Modern Discrete Probability Spectral Techniques

Size: px
Start display at page:

Download "Modern Discrete Probability Spectral Techniques"

Transcription

1 Moder Discrete Probability VI - Spectral Techiques Backgroud Sébastie Roch UW Madiso Mathematics December 1, 2014

2 1 Review 2 3 4

3 Mixig time I Theorem (Covergece to statioarity) Cosider a fiite state space V. Suppose the trasitio matrix P is irreducible, aperiodic ad has statioary distributio π. The, for all x, y, P t (x, y) π(y) as t +. For probability measures µ, ν o V, let their total variatio distace be µ ν TV := sup A V µ(a) ν(a). Defiitio (Mixig time) The mixig time is t mix (ε) := mi{t 0 : d(t) ε}, where d(t) := max x V P t (x, ) π( ) TV.

4 Mixig time II Defiitio (Separatio distace) The separatio distace is defied as [ ] s x (t) := max 1 Pt (x, y), y V π(y) ad we let s(t) := max x V s x (t). Because both {π(y)} ad {P t (x, y)} are o-egative ad sum to 1, we have that s x (t) 0. Lemma (Separatio distace v. total variatio distace) d(t) s(t).

5 Mixig time III Proof: Because 1 = y π(y) = y Pt (x, y), y:p t (x,y)<π(y) [ ] π(y) P t (x, y) = y:p t (x,y) π(y) [ ] P t (x, y) π(y). So P t (x, ) π( ) TV = 1 π(y) P t (x, y) 2 y [ ] = π(y) P t (x, y) = y:p t (x,y)<π(y) y:p t (x,y)<π(y) s x(t). [ ] π(y) 1 Pt (x, y) π(y)

6 Reversible chais Defiitio (Reversible chai) A trasitio matrix P is reversible w.r.t. a measure η if η(x)p(x, y) = η(y)p(y, x) for all x, y V. By summig over y, such a measure is ecessarily statioary.

7 Example I Recall: Defiitio (Radom walk o a graph) Let G = (V, E) be a fiite or coutable, locally fiite graph. Simple radom walk o G is the Markov chai o V, started at a arbitrary vertex, which at each time picks a uiformly chose eighbor of the curret state. Let (X t ) be simple radom walk o a coected graph G. The (X t ) is reversible w.r.t. η(v) := δ(v), where δ(v) is the degree of vertex v.

8 Example II Defiitio (Radom walk o a etwork) Let G = (V, E) be a fiite or coutable, locally fiite graph. Let c : E R + be a positive edge weight fuctio o G. We call N = (G, c) a etwork. Radom walk o N is the Markov chai o V, started at a arbitrary vertex, which at each time picks a eighbor of the curret state proportioally to the weight of the correspodig edge. Ay coutable, reversible Markov chai ca be see as a radom walk o a etwork (ot ecessarily locally fiite) by settig c(e) := π(x)p(x, y) = π(y)p(y, x) for all e = {x, y} E. Let (X t ) be radom walk o a etwork N = (G, c). The (X t ) is reversible w.r.t. η(v) := c(v), where c(v) := x v c(v, x).

9 Eigebasis I We let := V < +. Assume that P is irreducible ad reversible w.r.t. its statioary distributio π > 0. Defie f, g π := x V π(x)f (x)g(x), f 2 π := f, f π, (Pf )(x) := y P(x, y)f (y). We let l 2 (V, π) be the Hilbert space of real-valued fuctios o V equipped with the ier product, π (equivalet to the vector space (R,, π )). Theorem There is a orthoormal basis of l 2 (V, π) formed of eigefuctios {f j } j=1 of P with real eigevalues {λ j} j=1.

10 Eigebasis II Proof: We work over (R,, π). Let D π be the diagoal matrix with π o the diagoal. By reversibility, π(x) π(y) M(x, y) := P(x, y) = P(y, x) =: M(y, x). π(y) π(x) So M = (M(x, y)) x,y = Dπ 1/2 PDπ 1/2, as a symmetric matrix, has real eigevectors {φ j } j=1 formig a orthoormal basis of R with correspodig real eigevalues {λ j } j=1. Defie f j := Dπ 1/2 φ j. The ad Pf j = PD 1/2 π φ j = D 1/2 π D 1/2 π PD 1/2 π φ j = D 1/2 π Mφ j = λ j D 1/2 π φ j = λ j f j, f i, f j π = Dπ 1/2 φ i, Dπ 1/2 φ j π = x = φ i, φ j. π(x)[π(x) 1/2 φ i (x)][π(x) 1/2 φ j (x)]

11 Eigebasis III Lemma For all j 1, x π(x)f j(x) = 0. Proof: By orthoormality, f 1, f j π = 0. Now use the fact that f 1 1. Let δ x (y) := 1 {x=y}. Lemma For all x, y, j=1 f j(x)f j (y) = π(x) 1 δ x (y). Proof: Usig the otatio of the theorem, the matrix Φ whose colums are the φ j s is uitary so ΦΦ = I. That is, j=1 φ j(x)φ j (y) = δ x(y), or π(x)π(y)fj (x)f j (y) = δ x(y). Rearragig gives the result. j=1

12 Eigebasis IV Lemma Let g l 2 (V, π). The g = j=1 g, f j π f j. Proof: By the previous lemma, for all x g, f j πf j (x) = π(y)g(y)f j (y)f j (x) = y y j=1 j=1 π(y)g(y)[π(x) 1 δ x(y)] = g(x). Lemma Let g l 2 (V, π). The g 2 π = j=1 g, f j 2 π. Proof: By the previous lemma, 2 g 2 π = g, f j πf j = g, f i πf i, g, f j πf j j=1 i=1 π j=1 π = g, f i π g, f j π f i, f j π, i,j=1

13 Eigevalues I Let P be fiite, irreducible ad reversible. Lemma Ay eigevalue λ of P satisfies λ 1. Proof: Pf = λf = λ f = Pf = max x y P(x, y)f (y) f We order the eigevalues 1 λ 1 λ 1. I fact: Lemma We have λ 1 = 1 ad λ 2 < 1. Also we ca take f 1 1. Proof: Because P is stochastic, the all-oe vector is a right eigevector with eigevalue 1. Ay eigefuctio with eigevalue 1 is P-harmoic. By Corollary 3.22 for a fiite, irreducible chai the oly harmoic fuctios are the costat fuctios. So the eigespace correspodig to 1 is oe-dimesioal. Sice all eigevalues are real, we must have λ 2 < 1.

14 Eigevalues II Theorem (Rayleigh s quotiet) Let P be fiite, irreducible ad reversible with respect to π. The secod largest eigevalue is characterized by { f, Pf π λ 2 = sup : f l 2 (V, π), } π(x)f (x) = 0. f, f π x (Similarly, λ 1 = sup f l 2 (V,π) f,pf π f,f π.) Proof: Recallig that f 1 1, the coditio x π(x)f (x) = 0 is equivalet to f 1, f π = 0. For such a f, the eigedecompositio is f = f, f j πf j = f, f j πf j, j=1 j=2

15 Eigevalues III ad so that Pf = f, f j πλ j f j, j=2 f, Pf π f, f π = i=2 j=2 f, f i π f, f j πλ j f i, f j π j=2 f, f j 2 π Takig f = f 2 achieves the supremum. = j=2 f, f j 2 πλ j j=2 f, f j 2 π λ 2.

16 1 Review 2 3 4

17 Spectral decompositio I Theorem Let {f j } j=1 be the eigefuctios of a reversible ad irreducible trasitio matrix P with correspodig eigevalues {λ j } j=1, as defied previously. Assume λ 1 λ. We have the decompositio P t (x, y) π(y) = 1 + f j (x)f j (y)λ t j. j=2

18 Spectral decompositio II Proof: Let F be the matrix whose colums are the eigevectors {f j } j=1 ad let D λ be the diagoal matrix with {λ j } j=1 o the diagoal. Usig the otatio of the eigebasis theorem, which after rearragig becomes D 1/2 π P t D 1/2 π = M t = (D 1/2 π F )D t λ(d 1/2 π F ), P t D 1 π = FD t λf.

19 Example: two-state chai I Let V := {0, 1} ad, for α, β (0, 1), ( ) 1 α α P :=. β 1 β Observe that P is reversible w.r.t. to the statioary distributio ( ) β π := α + β, α. α + β We kow that f 1 1 is a eigefuctio with eigevalue 1. As ca be checked by direct computatio, the other eigefuctio (i vector form) is ( α ) β f 2 := β,, α with eigevalue λ 2 := 1 α β. We ormalized f 2 so f 2 2 π = 1.

20 Example: two-state chai II The spectral decompositio is therefore ( ) ( ) P t Dπ α = + (1 α β) t β β. 1 α Put differetly, P t = ( β α+β β α+β α α+β α α+β ) + (1 α β) t ( α α+β β α+β α α+β β α+β ). (Note for istace that the case α + β = 1 correspods to a rak-oe P, which immediately coverges.)

21 Example: two-state chai III Assume β α. The d(t) = max x 1 2 y P t (x, y) π(y) = β α + β 1 α β t. As a result, ( ) ( ) log ε α+β β log ε 1 log α+β t mix (ε) = log 1 α β = β log 1 α β 1.

22 Spectral decompositio: agai Recall: Theorem Let {f j } j=1 be the eigefuctios of a reversible ad irreducible trasitio matrix P with correspodig eigevalues {λ j } j=1, as defied previously. Assume λ 1 λ. We have the decompositio P t (x, y) π(y) = 1 + f j (x)f j (y)λ t j. j=2

23 Spectral gap From the spectral decompositio, the speed of covergece of P t (x, y) to π(y) is govered by the largest eigevalue of P ot equal to 1. Defiitio (Spectral gap) The absolute spectral gap is γ := 1 λ where λ := λ 2 λ. The spectral gap is γ := 1 λ 2. Note that the eigevalues of the lazy versio 1 2 P + 1 2I of P are { 1 2 (λ j + 1)} j=1 which are all oegative. So, there, γ = γ. Defiitio (Relaxatio time) The relaxatio time is defied as t rel := γ 1.

24 Example cotiued: two-state chai There two cases: α + β 1: I that case the spectral gap is γ = γ = α + β ad the relaxatio time is t rel = 1/(α + β). α + β > 1: I that case the spectral gap is γ = γ = 2 α β ad the relaxatio time is t rel = 1/(2 α β).

25 Mixig time v. relaxatio time I Theorem Let P be reversible, irreducible, ad aperiodic with statioary distributio π. Let π mi = mi x π(x). For all ε > 0, ( ) ( ) 1 1 (t rel 1) log t mix (ε) log t rel. 2ε επ mi Proof: We start with the upper boud. By the lemma, it suffices to fid t such that s(t) ε. By the spectral decompositio ad Cauchy-Schwarz, Pt (x, y) 1 π(y) λt f j (x)f j (y) λ t f j (x) 2 f j (y) 2. j=2 By our previous lemma, j=2 f j(x) 2 π(x) 1. Pluggig this back above, Pt (x, y) 1 π(y) λt π(x) 1 π(y) 1 λt (1 γ )t = e γ t. π mi π mi π mi j=2 j=2

26 Mixig time v. relaxatio time II ( The r.h.s. is less tha ε whe t log ) 1 επ mi t rel. For the lower boud, let f be a eigefuctio associated with a eigevalue achievig λ := λ 2 λ. Let z be such that f (z) = f. By our previous lemma, y π(y)f (y) = 0. Hece λ t f (z) = P t f (z) = [P t (z, y)f (y) π(y)f (y)] y f P t (z, y) π(y) f 2d(t), so d(t) 1 2 λt. Whe t = t mix(ε), ε 1 2 λt mix(ε) ( ) ( 1 1 t mix(ε) 1 t mix(ε) log λ y. Therefore ) log λ ( ) 1. 2ε ( ) 1 ( ) 1 ( ) 1 1 The result follows from λ 1 = 1 λ λ = γ 1 γ = trel 1.

27 1 Review 2 3 4

28 Radom walk o the cycle I Cosider simple radom walk o a -cycle. That is, V := {0, 1,..., 1} ad P(x, y) = 1/2 if ad oly if x y = 1 mod. Lemma (Eigebasis o the cycle) For j = 0,..., 1, the fuctio ( ) 2πjx f j (x) := cos, x = 0, 1,..., 1, is a eigefuctio of P with eigevalue ( ) 2πj λ j := cos.

29 Radom walk o the cycle II Proof: Note that, for all i, x, P(x, y)f j (y) = 1 [ ( ) ( )] 2πj(y 1) 2πj(y + 1) cos + cos 2 y [ e i 2πj(y 1) 2πj(y 1) i + e = 1 2 [ e i 2πjy = = [ cos = cos 2 2πjy i + e 2 ( 2πjy ( 2πj )] [ cos ) f j (y). ] [ e i 2πj ( 2πj 2πj(y+1) + ei 2πj i + e 2 )] ] ] 2πj(y+1) i + e 2

30 Radom walk o the cycle III Theorem (Relaxatio time o the cycle) The relaxatio time for lazy simple radom walk o the cycle is Proof: The eigevalues are 2 t rel = 1 cos ( ) = Θ( 2 ). 2π The spectral gap is therefore 1 (1 cos ( 2π 2 ( 2π 1 cos [ ( ) ] 1 2πj cos ) ). By a Taylor expasio, ) = 4π2 2 + O( 4 ). Sice π mi = 1/, we get t mix (ε) = O( 2 log ) ad t mix (ε) = Ω( 2 ). We showed before that i fact t mix (ε) = Θ( 2 ).

31 Radom walk o the cycle IV I this case, a sharper boud ca be obtaied by workig directly with the spectral decompositio. By Jese s iequality, { } 2 4 P t (x, ) π( ) 2 TV = π(y) Pt (x, y) 1 π(y) ( ) P t 2 (x, y) π(y) 1 π(y) y y 2 = λ t j f j (x)f j = λ 2t j f j (x) 2. j=2 The last sum does ot deped o x by symmetry. Summig over x ad dividig by, which is the same as multiplyig by π(x), gives π j=2 4 P t (x, ) π( ) 2 TV x π(x) j=2 λ 2t j f j (x) 2 = j=2 λ 2t j π(x)f j (x) 2 = x j=2 λ 2t j, where we used that f j 2 π = 1.

32 Radom walk o the cycle V Cosider the o-lazy chai with odd. We get 4d(t) 2 ( ) 2t ( 1)/2 2πj cos = 2 j=2 j=1 cos ( ) 2t πj. For x [0, π/2), cos x e x2 /2. (Ideed, let h(x) = log(e x2 /2 cos x). The h (x) = x ta x 0 sice (ta x) = 1 + ta 2 x 1 for all x ad ta 0 = 0. So h(x) h(0) = 0.) The ( 1)/2 4d(t) 2 2 j=1 ) ) exp ( π2 j 2 t 2 exp ( π2 2 t 2 ) 2 exp ( π2 t ( ) exp 3π2 t 2 l 2 l=0 j=1 ( 2 exp = 1 exp ( exp π2 t 2 π2 (j 2 1) ) ( ), 3π2 t 2 where we used that j 2 1 3(j 1) for all j = 1, 2, 3,.... So t mix(ε) = O( 2 ). 2 ) t

33 Radom walk o the hypercube I Cosider simple radom walk o the hypercube V := { 1, +1} where x y if x y 1 = 1. For J [], we let χ J (x) = j J x j, x V. These are called parity fuctios. Lemma (Eigebasis o the hypercube) For all J [], the fuctio χ J is a eigefuctio of P with eigevalue λ J := 2 J.

34 Radom walk o the hypercube II Proof: For x V ad i [], let x [i] be x where coordiate i is flipped. Note that, for all J, x, P(x, y)χ J (y) = y 1 χ J(x [i] ) = J χ J (x) J χ J(x) = 2 J χ J (x). i=1

35 Radom walk o the hypercube III Theorem (Relaxatio time o the hypercube) The relaxatio time for lazy simple radom walk o the hypercube is t rel =. Proof: The eigevalues are J γ = γ = 1 1 = 1. for J []. The spectral gap is Because V = 2, π mi = 1/2. Hece we have t mix (ε) = O( 2 ) ad t mix (ε) = Ω(). We have show before that i fact t mix (ε) = Θ( log ).

36 Radom walk o the hypercube IV As we did for the cycle, we obtai a sharper boud by workig directly with the spectral decompositio. By the same argumet, 4d(t) 2 J λ 2t J. Cosider the lazy chai agai. The 4d(t) 2 ( ) ( ) 2t J ( = 1 l ) 2t l J l=1 ( ( = 1 + exp 2t )) 1. So t mix(ε) 1 log + O(). 2 ( ) ( exp 2tl ) l l=1

37 1 Review 2 3 4

38 Some remarks about ifiite etworks I Remark (Recurret case) The previous results caot i geeral be exteded to ifiite etworks. Suppose P is irreducible, aperiodic ad positive recurret. The it ca be show that, if π is the statioary distributio, the for all x P t (x, ) π( ) TV 0, as t +. However, oe eeds stroger coditios o P tha reversibility for the spectral theorem to apply, e.g., compactess (that is, P maps bouded sets to relatively compact sets (i.e. whose closure is compact)).

39 Some remarks about ifiite etworks II Example (A positive recurret chai whose P is ot compact) For p < 1/2, let (X t ) be the birth-death chai with V := {0, 1, 2,...}, P(0, 0) := 1 p, P(0, 1) = p, P(x, x + 1) := p ad P(x, x 1) := 1 p for all x 1, ad P(x, y) := 0 if x y > 1. As ca be checked by direct computatio, P is reversible with respect to the statioary distributio π(x) = (1 γ)γ x for x 0 where γ := p 1 p. For j 1, defie g j (x) := π(j) 1/2 1 {x=j}. The g j 2 π = 1 for all j so {g j } j is bouded i l 2 (V, π). O the other had, Pg j (x) = pπ(j) 1/2 1 {x=j 1} + (1 p)π(j) 1/2 1 {x=j+1}.

40 Some remarks about ifiite etworks III Example (Cotiued) So Pg j 2 π = p 2 π(j) 1 π(j 1) + (1 p) 2 π(j) 1 π(j + 1) = 2p(1 p). Hece {Pg j } j is also bouded. However, for j > l Pg j Pg l 2 π (1 p) 2 π(j) 1 π(j + 1) + p 2 π(l) 1 π(l 1) = 2p(1 p). So {Pg j } j does ot have a covergig subsequece ad therefore is ot relatively compact.

41 Some remarks about ifiite etworks IV Most radom walks o ifiite etworks we have ecoutered so far were trasiet or ull recurret. I such cases, there is o statioary distributio to coverge to. I fact: Theorem If P is a irreducible chai which is either trasiet or ull recurret, we have for all x, y lim t P t (x, y) = 0. Proof: I the trasiet case, sice t 1 X t =y < + a.s. uder P x, we have t Pt (x, y) = E x[ t 1 X t =y] < + so P t (x, y) 0.

Modern Discrete Probability Spectral Techniques

Modern Discrete Probability Spectral Techniques Modern Discrete Probability VI - Spectral Techniques Background Sébastien Roch UW Madison Mathematics December 22, 2014 1 Review 2 3 4 Mixing time I Theorem (Convergence to stationarity) Consider a finite

More information

Math Solutions to homework 6

Math Solutions to homework 6 Math 175 - Solutios to homework 6 Cédric De Groote November 16, 2017 Problem 1 (8.11 i the book): Let K be a compact Hermitia operator o a Hilbert space H ad let the kerel of K be {0}. Show that there

More information

ACO Comprehensive Exam 9 October 2007 Student code A. 1. Graph Theory

ACO Comprehensive Exam 9 October 2007 Student code A. 1. Graph Theory 1. Graph Theory Prove that there exist o simple plaar triagulatio T ad two distict adjacet vertices x, y V (T ) such that x ad y are the oly vertices of T of odd degree. Do ot use the Four-Color Theorem.

More information

Entropy Rates and Asymptotic Equipartition

Entropy Rates and Asymptotic Equipartition Chapter 29 Etropy Rates ad Asymptotic Equipartitio Sectio 29. itroduces the etropy rate the asymptotic etropy per time-step of a stochastic process ad shows that it is well-defied; ad similarly for iformatio,

More information

2 Markov Chain Monte Carlo Sampling

2 Markov Chain Monte Carlo Sampling 22 Part I. Markov Chais ad Stochastic Samplig Figure 10: Hard-core colourig of a lattice. 2 Markov Chai Mote Carlo Samplig We ow itroduce Markov chai Mote Carlo (MCMC) samplig, which is a extremely importat

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 19 11/17/2008 LAWS OF LARGE NUMBERS II THE STRONG LAW OF LARGE NUMBERS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 19 11/17/2008 LAWS OF LARGE NUMBERS II THE STRONG LAW OF LARGE NUMBERS MASSACHUSTTS INSTITUT OF TCHNOLOGY 6.436J/5.085J Fall 2008 Lecture 9 /7/2008 LAWS OF LARG NUMBRS II Cotets. The strog law of large umbers 2. The Cheroff boud TH STRONG LAW OF LARG NUMBRS While the weak

More information

Notes for Lecture 11

Notes for Lecture 11 U.C. Berkeley CS78: Computatioal Complexity Hadout N Professor Luca Trevisa 3/4/008 Notes for Lecture Eigevalues, Expasio, ad Radom Walks As usual by ow, let G = (V, E) be a udirected d-regular graph with

More information

BIRKHOFF ERGODIC THEOREM

BIRKHOFF ERGODIC THEOREM BIRKHOFF ERGODIC THEOREM Abstract. We will give a proof of the poitwise ergodic theorem, which was first proved by Birkhoff. May improvemets have bee made sice Birkhoff s orgial proof. The versio we give

More information

Convergence of random variables. (telegram style notes) P.J.C. Spreij

Convergence of random variables. (telegram style notes) P.J.C. Spreij Covergece of radom variables (telegram style otes).j.c. Spreij this versio: September 6, 2005 Itroductio As we kow, radom variables are by defiitio measurable fuctios o some uderlyig measurable space

More information

Achieving Stationary Distributions in Markov Chains. Monday, November 17, 2008 Rice University

Achieving Stationary Distributions in Markov Chains. Monday, November 17, 2008 Rice University Istructor: Achievig Statioary Distributios i Markov Chais Moday, November 1, 008 Rice Uiversity Dr. Volka Cevher STAT 1 / ELEC 9: Graphical Models Scribe: Rya E. Guerra, Tahira N. Saleem, Terrace D. Savitsky

More information

Notes 5 : More on the a.s. convergence of sums

Notes 5 : More on the a.s. convergence of sums Notes 5 : More o the a.s. covergece of sums Math 733-734: Theory of Probability Lecturer: Sebastie Roch Refereces: Dur0, Sectios.5; Wil9, Sectio 4.7, Shi96, Sectio IV.4, Dur0, Sectio.. Radom series. Three-series

More information

Lecture 8: Convergence of transformations and law of large numbers

Lecture 8: Convergence of transformations and law of large numbers Lecture 8: Covergece of trasformatios ad law of large umbers Trasformatio ad covergece Trasformatio is a importat tool i statistics. If X coverges to X i some sese, we ofte eed to check whether g(x ) coverges

More information

Lecture Notes for Analysis Class

Lecture Notes for Analysis Class Lecture Notes for Aalysis Class Topological Spaces A topology for a set X is a collectio T of subsets of X such that: (a) X ad the empty set are i T (b) Uios of elemets of T are i T (c) Fiite itersectios

More information

Lecture 20: Multivariate convergence and the Central Limit Theorem

Lecture 20: Multivariate convergence and the Central Limit Theorem Lecture 20: Multivariate covergece ad the Cetral Limit Theorem Covergece i distributio for radom vectors Let Z,Z 1,Z 2,... be radom vectors o R k. If the cdf of Z is cotiuous, the we ca defie covergece

More information

Sequences and Series of Functions

Sequences and Series of Functions Chapter 6 Sequeces ad Series of Fuctios 6.1. Covergece of a Sequece of Fuctios Poitwise Covergece. Defiitio 6.1. Let, for each N, fuctio f : A R be defied. If, for each x A, the sequece (f (x)) coverges

More information

Generalized Semi- Markov Processes (GSMP)

Generalized Semi- Markov Processes (GSMP) Geeralized Semi- Markov Processes (GSMP) Summary Some Defiitios Markov ad Semi-Markov Processes The Poisso Process Properties of the Poisso Process Iterarrival times Memoryless property ad the residual

More information

Notes 19 : Martingale CLT

Notes 19 : Martingale CLT Notes 9 : Martigale CLT Math 733-734: Theory of Probability Lecturer: Sebastie Roch Refereces: [Bil95, Chapter 35], [Roc, Chapter 3]. Sice we have ot ecoutered weak covergece i some time, we first recall

More information

y X F n (y), To see this, let y Y and apply property (ii) to find a sequence {y n } X such that y n y and lim sup F n (y n ) F (y).

y X F n (y), To see this, let y Y and apply property (ii) to find a sequence {y n } X such that y n y and lim sup F n (y n ) F (y). Modica Mortola Fuctioal 2 Γ-Covergece Let X, d) be a metric space ad cosider a sequece {F } of fuctioals F : X [, ]. We say that {F } Γ-coverges to a fuctioal F : X [, ] if the followig properties hold:

More information

Definition 4.2. (a) A sequence {x n } in a Banach space X is a basis for X if. unique scalars a n (x) such that x = n. a n (x) x n. (4.

Definition 4.2. (a) A sequence {x n } in a Banach space X is a basis for X if. unique scalars a n (x) such that x = n. a n (x) x n. (4. 4. BASES I BAACH SPACES 39 4. BASES I BAACH SPACES Sice a Baach space X is a vector space, it must possess a Hamel, or vector space, basis, i.e., a subset {x γ } γ Γ whose fiite liear spa is all of X ad

More information

Math 61CM - Solutions to homework 3

Math 61CM - Solutions to homework 3 Math 6CM - Solutios to homework 3 Cédric De Groote October 2 th, 208 Problem : Let F be a field, m 0 a fixed oegative iteger ad let V = {a 0 + a x + + a m x m a 0,, a m F} be the vector space cosistig

More information

Probability 2 - Notes 10. Lemma. If X is a random variable and g(x) 0 for all x in the support of f X, then P(g(X) 1) E[g(X)].

Probability 2 - Notes 10. Lemma. If X is a random variable and g(x) 0 for all x in the support of f X, then P(g(X) 1) E[g(X)]. Probability 2 - Notes 0 Some Useful Iequalities. Lemma. If X is a radom variable ad g(x 0 for all x i the support of f X, the P(g(X E[g(X]. Proof. (cotiuous case P(g(X Corollaries x:g(x f X (xdx x:g(x

More information

TESTING FOR THE BUFFERED AUTOREGRESSIVE PROCESSES (SUPPLEMENTARY MATERIAL)

TESTING FOR THE BUFFERED AUTOREGRESSIVE PROCESSES (SUPPLEMENTARY MATERIAL) TESTING FOR THE BUFFERED AUTOREGRESSIVE PROCESSES SUPPLEMENTARY MATERIAL) By Ke Zhu, Philip L.H. Yu ad Wai Keug Li Chiese Academy of Scieces ad Uiversity of Hog Kog APPENDIX: PROOFS I this appedix, we

More information

7.1 Convergence of sequences of random variables

7.1 Convergence of sequences of random variables Chapter 7 Limit Theorems Throughout this sectio we will assume a probability space (, F, P), i which is defied a ifiite sequece of radom variables (X ) ad a radom variable X. The fact that for every ifiite

More information

MAT1026 Calculus II Basic Convergence Tests for Series

MAT1026 Calculus II Basic Convergence Tests for Series MAT026 Calculus II Basic Covergece Tests for Series Egi MERMUT 202.03.08 Dokuz Eylül Uiversity Faculty of Sciece Departmet of Mathematics İzmir/TURKEY Cotets Mootoe Covergece Theorem 2 2 Series of Real

More information

Lecture 9: Expanders Part 2, Extractors

Lecture 9: Expanders Part 2, Extractors Lecture 9: Expaders Part, Extractors Topics i Complexity Theory ad Pseudoradomess Sprig 013 Rutgers Uiversity Swastik Kopparty Scribes: Jaso Perry, Joh Kim I this lecture, we will discuss further the pseudoradomess

More information

Are the following series absolutely convergent? n=1. n 3. n=1 n. ( 1) n. n=1 n=1

Are the following series absolutely convergent? n=1. n 3. n=1 n. ( 1) n. n=1 n=1 Absolute covergece Defiitio A series P a is called absolutely coverget if the series of absolute values P a is coverget. If the terms of the series a are positive, absolute covergece is the same as covergece.

More information

Lecture 19: Convergence

Lecture 19: Convergence Lecture 19: Covergece Asymptotic approach I statistical aalysis or iferece, a key to the success of fidig a good procedure is beig able to fid some momets ad/or distributios of various statistics. I may

More information

Solution. 1 Solutions of Homework 1. Sangchul Lee. October 27, Problem 1.1

Solution. 1 Solutions of Homework 1. Sangchul Lee. October 27, Problem 1.1 Solutio Sagchul Lee October 7, 017 1 Solutios of Homework 1 Problem 1.1 Let Ω,F,P) be a probability space. Show that if {A : N} F such that A := lim A exists, the PA) = lim PA ). Proof. Usig the cotiuity

More information

Lecture 4. We also define the set of possible values for the random walk as the set of all x R d such that P(S n = x) > 0 for some n.

Lecture 4. We also define the set of possible values for the random walk as the set of all x R d such that P(S n = x) > 0 for some n. Radom Walks ad Browia Motio Tel Aviv Uiversity Sprig 20 Lecture date: Mar 2, 20 Lecture 4 Istructor: Ro Peled Scribe: Lira Rotem This lecture deals primarily with recurrece for geeral radom walks. We preset

More information

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle! 1. (a) (b) (c) (d) (e) 3. (a) (b) (c) (d) (e) 5. (a) (b) (c) (d) (e) 7. (a) (b) (c) (d) (e)

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle! 1. (a) (b) (c) (d) (e) 3. (a) (b) (c) (d) (e) 5. (a) (b) (c) (d) (e) 7. (a) (b) (c) (d) (e) Math 0560, Exam 3 November 6, 07 The Hoor Code is i effect for this examiatio. All work is to be your ow. No calculators. The exam lasts for hour ad 5 mi. Be sure that your ame is o every page i case pages

More information

Fastest mixing Markov chain on a path

Fastest mixing Markov chain on a path Fastest mixig Markov chai o a path Stephe Boyd Persi Diacois Ju Su Li Xiao Revised July 2004 Abstract We ider the problem of assigig trasitio probabilities to the edges of a path, so the resultig Markov

More information

Econometrica Supplementary Material

Econometrica Supplementary Material Ecoometrica Supplemetary Material SUPPLEMENT TO NONPARAMETRIC INSTRUMENTAL VARIABLES ESTIMATION OF A QUANTILE REGRESSION MODEL : MATHEMATICAL APPENDIX (Ecoometrica, Vol. 75, No. 4, July 27, 1191 128) BY

More information

Information Theory and Statistics Lecture 4: Lempel-Ziv code

Information Theory and Statistics Lecture 4: Lempel-Ziv code Iformatio Theory ad Statistics Lecture 4: Lempel-Ziv code Łukasz Dębowski ldebowsk@ipipa.waw.pl Ph. D. Programme 203/204 Etropy rate is the limitig compressio rate Theorem For a statioary process (X i)

More information

5.1. The Rayleigh s quotient. Definition 49. Let A = A be a self-adjoint matrix. quotient is the function. R(x) = x,ax, for x = 0.

5.1. The Rayleigh s quotient. Definition 49. Let A = A be a self-adjoint matrix. quotient is the function. R(x) = x,ax, for x = 0. 40 RODICA D. COSTIN 5. The Rayleigh s priciple ad the i priciple for the eigevalues of a self-adjoit matrix Eigevalues of self-adjoit matrices are easy to calculate. This sectio shows how this is doe usig

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall Midterm Solutions

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall Midterm Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.65/5.070J Fall 0 Midterm Solutios Problem Suppose a radom variable X is such that P(X > ) = 0 ad P(X > E) > 0 for every E > 0. Recall that the large deviatios rate

More information

Singular Continuous Measures by Michael Pejic 5/14/10

Singular Continuous Measures by Michael Pejic 5/14/10 Sigular Cotiuous Measures by Michael Peic 5/4/0 Prelimiaries Give a set X, a σ-algebra o X is a collectio of subsets of X that cotais X ad ad is closed uder complemetatio ad coutable uios hece, coutable

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 3 9/11/2013. Large deviations Theory. Cramér s Theorem

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 3 9/11/2013. Large deviations Theory. Cramér s Theorem MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/5.070J Fall 203 Lecture 3 9//203 Large deviatios Theory. Cramér s Theorem Cotet.. Cramér s Theorem. 2. Rate fuctio ad properties. 3. Chage of measure techique.

More information

1 Convergence in Probability and the Weak Law of Large Numbers

1 Convergence in Probability and the Weak Law of Large Numbers 36-752 Advaced Probability Overview Sprig 2018 8. Covergece Cocepts: i Probability, i L p ad Almost Surely Istructor: Alessadro Rialdo Associated readig: Sec 2.4, 2.5, ad 4.11 of Ash ad Doléas-Dade; Sec

More information

Define a Markov chain on {1,..., 6} with transition probability matrix P =

Define a Markov chain on {1,..., 6} with transition probability matrix P = Pla Group Work 0. The title says it all Next Tie: MCMC ad Geeral-state Markov Chais Midter Exa: Tuesday 8 March i class Hoework 4 due Thursday Uless otherwise oted, let X be a irreducible, aperiodic Markov

More information

Lecture 3 : Random variables and their distributions

Lecture 3 : Random variables and their distributions Lecture 3 : Radom variables ad their distributios 3.1 Radom variables Let (Ω, F) ad (S, S) be two measurable spaces. A map X : Ω S is measurable or a radom variable (deoted r.v.) if X 1 (A) {ω : X(ω) A}

More information

M17 MAT25-21 HOMEWORK 5 SOLUTIONS

M17 MAT25-21 HOMEWORK 5 SOLUTIONS M17 MAT5-1 HOMEWORK 5 SOLUTIONS 1. To Had I Cauchy Codesatio Test. Exercise 1: Applicatio of the Cauchy Codesatio Test Use the Cauchy Codesatio Test to prove that 1 diverges. Solutio 1. Give the series

More information

Math 778S Spectral Graph Theory Handout #3: Eigenvalues of Adjacency Matrix

Math 778S Spectral Graph Theory Handout #3: Eigenvalues of Adjacency Matrix Math 778S Spectral Graph Theory Hadout #3: Eigevalues of Adjacecy Matrix The Cartesia product (deoted by G H) of two simple graphs G ad H has the vertex-set V (G) V (H). For ay u, v V (G) ad x, y V (H),

More information

Read carefully the instructions on the answer book and make sure that the particulars required are entered on each answer book.

Read carefully the instructions on the answer book and make sure that the particulars required are entered on each answer book. THE UNIVERSITY OF WARWICK FIRST YEAR EXAMINATION: Jauary 2009 Aalysis I Time Allowed:.5 hours Read carefully the istructios o the aswer book ad make sure that the particulars required are etered o each

More information

Solutions to home assignments (sketches)

Solutions to home assignments (sketches) Matematiska Istitutioe Peter Kumli 26th May 2004 TMA401 Fuctioal Aalysis MAN670 Applied Fuctioal Aalysis 4th quarter 2003/2004 All documet cocerig the course ca be foud o the course home page: http://www.math.chalmers.se/math/grudutb/cth/tma401/

More information

Chapter 3. Strong convergence. 3.1 Definition of almost sure convergence

Chapter 3. Strong convergence. 3.1 Definition of almost sure convergence Chapter 3 Strog covergece As poited out i the Chapter 2, there are multiple ways to defie the otio of covergece of a sequece of radom variables. That chapter defied covergece i probability, covergece i

More information

Lecture 10 October Minimaxity and least favorable prior sequences

Lecture 10 October Minimaxity and least favorable prior sequences STATS 300A: Theory of Statistics Fall 205 Lecture 0 October 22 Lecturer: Lester Mackey Scribe: Brya He, Rahul Makhijai Warig: These otes may cotai factual ad/or typographic errors. 0. Miimaxity ad least

More information

INFINITE SEQUENCES AND SERIES

INFINITE SEQUENCES AND SERIES 11 INFINITE SEQUENCES AND SERIES INFINITE SEQUENCES AND SERIES 11.4 The Compariso Tests I this sectio, we will lear: How to fid the value of a series by comparig it with a kow series. COMPARISON TESTS

More information

Solution to Chapter 2 Analytical Exercises

Solution to Chapter 2 Analytical Exercises Nov. 25, 23, Revised Dec. 27, 23 Hayashi Ecoometrics Solutio to Chapter 2 Aalytical Exercises. For ay ε >, So, plim z =. O the other had, which meas that lim E(z =. 2. As show i the hit, Prob( z > ε =

More information

January 25, 2017 INTRODUCTION TO MATHEMATICAL STATISTICS

January 25, 2017 INTRODUCTION TO MATHEMATICAL STATISTICS Jauary 25, 207 INTRODUCTION TO MATHEMATICAL STATISTICS Abstract. A basic itroductio to statistics assumig kowledge of probability theory.. Probability I a typical udergraduate problem i probability, we

More information

5.1 Review of Singular Value Decomposition (SVD)

5.1 Review of Singular Value Decomposition (SVD) MGMT 69000: Topics i High-dimesioal Data Aalysis Falll 06 Lecture 5: Spectral Clusterig: Overview (cotd) ad Aalysis Lecturer: Jiamig Xu Scribe: Adarsh Barik, Taotao He, September 3, 06 Outlie Review of

More information

ANSWERS TO MIDTERM EXAM # 2

ANSWERS TO MIDTERM EXAM # 2 MATH 03, FALL 003 ANSWERS TO MIDTERM EXAM # PENN STATE UNIVERSITY Problem 1 (18 pts). State ad prove the Itermediate Value Theorem. Solutio See class otes or Theorem 5.6.1 from our textbook. Problem (18

More information

Lecture 7: October 18, 2017

Lecture 7: October 18, 2017 Iformatio ad Codig Theory Autum 207 Lecturer: Madhur Tulsiai Lecture 7: October 8, 207 Biary hypothesis testig I this lecture, we apply the tools developed i the past few lectures to uderstad the problem

More information

REAL ANALYSIS II: PROBLEM SET 1 - SOLUTIONS

REAL ANALYSIS II: PROBLEM SET 1 - SOLUTIONS REAL ANALYSIS II: PROBLEM SET 1 - SOLUTIONS 18th Feb, 016 Defiitio (Lipschitz fuctio). A fuctio f : R R is said to be Lipschitz if there exists a positive real umber c such that for ay x, y i the domai

More information

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 +

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + 62. Power series Defiitio 16. (Power series) Give a sequece {c }, the series c x = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + is called a power series i the variable x. The umbers c are called the coefficiets of

More information

7.1 Convergence of sequences of random variables

7.1 Convergence of sequences of random variables Chapter 7 Limit theorems Throughout this sectio we will assume a probability space (Ω, F, P), i which is defied a ifiite sequece of radom variables (X ) ad a radom variable X. The fact that for every ifiite

More information

Self-normalized deviation inequalities with application to t-statistic

Self-normalized deviation inequalities with application to t-statistic Self-ormalized deviatio iequalities with applicatio to t-statistic Xiequa Fa Ceter for Applied Mathematics, Tiaji Uiversity, 30007 Tiaji, Chia Abstract Let ξ i i 1 be a sequece of idepedet ad symmetric

More information

HOMEWORK #4 - MA 504

HOMEWORK #4 - MA 504 HOMEWORK #4 - MA 504 PAULINHO TCHATCHATCHA Chapter 2, problem 19. (a) If A ad B are disjoit closed sets i some metric space X, prove that they are separated. (b) Prove the same for disjoit ope set. (c)

More information

Notes 27 : Brownian motion: path properties

Notes 27 : Brownian motion: path properties Notes 27 : Browia motio: path properties Math 733-734: Theory of Probability Lecturer: Sebastie Roch Refereces:[Dur10, Sectio 8.1], [MP10, Sectio 1.1, 1.2, 1.3]. Recall: DEF 27.1 (Covariace) Let X = (X

More information

36-755, Fall 2017 Homework 5 Solution Due Wed Nov 15 by 5:00pm in Jisu s mailbox

36-755, Fall 2017 Homework 5 Solution Due Wed Nov 15 by 5:00pm in Jisu s mailbox Poits: 00+ pts total for the assigmet 36-755, Fall 07 Homework 5 Solutio Due Wed Nov 5 by 5:00pm i Jisu s mailbox We first review some basic relatios with orms ad the sigular value decompositio o matrices

More information

n p (Ω). This means that the

n p (Ω). This means that the Sobolev s Iequality, Poicaré Iequality ad Compactess I. Sobolev iequality ad Sobolev Embeddig Theorems Theorem (Sobolev s embeddig theorem). Give the bouded, ope set R with 3 ad p

More information

n=1 a n is the sequence (s n ) n 1 n=1 a n converges to s. We write a n = s, n=1 n=1 a n

n=1 a n is the sequence (s n ) n 1 n=1 a n converges to s. We write a n = s, n=1 n=1 a n Series. Defiitios ad first properties A series is a ifiite sum a + a + a +..., deoted i short by a. The sequece of partial sums of the series a is the sequece s ) defied by s = a k = a +... + a,. k= Defiitio

More information

1+x 1 + α+x. x = 2(α x2 ) 1+x

1+x 1 + α+x. x = 2(α x2 ) 1+x Math 2030 Homework 6 Solutios # [Problem 5] For coveiece we let α lim sup a ad β lim sup b. Without loss of geerality let us assume that α β. If α the by assumptio β < so i this case α + β. By Theorem

More information

This exam contains 19 pages (including this cover page) and 10 questions. A Formulae sheet is provided with the exam.

This exam contains 19 pages (including this cover page) and 10 questions. A Formulae sheet is provided with the exam. Probability ad Statistics FS 07 Secod Sessio Exam 09.0.08 Time Limit: 80 Miutes Name: Studet ID: This exam cotais 9 pages (icludig this cover page) ad 0 questios. A Formulae sheet is provided with the

More information

Exponential Functions and Taylor Series

Exponential Functions and Taylor Series MATH 4530: Aalysis Oe Expoetial Fuctios ad Taylor Series James K. Peterso Departmet of Biological Scieces ad Departmet of Mathematical Scieces Clemso Uiversity March 29, 2017 MATH 4530: Aalysis Oe Outlie

More information

Definition 2 (Eigenvalue Expansion). We say a d-regular graph is a λ eigenvalue expander if

Definition 2 (Eigenvalue Expansion). We say a d-regular graph is a λ eigenvalue expander if Expaer Graphs Graph Theory (Fall 011) Rutgers Uiversity Swastik Kopparty Throughout these otes G is a -regular graph 1 The Spectrum Let A G be the ajacecy matrix of G Let λ 1 λ λ be the eigevalues of A

More information

Math 341 Lecture #31 6.5: Power Series

Math 341 Lecture #31 6.5: Power Series Math 341 Lecture #31 6.5: Power Series We ow tur our attetio to a particular kid of series of fuctios, amely, power series, f(x = a x = a 0 + a 1 x + a 2 x 2 + where a R for all N. I terms of a series

More information

Complex Analysis Spring 2001 Homework I Solution

Complex Analysis Spring 2001 Homework I Solution Complex Aalysis Sprig 2001 Homework I Solutio 1. Coway, Chapter 1, sectio 3, problem 3. Describe the set of poits satisfyig the equatio z a z + a = 2c, where c > 0 ad a R. To begi, we see from the triagle

More information

6. Uniform distribution mod 1

6. Uniform distribution mod 1 6. Uiform distributio mod 1 6.1 Uiform distributio ad Weyl s criterio Let x be a seuece of real umbers. We may decompose x as the sum of its iteger part [x ] = sup{m Z m x } (i.e. the largest iteger which

More information

A Proof of Birkhoff s Ergodic Theorem

A Proof of Birkhoff s Ergodic Theorem A Proof of Birkhoff s Ergodic Theorem Joseph Hora September 2, 205 Itroductio I Fall 203, I was learig the basics of ergodic theory, ad I came across this theorem. Oe of my supervisors, Athoy Quas, showed

More information

Introduction to Functional Analysis

Introduction to Functional Analysis MIT OpeCourseWare http://ocw.mit.edu 18.10 Itroductio to Fuctioal Aalysis Sprig 009 For iformatio about citig these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. LECTURE OTES FOR 18.10,

More information

1 Introduction. 1.1 Notation and Terminology

1 Introduction. 1.1 Notation and Terminology 1 Itroductio You have already leared some cocepts of calculus such as limit of a sequece, limit, cotiuity, derivative, ad itegral of a fuctio etc. Real Aalysis studies them more rigorously usig a laguage

More information

sin(n) + 2 cos(2n) n 3/2 3 sin(n) 2cos(2n) n 3/2 a n =

sin(n) + 2 cos(2n) n 3/2 3 sin(n) 2cos(2n) n 3/2 a n = 60. Ratio ad root tests 60.1. Absolutely coverget series. Defiitio 13. (Absolute covergece) A series a is called absolutely coverget if the series of absolute values a is coverget. The absolute covergece

More information

Chapter 5. Inequalities. 5.1 The Markov and Chebyshev inequalities

Chapter 5. Inequalities. 5.1 The Markov and Chebyshev inequalities Chapter 5 Iequalities 5.1 The Markov ad Chebyshev iequalities As you have probably see o today s frot page: every perso i the upper teth percetile ears at least 1 times more tha the average salary. I other

More information

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors 5 Eigevalues ad Eigevectors 5.3 DIAGONALIZATION DIAGONALIZATION Example 1: Let. Fid a formula for A k, give that P 1 1 = 1 2 ad, where Solutio: The stadard formula for the iverse of a 2 2 matrix yields

More information

1 = δ2 (0, ), Y Y n nδ. , T n = Y Y n n. ( U n,k + X ) ( f U n,k + Y ) n 2n f U n,k + θ Y ) 2 E X1 2 X1

1 = δ2 (0, ), Y Y n nδ. , T n = Y Y n n. ( U n,k + X ) ( f U n,k + Y ) n 2n f U n,k + θ Y ) 2 E X1 2 X1 8. The cetral limit theorems 8.1. The cetral limit theorem for i.i.d. sequeces. ecall that C ( is N -separatig. Theorem 8.1. Let X 1, X,... be i.i.d. radom variables with EX 1 = ad EX 1 = σ (,. Suppose

More information

Seunghee Ye Ma 8: Week 5 Oct 28

Seunghee Ye Ma 8: Week 5 Oct 28 Week 5 Summary I Sectio, we go over the Mea Value Theorem ad its applicatios. I Sectio 2, we will recap what we have covered so far this term. Topics Page Mea Value Theorem. Applicatios of the Mea Value

More information

An alternative proof of a theorem of Aldous. concerning convergence in distribution for martingales.

An alternative proof of a theorem of Aldous. concerning convergence in distribution for martingales. A alterative proof of a theorem of Aldous cocerig covergece i distributio for martigales. Maurizio Pratelli Dipartimeto di Matematica, Uiversità di Pisa. Via Buoarroti 2. I-56127 Pisa, Italy e-mail: pratelli@dm.uipi.it

More information

6a Time change b Quadratic variation c Planar Brownian motion d Conformal local martingales e Hints to exercises...

6a Time change b Quadratic variation c Planar Brownian motion d Conformal local martingales e Hints to exercises... Tel Aviv Uiversity, 28 Browia motio 59 6 Time chage 6a Time chage..................... 59 6b Quadratic variatio................. 61 6c Plaar Browia motio.............. 64 6d Coformal local martigales............

More information

Summary and Discussion on Simultaneous Analysis of Lasso and Dantzig Selector

Summary and Discussion on Simultaneous Analysis of Lasso and Dantzig Selector Summary ad Discussio o Simultaeous Aalysis of Lasso ad Datzig Selector STAT732, Sprig 28 Duzhe Wag May 4, 28 Abstract This is a discussio o the work i Bickel, Ritov ad Tsybakov (29). We begi with a short

More information

MAS111 Convergence and Continuity

MAS111 Convergence and Continuity MAS Covergece ad Cotiuity Key Objectives At the ed of the course, studets should kow the followig topics ad be able to apply the basic priciples ad theorems therei to solvig various problems cocerig covergece

More information

Metric Space Properties

Metric Space Properties Metric Space Properties Math 40 Fial Project Preseted by: Michael Brow, Alex Cordova, ad Alyssa Sachez We have already poited out ad will recogize throughout this book the importace of compact sets. All

More information

Review Problems 1. ICME and MS&E Refresher Course September 19, 2011 B = C = AB = A = A 2 = A 3... C 2 = C 3 = =

Review Problems 1. ICME and MS&E Refresher Course September 19, 2011 B = C = AB = A = A 2 = A 3... C 2 = C 3 = = Review Problems ICME ad MS&E Refresher Course September 9, 0 Warm-up problems. For the followig matrices A = 0 B = C = AB = 0 fid all powers A,A 3,(which is A times A),... ad B,B 3,... ad C,C 3,... Solutio:

More information

Math 220A Fall 2007 Homework #2. Will Garner A

Math 220A Fall 2007 Homework #2. Will Garner A Math 0A Fall 007 Homewor # Will Garer Pg 3 #: Show that {cis : a o-egative iteger} is dese i T = {z œ : z = }. For which values of q is {cis(q): a o-egative iteger} dese i T? To show that {cis : a o-egative

More information

Fall 2013 MTH431/531 Real analysis Section Notes

Fall 2013 MTH431/531 Real analysis Section Notes Fall 013 MTH431/531 Real aalysis Sectio 8.1-8. Notes Yi Su 013.11.1 1. Defiitio of uiform covergece. We look at a sequece of fuctios f (x) ad study the coverget property. Notice we have two parameters

More information

Topologie. Musterlösungen

Topologie. Musterlösungen Fakultät für Mathematik Sommersemester 2018 Marius Hiemisch Topologie Musterlösuge Aufgabe (Beispiel 1.2.h aus Vorlesug). Es sei X eie Mege ud R Abb(X, R) eie Uteralgebra, d.h. {kostate Abbilduge} R ud

More information

Product measures, Tonelli s and Fubini s theorems For use in MAT3400/4400, autumn 2014 Nadia S. Larsen. Version of 13 October 2014.

Product measures, Tonelli s and Fubini s theorems For use in MAT3400/4400, autumn 2014 Nadia S. Larsen. Version of 13 October 2014. Product measures, Toelli s ad Fubii s theorems For use i MAT3400/4400, autum 2014 Nadia S. Larse Versio of 13 October 2014. 1. Costructio of the product measure The purpose of these otes is to preset the

More information

Theorem 3. A subset S of a topological space X is compact if and only if every open cover of S by open sets in X has a finite subcover.

Theorem 3. A subset S of a topological space X is compact if and only if every open cover of S by open sets in X has a finite subcover. Compactess Defiitio 1. A cover or a coverig of a topological space X is a family C of subsets of X whose uio is X. A subcover of a cover C is a subfamily of C which is a cover of X. A ope cover of X is

More information

Measure and Measurable Functions

Measure and Measurable Functions 3 Measure ad Measurable Fuctios 3.1 Measure o a Arbitrary σ-algebra Recall from Chapter 2 that the set M of all Lebesgue measurable sets has the followig properties: R M, E M implies E c M, E M for N implies

More information

(A sequence also can be thought of as the list of function values attained for a function f :ℵ X, where f (n) = x n for n 1.) x 1 x N +k x N +4 x 3

(A sequence also can be thought of as the list of function values attained for a function f :ℵ X, where f (n) = x n for n 1.) x 1 x N +k x N +4 x 3 MATH 337 Sequeces Dr. Neal, WKU Let X be a metric space with distace fuctio d. We shall defie the geeral cocept of sequece ad limit i a metric space, the apply the results i particular to some special

More information

The natural exponential function

The natural exponential function The atural expoetial fuctio Attila Máté Brookly College of the City Uiversity of New York December, 205 Cotets The atural expoetial fuctio for real x. Beroulli s iequality.....................................2

More information

If a subset E of R contains no open interval, is it of zero measure? For instance, is the set of irrationals in [0, 1] is of measure zero?

If a subset E of R contains no open interval, is it of zero measure? For instance, is the set of irrationals in [0, 1] is of measure zero? 2 Lebesgue Measure I Chapter 1 we defied the cocept of a set of measure zero, ad we have observed that every coutable set is of measure zero. Here are some atural questios: If a subset E of R cotais a

More information

Lecture Notes 15 Hypothesis Testing (Chapter 10)

Lecture Notes 15 Hypothesis Testing (Chapter 10) 1 Itroductio Lecture Notes 15 Hypothesis Testig Chapter 10) Let X 1,..., X p θ x). Suppose we we wat to kow if θ = θ 0 or ot, where θ 0 is a specific value of θ. For example, if we are flippig a coi, we

More information

Ma 4121: Introduction to Lebesgue Integration Solutions to Homework Assignment 5

Ma 4121: Introduction to Lebesgue Integration Solutions to Homework Assignment 5 Ma 42: Itroductio to Lebesgue Itegratio Solutios to Homework Assigmet 5 Prof. Wickerhauser Due Thursday, April th, 23 Please retur your solutios to the istructor by the ed of class o the due date. You

More information

Mathematics 170B Selected HW Solutions.

Mathematics 170B Selected HW Solutions. Mathematics 17B Selected HW Solutios. F 4. Suppose X is B(,p). (a)fidthemometgeeratigfuctiom (s)of(x p)/ p(1 p). Write q = 1 p. The MGF of X is (pe s + q), sice X ca be writte as the sum of idepedet Beroulli

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 21 11/27/2013

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 21 11/27/2013 MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 21 11/27/2013 Fuctioal Law of Large Numbers. Costructio of the Wieer Measure Cotet. 1. Additioal techical results o weak covergece

More information

ECE534, Spring 2018: Final Exam

ECE534, Spring 2018: Final Exam ECE534, Srig 2018: Fial Exam Problem 1 Let X N (0, 1) ad Y N (0, 1) be ideedet radom variables. variables V = X + Y ad W = X 2Y. Defie the radom (a) Are V, W joitly Gaussia? Justify your aswer. (b) Comute

More information

Exponential Functions and Taylor Series

Exponential Functions and Taylor Series Expoetial Fuctios ad Taylor Series James K. Peterso Departmet of Biological Scieces ad Departmet of Mathematical Scieces Clemso Uiversity March 29, 207 Outlie Revistig the Expoetial Fuctio Taylor Series

More information

4.1 Data processing inequality

4.1 Data processing inequality ECE598: Iformatio-theoretic methods i high-dimesioal statistics Sprig 206 Lecture 4: Total variatio/iequalities betwee f-divergeces Lecturer: Yihog Wu Scribe: Matthew Tsao, Feb 8, 206 [Ed. Mar 22] Recall

More information

Math 220B Final Exam Solutions March 18, 2002

Math 220B Final Exam Solutions March 18, 2002 Math 0B Fial Exam Solutios March 18, 00 1. (1 poits) (a) (6 poits) Fid the Gree s fuctio for the tilted half-plae {(x 1, x ) R : x 1 + x > 0}. For x (x 1, x ), y (y 1, y ), express your Gree s fuctio G(x,

More information

AN INTRODUCTION TO SPECTRAL GRAPH THEORY

AN INTRODUCTION TO SPECTRAL GRAPH THEORY AN INTRODUCTION TO SPECTRAL GRAPH THEORY JIAQI JIANG Abstract. Spectral graph theory is the study of properties of the Laplacia matrix or adjacecy matrix associated with a graph. I this paper, we focus

More information