Study ANTALYA. Abstractt. number. reflecting. any specially an importantt solar thermal. of the aperture area to the

Size: px
Start display at page:

Download "Study ANTALYA. Abstractt. number. reflecting. any specially an importantt solar thermal. of the aperture area to the"

Transcription

1 212 - ANTALYA Study of Heat Transfer by Low-Velocity Forced Convectionn of Parabolic Dish Solar Cylindrical Receiver Shiva Gorjian 1, Teymour Tavakkoli Hashjin 1, Barat Ghobadian 1, Ahmad Banakar 1 1 Department of Agricultural Machinery Mechanics, Tarbiat Modares University (T.M.U), Tehran, Iran Abstractt Solar energy can be used for substitution of the depleting fossil fuels in thermal applications and electricity generation throughh thermal route. For medium and high temperature applications, solar concentrators are required. Convectionn losses are an important determining factor in the performance of solar thermal power systems. Optimum sizing and selection of concentratorr and receiver for any thermal application calls for estimation of heat transfer at the required operating temperatures. In present study, an attempt has been made to estimate the wind induced convective heat transfer coefficients from the bottom side of a circular cylinder, while the remaining parts of this surface is kept insulated. Heat transfer rates are presented in terms of averagee Nusselt numbers. The effect of the receiver operating temperature and wind velocity magnitude on heat transfer coefficients has been studied. In addition, the effect of positive wind incidence angle (angle between heated surface and incoming wind flow) between and 9 on heat transfer rate has been investigated. The solutions covered the ranges of the Reynolds and Rayleigh numbers from to and to respectively. The calculations have been carried out based on empirical models. The results indicated that the heat transfer coefficient is strongly affected by Reynolds and Reyleilgh numbers. Keywords: Solar energy, Parabolic dish, Convective heat transfer, Reynolds number 1. Introduction In solar thermal systems, heat loss can significantly reduce the efficiency and consequently the cost effectiveness of the system. It is therefore vital to fully understandd the nature of these heat loss mechanisms. The solar parabolic dish collector is known as most efficient system among solar thermal devices. Generally a solar dish includes a paraboloid reflecting surface, a receiver, a tracking system, thermal energy utilization system and the working fluid which transfer the heat [1]. The entire radiation incident on the reflecting surface is reflected towards the focus. The reflecting surface may be mirrors or any specially treated metal surfaces. The reflected radiation is concentrated in a focal zone on a smaller area, thus ncreasing the energy flux in the receiving target. Solar receivers play an importantt role in light-heat conversion for the solar thermal power systems [2]. The thermal efficiency of the solar receiver is affected by various heat loss mechanisms. The working fluid in the receiver placed at the focus of the reflecting surface receives concentrated solar energy. The tracking system is designed to track the sun such that the aperture of the reflecting surface is orthogonal to the incident radiation. The concentration ratio (ratio of the aperture area to the receiver area) of solar dish determines the intensity of solar radiation received by the receiver. The increased heat flux makes solar energy suitable for utilization in medium and high temperature applications [3]. The solar parabolic dish collector maintains its optical axis always pointing directly towards the sun. The geometry of the concentrator allows reflecting the incident solar rays onto the receiver, which is located at the focal plane of the collector [2]. During its rotation, the receiverr experiences change in the complete behavior of the fluid and the heat transfer characteristics. The orientation of the receiver might alter the thermal performance of solar parabolic dish system in both natural and forced convectionn [4]. The estimation of heat losses from the receiver is an importantt input to the performance evaluation of the solar dish collector. The convection and radiation heat losses from the receiver substantially reduce the performance of the system. A moderate temperature rise leads to a considerablee heat loss, which may directly influence the performance of dish system [4]. A literature survey shows that, study on wind effect on the heat loss of solar cavity receivers is still in the early stage and no research has been done on the cylindrical receiver heat loss mechanism. Two wind directions, i.e., head-on and side-on wind have gained extensivee attention for cavity receivers [], [6] while a real wind in nature that is always parallel to the ground with a variety of directions has not been studied. Many studies have been conducted on the heat loss mechanisms of cavity receivers of Corresponding Author: m88_gorjian@rocketmail.com

2 which are often used for power production [7], [8]. The empirical correlation for predicting the forced convectionn heat loss of solar external (cylindrical) receivers has not been reported. In the present, quantitative analysis of wind effect on convection heat loss of medium-temperature solar cylindrical receiver particularly for heating water or purification of seawater has been carried out to further understand the convection heat losss mechanism. 2. Description of the parabolic dish collector Figure 1 shows the arrangement of the parabolic dish collector. The device comprises a parabolic dish concentratorr (PDC) with 1.8m aperture diameter and a cylindrical receiver unit on its focal point. The focal absorber receives the concentrated solar radiation and transforms it to thermal energy to be used in a subsequent process. The essential feature of a receiver is to absorb the maximumm amount of reflected solar energy and transfer it as heat, with minimumm losses, to the working fluid. The dish surface was covered with rectangular silver-backed glass segmentss with a thickness of 1 mm. A D=2 mm diameter and L=3 mm length circular cylinder made of stainless steel is placed at the focal point. It has the receiving surface of 3.2 m 2 with a geometric concentration of 1. The receiver is completely insulated except the part lit by the solar rays reflected by the parabolic surface. The bottom side of the receiver is covered with black chrome to increasee the absorption of solar radiation. This subsystem is tracked to hour angle variation by using stepper motor and declination angle variation by twisting the tracking setup to absorbb maximumm solar radiation on its focal region. The sun tracking mechanismm for this collector has two axes with a manual system. Insulation cover Cylindricall receiver Parabolic dish L D Tracking axis Black chrome coating Figure 1. Three-dimensional sketch of the solar cylindrical receiver of a parabolic dish. 3. The heat loss mechanism of the receiver In order to assess and subsequently improve the thermal performance of external receivers employed in parabolic dish solar concentrators, its associated heat lossess need to be determined with sufficient accuracy. The total heat losss rate of the receiver,, includes three contributions; conductive,, convective, and radiative. The total heat loss rate can be expressed as [3]: (1) Figure 2 shows the schematic diagram of various modes of heat loss mentioned above. In general, the conductionn and radiation modes of heat lossess can be determined relatively easily by the standardd methods described in the literature. On the other hand, the determination of convection loss is more complex [9]. In this study, the outer walls of the receiver are supposed to be adiabatic and the conductive heat loss from the outer surface of the receiver = Figure 2. Schematic diagram of different modes of heat transfer of the receiver. 2

3 Convection is the most complicated phenomenonn and yet also a major contributor of the total energy loss. Hence, its characteristic has been extensively investigated so as to find out effectivee measurements for the improvement of system efficiency [9]. The receiverr normally works in downward-facing or sideward-facing position in solar dish systems [4]. The range of tilt angle, which is defined as the angle between the normal direction of the bottom side of the receiver and the horizontal plane, in the current investigation is to 9. The wind is assumed to flow horizontally which is parallel to the ground. To distinguish the wind direction, the wind incidencee angle,, is defined as the angle between wind blowing direction and the axis normal to the bottom plane of the receiver [1]. The wind incidence angle varies azimuthally from to 9. The angle of does to the case of wind perpendicularly incident on the bottom side, is often referred to head-on wind. The angle of 9 corresponds to the case of wind blowing parallel to the aperture plane, is often called side-on wind [4]. The receiver will be exposed to the wind flow with different wind incidence angles (Fig. 3). θ θ Figure 3. Cylindrical receiver in different positions and definition of wind direction. For simulating different wind environments, a total of 4 wind directions (, 3, 6 and 9 ) and wind speeds in the range between ( /) for year-round in Tehran, capital city of Iran, are considered. The receiver is assumed to be used in medium-temperature systems (1 2, and the ambient temperature is equal to the air temperature of the location in different month of a year. The simplest physical model of such a flow is the two-dimensional forced convection flow along a flat plate and extensive studies have been conducted on this type of flow, especially in different angles of attack. A two-dimensional steady forced convection and heat transferr flow of a viscous, incompressible fluid over an isothermal finite plate which is the bottom side of the receiver has been considered. The main relevant dimensionless number is the number [11]: (2) where, is the velocity of the fluid flow, is the characteristic length of the flow situation for circular plates and is the kinematic viscosity of the flow. The ratio of is called the number (). The number () is the product of and number. Correlations for prediction of heat transfer coefficients are expressed in terms of number (), a dimensionless heat transfer coefficient, defined by [11]: (3) where is the convective heat transfer coefficient and is the conductivity of the fluid. Natural convectionn situationss show a strong dependencee on the number () which is a dimensionless ratio of buoyancy and diffusion effects, defined by [12]:. (4) where is the gravitational constant, is the temperature of the surface and is the temperature of the fluid.,, and are the thermal expansion coefficient, kinematic viscosity, and thermal diffusivity of the fluid respectively. In forced convection, the flow inducedd by density gradient is negligible compared with the fluid motion imposed by external devices, but in case of low flow velocity, the freee convection factor also plays an important role. A dimensionless parameter, number, predicts the relative importance of free convectionn with forced convection. For free convection, 1, for mixed convection (free-forced convection); 1 and for forced convection; 1. Calculating of this parameter is essential for the present study because the heat transferr caused by low-velocity wind flow [ 13]. The average convective heat transfer coefficient,, can also be expressed as follow [12]: () 3

4 3.1 Convective heat loss caused by side-on wind flow For the case of side-on wind, the bottom side of the receiver has been assumed as a flat plate which is exposed to the parallel flow. In this purpose, the equations have been used that were reported before by the other researchers. Thesee equations have been derived using analytical methods. The value of average number for laminar flow on a flat plate is equal to []:.664. / 1 (6)() And for turbulent flow is calculated as follow:.37. / 1 1 (7) where is the wind incidence angle, as mentioned before. (8) 3.2 Convective heat loss under head-on and oblique wind flow In the case of the head-on flow, Hess [1], has proposed an equation which is a function of number and the incidencee angle of the fluid. In this equation, it is assumed thatt the fluid flow is laminar and irrotational and the fluid is incompressible and inviscid. This equation can be applied to heat convection. The velocity of the flow on the side- facing the oncoming is given as follows [16]: 4. Results and discussion The two important parameters, and numbers for each month of a year and for three surface temperatures of the receiver were calculated under weather conditions of Tehran. The values of air temperature and wind speed for each month was obtained from NASA website for Tehran (Table1). The results showed that the wind flow is laminar and the convective heat transfer is forced. The solutions covered the ranges of the Reynolds and Rayleigh numbers from to and to respectively. All thermo-physical properties of air weree calculated in film temperature. The average temperature of the heated surface and the flowing fluid is the film temperature. For investigating the effect of the wind incidence angle on the convective heat transfer coefficient () and consequently on the convective heat loss rate ( ) of the receiver, the values of were plotted versus each month, for different receiver inclination angle while the receiver wall temperature is equal to 2 C (figs. 4 to7 ). Month Jan Table 1. The values of and of Tehran. Month 3 3. July Aug Sep Oct Nov Dec.6 3. ( ^2.) Wind Month of a year ( ^2.) Wind, Month of a year Figure 4. Values of under head-on wind flow. Figure. Values under 3 wind incidence angle. 4

5 3 2 ( ^2.) ( ) Wind, 6 ( ^2.) Wind Month of a year Month of a year Figure 6. Values of under 6 wind incidence angle. Figure 7. Values of under head-on wind flow. The equation (6) was used when the receiver was downward-facing and also was exposed to the side-on wind flow. In addition, the equation (7) was used when the receiver was exposed to the oblique and head-on wind flow in downward or sideward-facing position. In above diagrams, it is assumed that the wind direction is horizontal and the receiver is in different positions because of the tracking system. In this case, the wind direction would be oblique as the receiver is inclined. As the diagrams show, the head-on wind was found to cause higher convection heat loss than the side-on wind, which seems agreee to those reported by Xiao [4], for cavity receivers. Additionally, the free-stream wind with attacks the bottom side directly, causing larger magnitude air flow toward the plane, thus more convection heat loss may be expected. The maximum values were obtained for the angle of 3. Although the values of is higher for head-on wind in comparison with side-on wind, but the oblique wind causes more heat loss of the receiver. The inclined wind flow has two components on the bottom side of the receiver. One of them is normal to the bottom side and the other is parallel with this wall. For wind incidence angle between 9, there willl be more stream flow than one component such will exist for head-on and side-on wind flow. Consequently the values of should be higher than of the head and side wind flow. Therefore, the heat losss rate of the receiver has the maximumm of its value when the wind incidence angle has the amount of more than and less than 9. What is clear is that the values of are strongly affected by and numbers. In all graphs, higher values were obtained for the month with higher air temperature and wind speed values. The results related to the parallel flow, showed that increasing the wall temperature of the receiver will increase the value of, but this ncreasing has no importantt effect on the amount of convective heat loss (Table 2). In other words, there was no significant difference among the values of in the case of different receiver wall temperatures. The same results were obtained for the other wind directions. Table 2.. The values and numbers for side-on wind flow. 1 Month 1 Month.. Jan July Aug Sep Oct Nov Dec Month 2 Month.. Jan July Aug Sep Oct Nov Dec Month 2 Month.. Jan July Aug Sep Oct Nov Dec

6 4. Conclusion Whether from reality or a design standpoint, wind is one of the major concerns in the performance evaluation of a solar dish receiver. Therefore, based on the air property dependency on temperature, a study has been undertaken to investigate the role of wind on forced convection loss from a medium-temperature solar cylindrical receiver particularly for domestic applications. In most cases, the magnitude of heat loss is higher for the side-on wind than that of the head-on wind; the convection heat loss reaches the maximum value when the wind direction is perpendicular to the receiver bottom side. Results of the present study show that changing the wind angle or velocity can obviously affect the convective heat loss coefficient. The convection heat loss reaches the maximum value when the incidence angle of the wind is between to 9. Namely the variation of forced convection heat loss with wind speed and direction as well as the receiver inclination have been given in the peresent study using equations drived analytically. However, some unresolved issues still exist. Comparing the resultes of this reasearch with experimental data is strongly recomended. Refrences [1] V. R. Sardeshpande, A. G. Chandak, and I. R. Pillai, Procedure for thermal performance evaluation of steam generating point-focus solar concentrators, Solar Energy, vol. 8, no. 7, pp , Jul [2] S.-Y. Wu, L. Xiao, Y. Cao, and Y.-R. Li, Convection heat loss from cavity receiver in parabolic dish solar thermal power system: A review, Solar Energy, vol. 84, no. 8, pp , Aug. 21. [3] N. Bellel, Study of two types of cylindrical absorber of a spherical concentrator, Energy Procedia, vol. 6, pp , Jan [4] L. Xiao, S.-Y. Wu, and Y.-R. Li, Numerical study on combined free-forced convection heat loss of solar cavity receiver under wind environments, International Journal of Thermal Sciences, vol. 6, pp , Oct [] N. Sendhil Kumar and K. S. Reddy, Numerical investigation of natural convection heat loss in modified cavity receiver for fuzzy focal solar dish concentrator, Solar Energy, vol. 81, no. 7, pp , Jul. 27. [6] S. Paitoonsurikarn and K. Lovegrove, Numerical Investigation of Natural Convection Loss in Cavity-Type Solar Receivers, [7] M. Prakash, S. B. Kedare, and J. K. Nayak, Investigations on heat losses from a solar cavity receiver, Solar Energy, vol. 83, no. 2, pp ,. 29. [8] K. S. Reddy and N. Sendhil Kumar, An improved model for natural convection heat loss from modified cavity receiver of solar dish concentrator, Solar Energy, vol. 83, no. 1, pp , Oct. 29. [9] S. Paitoonsurikarn and K. Lovegrove, On the Study of Convection Loss from Open Cavity Receivers in Solar Paraboloidal Dish Applications, vol., pp. 161, 23. [1] C. Mahboub, N. Moummi, a. Moummi, and S. Youcef-Ali, Effect of the angle of attack on the wind convection coefficient, Solar Energy, vol. 8, no., pp , 211. [11] F. P. Incropera, Fundamentals of Heat and Mass Transfer. John Wiley & Sons Canada, Limited, 1993, p [12] M. Favre-Marinet and S. Tardu, Convective Heat Transfer (Google ebook). John Wiley & Sons, 21, p [13] R. R., Heat And Mass Transfer, 2/E. Pearson Education India, 21, p [] C. P. Kothandaraman, Fundamentals Of Heat And Mass Transfer. New Age International, 26, p. 74. [1] J. L. Hess, Analytic solutions for potential flow over a class of semi-infinite two-dimensional bodies having circular-arc noses, Journal of Fluid Mechanics, vol. 6, no. 2, pp , Sep [16] A. A. Kendoush, Theoretical analysis of heat and mass transfer to fluids flowing across a flat plate, International Journal of Thermal Sciences, vol. 48, no. 1, pp , Jan

Experimental study on heat losses from external type receiver of a solar parabolic dish collector

Experimental study on heat losses from external type receiver of a solar parabolic dish collector IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Experimental study on heat losses from external type receiver of a solar parabolic dish collector To cite this article: V Thirunavukkarasu

More information

Performance Investigation of Cavity Absorber for Parabolic Dish Solar Concentrator

Performance Investigation of Cavity Absorber for Parabolic Dish Solar Concentrator Volume 117 No. 7 217, 345-358 ISSN: 1311-88 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu Performance Investigation of Cavity Absorber for Parabolic Dish Solar

More information

Department of Energy Science & Engineering, IIT Bombay, Mumbai, India. *Corresponding author: Tel: ,

Department of Energy Science & Engineering, IIT Bombay, Mumbai, India. *Corresponding author: Tel: , ICAER 2011 AN EXPERIMENTAL AND COMPUTATIONAL INVESTIGATION OF HEAT LOSSES FROM THE CAVITY RECEIVER USED IN LINEAR FRESNEL REFLECTOR SOLAR THERMAL SYSTEM Sudhansu S. Sahoo* a, Shinu M. Varghese b, Ashwin

More information

Experimental Study of Heat Transfer Enhancement in a Tilted Semi-Cylindrical Cavity with Triangular Type of Vortex Generator in Various Arrangements.

Experimental Study of Heat Transfer Enhancement in a Tilted Semi-Cylindrical Cavity with Triangular Type of Vortex Generator in Various Arrangements. Experimental Study of Heat Transfer Enhancement in a Tilted Semi-Cylindrical Cavity with Triangular Type of Vortex Generator in Various Arrangements. #1 Korake Supriya S, #2 Dr Borse Sachin L #1 P.G. Student,

More information

EFFECT OF NON-UNIFORM TEMPERATURE DISTRIBUTION ON SURFACE ABSORPTION RECEIVER IN PARABOLIC DISH SOLAR CONCENTRATOR

EFFECT OF NON-UNIFORM TEMPERATURE DISTRIBUTION ON SURFACE ABSORPTION RECEIVER IN PARABOLIC DISH SOLAR CONCENTRATOR THERMAL SCIENCE, Year 217, Vol. 21, No. 5, pp. 211-219 211 EFFECT OF NON-UNIFORM TEMPERATURE DISTRIBUTION ON SURFACE ABSORPTION RECEIVER IN PARABOLIC DISH SOLAR CONCENTRATOR Introduction by Ramalingam

More information

Scholars Research Library

Scholars Research Library Available online at www.scholarsresearchlibrary.com Archives of Physics Research, 2013, 4 (2):4-13 (http://scholarsresearchlibrary.com/archive.html) ISSN : 0976-0970 CODEN (USA): APRRC7 Experimental investigations

More information

Available online at ScienceDirect. Procedia Engineering 90 (2014 )

Available online at   ScienceDirect. Procedia Engineering 90 (2014 ) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 9 (24 ) 55 556 th International Conference on Mechanical Engineering, ICME 23 Analysis of heat transfer and flow due to natural

More information

Problem 4.3. Problem 4.4

Problem 4.3. Problem 4.4 Problem 4.3 Problem 4.4 Problem 4.5 Problem 4.6 Problem 4.7 This is forced convection flow over a streamlined body. Viscous (velocity) boundary layer approximations can be made if the Reynolds number Re

More information

Introduction to Heat and Mass Transfer. Week 12

Introduction to Heat and Mass Transfer. Week 12 Introduction to Heat and Mass Transfer Week 12 Next Topic Convective Heat Transfer» Heat and Mass Transfer Analogy» Evaporative Cooling» Types of Flows Heat and Mass Transfer Analogy Equations governing

More information

Thermal conversion of solar radiation. c =

Thermal conversion of solar radiation. c = Thermal conversion of solar radiation The conversion of solar radiation into thermal energy happens in nature by absorption in earth surface, planetary ocean and vegetation Solar collectors are utilized

More information

CHAPTER 3 PROBLEM DEFINITION AND OBJECTIVE

CHAPTER 3 PROBLEM DEFINITION AND OBJECTIVE 49 CHAPTER 3 PROBLEM DEFINITION AND OBJECTIVE 3.1 MOTIVATION Concentrating solar power is a principle of increasing solar power density. It can be demonstrated to set a piece of paper on fire by using

More information

ELEC9712 High Voltage Systems. 1.2 Heat transfer from electrical equipment

ELEC9712 High Voltage Systems. 1.2 Heat transfer from electrical equipment ELEC9712 High Voltage Systems 1.2 Heat transfer from electrical equipment The basic equation governing heat transfer in an item of electrical equipment is the following incremental balance equation, with

More information

Table of Contents. Foreword... xiii. Preface... xv

Table of Contents. Foreword... xiii. Preface... xv Table of Contents Foreword.... xiii Preface... xv Chapter 1. Fundamental Equations, Dimensionless Numbers... 1 1.1. Fundamental equations... 1 1.1.1. Local equations... 1 1.1.2. Integral conservation equations...

More information

NUMERICAL STUDY OF HEAT TRANSFER IN A FLAT PLAT THERMAL SOLAR COLLECTOR WITH PARTITIONS ATTACHED TO ITS GLAZING. Adel LAARABA.

NUMERICAL STUDY OF HEAT TRANSFER IN A FLAT PLAT THERMAL SOLAR COLLECTOR WITH PARTITIONS ATTACHED TO ITS GLAZING. Adel LAARABA. NUMERICAL STUDY OF HEAT TRANSFER IN A FLAT PLAT THERMAL SOLAR COLLECTOR WITH PARTITIONS ATTACHED TO ITS GLAZING Adel LAARABA. Department of physics. University of BATNA. (05000) Batna, Algeria Ccorresponding

More information

Introduction to Heat and Mass Transfer. Week 14

Introduction to Heat and Mass Transfer. Week 14 Introduction to Heat and Mass Transfer Week 14 HW # 7 prob. 2 Hot water at 50C flows through a steel pipe (thermal conductivity 14 W/m-K) of 100 mm outside diameter and 8 mm wall thickness. During winter,

More information

EXPERIMENTAL STUDY ON A CASCADED PCM STORAGE RECEIVER FOR PARABOLIC DISH COLLECTOR

EXPERIMENTAL STUDY ON A CASCADED PCM STORAGE RECEIVER FOR PARABOLIC DISH COLLECTOR International Journal of Mechanical Engineering and Technology (IJMET) Volume 8, Issue 11, November 217, pp. 91 917, Article ID: IJMET_8_11_92 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=8&itype=11

More information

Numerical study of optical performance of a parabolic-trough concentrating solar power system

Numerical study of optical performance of a parabolic-trough concentrating solar power system Numerical study of optical performance of a parabolic-trough concentrating solar power system *Raquel Miguez de Carvalho 1), Mavd R. Teles ) and Kamal A. R. Ismail 3) 1), ),3) Department of Energy, Faculty

More information

COVENANT UNIVERSITY NIGERIA TUTORIAL KIT OMEGA SEMESTER PROGRAMME: MECHANICAL ENGINEERING

COVENANT UNIVERSITY NIGERIA TUTORIAL KIT OMEGA SEMESTER PROGRAMME: MECHANICAL ENGINEERING COVENANT UNIVERSITY NIGERIA TUTORIAL KIT OMEGA SEMESTER PROGRAMME: MECHANICAL ENGINEERING COURSE: MCE 524 DISCLAIMER The contents of this document are intended for practice and leaning purposes at the

More information

Outlines. simple relations of fluid dynamics Boundary layer analysis. Important for basic understanding of convection heat transfer

Outlines. simple relations of fluid dynamics Boundary layer analysis. Important for basic understanding of convection heat transfer Forced Convection Outlines To examine the methods of calculating convection heat transfer (particularly, the ways of predicting the value of convection heat transfer coefficient, h) Convection heat transfer

More information

UNIT II CONVECTION HEAT TRANSFER

UNIT II CONVECTION HEAT TRANSFER UNIT II CONVECTION HEAT TRANSFER Convection is the mode of heat transfer between a surface and a fluid moving over it. The energy transfer in convection is predominately due to the bulk motion of the fluid

More information

Convection. forced convection when the flow is caused by external means, such as by a fan, a pump, or atmospheric winds.

Convection. forced convection when the flow is caused by external means, such as by a fan, a pump, or atmospheric winds. Convection The convection heat transfer mode is comprised of two mechanisms. In addition to energy transfer due to random molecular motion (diffusion), energy is also transferred by the bulk, or macroscopic,

More information

Optimization of the Air Gap Spacing In a Solar Water Heater with Double Glass Cover

Optimization of the Air Gap Spacing In a Solar Water Heater with Double Glass Cover Optimization of the Air Gap Spacing In a Solar Water Heater with Double Glass Cover ABSTRACT M. AL-Khaffajy 1 and R. Mossad 2 Faculty of Engineering and Surveying, University of Southern Queensland, QLD

More information

Chapter 3 NATURAL CONVECTION

Chapter 3 NATURAL CONVECTION Fundamentals of Thermal-Fluid Sciences, 3rd Edition Yunus A. Cengel, Robert H. Turner, John M. Cimbala McGraw-Hill, 2008 Chapter 3 NATURAL CONVECTION Mehmet Kanoglu Copyright The McGraw-Hill Companies,

More information

Introduction. Statement of Problem. The governing equations for porous materials with Darcy s law can be written in dimensionless form as:

Introduction. Statement of Problem. The governing equations for porous materials with Darcy s law can be written in dimensionless form as: Symbolic Calculation of Free Convection for Porous Material of Quadratic Heat Generation in a Circular Cavity Kamyar Mansour Amirkabir University of technology, Tehran, Iran, 15875-4413 mansour@aut.ac.ir

More information

Simulation of a linear Fresnel solar collector concentrator

Simulation of a linear Fresnel solar collector concentrator *Corresponding author: acoliv@fe.up.pt Simulation of a linear Fresnel solar collector concentrator... Jorge Facão and Armando C. Oliveira * Faculty of Engineering, University of Porto-New Energy Tec. Unit,

More information

ENHANCEMENT OF THE HEAT TRANSFER RATE IN FREE CONVECTION SOLAR AIR HEATER USING PIN SHAPED ARTIFICIAL ROUGHNESS ON ABSORBER PLATE

ENHANCEMENT OF THE HEAT TRANSFER RATE IN FREE CONVECTION SOLAR AIR HEATER USING PIN SHAPED ARTIFICIAL ROUGHNESS ON ABSORBER PLATE ENHANCEMENT OF THE HEAT TRANSFER RATE IN FREE CONVECTION SOLAR AIR HEATER USING PIN SHAPED ARTIFICIAL ROUGHNESS ON ABSORBER PLATE Syed E. Gilani 1, Hussain H. Al-Kayiem 1, Buschmann Matthias 2 and Dereje.

More information

UNIT FOUR SOLAR COLLECTORS

UNIT FOUR SOLAR COLLECTORS ME 476 Solar Energy UNIT FOUR SOLAR COLLECTORS Flat Plate Collectors Outline 2 What are flat plate collectors? Types of flat plate collectors Applications of flat plate collectors Materials of construction

More information

PHYSICAL MECHANISM OF NATURAL CONVECTION

PHYSICAL MECHANISM OF NATURAL CONVECTION 1 NATURAL CONVECTION In this chapter, we consider natural convection, where any fluid motion occurs by natural means such as buoyancy. The fluid motion in forced convection is quite noticeable, since a

More information

C ONTENTS CHAPTER TWO HEAT CONDUCTION EQUATION 61 CHAPTER ONE BASICS OF HEAT TRANSFER 1 CHAPTER THREE STEADY HEAT CONDUCTION 127

C ONTENTS CHAPTER TWO HEAT CONDUCTION EQUATION 61 CHAPTER ONE BASICS OF HEAT TRANSFER 1 CHAPTER THREE STEADY HEAT CONDUCTION 127 C ONTENTS Preface xviii Nomenclature xxvi CHAPTER ONE BASICS OF HEAT TRANSFER 1 1-1 Thermodynamics and Heat Transfer 2 Application Areas of Heat Transfer 3 Historical Background 3 1-2 Engineering Heat

More information

Transient Heat Transfer Experiment. ME 331 Introduction to Heat Transfer. June 1 st, 2017

Transient Heat Transfer Experiment. ME 331 Introduction to Heat Transfer. June 1 st, 2017 Transient Heat Transfer Experiment ME 331 Introduction to Heat Transfer June 1 st, 2017 Abstract The lumped capacitance assumption for transient conduction was tested for three heated spheres; a gold plated

More information

Vertical Mantle Heat Exchangers for Solar Water Heaters

Vertical Mantle Heat Exchangers for Solar Water Heaters for Solar Water Heaters Y.C., G.L. Morrison and M. Behnia School of Mechanical and Manufacturing Engineering The University of New South Wales Sydney 2052 AUSTRALIA E-mail: yens@student.unsw.edu.au Abstract

More information

PHYSICAL MECHANISM OF CONVECTION

PHYSICAL MECHANISM OF CONVECTION Tue 8:54:24 AM Slide Nr. 0 of 33 Slides PHYSICAL MECHANISM OF CONVECTION Heat transfer through a fluid is by convection in the presence of bulk fluid motion and by conduction in the absence of it. Chapter

More information

INSTRUCTOR: PM DR MAZLAN ABDUL WAHID

INSTRUCTOR: PM DR MAZLAN ABDUL WAHID SMJ 4463: HEAT TRANSFER INSTRUCTOR: PM ABDUL WAHID http://www.fkm.utm.my/~mazlan TEXT: Introduction to Heat Transfer by Incropera, DeWitt, Bergman, Lavine 5 th Edition, John Wiley and Sons Chapter 9 Natural

More information

Simplified Collector Performance Model

Simplified Collector Performance Model Simplified Collector Performance Model Prediction of the thermal output of various solar collectors: The quantity of thermal energy produced by any solar collector can be described by the energy balance

More information

NUMERICAL STUDY OF MIXED CONVECTION AND THERMAL RADIATION IN A SQUARE CAVITY WITH AN INSIDE INCLINED HEATER

NUMERICAL STUDY OF MIXED CONVECTION AND THERMAL RADIATION IN A SQUARE CAVITY WITH AN INSIDE INCLINED HEATER NUMERICAL STUDY OF MIXED CONVECTION AND THERMAL RADIATION IN A SQUARE CAVITY WITH AN INSIDE INCLINED HEATER N. HAMICI a, D. SADAOUI a a. Laboratory of Mechanic, Materials and Energy (L2ME), University

More information

Department of Mechanical Engineering ME 96. Free and Forced Convection Experiment. Revised: 25 April Introduction

Department of Mechanical Engineering ME 96. Free and Forced Convection Experiment. Revised: 25 April Introduction CALIFORNIA INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering ME 96 Free and Forced Convection Experiment Revised: 25 April 1994 1. Introduction The term forced convection refers to heat transport

More information

EXPERIMENTAL INVESTIGATION OF DIFFERENT TRACKING MODES OF THE PARABOLIC TROUGH COLLECTOR

EXPERIMENTAL INVESTIGATION OF DIFFERENT TRACKING MODES OF THE PARABOLIC TROUGH COLLECTOR EXPERIMENTAL INVESTIGATION OF DIFFERENT TRACKING MODES OF THE PARABOLIC TROUGH COLLECTOR Yogender Kumar 1, Avadhesh Yadav 2 1,2 Department of Mechanical Engineering, National Institute of Technology, Kurukshetra,

More information

10.52 Mechanics of Fluids Spring 2006 Problem Set 3

10.52 Mechanics of Fluids Spring 2006 Problem Set 3 10.52 Mechanics of Fluids Spring 2006 Problem Set 3 Problem 1 Mass transfer studies involving the transport of a solute from a gas to a liquid often involve the use of a laminar jet of liquid. The situation

More information

EFFECT OF SOME PARAMETERS ON LINEAR FRESNEL SOLAR CONCENTRATING COLLECTORS

EFFECT OF SOME PARAMETERS ON LINEAR FRESNEL SOLAR CONCENTRATING COLLECTORS EFFECT OF SOME PARAMETERS ON LINEAR FRESNEL SOLAR CONCENTRATING COLLECTORS Panna Lal Singh *1, R.M Sarviya and J.L. Bhagoria 2 1. Central Institute of Agricultural Engineering, Berasia Road, Bhopal-462038

More information

Corresponding Author: Kandie K.Joseph. DOI: / Page

Corresponding Author: Kandie K.Joseph. DOI: / Page IOSR Journal of Mathematics (IOSR-JM) e-issn: 2278-5728, p-issn: 2319-765X. Volume 13, Issue 5 Ver. 1 (Sep. - Oct. 2017), PP 37-47 www.iosrjournals.org Solution of the Non-Linear Third Order Partial Differential

More information

Thermal Analysis of Solar Collectors

Thermal Analysis of Solar Collectors Thermal Analysis of Solar Collectors Soteris A. Kalogirou Cyprus University of Technology Limassol, Cyprus Contents Types of collectors Stationary Sun tracking Thermal analysis of collectors Flat plate

More information

Available online at ScienceDirect. Procedia Engineering 105 (2015 )

Available online at  ScienceDirect. Procedia Engineering 105 (2015 ) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 15 (215 ) 176 183 6th BSME International Conference on Thermal Engineering (ICTE 214) Natural Convection Flow and Heat Transfer

More information

Laplace Technique on Magnetohydrodynamic Radiating and Chemically Reacting Fluid over an Infinite Vertical Surface

Laplace Technique on Magnetohydrodynamic Radiating and Chemically Reacting Fluid over an Infinite Vertical Surface International Journal of Engineering and Technology Volume 2 No. 4, April, 2012 Laplace Technique on Magnetohydrodynamic Radiating and Chemically Reacting Fluid over an Infinite Vertical Surface 1 Sahin

More information

Flow and Temperature Analysis inside Flat Plate Air Heating Solar Collectors

Flow and Temperature Analysis inside Flat Plate Air Heating Solar Collectors International Journal of Recent Development in Engineering and Technology Website: www.ijrdet.com (ISSN 2347-6435(Online) Volume 3, Issue 3, September 24) Flow and Temperature Analysis inside Flat Plate

More information

THERMAL PERFORMANCE OPTIMIZATION OF A FLAT PLATE SOLAR WATER HEATER COLLECTOR USING MATLAB

THERMAL PERFORMANCE OPTIMIZATION OF A FLAT PLATE SOLAR WATER HEATER COLLECTOR USING MATLAB THERMAL PERFORMANCE OPTIMIZATION OF A FLAT PLATE SOLAR WATER HEATER COLLECTOR USING MATLAB 1 H.VETTRIVEL, 2 P.MATHIAZHAGAN 1,2 Assistant professor, Mechanical department, Manalula Vinayakar institute of

More information

HEAT LOSS CHARACTERISTICS OF A ROOF INTEGRATED SOLAR MICRO-CONCENTRATING COLLECTOR

HEAT LOSS CHARACTERISTICS OF A ROOF INTEGRATED SOLAR MICRO-CONCENTRATING COLLECTOR 5 th International Conference on Energy Sustainability ASME August 7-10, 2011, Grand Hyatt Washington, Washington DC, USA ESFuelCell2011-54254 HEAT LOSS CHARACTERISTICS OF A ROOF INTEGRATED SOLAR MICRO-CONCENTRATING

More information

Combined Natural Convection and Thermal Radiation in an Inclined Cubical Cavity with a Rectangular Pins Attached to Its Active Wall

Combined Natural Convection and Thermal Radiation in an Inclined Cubical Cavity with a Rectangular Pins Attached to Its Active Wall Periodicals of Engineering and Natural Sciences ISSN 2303-4521 Vol.5, No.3, November 2017, pp. 347~354 Available online at:http://pen.ius.edu.ba Combined Natural Convection and Thermal Radiation in an

More information

Convective Heat Transfer

Convective Heat Transfer Convective Heat Transfer Solved Problems Michel Favre-Marinet Sedat Tardu This page intentionally left blank Convective Heat Transfer This page intentionally left blank Convective Heat Transfer Solved

More information

Principles of Convection

Principles of Convection Principles of Convection Point Conduction & convection are similar both require the presence of a material medium. But convection requires the presence of fluid motion. Heat transfer through the: Solid

More information

Chapter 2 HEAT CONDUCTION EQUATION

Chapter 2 HEAT CONDUCTION EQUATION Heat and Mass Transfer: Fundamentals & Applications Fourth Edition Yunus A. Cengel, Afshin J. Ghajar McGraw-Hill, 2011 Chapter 2 HEAT CONDUCTION EQUATION Mehmet Kanoglu University of Gaziantep Copyright

More information

Natural Convection and Radiation Heat Loss from Open Cavities of Different Shapes and Sizes Used with Dish Concentrator

Natural Convection and Radiation Heat Loss from Open Cavities of Different Shapes and Sizes Used with Dish Concentrator Mechanical Engineering Research; Vol. 3, No. 1; 213 ISSN 1927-67 E-ISSN 1927-615 Published by Canadian Center of Science and Education Natural Convection and Radiation Heat Loss from Open Cavities of Different

More information

Numerical Investigation of Natural Convection Loss in Cavity-Type Solar Receivers

Numerical Investigation of Natural Convection Loss in Cavity-Type Solar Receivers Numerical Investigation of Natural Convection Loss in Cavity-Type Solar Receivers S. PAITOONSURIKARN and K. LOVEGROVE Centre of Sustainable Energy Systems, Department of Engineering, Australian National

More information

International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May ISSN

International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May ISSN International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015 28 CFD BASED HEAT TRANSFER ANALYSIS OF SOLAR AIR HEATER DUCT PROVIDED WITH ARTIFICIAL ROUGHNESS Vivek Rao, Dr. Ajay

More information

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY [Rabadiya, 1(7): Sep., 2012] ISSN: 2277-9655 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY Effect of Wind Velocity At different Yaw Angle On Top Loss Coefficient Of Solar Flat

More information

A New Correlation for Predicting the Free Convection Loss from Solar Dish Concentrating Receivers

A New Correlation for Predicting the Free Convection Loss from Solar Dish Concentrating Receivers A New Correlation for Predicting the Free Convection Loss from Solar Dish Concentrating Receivers Abstract S. Paitoonsurikarn and K. Lovegrove Centre for Sustainable Energy Systems, Department of Engineering,

More information

LAMINAR NATURAL CONVECTION IN VERTICAL 2D GLAZING CAVITIES

LAMINAR NATURAL CONVECTION IN VERTICAL 2D GLAZING CAVITIES Mechanical and Industrial Engineering University of Massachusetts, Amherst AMINAR NATURA CONVECTION IN VERTICA 2D GAZING CAVITIES Bhaskar Adusumalli ABSTRACT Finite element predictions of natural convection

More information

An Evacuated PV/Thermal Hybrid Collector with the Tube/XCPC design

An Evacuated PV/Thermal Hybrid Collector with the Tube/XCPC design An Evacuated PV/Thermal Hybrid Collector with the Tube/XCPC design Lun Jiang Chuanjin Lan Yong Sin Kim Yanbao Ma Roland Winston University of California, Merced 4200 N.Lake Rd, Merced CA 95348 ljiang2@ucmerced.edu

More information

FINITE ELEMENT ANALYSIS OF MIXED CONVECTION HEAT TRANSFER ENHANCEMENT OF A HEATED SQUARE HOLLOW CYLINDER IN A LID-DRIVEN RECTANGULAR ENCLOSURE

FINITE ELEMENT ANALYSIS OF MIXED CONVECTION HEAT TRANSFER ENHANCEMENT OF A HEATED SQUARE HOLLOW CYLINDER IN A LID-DRIVEN RECTANGULAR ENCLOSURE Proceedings of the International Conference on Mechanical Engineering 2011 (ICME2011) 18-20 December 2011, Dhaka, Bangladesh ICME11-TH-014 FINITE ELEMENT ANALYSIS OF MIXED CONVECTION HEAT TRANSFER ENHANCEMENT

More information

MHD FLOW PAST AN IMPULSIVELY STARTED INFINITE VERTICAL PLATE IN PRESENCE OF THERMAL RADIATION

MHD FLOW PAST AN IMPULSIVELY STARTED INFINITE VERTICAL PLATE IN PRESENCE OF THERMAL RADIATION FLUID DYNAMICS MHD FLOW PAST AN IMPULSIVELY STARTED INFINITE VERTICAL PLATE IN PRESENCE OF THERMAL RADIATION M. K. MAZUMDAR, R. K. DEKA Department of Mathematics, Gauhati University Guwahat-781 014, Assam,

More information

Heat Loss from Cavity Receiver for Solar Micro- Concentrating Collector

Heat Loss from Cavity Receiver for Solar Micro- Concentrating Collector Heat Loss from Cavity Receiver for Solar Micro- Concentrating Collector Tanzeen Sultana 1, Graham L Morrison 1, Andrew Tanner 2, Mikal Greaves 2, Peter Le Lievre 2 and Gary Rosengarten 1 1 School of Mechanical

More information

MYcsvtu Notes HEAT TRANSFER BY CONVECTION

MYcsvtu Notes HEAT TRANSFER BY CONVECTION www.mycsvtunotes.in HEAT TRANSFER BY CONVECTION CONDUCTION Mechanism of heat transfer through a solid or fluid in the absence any fluid motion. CONVECTION Mechanism of heat transfer through a fluid in

More information

Convection Heat Transfer. Introduction

Convection Heat Transfer. Introduction Convection Heat Transfer Reading Problems 12-1 12-8 12-40, 12-49, 12-68, 12-70, 12-87, 12-98 13-1 13-6 13-39, 13-47, 13-59 14-1 14-4 14-18, 14-24, 14-45, 14-82 Introduction Newton s Law of Cooling Controlling

More information

A Finite Element Analysis on MHD Free Convection Flow in Open Square Cavity Containing Heated Circular Cylinder

A Finite Element Analysis on MHD Free Convection Flow in Open Square Cavity Containing Heated Circular Cylinder American Journal of Computational Mathematics, 2015, 5, 41-54 Published Online March 2015 in SciRes. http://www.scirp.org/journal/ajcm http://dx.doi.org/10.4236/ajcm.2015.51003 A Finite Element Analysis

More information

Chapter 7: Natural Convection

Chapter 7: Natural Convection 7-1 Introduction 7- The Grashof Number 7-3 Natural Convection over Surfaces 7-4 Natural Convection Inside Enclosures 7-5 Similarity Solution 7-6 Integral Method 7-7 Combined Natural and Forced Convection

More information

Numerical analysis of the influence of inclination angle and wind on the heat losses of cavity receivers for solar thermal power towers

Numerical analysis of the influence of inclination angle and wind on the heat losses of cavity receivers for solar thermal power towers Numerical analysis of the influence of inclination angle and wind on the heat losses of cavity receivers for solar thermal power towers Robert Flesch a, Hannes Stadler a, Ralf Uhlig b, Robert Pitz-Paal

More information

Chapter 9 NATURAL CONVECTION

Chapter 9 NATURAL CONVECTION Heat and Mass Transfer: Fundamentals & Applications Fourth Edition in SI Units Yunus A. Cengel, Afshin J. Ghajar McGraw-Hill, 2011 Chapter 9 NATURAL CONVECTION PM Dr Mazlan Abdul Wahid Universiti Teknologi

More information

Numerical Study of Free Convection Heat Transfer in a Square Cavity with a Fin Attached to Its Cold Wall

Numerical Study of Free Convection Heat Transfer in a Square Cavity with a Fin Attached to Its Cold Wall Heat Transfer Research, 2011, Vol. 42, No. 3 Numerical Study of Free Convection Heat Transfer in a Square Cavity with a Fin Attached to Its Cold Wall SAEID JANI, 1* MEYSAM AMINI, 2 and MOSTAFA MAHMOODI

More information

Chapter 2 HEAT CONDUCTION EQUATION

Chapter 2 HEAT CONDUCTION EQUATION Heat and Mass Transfer: Fundamentals & Applications 5th Edition in SI Units Yunus A. Çengel, Afshin J. Ghajar McGraw-Hill, 2015 Chapter 2 HEAT CONDUCTION EQUATION Mehmet Kanoglu University of Gaziantep

More information

Autumn 2005 THERMODYNAMICS. Time: 3 Hours

Autumn 2005 THERMODYNAMICS. Time: 3 Hours CORK INSTITUTE OF TECHNOOGY Bachelor of Engineering (Honours) in Mechanical Engineering Stage 3 (Bachelor of Engineering in Mechanical Engineering Stage 3) (NFQ evel 8) Autumn 2005 THERMODYNAMICS Time:

More information

CFD ANALYSIS OF HEAT TRANSFER AND FLUID FLOW IN FLAT PLATE NATURAL CONVECTION SOLAR AIR HEATER

CFD ANALYSIS OF HEAT TRANSFER AND FLUID FLOW IN FLAT PLATE NATURAL CONVECTION SOLAR AIR HEATER CFD ANALYSIS OF HEAT TRANSFER AND FLUID FLOW IN FLAT PLATE NATURAL CONVECTION SOLAR AIR HEATER Demiss Alemu Amibe, Alemu Tiruneh Department of Mechanical Engineering Addis Ababa Institute of Technology,

More information

International Journal of Advanced Engineering Technology E-ISSN

International Journal of Advanced Engineering Technology E-ISSN Research Article EFFECT OF ROUGHNESS ELEMENT PITCH ON HEAT TRANSFER AND FRICTION CHARACTERISTICS OF ARTIFICIALLY ROUGHENED SOLAR AIR HEATER DUCT Aman Soi*, Ranjit Singh, Brij Bhushan Address for Correspondence

More information

COMBINED MEASUREMENT OF THERMAL AND OPTICAL PROPERTIES OF RECEIVERS FOR PARABOLIC TROUGH COLLECTORS

COMBINED MEASUREMENT OF THERMAL AND OPTICAL PROPERTIES OF RECEIVERS FOR PARABOLIC TROUGH COLLECTORS COMBINED MEASUREMENT OF THERMAL AND OPTICAL PROPERTIES OF RECEIVERS FOR PARABOLIC TROUGH COLLECTORS Johannes Pernpeintner 1, Björn Schiricke 2, Eckhard Lüpfert 2, Niels Lichtenthäler 2, Ansgar Macke 2

More information

Convection Workshop. Academic Resource Center

Convection Workshop. Academic Resource Center Convection Workshop Academic Resource Center Presentation Outline Understanding the concepts Correlations External Convection (Chapter 7) Internal Convection (Chapter 8) Free Convection (Chapter 9) Solving

More information

NATURAL CONVECTION AND RADIATION IN CIRCULAR AND ARC CAVITY

NATURAL CONVECTION AND RADIATION IN CIRCULAR AND ARC CAVITY Proceedings of the International Conference on Mechanical Engineering 9 (ICME9) - 8 December 9, Dhaka, Bangladesh ICME9-TH- NATURAL CONVECTION AND RADIATION IN CIRCULAR AND ARC CAVITY Naheed Ferdous, Md.

More information

UNIT II Real fluids. FMM / KRG / MECH / NPRCET Page 78. Laminar and turbulent flow

UNIT II Real fluids. FMM / KRG / MECH / NPRCET Page 78. Laminar and turbulent flow UNIT II Real fluids The flow of real fluids exhibits viscous effect that is they tend to "stick" to solid surfaces and have stresses within their body. You might remember from earlier in the course Newtons

More information

Tutorial 1. Where Nu=(hl/k); Reynolds number Re=(Vlρ/µ) and Prandtl number Pr=(µCp/k)

Tutorial 1. Where Nu=(hl/k); Reynolds number Re=(Vlρ/µ) and Prandtl number Pr=(µCp/k) Tutorial 1 1. Explain in detail the mechanism of forced convection. Show by dimensional analysis (Rayleigh method) that data for forced convection may be correlated by an equation of the form Nu = φ (Re,

More information

Advanced Heat and Mass Transfer by Amir Faghri, Yuwen Zhang, and John R. Howell

Advanced Heat and Mass Transfer by Amir Faghri, Yuwen Zhang, and John R. Howell Laminar external natural convection on vertical and horizontal flat plates, over horizontal and vertical cylinders and sphere, as well as plumes, wakes and other types of free flow will be discussed in

More information

Numerical Study of Steady MHD Plane Poiseuille Flow and Heat Transfer in an Inclined Channel

Numerical Study of Steady MHD Plane Poiseuille Flow and Heat Transfer in an Inclined Channel Numerical Study of Steady MHD Plane Poiseuille Flow and Heat Transfer in an Inclined Channel Muhim Chutia Department of Mathematics, Mariani College, Assam-785634, India ABSTRACT: In this paper, a numerical

More information

Parametric Effect on Performance Enhancement of Offset Finned Absorber Solar Air Heater

Parametric Effect on Performance Enhancement of Offset Finned Absorber Solar Air Heater Parametric Effect on Performance Enhancement of Offset Finned Absorber Solar Air Heater Er. Vivek Garg Gateway Institute of Engineering and Technology, Sonipat Mechanical Engineering Department Dr. Shalini

More information

Natural Convection in Parabolic Enclosure Heated from Below

Natural Convection in Parabolic Enclosure Heated from Below www.ccsenet.org/mas Modern Applied Science Vol. 5, No. 3; June 011 Natural Convection in Parabolic Enclosure Heated from Below Dr. Ahmed W. Mustafa (Corresponding auther) University of Tikrit, College

More information

Research Article Study on Effect of Number of Transparent Covers and Refractive Index on Performance of Solar Water Heater

Research Article Study on Effect of Number of Transparent Covers and Refractive Index on Performance of Solar Water Heater Renewable Energy Volume 14, Article ID 757618, 11 pages http://dx.doi.org/1.1155/14/757618 Research Article Study on Effect of Number of Transparent Covers and Refractive Index on Performance of Solar

More information

Solar Flat Plate Thermal Collector

Solar Flat Plate Thermal Collector Solar Flat Plate Thermal Collector INTRODUCTION: Solar heater is one of the simplest and basic technologies in the solar energy field. Collector is the heart of any solar heating system. It absorbs and

More information

CONVECTIVE HEAT TRANSFER

CONVECTIVE HEAT TRANSFER CONVECTIVE HEAT TRANSFER Mohammad Goharkhah Department of Mechanical Engineering, Sahand Unversity of Technology, Tabriz, Iran CHAPTER 3 LAMINAR BOUNDARY LAYER FLOW LAMINAR BOUNDARY LAYER FLOW Boundary

More information

Comparative study of Different Geometry of Ribs for roughness on absorber plate of Solar Air Heater -A Review

Comparative study of Different Geometry of Ribs for roughness on absorber plate of Solar Air Heater -A Review Comparative study of Different Geometry of Ribs for roughness on absorber plate of Solar Air Heater -A Review Gulshan Singh Baghel 1, Dr. A R Jaurker 2 1. Student, M.E. (Heat Power engineering), Jabalpur

More information

Chapter 5 MATHEMATICAL MODELING OF THE EVACATED SOLAR COLLECTOR. 5.1 Thermal Model of Solar Collector System

Chapter 5 MATHEMATICAL MODELING OF THE EVACATED SOLAR COLLECTOR. 5.1 Thermal Model of Solar Collector System Chapter 5 MATHEMATICAL MODELING OF THE EVACATED SOLAR COLLECTOR This chapter deals with analytical method of finding out the collector outlet working fluid temperature. A dynamic model of the solar collector

More information

THE INFLUENCE OF INCLINATION ANGLE ON NATURAL CONVECTION IN A RECTANGULAR ENCLOSURE

THE INFLUENCE OF INCLINATION ANGLE ON NATURAL CONVECTION IN A RECTANGULAR ENCLOSURE THE INFLUENCE OF INCLINATION ANGLE ON NATURAL CONVECTION IN A RECTANGULAR ENCLOSURE Thamer Khalif Salem Mechanical Engineering, College of Engineering, Tikrit University, IRAQ. thamer_khalif@yahoo.com

More information

Deposited on: 01 September 2011

Deposited on: 01 September 2011 Wilson, M.J. and Paul, M.C. (2011) Effect of mounting geometry on convection occurring under a photovoltaic panel and the corresponding efficiency using CFD. Solar Energy, 85 (10). pp. 2540-2550. ISSN

More information

HEAT TRANSFER THERMAL MANAGEMENT OF ELECTRONICS YOUNES SHABANY. C\ CRC Press W / Taylor Si Francis Group Boca Raton London New York

HEAT TRANSFER THERMAL MANAGEMENT OF ELECTRONICS YOUNES SHABANY. C\ CRC Press W / Taylor Si Francis Group Boca Raton London New York HEAT TRANSFER THERMAL MANAGEMENT OF ELECTRONICS YOUNES SHABANY C\ CRC Press W / Taylor Si Francis Group Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an informa business

More information

Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015

Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015 Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015 I. Introduction (Chapters 1 and 2) A. What is Fluid Mechanics? 1. What is a fluid? 2. What is mechanics? B. Classification of Fluid Flows 1. Viscous

More information

Pin Fin Lab Report Example. Names. ME331 Lab

Pin Fin Lab Report Example. Names. ME331 Lab Pin Fin Lab Report Example Names ME331 Lab 04/12/2017 1. Abstract The purposes of this experiment are to determine pin fin effectiveness and convective heat transfer coefficients for free and forced convection

More information

PERFORMANCE ANALYSIS OF PARABOLIC TROUGH COLLECTOR TUBE WITH INTERNAL INTERMITTENT FINS

PERFORMANCE ANALYSIS OF PARABOLIC TROUGH COLLECTOR TUBE WITH INTERNAL INTERMITTENT FINS PERFORMANCE ANALYSIS OF PARABOLIC TROUGH COLLECTOR TUBE WITH INTERNAL INTERMITTENT FINS Binoj K. George 1, Jacob Kuriakose 2 1Student, M. A. College of Engineering, Kothamangalam 2Asst. Prof, M. A. College

More information

MHD Non-Newtonian Power Law Fluid Flow and Heat Transfer Past a Non-Linear Stretching Surface with Thermal Radiation and Viscous Dissipation

MHD Non-Newtonian Power Law Fluid Flow and Heat Transfer Past a Non-Linear Stretching Surface with Thermal Radiation and Viscous Dissipation Journal of Applied Science and Engineering, Vol. 17, No. 3, pp. 267274 (2014) DOI: 10.6180/jase.2014.17.3.07 MHD Non-Newtonian Power Law Fluid Flow and Heat Transfer Past a Non-Linear Stretching Surface

More information

: HEAT TRANSFER & EVAPORATION COURSE CODE : 4072 COURSE CATEGORY : B PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 70 CREDIT : 5 TIME SCHEDULE

: HEAT TRANSFER & EVAPORATION COURSE CODE : 4072 COURSE CATEGORY : B PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 70 CREDIT : 5 TIME SCHEDULE COURSE TITLE : HEAT TRANSFER & EVAPORATION COURSE CODE : 4072 COURSE CATEGORY : B PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 70 CREDIT : 5 TIME SCHEDULE MODULE TOPIC PERIODS 1 Conduction,Fourier law,variation

More information

Influence of chemical reaction and thermal radiation effects on MHD boundary layer flow over a moving vertical porous plate

Influence of chemical reaction and thermal radiation effects on MHD boundary layer flow over a moving vertical porous plate International Research Journal of Engineering and Technology (IRJET) e-issn: 2395-56 Volume: 2 Issue: 7 Oct-25 www.irjet.net p-issn: 2395-72 Influence of chemical reaction and thermal radiation effects

More information

The Comparison between the Effects of Using Two Plane Mirrors Concentrator and that without Mirror on the Flat- Plate Collector

The Comparison between the Effects of Using Two Plane Mirrors Concentrator and that without Mirror on the Flat- Plate Collector ICCHT2010 5 th International Conference on Cooling and Heating Technologies, Bandung, Indonesia 911 December 2010 The Comparison beteen the ffects of Using To Plane Mirrors Concentrator and that ithout

More information

NUMERICAL SIMULATION OF THE AIR FLOW AROUND THE ARRAYS OF SOLAR COLLECTORS

NUMERICAL SIMULATION OF THE AIR FLOW AROUND THE ARRAYS OF SOLAR COLLECTORS THERMAL SCIENCE, Year 2011, Vol. 15, No. 2, pp. 457-465 457 NUMERICAL SIMULATION OF THE AIR FLOW AROUND THE ARRAYS OF SOLAR COLLECTORS by Vukman V. BAKI] *, Goran S. @IVKOVI], and Milada L. PEZO Laboratory

More information

Department of Mechanical Engineering

Department of Mechanical Engineering Department of Mechanical Engineering AMEE401 / AUTO400 Aerodynamics Instructor: Marios M. Fyrillas Email: eng.fm@fit.ac.cy HOMEWORK ASSIGNMENT #2 QUESTION 1 Clearly there are two mechanisms responsible

More information

Monthly performance of passive and active solar stills for different Indian climatic conditions

Monthly performance of passive and active solar stills for different Indian climatic conditions Monthly performance of passive and active solar stills for different Indian climatic conditions H.N. Singh, G.N.Tiwari* Centre for Energy Studies, llt Delhi, Haus Khas, New Delhi 11 O0 16, India Fax: +91

More information

Experimental Evaluation of Natural Heat Transfer in Façade Integrated Triangular Enclosures

Experimental Evaluation of Natural Heat Transfer in Façade Integrated Triangular Enclosures Peer Reviewed Paper Piratheepan Experimental Evaluation of Natural Heat Transfer in Façade Integrated Triangular Enclosures Abstract M Piratheepan 1, T N Anderson 1, S Saiful 1 1 Auckland University of

More information

THERMAL PERFORMANCE EVALUATION OF AN INNOVATIVE DOUBLE GLAZING WINDOW

THERMAL PERFORMANCE EVALUATION OF AN INNOVATIVE DOUBLE GLAZING WINDOW THERMAL PERFORMANCE EVALUATION OF AN INNOVATIVE DOUBLE GLAZING WINDOW Luigi De Giorgi, Carlo Cima, Emilio Cafaro Dipartimento di Energetica, Politecnico di Torino, Torino, Italy Volfango Bertola School

More information