19 s the concentrations of the reactant and product do not change. State what this indicates about the reaction. (1) (Total 6 marks). The table below gives information about the percentage yield of ammonia obtained in the Haber process under different conditions. Pressure/ Temperature/ C atmosphere

12 (a) From the table, identify which combination of temperature and pressure gives the highest yield of ammonia.. (1) (b) The equation for the main reaction in the Haber process is N (g) + 3H (g) NH 3 (g) H is negative Use this information to state and explain the effect on the yield of ammonia of increasing (i) pressure: (ii) temperature: (c) In practice, typical conditions used in the Haber process are a temperature of 500 C and a pressure of 00 atmospheres. Explain why these conditions are used rather than those that give the highest yield

13 (d) Write the equilibrium constant expression, K c, for the production of ammonia... (1) (Total 8 marks) 3. (a) The following equilibrium is established at 1700 C. CO (g) + H (g) H O(g) CO(g) If only carbon dioxide gas and hydrogen gas are present initially, sketch on a graph a line representing rate against time for (i) the forward reaction and (ii) the reverse reaction until shortly after equilibrium is established. Explain the shape of each line. (7) (b) K c for the equilibrium reaction is determined at two different temperatures. At 850 C, K c = 1.1 whereas at 1700 C, K c = 4.9. On the basis of these K c values explain whether the reaction is exothermic or endothermic. (3) (Total 10 marks) 4. Consider the following equilibrium reaction. SO (g) + O (g) SO 3 (g) H = 198 kj Using Le Chatelier s Principle, state and explain what will happen to the position of equilibrium if (a) the temperature increases

14 (b) the pressure increases (Total 4 marks) 5. The equation for one reversible reaction involving oxides of nitrogen is shown below: N O 4 (g) NO (g) ΔH Ө = +58 kj Experimental data for this reaction can be represented on the following graph: concentration / mol dm product reactant Time / min 8 10 (i) Write an expression for the equilibrium constant, K c, for the reaction. Explain the significance of the horizontal parts of the lines on the graph. State what can be deduced about the magnitude of K c for the reaction, giving a reason. (4) (ii) Use Le Chatelier s principle to predict and explain the effect of increasing the temperature on the position of equilibrium. 14

15 (iii) Use Le Chatelier s principle to predict and explain the effect of increasing the pressure on the position of equilibrium. (iv) State and explain the effects of a catalyst on the forward and reverse reactions, on the position of equilibrium and on the value of K c. (6) (Total 14 marks) 6. (i) Draw a graph to show the distribution of energies in a sample of gas molecules. Label the axes and label your curve T 1. Using the same axes, draw a second curve to represent the distribution of energies at a higher temperature. Label this curve T. (3) 15

16 (ii) State and explain, with reference to your graph, what happens to the rate of a reaction when the temperature is increased. (Total 5 marks) 7. The graph below shows the volume of carbon dioxide gas produced against time when excess calcium carbonate is added to x cm 3 of.0 mol dm 3 hydrochloric acid. Volume of CO Time (i) Write a balanced equation for the reaction. (1) 16

17 (ii) State and explain the change in the rate of reaction with time. Outline how you would determine the rate of the reaction at a particular time. (4) 17

18 (iii) Sketch the above graph on an answer sheet. On the same graph, draw the curves you would expect if: I. the same volume (x cm 3 ) of 1.0 mol dm 3 HCl is used. II. double the volume (x cm 3 ) of 1.0 mol dm 3 HCl is used. Label the curves and explain your answer in each case. (5) (Total 10 marks) 8. The reaction between ammonium chloride and sodium nitrite in aqueous solution can be represented by the following equation. NH 4 Cl(aq) + NaNO (aq) N (g) + H O(l) + NaCl(aq) 18

19 The graph below shows the volume of nitrogen gas produced at 30 second intervals from a mixture of ammonium chloride and sodium nitrite in aqueous solution at 0 C Volume of N / cm Time / s (a) (i) State how the rate of formation of nitrogen changes with time. Explain your answer in terms of collision theory. (ii) Explain why the volume eventually remains constant. (1) 19

20 (b) (i) State how the rate of formation of nitrogen would change if the temperature were increased from 0 C to 40 C. (1) (ii) State two reasons for the change described in (b)(i) and explain which of the two is more important in causing the change. (3) (iii) The reaction between solid ammonium chloride and aqueous sodium nitrite can be represented by the following equation. NH 4 Cl(s) + NaNO (aq) N (g) + H O(l) + NaCl(aq) State and explain how the rate of formation of nitrogen would change if the same amount of ammonium chloride was used as large lumps instead of as a fine powder. (Total 9 marks) 0

21 9. When excess lumps of magnesium carbonate are added to dilute hydrochloric acid the following reaction takes place. MgCO 3 (s) + HCl(aq) MgCl (aq) + CO (g) + H O(l) (a) Outline two ways in which the rate of this reaction could be studied. In each case sketch a graph to show how the value of the chosen variable would change with time. (4) (b) State and explain three ways in which the rate of this reaction could be increased. 1

22 (6) (c) State and explain whether the total volume of carbon dioxide gas produced would increase, decrease or stay the same if (i) more lumps of magnesium carbonate were used. (ii) the experiments were carried out at a higher temperature. (Total 14 marks) 30. Carbon dioxide gas in the atmosphere reacts slightly with rainwater as shown below. CO (g) + H O(l) H + (aq) + HCO 3 (aq) (i) State the meaning of the sign. (1)

23 (ii) Predict the effect, if any, of the presence of a catalyst on the acidity of rainwater. Give a reason for your answer. (iii) Use Le Chatelier s principle to predict the effect of the addition of a small quantity of an alkali on the acidity of rainwater. Explain what effect, if any, this would have on the equilibrium constant, K c. (3) (Total 6 marks) 3

(b) Describe, and explain, what would happen to the position of the NO 2 /N 2 O 4 equilibrium if the following changes are made

(b) Describe, and explain, what would happen to the position of the NO 2 /N 2 O 4 equilibrium if the following changes are made 1. Nitrogen dioxide, NO 2, and dinitrogen tetroxide, N 2 O 4, take part in the following equilibrium. 2NO 2 (g) N 2 O 4 (g) ΔH = 58 kj mol 1 (a) State le Chatelier s principle. (b) Describe, and explain,

More information

Q1. (a) State what is meant by the term activation energy of a reaction. (1)

Q1. (a) State what is meant by the term activation energy of a reaction. (1) Q1. (a) State what is meant by the term activation energy of a reaction. (c) State in general terms how a catalyst increases the rate of a chemical reaction. The curve below shows the Maxwell Boltzmann

More information

(g) burns according to this reaction? D) CH 4 (g) + 2O 2 (g) CO 2 (g) + 2H 2 O(l)

(g) burns according to this reaction? D) CH 4 (g) + 2O 2 (g) CO 2 (g) + 2H 2 O(l) Name: 7171-1 - Page 1 1) In a chemical reaction, the difference between the potential energy of the products and the potential energy of the reactants is defined as the A) heat of reaction B) ionization

More information

F322: Chains, Energy and Resources Rates and Equilibria

F322: Chains, Energy and Resources Rates and Equilibria F322: Chains, Energy and Resources 2.3.2 Rates and Equilibria 1. Dilute aqueous hydrogen peroxide, H 2 O 2 (aq), is used to sterilise contact lenses. Dilute H 2 O 2 (aq) slowly decomposes at room temperature

More information

(g) + 3H 2. (g) 2NH 3. (g) (a) Explain what is meant by a dynamic equilibrium. (2)

(g) + 3H 2. (g) 2NH 3. (g) (a) Explain what is meant by a dynamic equilibrium. (2) 1 When nitrogen and hydrogen react to form ammonia, the reaction can reach a dynamic equilibrium. (g) + 3H 2 (g) 2NH 3 (g) (a) Explain what is meant by a dynamic equilibrium. (b) In industry, the reaction

More information

REACTION RATES AND REVERSIBLE REACTIONS

REACTION RATES AND REVERSIBLE REACTIONS NAME SCHOOL INDEX NUMBER DATE REACTION RATES AND REVERSIBLE REACTIONS 1. 1989 Q 4 P1 The graph shows the loss in total mass of a mixture of marble chips and dilute hydrochloric acid with time at 250C Loss

More information

QUESTIONS: Equilibria AS & AS

QUESTIONS: Equilibria AS & AS QUESTION (2012:2) Phosphorus pentachloride gas, PCl 5 (g), decomposes to form phosphorus trichloride gas, PCl 3 (g), and chlorine gas, Cl 2 (g). The equilibrium can be represented as: PCl 5 (g) Ý PCl 3

More information

1. The reaction between solid barium hydroxide and solid ammonium chloride can be represented by the equation below.

1. The reaction between solid barium hydroxide and solid ammonium chloride can be represented by the equation below. 1. The reaction between solid barium hydroxide and solid ammonium chloride can be represented by the equation below. Ba(OH) 2 (s) + 2NH 4 Cl(s) BaCl 2 (s) + 2NH 3 (g) + 2H 2 O(l) ΔH ο = +51.1 kj mol 1

More information

3.2.2 Kinetics. Maxwell Boltzmann distribution. 128 minutes. 128 marks. Page 1 of 16

3.2.2 Kinetics. Maxwell Boltzmann distribution. 128 minutes. 128 marks. Page 1 of 16 3.2.2 Kinetics Maxwell Boltzmann distribution 128 minutes 128 marks Page 1 of 16 Q1. The diagram shows the Maxwell Boltzmann distribution for a sample of gas at a fixed temperature. E a is the activation

More information

AS Paper 1 and 2 Kc and Equilibria

AS Paper 1 and 2 Kc and Equilibria AS Paper 1 and 2 Kc and Equilibria Q1.When one mole of ammonia is heated to a given temperature, 50 per cent of the compound dissociates and the following equilibrium is established. NH 3(g) ½ N 2 (g)

More information

İTÜ GELİŞTİRME VAKFI ÖZEL EKREM ELGİNKAN LİSESİ. Term Lesson Unit Subject Date. 2nd Chemistry Unit Review

İTÜ GELİŞTİRME VAKFI ÖZEL EKREM ELGİNKAN LİSESİ. Term Lesson Unit Subject Date. 2nd Chemistry Unit Review İTÜ GELİŞTİRME VAKFI ÖZEL EKREM ELGİNKAN LİSESİ Term Lesson Unit Subject Date 2nd Chemistry Unit 5-6-7 Review 25.04-03.05 2015 Name- Surname Class: 10-IB Number: 1. What is the function of iron in the

More information

Calculating Reaction Rates 1:

Calculating Reaction Rates 1: Calculating Reaction Rates 1: 1. A 5.0g sample of magnesium reacts complete with a hydrochloric acid solution after 150 s. Express the average rate of consumption of magnesium, in units of g/min. 2. How

More information

Name: Unit!!: Kinetics and Equilibrium REGENTS CHEMISTRY

Name: Unit!!: Kinetics and Equilibrium REGENTS CHEMISTRY Name: Unit!!: Kinetics and Equilibrium REGENTS CHEMISTRY 1 Name: Unit!!: Kinetics and Equilibrium Collision theory states that a reaction is most likely to occur if reactant particles collide with the

More information

Q1. The gas-phase reaction between hydrogen and chlorine is very slow at room temperature. (g) + Cl 2. (g) 2HCl(g) (2)

Q1. The gas-phase reaction between hydrogen and chlorine is very slow at room temperature. (g) + Cl 2. (g) 2HCl(g) (2) Q1. The gas-phase reaction between hydrogen and chlorine is very slow at room temperature. H 2 (g) + Cl 2 (g) 2HCl(g) (a) Define the term activation energy....... Give one reason why the reaction between

More information

Name Chemistry Exam #8 Period: Unit 8: Kinetics, Thermodynamics, & Equilibrium

Name Chemistry Exam #8 Period: Unit 8: Kinetics, Thermodynamics, & Equilibrium 1. Which quantities must be equal for a chemical reaction at equilibrium? (A) the potential energies of the reactants and products (B) the concentrations of the reactants and products (C) the activation

More information

(03) WMP/Jun10/CHEM4

(03) WMP/Jun10/CHEM4 Thermodynamics 3 Section A Answer all questions in the spaces provided. 1 A reaction mechanism is a series of steps by which an overall reaction may proceed. The reactions occurring in these steps may

More information

(04) WMP/Jan11/CHEM2

(04) WMP/Jan11/CHEM2 Kinetics 4 2 The diagram below shows a Maxwell Boltzmann distribution for a sample of gas at a fixed temperature. E a is the activation energy for the decomposition of this gas. Number of molecules with

More information

3.2.2 Kinetics. Effect of temperature. 145 minutes. 145 marks. Page 1 of 22

3.2.2 Kinetics. Effect of temperature. 145 minutes. 145 marks. Page 1 of 22 3.. Kinetics Effect of temperature 145 minutes 145 marks Page 1 of Q1. (a) State what is meant by the term activation energy of a reaction. (b) (c) State in general terms how a catalyst increases the rate

More information

Case Study: The Industrial Manufacture of Ammonia The Haber Process

Case Study: The Industrial Manufacture of Ammonia The Haber Process Case Study: The Industrial Manufacture of Ammonia The Haber Process In the Haber Process, ammonia (NH3) is synthesised from nitrogen and hydrogen gases: N 2 (g) + 3H 2 (g) Ý 2NH3(g), ΔH = 92.4 kjmol -1

More information

[2] The table below shows the enthalpy changes that are needed to determine the enthalpy change of hydration of magnesium ions.

[2] The table below shows the enthalpy changes that are needed to determine the enthalpy change of hydration of magnesium ions. 1 Born Haber cycles provide a model that chemists use to determine unknown enthalpy changes from known enthalpy changes. In this question, you will use a Born Haber cycle to determine an enthalpy change

More information

1. As the number of effective collisions between reacting particles increases, the rate of reaction (1) decreases (3) remains the same (2) increases

1. As the number of effective collisions between reacting particles increases, the rate of reaction (1) decreases (3) remains the same (2) increases 1. As the number of effective collisions between reacting particles increases, the rate of reaction (1) decreases (3) remains the same (2) increases 2. The energy needed to start a chemical reaction is

More information

Basic SL Concepts. D. 2.0 (Total 1 mark) When the equation above is balanced, what is the coefficient for oxygen? D.

Basic SL Concepts. D. 2.0 (Total 1 mark) When the equation above is balanced, what is the coefficient for oxygen? D. Basic SL Concepts 1. 3.0 dm 3 of sulfur dioxide is reacted with.0 dm 3 of oxygen according to the equation below. SO(g) + O(g) SO3(g) What volume of sulfur trioxide (in dm 3 ) is formed? (Assume the reaction

More information

Page 2. Q1.Marble chips are mainly calcium carbonate (CaCO 3 ).

Page 2. Q1.Marble chips are mainly calcium carbonate (CaCO 3 ). Q1.Marble chips are mainly calcium carbonate (CaCO 3 ). A student investigated the rate of reaction between marble chips and hydrochloric acid (HCl). Figure 1 shows the apparatus the student used. Figure

More information

(i) State the time taken for all the peroxodisulfate ions to react. [1] (ii) Suggest a method of measuring the rate of this reaction.

(i) State the time taken for all the peroxodisulfate ions to react. [1] (ii) Suggest a method of measuring the rate of this reaction. 9 (i) State the time taken for all the peroxodisulfate ions to react. [1].............................. minutes (ii) Suggest a method of measuring the rate of this reaction. [1]............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

More information

UNIT 8 KINETICS & EQ: NOTE & PRACTICE PACKET

UNIT 8 KINETICS & EQ: NOTE & PRACTICE PACKET UNIT 8 KINETICS & EQ: NOTE & PRACTICE PACKET 1 2 Lesson 1: Kinetics = study of the RATE or SPEED at which REACTIONS occur A REACTION is the Reaction Mechanism = STEP BY STEP PROCESS needed to make a product;

More information

Based on the kinetic molecular theory of gases, which one of the following statements is INCORRECT?

Based on the kinetic molecular theory of gases, which one of the following statements is INCORRECT? 1 Based on the kinetic molecular theory of gases, which one of the following statements is INCORRECT? A) The collisions between gas molecules are perfectly elastic. B) At absolute zero, the average kinetic

More information

8. The table below describes two different reactions in which Reaction 1 is faster. What accounts for this observation? Reaction 1 Reaction 2.

8. The table below describes two different reactions in which Reaction 1 is faster. What accounts for this observation? Reaction 1 Reaction 2. Public Review - Rates and Equilibrium June 2005 1. What does X represent in the diagram below? (A) activation energy for the forward reaction (B) activation energy for the reverse reaction (C) heat of

More information

N10/4/CHEMI/SP2/ENG/TZ0/XX CHEMISTRY STANDARD LEVEL PAPER 2. Thursday 11 November 2010 (afternoon) Candidate session number.

N10/4/CHEMI/SP2/ENG/TZ0/XX CHEMISTRY STANDARD LEVEL PAPER 2. Thursday 11 November 2010 (afternoon) Candidate session number. N10/4/CHEMI/SP2/ENG/TZ0/XX 88106105 CHEMISTRY STANDARD LEVEL PAPER 2 Thursday 11 November 2010 (afternoon) 1 hour 15 minutes 0 0 Candidate session number INSTRUCTIONS TO CANDIDATES Write your session number

More information

Lower Sixth Chemistry. Sample Entrance Examination

Lower Sixth Chemistry. Sample Entrance Examination Lower Sixth Chemistry Sample Entrance Examination Time allowed: 60 minutes Name: Total : 60 Marks INSTRUCTIONS : Answer all questions Answers should be written in the spaces provided Dictionaries or reference

More information

and mol of Cl 2 was heated in a vessel of fixed volume to a constant temperature, the following reaction reached equilibrium.

and mol of Cl 2 was heated in a vessel of fixed volume to a constant temperature, the following reaction reached equilibrium. Q1. When a mixture of 0.45 mol of PCl and 0.68 mol of Cl was heated in a vessel of fixed volume to a constant temperature, the following reaction reached equilibrium. PCl + Cl PCl 5 H = 9 kj mol 1 At equilibrium,

More information

3.2.1 Energetics. Enthalpy Change. 263 minutes. 259 marks. Page 1 of 41

3.2.1 Energetics. Enthalpy Change. 263 minutes. 259 marks. Page 1 of 41 ..1 Energetics Enthalpy Change 6 minutes 59 marks Page 1 of 41 Q1. (a) Define the term standard molar enthalpy of formation, ΔH f. (b) State Hess s law. (c) Propanone, CO, burns in oxygen as shown by the

More information

2 EQUILIBRIUM 2.1 WHAT IS EQUILIBRIUM? 2.2 WHEN IS A SYSTEM AT EQUILIBRIUM? 2.3 THE EQUILIBRIUM CONSTANT

2 EQUILIBRIUM 2.1 WHAT IS EQUILIBRIUM? 2.2 WHEN IS A SYSTEM AT EQUILIBRIUM? 2.3 THE EQUILIBRIUM CONSTANT 2 EQUILIBRIUM 2.1 WHAT IS EQUILIBRIUM? In general terms equilibrium implies a situation that is unchanging or steady. This is generally achieved through a balance of opposing forces. In chemistry equilibrium

More information

In an investigation of the rate of reaction between hydrochloric acid and pure magnesium, a student obtained the following curve.

In an investigation of the rate of reaction between hydrochloric acid and pure magnesium, a student obtained the following curve. Q1.(a) In an investigation of the rate of reaction between hydrochloric acid and pure magnesium, a student obtained the following curve. The reaction of magnesium with dilute hydrochloric acid is exothermic.

More information

A. 2.5 B. 5.0 C. 10. D. 20 (Total 1 mark) 2. Consider the following reactions. N 2 (g) + O 2 (g) 2NO(g) 2NO 2 (g) 2NO(g) + O 2 (g)

A. 2.5 B. 5.0 C. 10. D. 20 (Total 1 mark) 2. Consider the following reactions. N 2 (g) + O 2 (g) 2NO(g) 2NO 2 (g) 2NO(g) + O 2 (g) 1. When 100 cm 3 of 1.0 mol dm 3 HCl is mixed with 100 cm 3 of 1.0 mol dm 3 NaOH, the temperature of the resulting solution increases by 5.0 C. What will be the temperature change, in C, when 50 cm 3 of

More information

Unit 13 Kinetics & Equilibrium Page 1 of 14 Chemistry Kinetics, Entropy, Equilibrium, LeChatelier s Principle, K, Unit 13 Quiz: Unit 13 Test:

Unit 13 Kinetics & Equilibrium Page 1 of 14 Chemistry Kinetics, Entropy, Equilibrium, LeChatelier s Principle, K, Unit 13 Quiz: Unit 13 Test: Unit 13 Kinetics & Equilibrium Page 1 of 14 Chemistry Kinetics, Entropy, Equilibrium, LeChatelier s Principle, K, Unit 13 Quiz: Unit 13 Test: Final Project: VOCABULARY: 1 Chemical equilibrium 2 equilibrium

More information

PHYSICAL SCIENCES: PAPER II

PHYSICAL SCIENCES: PAPER II NATIONAL SENIOR CERTIFICATE EXAMINATION NOVEMBER 2014 PHYSICAL SCIENCES: PAPER II Time: 3 hours 200 marks PLEASE READ THE FOLLOWING INSTRUCTIONS CAREFULLY 1. This question paper consists of 14 pages, a

More information

8. A piece of Mg(s) ribbon is held in a Bunsen burner flame and begins to burn according to the equation: 2Mg(s) + O2 (g) 2MgO(s).

8. A piece of Mg(s) ribbon is held in a Bunsen burner flame and begins to burn according to the equation: 2Mg(s) + O2 (g) 2MgO(s). 1. Which event must always occur for a chemical reaction to take place? A) formation of a precipitate B) formation of a gas C) effective collisions between reacting particles D) addition of a catalyst

More information

AS Paper 1 and 2 Energetics

AS Paper 1 and 2 Energetics AS Paper 1 and 2 Energetics Q1.Nitric acid is produced industrially from ammonia, air and water using the following sequence of reactions: 4NH 3 (g) + 5O 2(g) 4NO(g) + 6H 2O(g) H = 909 kj mol 1 (2) 2NO(g)

More information

(g) + 2H 2. (g) CH [1] (g) H 2. Explain, with a calculation, whether this reaction is feasible at 25 C [3]

(g) + 2H 2. (g) CH [1] (g) H 2. Explain, with a calculation, whether this reaction is feasible at 25 C [3] 1 This question looks at two reactions involving sulfur compounds (a) Hydrogen reacts with carbon disulfide as shown below 4H 2 + CS 2 CH 4 + 2H 2 S For this reaction, ΔH = 234 kj mol 1 and ΔS = 164 J

More information

METRO CENTRAL EDUCATION DISTRICT GRADE 12 PHYSICAL SCIENCES: PAPER 2 (CHEMISTRY) SEPTEMBER 2016

METRO CENTRAL EDUCATION DISTRICT GRADE 12 PHYSICAL SCIENCES: PAPER 2 (CHEMISTRY) SEPTEMBER 2016 METRO CENTRAL EDUCATION DISTRICT GRADE 12 PHYSICAL SCIENCES: PAPER 2 (CHEMISTRY) SEPTEMBER 2016 MARKS: 150 TIME: 3 hours This question paper consists of 14 numbered pages and 4 data sheets. PHYSICAL SCIENCES/P2

More information

NCEA COLLATED QUESTIONS ON RATES OF REACTION

NCEA COLLATED QUESTIONS ON RATES OF REACTION NCEA COLLATED QUESTIONS ON RATES OF REACTION Previously part of expired AS 90301, now part of 91166, Demonstrate understanding of chemical reactivity 2012 (91166 exam) When dilute hydrochloric acid, HCl(aq),

More information

2 Answer all the questions. CO, in the presence of aqueous hydrochloric acid, HCl(aq).

2 Answer all the questions. CO, in the presence of aqueous hydrochloric acid, HCl(aq). 2 Answer all the questions. 1 A student investigates the reaction between iodine, I 2, and propanone, (CH 3 ) 2 CO, in the presence of aqueous hydrochloric acid, HCl(aq). The results of the investigation

More information

Equilibrium and Reaction Rate

Equilibrium and Reaction Rate Equilibrium and Reaction Rate Multiple Choice Questions - Answers 1. Activation energy could be considered as the minimum energy required to do which of these? A. change the orientation of the reactant

More information

AQA A2 CHEMISTRY TOPIC 4.2 EQUILIBRIA BOOKLET OF PAST EXAMINATION QUESTIONS

AQA A2 CHEMISTRY TOPIC 4.2 EQUILIBRIA BOOKLET OF PAST EXAMINATION QUESTIONS AQA A2 CHEMISTRY TOPIC 4.2 EQUILIBRIA BOOKLET OF PAST EXAMINATION QUESTIONS 1 1. (a) The diagram below shows the effect of temperature and pressure on the equilibrium yield of the product in a gaseous

More information

A.M. THURSDAY, 14 January hours. Write your name, centre number and candidate number in the spaces at the top of this page.

A.M. THURSDAY, 14 January hours. Write your name, centre number and candidate number in the spaces at the top of this page. Candidate Name Centre Number 2 Candidate Number GCE AS/A level 1091/01 CHEMISTRY CH1 A.M. THURSDAY, 14 January 2010 1 1 2 hours FOR EXAMINER S USE ONLY Section A Question 1-6 Mark ADDITIONAL MATERIALS

More information

Equilibrium & Reaction Rate

Equilibrium & Reaction Rate Equilibrium & Reaction Rate 1. One of the important reactions in coal gasification is the catalytic methanation reaction: CO(g) + H (g) H O(g) + CH 4 (g) H 06 kj a) Predict the direction in which this

More information

c) Explain the observations in terms of the DYNAMIC NATURE of the equilibrium system.

c) Explain the observations in terms of the DYNAMIC NATURE of the equilibrium system. Chemical Equilibrium - Part A: 1. At 25 o C and 101.3 kpa one mole of hydrogen gas and one mol of chlorine gas are reacted in a stoppered reaction vessel. After a certain time, three gases are detected

More information

CHERRY HILL TUITION AQA CHEMISTRY A2 PAPER Section A. Answer all questions in the spaces provided.

CHERRY HILL TUITION AQA CHEMISTRY A2 PAPER Section A. Answer all questions in the spaces provided. 2 Section A Answer all questions in the spaces provided. 1 This question is about bond dissociation enthalpies and their use in the calculation of enthalpy changes. 1 (a) Define bond dissociation enthalpy

More information

Unit 8: Equilibrium Unit Review

Unit 8: Equilibrium Unit Review 1. Predict the effect of increasing pressure on the position of equilibrium in the following systems: a. CH 4 (g) + 2H 2 O(g) CO 2 (g) + 4H 2 (g) b. N 2 O 5 (g) + NO(g) 3NO 2 (g) c. NO(g) + NO 2 (g) N

More information

A student adds the following volumes of aqueous sodium thiosulfate, dilute hydrochloric acid and distilled water to the conical flask.

A student adds the following volumes of aqueous sodium thiosulfate, dilute hydrochloric acid and distilled water to the conical flask. 1 When aqueous sodium thiosulfate and dilute hydrochloric acid are mixed, a precipitate of insoluble sulfur is produced. This makes the mixture difficult to see through. Na 2 S 2 O 3 (aq) + 2HCl (aq) S(s)

More information

AQA A2 CHEMISTRY TOPIC 5.1 THERMODYNAMICS BOOKLET OF PAST EXAMINATION QUESTIONS

AQA A2 CHEMISTRY TOPIC 5.1 THERMODYNAMICS BOOKLET OF PAST EXAMINATION QUESTIONS AQA A2 CHEMISTRY TOPIC 5.1 THERMODYNAMICS BOOKLET OF PAST EXAMINATION QUESTIONS 1 1. A Born Haber cycle for the formation of calcium sulphide is shown below. The cycle includes enthalpy changes for all

More information

HKCEE Past Paper Questions: Part 9 Rate of Reactions Part A: Multiple Choices

HKCEE Past Paper Questions: Part 9 Rate of Reactions Part A: Multiple Choices HKCEE Past Paper Questions: Part 9 Rate of Reactions Part A: Multiple Choices 1. HKCEE 1996 II Q11 In an experiment, 1.6 g of sulphur are burnt completely in air to form sulphur dioxide. What volume of

More information

We use a special symbol to denote a reaction which is reversible: The double-headed arrow means the reaction can go in either direction

We use a special symbol to denote a reaction which is reversible: The double-headed arrow means the reaction can go in either direction Reversible reactions Some reactions do not go to completion we don t get 100% yield because not all of the reactants react to form products. One of the reasons for this is that some reactions are reversible

More information

Reaction Rate and Equilibrium Chapter 19 Assignment & Problem Set

Reaction Rate and Equilibrium Chapter 19 Assignment & Problem Set Reaction Rate and Equilibrium Name Warm-Ups (Show your work for credit) Date 1. Date 2. Date 3. Date 4. Date 5. Date 6. Date 7. Date 8. Reaction Rate and Equilibrium 2 Study Guide: Things You Must Know

More information

Name AP CHEM / / Collected AP Exam Essay Answers for Chapter 16

Name AP CHEM / / Collected AP Exam Essay Answers for Chapter 16 Name AP CHEM / / Collected AP Exam Essay Answers for Chapter 16 1980 - #7 (a) State the physical significance of entropy. Entropy (S) is a measure of randomness or disorder in a system. (b) From each of

More information

Q1. The chart shows the processes involved in the manufacture of nitric acid from ammonia.

Q1. The chart shows the processes involved in the manufacture of nitric acid from ammonia. Q1. The chart shows the processes involved in the manufacture of nitric acid from ammonia. (a) Complete the word equation for the reaction that takes place in the first reaction vessel. ammonia +... nitrogen

More information

Equilibrium. Dynamic Equilibrium, Position of Equilibrium, Liquid-Vapor Equilibrium, Equilibrium Law January 2015

Equilibrium. Dynamic Equilibrium, Position of Equilibrium, Liquid-Vapor Equilibrium, Equilibrium Law January 2015 Equilibrium Dynamic Equilibrium, Position of Equilibrium, Liquid-Vapor Equilibrium, Equilibrium Law January 2015 Equilibrium Review What is equilibrium? Features of equilibrium the rate of the forward

More information

Rates of Reaction. Question Paper. Save My Exams! The Home of Revision. Exam Board. Page 1. Score: /249. Percentage: /100

Rates of Reaction. Question Paper. Save My Exams! The Home of Revision. Exam Board. Page 1. Score: /249. Percentage: /100 Rates of Reaction Question Paper Level Subject Exam Board Unit Topic Difficulty Level Booklet GCSE Chemistry AQA C2 Rates of Reaction Silver Level Question Paper Time Allowed: 249 minutes Score: /249 Percentage:

More information

IB Topics 1 & 11 Multiple Choice Practice

IB Topics 1 & 11 Multiple Choice Practice IB Topics 1 & 11 Multiple Choice Practice 1. How many atoms of nitrogen are there in 0.50 mol of (NH 4) 2CO 3? 1 2 3.01 10 23 6.02 10 23 2. What is the value of x when 32.2 g of Na 2SO 4 xh 2O are heated

More information

PHYSICAL SCIENCES: PAPER II

PHYSICAL SCIENCES: PAPER II NATIONAL SENIOR CERTIFICATE EXAMINATION NOVEMBER 2017 PHYSICAL SCIENCES: PAPER II Time: 3 hours 200 marks PLEASE READ THE FOLLOWING INSTRUCTIONS CAREFULLY 1. This question paper consists of 19 pages, a

More information

1. A. Define the term rate of reaction. The measure of the amount of reactants being converted into products per unit amount of time

1. A. Define the term rate of reaction. The measure of the amount of reactants being converted into products per unit amount of time Name answer key period IB topic 6 Kinetics 1. A. Define the term rate of reaction. The measure of the amount of reactants being converted into products per unit amount of time b. the reaction between C

More information

IB Topics 5 & 15 Multiple Choice Practice

IB Topics 5 & 15 Multiple Choice Practice IB Topics 5 & 15 Multiple Choice Practice 1. Which statement is correct for this reaction? Fe 2O 3 (s) + 3CO (g) 2Fe (s) + 3CO 2 (g) ΔH = 26.6 kj 13.3 kj are released for every mole of Fe produced. 26.6

More information

FACTFILE: GCE CHEMISTRY

FACTFILE: GCE CHEMISTRY FACTFILE: GCE CHEMISTRY 2.9 KINETICS Learning Outcomes Students should be able to: 2.9.1 recall how factors, including concentration, pressure, temperature and catalyst, affect the rate of a chemical reaction;

More information

GraspIT AQA GCSE Quantitative changes

GraspIT AQA GCSE Quantitative changes A. Chemical measurements part 1 Chemical changes and conservation of mass 1. A piece of magnesium was heated in a crucible. a) Write a balance equation to show how the magnesium reacts with oxygen. (2)

More information

Nitrogen and hydrogen are passed over iron to produce ammonia in the Haber Process.

Nitrogen and hydrogen are passed over iron to produce ammonia in the Haber Process. Q.(a) Nitrogen and hydrogen are passed over iron to produce ammonia in the Haber Process. Balance the equation for the reaction. N 2 + H 2 NH 3 What is iron used for in the Haber process? M.(a) N 2 + 3

More information

Selected Questions on Chapter 5 Thermochemistry

Selected Questions on Chapter 5 Thermochemistry Selected Questions on Chapter 5 Thermochemistry Circle the correct answer: 1) At what velocity (m/s) must a 20.0 g object be moving in order to possess a kinetic energy of 1.00 J? A) 1.00 B) 100 10 2 C)

More information

UNIT ONE BOOKLET 6. Thermodynamic

UNIT ONE BOOKLET 6. Thermodynamic DUNCANRIG SECONDARY ADVANCED HIGHER CHEMISTRY UNIT ONE BOOKLET 6 Thermodynamic Can we predict if a reaction will occur? What determines whether a reaction will be feasible or not? This is a question that

More information

Use the data in the table to calculate the standard enthalpy of formation of liquid methylbenzene, C 7 H 8. Substance C(s) H 2 (g) C 7 H 8 (l)

Use the data in the table to calculate the standard enthalpy of formation of liquid methylbenzene, C 7 H 8. Substance C(s) H 2 (g) C 7 H 8 (l) Q1.(a) Define the term standard enthalpy of formation, H f ο (3) (b) Use the data in the table to calculate the standard enthalpy of formation of liquid methylbenzene, C 7 H 8 Substance C(s) H 2 (g) C

More information

Chapter 19 Chemical Thermodynamics

Chapter 19 Chemical Thermodynamics Chapter 19. Chemical Thermodynamics Sample Exercise 19.2 (p. 819) Elemental mercury is a silver liquid at room temperature. Its normal freezing point is -38.9 o C, and its molar enthalpy of fusion is H

More information

7.1 Dynamic Equilibrium

7.1 Dynamic Equilibrium 7.1 Dynamic 7.1.1 - Outline the characteristics of chemical and physical systems in a state of equilibrium Open system When a reaction occurs in an unsealed container Closed system When a reaction occurs

More information

3.2.1 Energetics. Calorimetry. 121 minutes. 120 marks. Page 1 of 19

3.2.1 Energetics. Calorimetry. 121 minutes. 120 marks. Page 1 of 19 3..1 Energetics Calorimetry 11 minutes 10 marks Page 1 of 19 Q1. A 50.0 cm 3 sample of a 0.00 mol dm 3 solution of silver nitrate was placed in a polystyrene beaker. An excess of powdered zinc was added

More information

MARIYA INTERNATIONAL SCHOOL. Work sheet II. Term II. Level 8 Chemistry [Paper IV] Name: SULFUR AND AIR AND WATER

MARIYA INTERNATIONAL SCHOOL. Work sheet II. Term II. Level 8 Chemistry [Paper IV] Name: SULFUR AND AIR AND WATER MARIYA INTERNATIONAL SCHOOL Work sheet II Term II Level 8 Chemistry [Paper IV] Name: SULFUR AND AIR AND WATER 1. Nitrogen dioxide and other oxides of nitrogen are formed in car engines. a) Explain how

More information

RATES & CHEMICAL EQUILIBRIUM Checklist. Exam Questions

RATES & CHEMICAL EQUILIBRIUM Checklist. Exam Questions RATES & CHEMICAL EQUILIBRIUM Checklist Make sure you can. Explain what reaction rate is and list the factors which affect the rate of chemical reactions Use Collision theory to explain how the various

More information

Chemistry 12 Review Sheet on Unit 1 -Reaction Kinetics

Chemistry 12 Review Sheet on Unit 1 -Reaction Kinetics Chemistry 12 Review Sheet on Unit 1 -Reaction Kinetics 1. Looking at the expressions for reaction rate on page 1 SW, write similar expressions with which you could express rates for the following reactions.

More information

(02) WMP/Jun10/CHEM2

(02) WMP/Jun10/CHEM2 Energetics 2 Section A Answer all the questions in the spaces provided. 1 An equation for the equilibrium reaction between hydrogen, iodine and hydrogen iodide is shown below. H 2 (g) + I 2 (g) 2HI(g)

More information

No Brain Too Small CHEMISTRY Energy changes ( ) & Expired ( ) QUESTIONS QUESTION 1 (2016:3)

No Brain Too Small CHEMISTRY Energy changes ( ) & Expired ( ) QUESTIONS QUESTION 1 (2016:3) QUESTION 1 (2016:3) QUESTIONS (iii) Pentane combustion: C5H12(l) + 8O2(g) 5CO2(g) + 6H2O(l) Δr H o = 3509 kj mol 1 Hexane, C6H14, like pentane, will combust (burn) in sufficient oxygen to produce carbon

More information

C6 Quick Revision Questions

C6 Quick Revision Questions C6 Quick Revision Questions H = Higher tier only All questions apply for combined and separate science Question 1... of 50 List 3 ways the time of a reaction can be measured. Answer 1... of 50 Loss of

More information

N Goalby chemrevise.org

N Goalby chemrevise.org 4.6 Rate and Extent of Chemical Change Rates of Reaction The rate of a chemical reaction can be found by measuring the amount of a reactant used or the amount of product formed over time: Rate of reaction

More information

Slide 1 / Objects can possess energy as: (a) endothermic energy (b) potential energy (c) kinetic energy. a only b only c only a and c b and c

Slide 1 / Objects can possess energy as: (a) endothermic energy (b) potential energy (c) kinetic energy. a only b only c only a and c b and c Slide 1 / 84 1 Objects can possess energy as: (a) endothermic energy (b) potential energy (c) kinetic energy A B C D E a only b only c only a and c b and c Slide 2 / 84 2 The internal energy of a system

More information

Chemistry 12 Provincial Workbook Unit 01: Reaction Kinetics. Multiple Choice Questions

Chemistry 12 Provincial Workbook Unit 01: Reaction Kinetics. Multiple Choice Questions R. Janssen, MSEC Chemistry 1 Provincial Workbook (Unit 01), P. 1 / 68 Chemistry 1 Provincial Workbook Unit 01: Reaction Kinetics Multiple Choice Questions 1. Which of the following describes what happens

More information

Chapter 15 Equilibrium

Chapter 15 Equilibrium Chapter 15. Chemical Equilibrium Sample Exercise 15.1 (p. 632) Write the equilibrium expression for K eq for these three reactions: a) 2 O 3(g) 3 O 2(g) b) 2 NO (g) + Cl 2(g) 2 NOCl (g) c) Ag + (aq) +

More information

B410U20-1 S17-B410U20-1. CHEMISTRY AS component 2 Energy, Rate and Chemistry of Carbon Compounds

B410U20-1 S17-B410U20-1. CHEMISTRY AS component 2 Energy, Rate and Chemistry of Carbon Compounds Surname Centre Number Candidate Number Other Names 2 GCE AS NEW B410U20-1 S17-B410U20-1 CHEMISTRY AS component 2 Energy, Rate and Chemistry of Carbon Compounds FRIDAY, 9 JUNE 2017 AFTERNOON 1 hour 30 minutes

More information

D. Bond making is endothermic and releases energy. (Total 1 mark) Cu(s) + 2. D (Total 1 mark)

D. Bond making is endothermic and releases energy. (Total 1 mark) Cu(s) + 2. D (Total 1 mark) 1. Which statement about bonding is correct? A. Bond breaking is endothermic and requires energy. B. Bond breaking is endothermic and releases energy. C. Bond making is exothermic and requires energy.

More information

CHEMISTRY CP Name: Period:

CHEMISTRY CP Name: Period: CHEMISTRY CP Name: Period: CHEMISTRY SPRING FINAL REVIEW SHEET NOTE: Below are concepts that we have covered in class throughout the second semester. Questions are organized by chapter/concept to help

More information

A student investigated three glow sticks. One was placed in water at 5 C, one in water at 40 C and one in water at 70 C.

A student investigated three glow sticks. One was placed in water at 5 C, one in water at 40 C and one in water at 70 C. 1 The picture shows three glowsticks. Photograph supplied by istockphoto/thinktsock Glow sticks contain several chemicals. When a glow stick is bent the chemicals mix. A chemical reaction takes place which

More information

Q.1 Write out equations for the reactions between...

Q.1 Write out equations for the reactions between... 1 CHEMICAL EQUILIBRIUM Dynamic Equilibrium not all reactions proceed to completion some end up with a mixture of reactants and products this is because some reactions are reversible; products revert to

More information

Explain why the bond enthalpy of a Cl Cl bond is greater than that of a Br Br bond

Explain why the bond enthalpy of a Cl Cl bond is greater than that of a Br Br bond Q1. The table below gives some values of standard enthalpy changes. Use these values to answer the questions. Name of enthalpy change H ο /kj mol 1 Enthalpy of atomisation of chlorine +121 Electron affinity

More information

(g) 2NH 3. (g) ΔH = 92 kj mol 1

(g) 2NH 3. (g) ΔH = 92 kj mol 1 1 The uses of catalysts have great economic and environmental importance For example, catalysts are used in ammonia production and in catalytic converters (a) Nitrogen and hydrogen react together in the

More information

Q1. Methane and oxygen react together to produce carbon dioxide and water.

Q1. Methane and oxygen react together to produce carbon dioxide and water. Q1. Methane and oxygen react together to produce carbon dioxide and water. The methane gas will not burn in oxygen until a flame is applied, but once lit it continues to burn. (a) Explain why energy must

More information

Name: Rate of reaction. Class: Higher revision questions. Date: 57 minutes. Time: 56 marks. Marks: Comments: Page 1 of 24

Name: Rate of reaction. Class: Higher revision questions. Date: 57 minutes. Time: 56 marks. Marks: Comments: Page 1 of 24 Rate of reaction Higher revision questions Name: Class: Date: Time: 57 minutes Marks: 56 marks Comments: Page of 24 A student investigated the rate of the reaction between magnesium and dilute hydrochloric

More information

Level 2 Chemistry, 2014

Level 2 Chemistry, 2014 91166 911660 2SUPERVISOR S Level 2 Chemistry, 2014 91166 Demonstrate understanding of chemical reactivity 2.00 pm Tuesday 11 November 2014 Credits: Four Achievement Achievement with Merit Achievement with

More information

OH, is an important feedstock for the chemical industry.

OH, is an important feedstock for the chemical industry. 1 Methanol, CH 3 OH, is an important feedstock for the chemical industry. In the manufacture of methanol, carbon dioxide and hydrogen are reacted together in the reversible reaction shown below. CO 2 (g)

More information

Paper Reference. Sample Assessment Material Time: 2 hours

Paper Reference. Sample Assessment Material Time: 2 hours Centre No. Candidate No. Paper Reference(s) 4CH0/1C Edexcel IGCSE Chemistry Chemistry Paper 1 Sample Assessment Material Time: 2 hours Materials required for examination Nil Items included with question

More information

1 hour 30 minutes plus your additional time allowance

1 hour 30 minutes plus your additional time allowance GCE AS/A Level 1091/01 LEGACY CHEMISTRY CH1 A.M. FRIDAY, 27 May 2016 1 hour 30 minutes plus your additional time allowance Surname Other Names Centre Number Candidate Number 2 WJEC CBAC Ltd. BE*(S16-1091-01)

More information

F325: Equilibria, Energetics and Elements How Far?

F325: Equilibria, Energetics and Elements How Far? F325: Equilibria, Energetics and Elements 5.1.2 How Far? 100 marks 1. Syngas is a mixture of carbon monoxide and hydrogen gases, used as a feedstock for the manufacture of methanol. A dynamic equilibrium

More information

2. Relative molecular mass, M r - The relative molecular mass of a molecule is the average mass of the one molecule when compared with

2. Relative molecular mass, M r - The relative molecular mass of a molecule is the average mass of the one molecule when compared with Chapter 3: Chemical Formulae and Equations 1. Relative atomic mass, A r - The relative atomic mass of an element is the average mass of one atom of an element when compared with mass of an atom of carbon-12

More information

KOH(aq) + HNO 3 (aq) KNO 3 (aq) + H 2 O(l) A 52 B 26 C +26 D +52. (Total for Question = 1 mark) 2 Calculate the enthalpy change, in kj mol _ 1

KOH(aq) + HNO 3 (aq) KNO 3 (aq) + H 2 O(l) A 52 B 26 C +26 D +52. (Total for Question = 1 mark) 2 Calculate the enthalpy change, in kj mol _ 1 1 When 0.1 mol of aqueous potassium hydroxide was added to 0.1 mol of nitric acid, 5200 J were transferred to the surroundings. What is the enthalpy change, in kj mol 1, for this reaction? 52 26 C +26

More information

Chapter 15 Equilibrium

Chapter 15 Equilibrium Chapter 15. Chemical Equilibrium Common Student Misconceptions Many students need to see how the numerical problems in this chapter are solved. Students confuse the arrows used for resonance ( )and equilibrium

More information

Chemistry 30: Reaction Kinetics. Practice Problems

Chemistry 30: Reaction Kinetics. Practice Problems Name: Period: Chemistry 30: Reaction Kinetics Practice Problems Date: Measuring Reaction Rates 1. A chemist wishes to determine the rate of reaction of zinc with hydrochloric acid. The equation for the

More information

AP Study Questions

AP Study Questions Class: Date: AP 19.5-19.7 Study Questions Multiple Choice Identify the choice that best completes the statement or answers the question. 3. The value of G at 25 C for the formation of POCl 3 from its constituent

More information