Interacting non-bps black holes

Size: px
Start display at page:

Download "Interacting non-bps black holes"

Transcription

1 Interacting non-bps black holes Guillaume Bossard CPhT, Ecole Polytechnique IPhT Saclay, November 2011

2 Outline Time-like Kaluza Klein reduction From solvable algebras to solvable systems Interacting non-bps solutions Outlook Mainly on [ G. Bossard, C. Ruef, ] and more to come.

3 Time-like dimensional reduction Kaluza Klein Ansatz The metric ds 2 = e 2U( dt + ω µ dx µ) 2 + e 2U γ µν dx µ dx ν where γ is the metric on V and ω µ dx µ the Kaluza Klein vector. And the abelian 1-form fields A Λ = ζ Λ( dt + ω µ dx µ) + wµ Λ dx µ Convenient to parametrize G 4 /K 4 by v(φ) G 4.

4 Duality symmetry The equations of motion permit to dualize d ζ Λ = e 2U N ΛΞ (φ) γ ( dw Ξ + ζ Ξ dω ) + M ΛΞ (φ)dζ Ξ and dσ = e 4U γ dω ( ζλ d ζ Λ ζ Λ dζ Λ ) Heisenberg gauge invariance δζ Λ = C Λ δ ζ Λ = C Λ δσ = c ( C Λ ζ Λ C Λ ζ Λ ) Symmetry G 4 ( l 4 R )

5 Duality symmetry Hidden symmetry SU(2, 1) of Maxwell Einstein su(2, 1) = 1 ( 2) C ( 1) ( gl 1 u(1) ) (0) C (1) 1 (2) such that U, Φ = ζ + i ζ, σ parametrize SU(2, 1)/U(1, 1) in a parabolic gauge SU(2, 1) ( C R ) R + U(1, 1) as e U e U( σ i 2 Φ 2) Φ V = 0 e U 0 0 ie U Φ 1 equations of motion defined with P = du 1 2 e 2U ( dσ + i 2 (ΦdΦ Φ dφ) ) 1 2 e U dφ 1 2 e 2U dσ + i 2 (ΦdΦ Φ dφ) ) du i 2 e U dφ 1 2 e U dφ i 2 e U dφ 0

6 Beyond STU truncation N = 2 supergravity in 8 dimensions Scalars parametrizing SL(2)/SO(2) and SL(3)/SO(3) 2 3 vectors A α i, 3 2-forms B i, a 3-form C α Non-supersymmetric truncation in 8 dimensions Scalars parametrizing SL(2)/SO(2) One 3-form C α In four dimensions one gets moduli in SL(6)/SO(6) and 20 electromagnetic fields.

7 Duality symmetry Hidden symmetry E 6(6) of the pertinent truncation e 6(6) = 1 ( 2) 20 ( 1) ( gl 1 sl 6 ) (0) 20 (1) 1 (2) such that U, v(φ), ζ Λ, ζ Λ, σ parametrize E 6(6) /(Sp(8, R)/Z 2 ) in a parabolic gauge as E 6(6) ( 20 R ) ( R + SL(6) ) Sp(8, R) V 27 = exp [ ζ Λ E Λ + ζ Λ E Λ + σe ] exp [ UH ] v(φ) equations of motion defined with P 1 ( V 1 dv + (V 1 dv) ) 2

8 Extremal solutions Under-rotating extremal solutions V = R 3 (no ergosphere) This implies either P µ nilpotent γ µν = δ µν R µν = Tr P µ P ν = 0 P µ admits some imaginary eigen values At a horizon U and imaginary eigen values produce exponentially growing oscillating modes [ J. L. Hörnlund] regular extremal solutions: V N G

9 Solvable subalgebra A solvable subalgebra n inside g admits a grading n (p) = ad p 1 n n \ adn p n. which can be defined by h g such that In the symmetric gauge and so we chose h k. [h, n (p) ] = 2p n (p) V = exp( L) for L n (g k )

10 Solvable system of differential equations The function L decomposes into p L(p) such that and d dl (1) = 0 L (p) n (p) (g k ) d dl (2) = 0 d dl (3) = 2 [ dl (1), [L (1), dl (1) ] ] 3 d dl (4) = 2 [ dl (1), [L (1), dl (2) ] ] 2 [ dl (1), [L (2), dl (1) ] ] 2 [ dl (2), [L (1), dl (1) ] ] d dl (5) = 2 [ dl (1), [L (1), [L (1), [L (1), dl (1) ]]] ] + 8 [ [L (1), dl (1) ], [L (1), [L (1), dl (1) ]] ] [ dl (1), [L (2), dl (2) ] ] 2 [ dl (2), [L (1), dl (2) ] ] 2 [ dl (2), [L (2), dl (1) ] ] [ dl (1), [L (1), dl (3) ] ] 2 [ dl (1), [L (3), dl (1) ] ] 2 [ dl (3), [L (1), dl (1) ] ] d dl (6) =...

11 Solvable system of differential equations The explicit solution can then be read from exp( 2L) = VV = e 2U M AB σ e 2U M CB ζ ADE ζ CDE e 2U M AB e 2U M AD ζ DBC and and similarly dω = Tr E VPV 1 = Tr E n 1 k=0 ( 2) k (k + 1)! ad L k dl dw Λ = 1 4 Tr EΛ VPV 1 = 1 4 Tr n 1 ( 2) k EΛ (k + 1)! ad L k dl k=0

12 The STU model The supersymmetric orbit h = 2H 0 4 sl 2 = 1 ( 2) ( ) (0) gl 1 sl 2 sl 2 sl 2 1 (2) 16 = ( ) ( 1) D0 3 D2 3 D4 D6 ( D0 3 D2 3 D4 D6 ) (1) The subregular orbit h = 2 i H i 4 sl 2 = (3 1) ( 2) ( gl1 gl 1 gl 1 sl 2 ) (0) (3 1) (2) 16 = (D0 D6) ( 3) ( 3 D2 3 D4 ) ( 1) ( 3 D4 3 D2 ) (1) (D0 + D6) (3) The principal orbit h = 4H i H i 4 sl 2 = 1 ( 4) (3 1) ( 2) ( gl1 gl 1 gl 1 gl 1 ) (0) (3 1) (2) 1 (4) 16 = D0 ( 5) (3 D2) ( 3) (D6 3 D4) ( 1) (D6 3 D4) (1) (3 D2) (3) D0 (5)

13 The STU model The supersymmetric system h = 2H 0 [ F. Denef] ( D0 3 D2 3 D4 D6 ) (1) The almost-bps system h = 4H i H i [ K. Goldstein and S. Katmadas] (D6 3 D4) (1) (3 D2) (3) D0 (5) The composite non-bps system h = 2 i H i (3 D2 3 D4) (1) (D0 D6) (3)

14 ADM mass formula in the STU model BPS composite : dim[sl(2) 4 /(SO(2) 2 R)] 8 1 = 0 M = e iα Z > 0 = Z almost-bps composite : dim[sl(2) 4 ] 8 1 = 3 M = 1 (3e iα 0 Z e i i α ( i Z e i(α 0 +α i+1 +α i+2 ) Z i + e iα ) ) i Zi > 0 4 non-bps composite: dim[sl(2) 4 /R] 8 1 = 2 M = 1 2 ( e i i αi Z + i i e iαi Z i ) > 0

15 Supersymmetric solutions The metric reads [ B. Bates and F. Denef] and moduli such that e 4U = I 4 (H) t i = dω = H Λ dh Λ H Λ dh Λ I 4 H i ih i I 4 H 0 ih 0 H Λ = h Λ + A p Λ x x A H Λ = h Λ + A q Λ x x A

16 Almost BPS solutions [ I. Bena, G. Dall Agata, S. Giusto, C. Ruef and N. P. Warner] The metric reads e 4U = V 1 6 cijk L i L j L k M 2 dω = dm VL i dk i and moduli t i = K i + such that V and K i are harmonic and [ K. Goldstein and S. Katmadas] 3cijk L j L k ( M + ie 2U ) Vc pqr L p L q L r d dl i = 1 2 c ijkd ( Vd(K j K k ) K j K k dv ) d dm = d ( VL i dk i)

17 Non-BPS composite solutions The metric reads e 4U = V 1 6 c ijkl i L j L k M 2 dω = dm 1 2 c ijkl i L j dk k and moduli t i = K i + such that L i and K i are harmonic and 6L i ( M + ie 2U ) c jkl L j L k L l d d M = 1 2 c ijkd ( L i L j dk k) d d V = 1 2 c ijkd ( L i d(k j K k ) K j K k dl i)

18 Non-BPS composite solutions The metric reads e 4U = V 1 6 c ijkl i L j L k M 2 dω = dm 1 2 c ijkl i L j dk k with L i = l i + 2 A p i A x x A K i = k i + 2 A γ A p i A x x A and M = A cos θ A α A x x A V = 6 c ijk l i l j l 1 k 2 c ijk l i k j k k 2 A p 0 A +... x x A + 2 A cos θ A γ A α A x x A c ijk L i K j K k +...

19 Non-BPS composite solutions The metric reads e 4U = V 1 6 c ijkl i L j L k M 2 dω = dm 1 2 c ijkl i L j dk k with L i = l i + 2 A p i A x x A K i = k i + 2 A γ A p i A x x A and ( q A i = c ijk p j γ A A l k k k + p k ) B B γ A ) x B A(γ A x B p 0 A = 0

20 Non-BPS composite solutions Let us define d i such that q i = c ijk p j d k then for p 0 = 0 I 4 (q, p) = 2 3 c ijkp i p j p k( q c lpqp l d p d q) using a Jordan algebra identity.

21 Non-BPS composite solutions The ADM mass M ADM = 1 2 ( ) Z + (t i t i )D i Z 0 identical to [ E. Gimon, F. Larsen and J. Simón] for single centre Angular momentum J = A α A + A>B ( p Λ A q B Λ p Λ B q A Λ ) Horizon area A A = 4π I 4 (q A Λ, p Λ A ) α 2 A

22 Two-centre solution

23 Two-centre solution stability [ A. Ceresole, G. Dall Agata, S. Ferrara and A. Yeranyan] M ADM = W [Z Λ (q Λ, p Λ ), β s ] = W [Z Λ (q A Λ, p Λ A ), β s ] + W [Z Λ (q B Λ, p Λ B ), β s ] < W [Z Λ (q A Λ, p Λ A ), β (Z Λ )] + W [Z Λ (q B Λ, p Λ B ), β (Z Λ )] with W [β] β β=β s 0 W [β] β = 0 β=β therefore M ADM < M ADM A + M ADM B β s = β q i = c ijk p j Re[(1 is)t k 0 ]

24 E 8(8) closure diagram e 8(8) so (16)

25 E 8(8) closure diagram e 8(8) so (16) E6 D5 D4 Single centre

26 Outlooks It is very appealing that the most general systems have 56 harmonic functions for N = 8 and generalise the three, BPS, almost BPS and non-bps systems. However, the same Ansatz of harmonic functions does not permit to find regular solutions in higher degree orbits Generalisations including non-physical poles or multipole harmonics? Would help to have the explicit solution f ABC = 1 x x A 1 x x B 1 x x C Need to study the general solution to find the duality invariant equations for the distances in terms of the charges, and domain of stability. Generalisation to arbitrary (non-symmetric) cubic pre-potential.

Interacting non-bps black holes

Interacting non-bps black holes Interacting non-bps black holes Guillaume Bossard CPhT, Ecole Polytechnique Istanbul, August 2011 Outline Time-like Kaluza Klein reduction From solvable algebras to solvable systems Two-centre interacting

More information

Extremal black holes from nilpotent orbits

Extremal black holes from nilpotent orbits Extremal black holes from nilpotent orbits Guillaume Bossard AEI, Max-Planck-Institut für Gravitationsphysik Penn State September 2010 Outline Time-like dimensional reduction Characteristic equation Fake

More information

Black holes in N = 8 supergravity

Black holes in N = 8 supergravity Black holes in N = 8 supergravity Eighth Crete Regional Meeting in String Theory, Nafplion David Chow University of Crete 9 July 2015 Introduction 4-dimensional N = 8 (maximal) supergravity: Low energy

More information

Non-supersymmetric extremal multicenter black holes with superpotentials. Jan Perz Katholieke Universiteit Leuven

Non-supersymmetric extremal multicenter black holes with superpotentials. Jan Perz Katholieke Universiteit Leuven Non-supersymmetric extremal multicenter black holes with superpotentials Jan Perz Katholieke Universiteit Leuven Non-supersymmetric extremal multicenter black holes with superpotentials Jan Perz Katholieke

More information

Integrability in 2d gravity. Amitabh Virmani Institute of Physics, Bhubaneshwar, India

Integrability in 2d gravity. Amitabh Virmani Institute of Physics, Bhubaneshwar, India Integrability in 2d gravity Amitabh Virmani Institute of Physics, Bhubaneshwar, India 1 Pursuit of exact solutions Exact solution are precious. They are hard to obtain. Gravity in higher dimensions has

More information

arxiv: v1 [hep-th] 27 Oct 2015

arxiv: v1 [hep-th] 27 Oct 2015 PhT-T5/84 CPHT-RR04.05 ULB-TH/5-0 AdS : the NHEK generation arxiv:50.08055v hep-th] 7 Oct 05 osif Bena, Lucien Heurtier, and Andrea Puhm nstitut de Physique Théorique, CEA Saclay, 99 Gif sur Yvette, France

More information

Rotating Attractors - one entropy function to rule them all Kevin Goldstein, TIFR ISM06, Puri,

Rotating Attractors - one entropy function to rule them all Kevin Goldstein, TIFR ISM06, Puri, Rotating Attractors - one entropy function to rule them all Kevin Goldstein, TIFR ISM06, Puri, 17.12.06 talk based on: hep-th/0606244 (Astefanesei, K. G., Jena, Sen,Trivedi); hep-th/0507096 (K.G., Iizuka,

More information

References. S. Cacciatori and D. Klemm, :

References. S. Cacciatori and D. Klemm, : References S. Cacciatori and D. Klemm, 0911.4926: Considered arbitrary static BPS spacetimes: very general, non spherical horizons, complicated BPS equations! G. Dall Agata and A. Gnecchi, 1012.3756 Considered

More information

A Supergravity Dual for 4d SCFT s Universal Sector

A Supergravity Dual for 4d SCFT s Universal Sector SUPERFIELDS European Research Council Perugia June 25th, 2010 Adv. Grant no. 226455 A Supergravity Dual for 4d SCFT s Universal Sector Gianguido Dall Agata D. Cassani, G.D., A. Faedo, arxiv:1003.4283 +

More information

THE 4D/5D CONNECTION BLACK HOLES and HIGHER-DERIVATIVE COUPLINGS

THE 4D/5D CONNECTION BLACK HOLES and HIGHER-DERIVATIVE COUPLINGS T I U THE 4D/5D CONNECTION BLACK HOLES and HIGHER-DERIVATIVE COUPLINGS Mathematics and Applications of Branes in String and M-Theory Bernard de Wit Newton Institute, Cambridge Nikhef Amsterdam 14 March

More information

Generalized N = 1 orientifold compactifications

Generalized N = 1 orientifold compactifications Generalized N = 1 orientifold compactifications Thomas W. Grimm University of Wisconsin, Madison based on: [hep-th/0602241] Iman Benmachiche, TWG [hep-th/0507153] TWG Madison, Wisconsin, November 2006

More information

Coset CFTs, high spin sectors and non-abelian T-duality

Coset CFTs, high spin sectors and non-abelian T-duality Coset CFTs, high spin sectors and non-abelian T-duality Konstadinos Sfetsos Department of Engineering Sciences, University of Patras, GREECE GGI, Firenze, 30 September 2010 Work with A.P. Polychronakos

More information

From Strings to AdS4-Black holes

From Strings to AdS4-Black holes by Marco Rabbiosi 13 October 2015 Why quantum theory of Gravity? The four foundamental forces are described by Electromagnetic, weak and strong QFT (Standard Model) Gravity Dierential Geometry (General

More information

Masaki Shigemori. September 10, 2015 Int l Workshop on Strings, Black Holes and Quantum Info Tohoku Forum for Creativity, Tohoku U

Masaki Shigemori. September 10, 2015 Int l Workshop on Strings, Black Holes and Quantum Info Tohoku Forum for Creativity, Tohoku U Masaki Shigemori September 10, 2015 Int l Workshop on Strings, Black Holes and Quantum Info Tohoku Forum for Creativity, Tohoku U https://en.wikipedia.org/wiki/file:bh_lmc.png Plan BH microstates Microstate

More information

M-Theory and Matrix Models

M-Theory and Matrix Models Department of Mathematical Sciences, University of Durham October 31, 2011 1 Why M-Theory? Whats new in M-Theory The M5-Brane 2 Superstrings Outline Why M-Theory? Whats new in M-Theory The M5-Brane There

More information

WHY BLACK HOLES PHYSICS?

WHY BLACK HOLES PHYSICS? WHY BLACK HOLES PHYSICS? Nicolò Petri 13/10/2015 Nicolò Petri 13/10/2015 1 / 13 General motivations I Find a microscopic description of gravity, compatibile with the Standard Model (SM) and whose low-energy

More information

Lifshitz Geometries in String and M-Theory

Lifshitz Geometries in String and M-Theory Lifshitz Geometries in String and M-Theory Jerome Gauntlett Aristomenis Donos Aristomenis Donos, Nakwoo Kim, Oscar Varela (to appear) AdS/CMT The AdS/CFT correspondence is a powerful tool to study strongly

More information

AdS spacetimes and Kaluza-Klein consistency. Oscar Varela

AdS spacetimes and Kaluza-Klein consistency. Oscar Varela AdS spacetimes and Kaluza-Klein consistency Oscar Varela based on work with Jerome Gauntlett and Eoin Ó Colgáin hep-th/0611219, 0707.2315, 0711.xxxx CALTECH 16 November 2007 Outline 1 Consistent KK reductions

More information

BPS Black holes in AdS and a magnetically induced quantum critical point. A. Gnecchi

BPS Black holes in AdS and a magnetically induced quantum critical point. A. Gnecchi BPS Black holes in AdS and a magnetically induced quantum critical point A. Gnecchi June 20, 2017 ERICE ISSP Outline Motivations Supersymmetric Black Holes Thermodynamics and Phase Transition Conclusions

More information

Holography for Black Hole Microstates

Holography for Black Hole Microstates 1 / 24 Holography for Black Hole Microstates Stefano Giusto University of Padua Theoretical Frontiers in Black Holes and Cosmology, IIP, Natal, June 2015 2 / 24 Based on: 1110.2781, 1306.1745, 1311.5536,

More information

Microstate Geometries. Non-BPS Black Objects

Microstate Geometries. Non-BPS Black Objects Microstate Geometries and Non-BPS Black Objects Nick Warner Inaugural Workshop on Black Holes in Supergravity and M/Superstring Theory Penn State, September 10 th, 2010 Based upon work with I. Bena, N.

More information

Preprint typeset in JHEP style - HYPER VERSION. Special Geometry. Yang Zhang. Abstract: N = 2 Supergravity. based on hep-th/ , Boris PiolineA

Preprint typeset in JHEP style - HYPER VERSION. Special Geometry. Yang Zhang. Abstract: N = 2 Supergravity. based on hep-th/ , Boris PiolineA Preprint typeset in JHEP style - HYPER VERSION Special Geometry Yang Zhang Abstract: N = Supergravity based on hep-th/06077, Boris PiolineA Contents 1. N = Supergravity 1 1.1 Supersymmetric multiplets

More information

A Higher Derivative Extension of the Salam-Sezgin Model from Superconformal Methods

A Higher Derivative Extension of the Salam-Sezgin Model from Superconformal Methods A Higher Derivative Extension of the Salam-Sezgin Model from Superconformal Methods Frederik Coomans KU Leuven Workshop on Conformal Field Theories Beyond Two Dimensions 16/03/2012, Texas A&M Based on

More information

Lecture 9: RR-sector and D-branes

Lecture 9: RR-sector and D-branes Lecture 9: RR-sector and D-branes José D. Edelstein University of Santiago de Compostela STRING THEORY Santiago de Compostela, March 6, 2013 José D. Edelstein (USC) Lecture 9: RR-sector and D-branes 6-mar-2013

More information

Black hole near-horizon geometries

Black hole near-horizon geometries Black hole near-horizon geometries James Lucietti Durham University Imperial College, March 5, 2008 Point of this talk: To highlight that a precise concept of a black hole near-horizon geometry can be

More information

Charged Spinning Black Holes & Aspects Kerr/CFT Correspondence

Charged Spinning Black Holes & Aspects Kerr/CFT Correspondence Charged Spinning Black Holes & Aspects Kerr/CFT Correspondence I. Black Holes in Supergravities w/ Maximal Supersymmetry (Review) Asymptotically Minkowski (ungauged SG) & anti-desitter space-time (gauged

More information

Elements of Topological M-Theory

Elements of Topological M-Theory Elements of Topological M-Theory (with R. Dijkgraaf, S. Gukov, C. Vafa) Andrew Neitzke March 2005 Preface The topological string on a Calabi-Yau threefold X is (loosely speaking) an integrable spine of

More information

Introduction to Modern Quantum Field Theory

Introduction to Modern Quantum Field Theory Department of Mathematics University of Texas at Arlington Arlington, TX USA Febuary, 2016 Recall Einstein s famous equation, E 2 = (Mc 2 ) 2 + (c p) 2, where c is the speed of light, M is the classical

More information

Geometry and Physics. Amer Iqbal. March 4, 2010

Geometry and Physics. Amer Iqbal. March 4, 2010 March 4, 2010 Many uses of Mathematics in Physics The language of the physical world is mathematics. Quantitative understanding of the world around us requires the precise language of mathematics. Symmetries

More information

Asymptotic Expansion of N = 4 Dyon Degeneracy

Asymptotic Expansion of N = 4 Dyon Degeneracy Asymptotic Expansion of N = 4 Dyon Degeneracy Nabamita Banerjee Harish-Chandra Research Institute, Allahabad, India Collaborators: D. Jatkar, A.Sen References: (1) arxiv:0807.1314 [hep-th] (2) arxiv:0810.3472

More information

Half BPS solutions in type IIB and M-theory

Half BPS solutions in type IIB and M-theory Half BPS solutions in type IIB and M-theory Based on work done in collaboration with Eric D Hoker, John Estes, Darya Krym (UCLA) and Paul Sorba (Annecy) E.D'Hoker, J.Estes and M.G., Exact half-bps type

More information

Quantum Fields in Curved Spacetime

Quantum Fields in Curved Spacetime Quantum Fields in Curved Spacetime Lecture 3 Finn Larsen Michigan Center for Theoretical Physics Yerevan, August 22, 2016. Recap AdS 3 is an instructive application of quantum fields in curved space. The

More information

On Special Geometry of Generalized G Structures and Flux Compactifications. Hu Sen, USTC. Hangzhou-Zhengzhou, 2007

On Special Geometry of Generalized G Structures and Flux Compactifications. Hu Sen, USTC. Hangzhou-Zhengzhou, 2007 On Special Geometry of Generalized G Structures and Flux Compactifications Hu Sen, USTC Hangzhou-Zhengzhou, 2007 1 Dreams of A. Einstein: Unifications of interacting forces of nature 1920 s known forces:

More information

On time dependent black hole solutions

On time dependent black hole solutions On time dependent black hole solutions Jianwei Mei HUST w/ Wei Xu, in progress ICTS, 5 Sep. 014 Some known examples Vaidya (51 In-falling null dust Roberts (89 Free scalar Lu & Zhang (14 Minimally coupled

More information

1/2-maximal consistent truncations of EFT and the K3 / Heterotic duality

1/2-maximal consistent truncations of EFT and the K3 / Heterotic duality 1/2-maximal consistent truncations of EFT and the K3 / Heterotic duality Emanuel Malek Arnold Sommerfeld Centre for Theoretical Physics, Ludwig-Maximilian-University Munich. Geometry and Physics, Schloss

More information

Small Black Strings/Holes

Small Black Strings/Holes Small Black Strings/Holes Based on M. A., F. Ardalan, H. Ebrahim and S. Mukhopadhyay, arxiv:0712.4070, 1 Our aim is to study the symmetry of the near horizon geometry of the extremal black holes in N =

More information

General Warped Solution in 6d Supergravity. Christoph Lüdeling

General Warped Solution in 6d Supergravity. Christoph Lüdeling General Warped Solution in 6d Supergravity Christoph Lüdeling DESY Hamburg DPG-Frühjahrstagung Teilchenphysik H. M. Lee, CL, JHEP 01(2006) 062 [arxiv:hep-th/0510026] C. Lüdeling (DESY Hamburg) Warped 6d

More information

Singular Monopoles and Instantons on Curved Backgrounds

Singular Monopoles and Instantons on Curved Backgrounds Singular Monopoles and Instantons on Curved Backgrounds Sergey Cherkis (Berkeley, Stanford, TCD) C k U(n) U(n) U(n) Odense 2 November 2010 Outline: Classical Solutions & their Charges Relations between

More information

Katrin Becker, Texas A&M University. Strings 2016, YMSC,Tsinghua University

Katrin Becker, Texas A&M University. Strings 2016, YMSC,Tsinghua University Katrin Becker, Texas A&M University Strings 2016, YMSC,Tsinghua University ± Overview Overview ± II. What is the manifestly supersymmetric complete space-time action for an arbitrary string theory or M-theory

More information

8.821 String Theory Fall 2008

8.821 String Theory Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 8.821 String Theory Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 8.821 F2008 Lecture 04 Lecturer: McGreevy

More information

Extremal black holes and near-horizon geometry

Extremal black holes and near-horizon geometry Extremal black holes and near-horizon geometry James Lucietti University of Edinburgh EMPG Seminar, Edinburgh, March 9 1 Higher dimensional black holes: motivation & background 2 Extremal black holes &

More information

A rotating charged black hole solution in f (R) gravity

A rotating charged black hole solution in f (R) gravity PRAMANA c Indian Academy of Sciences Vol. 78, No. 5 journal of May 01 physics pp. 697 703 A rotating charged black hole solution in f R) gravity ALEXIS LARRAÑAGA National Astronomical Observatory, National

More information

Spinning strings and QED

Spinning strings and QED Spinning strings and QED James Edwards Oxford Particles and Fields Seminar January 2015 Based on arxiv:1409.4948 [hep-th] and arxiv:1410.3288 [hep-th] Outline Introduction Various relationships between

More information

arxiv: v1 [hep-th] 5 Nov 2018

arxiv: v1 [hep-th] 5 Nov 2018 Mass of Dyonic Black Holes and Entropy Super-Additivity MI-TH-187 Wei-Jian Geng 1, Blake Giant 2, H. Lü 3 and C.N. Pope 4,5 1 Department of Physics, Beijing Normal University, Beijing 100875, China 2 Department

More information

Applications of AdS/CFT correspondence to cold atom physics

Applications of AdS/CFT correspondence to cold atom physics Applications of AdS/CFT correspondence to cold atom physics Sergej Moroz in collaboration with Carlos Fuertes ITP, Heidelberg Outline Basics of AdS/CFT correspondence Schrödinger group and correlation

More information

Some simple exact solutions to d = 5 Einstein Gauss Bonnet Gravity

Some simple exact solutions to d = 5 Einstein Gauss Bonnet Gravity Some simple exact solutions to d = 5 Einstein Gauss Bonnet Gravity Eduardo Rodríguez Departamento de Matemática y Física Aplicadas Universidad Católica de la Santísima Concepción Concepción, Chile CosmoConce,

More information

arxiv:hep-th/ v2 22 Jul 2003

arxiv:hep-th/ v2 22 Jul 2003 June 24 2003 QMUL-PH-03-08 hep-th/0306235 arxiv:hep-th/0306235v2 22 Jul 2003 All supersymmetric solutions of minimal supergravity in six dimensions Jan B. Gutowski 1, Dario Martelli 2 and Harvey S. Reall

More information

2 Feynman rules, decay widths and cross sections

2 Feynman rules, decay widths and cross sections 2 Feynman rules, decay widths and cross sections 2.1 Feynman rules Normalization In non-relativistic quantum mechanics, wave functions of free particles are normalized so that there is one particle in

More information

THE 2D ANALOGUE OF THE REISSNER-NORDSTROM SOLUTION. S. Monni and M. Cadoni ABSTRACT

THE 2D ANALOGUE OF THE REISSNER-NORDSTROM SOLUTION. S. Monni and M. Cadoni ABSTRACT INFNCA-TH9618 September 1996 THE 2D ANALOGUE OF THE REISSNER-NORDSTROM SOLUTION S. Monni and M. Cadoni Dipartimento di Scienze Fisiche, Università di Cagliari, Via Ospedale 72, I-09100 Cagliari, Italy.

More information

Dirac Equation. Chapter 1

Dirac Equation. Chapter 1 Chapter Dirac Equation This course will be devoted principally to an exposition of the dynamics of Abelian and non-abelian gauge theories. These form the basis of the Standard Model, that is, the theory

More information

arxiv:hep-th/ v2 14 Oct 1997

arxiv:hep-th/ v2 14 Oct 1997 T-duality and HKT manifolds arxiv:hep-th/9709048v2 14 Oct 1997 A. Opfermann Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Silver Street, Cambridge, CB3 9EW, UK February

More information

Heterotic Torsional Backgrounds, from Supergravity to CFT

Heterotic Torsional Backgrounds, from Supergravity to CFT Heterotic Torsional Backgrounds, from Supergravity to CFT IAP, Université Pierre et Marie Curie Eurostrings@Madrid, June 2010 L.Carlevaro, D.I. and M. Petropoulos, arxiv:0812.3391 L.Carlevaro and D.I.,

More information

BPS Solutions in D=5 Dilaton-Axion Gravity

BPS Solutions in D=5 Dilaton-Axion Gravity BPS Solutions in D=5 Dilaton-Axion Gravity arxiv:hep-th/9712200v1 21 Dec 1997 Oleg Kechkin 1 and Maria Yurova 2 Institute of Nuclear Physics, Moscow State University, Vorob jovy Gory, Moscow 119899, RUSSIA.

More information

Cosmological constant is a conserved charge

Cosmological constant is a conserved charge Cosmological constant is a conserved Kamal Hajian Institute for Research in Fundamental Sciences (IPM) In collaboration with Dmitry Chernyavsky (Tomsk Polytechnic U.) arxiv:1710.07904, to appear in Classical

More information

Einstein-Maxwell-Chern-Simons Black Holes

Einstein-Maxwell-Chern-Simons Black Holes .. Einstein-Maxwell-Chern-Simons Black Holes Jutta Kunz Institute of Physics CvO University Oldenburg 3rd Karl Schwarzschild Meeting Gravity and the Gauge/Gravity Correspondence Frankfurt, July 2017 Jutta

More information

My talk Two different points of view:

My talk Two different points of view: Shin Nakamura (Dept. Phys. Kyoto Univ.) Reference: S.N., Hirosi Ooguri, Chang-Soon Park, arxiv:09.0679[hep-th] (to appear in Phys. Rev. D) ( k B = h= c=) My talk Two different points of view: rom the viewpoint

More information

Complete integrability of geodesic motion in Sasaki-Einstein toric spaces

Complete integrability of geodesic motion in Sasaki-Einstein toric spaces Complete integrability of geodesic motion in Sasaki-Einstein toric spaces Mihai Visinescu Department of Theoretical Physics National Institute for Physics and Nuclear Engineering Horia Hulubei Bucharest,

More information

ELEMENTARY DEFORMATIONS AND THE HYPERKAEHLER / QUATERNIONIC KAEHLER CORRESPONDENCE

ELEMENTARY DEFORMATIONS AND THE HYPERKAEHLER / QUATERNIONIC KAEHLER CORRESPONDENCE ELEMENTARY DEFORMATIONS AND THE HYPERKAEHLER / QUATERNIONIC KAEHLER CORRESPONDENCE Oscar Macia (U. Valencia) (in collaboration with Prof. A.F. Swann) Aarhus, DK March 2, 2017 1 Planning Introduction and

More information

Matrix Norms, BPS Bounds and Marginal Stability in N = 8 Supergravity

Matrix Norms, BPS Bounds and Marginal Stability in N = 8 Supergravity CERN-PH-TH/2010-204 SU-ITP-10/27 Matrix Norms, BPS Bounds and Marginal Stability in N = 8 Supergravity arxiv:1009.3251v3 [hep-th] 1 Dec 2010 Sergio Ferrara a,b,c and Alessio Marrani d a Physics Department,

More information

Lecture: Lorentz Invariant Dynamics

Lecture: Lorentz Invariant Dynamics Chapter 5 Lecture: Lorentz Invariant Dynamics In the preceding chapter we introduced the Minkowski metric and covariance with respect to Lorentz transformations between inertial systems. This was shown

More information

Exact solutions in supergravity

Exact solutions in supergravity Exact solutions in supergravity James T. Liu 25 July 2005 Lecture 1: Introduction and overview of supergravity Lecture 2: Conditions for unbroken supersymmetry Lecture 3: BPS black holes and branes Lecture

More information

BPS Black Holes Effective Actions and the Topological String ISM08 Indian Strings Meeting Pondicherry, 6-13 December 2008

BPS Black Holes Effective Actions and the Topological String ISM08 Indian Strings Meeting Pondicherry, 6-13 December 2008 BPS Black Holes Effective Actions and the Topological String ISM08 Indian Strings Meeting Pondicherry, 6-13 December 2008 Bernard de Wit Utrecht University 1: N=2 BPS black holes effective action attractor

More information

Holographic Entanglement Entropy for Surface Operators and Defects

Holographic Entanglement Entropy for Surface Operators and Defects Holographic Entanglement Entropy for Surface Operators and Defects Michael Gutperle UCLA) UCSB, January 14th 016 Based on arxiv:1407.569, 1506.0005, 151.04953 with Simon Gentle and Chrysostomos Marasinou

More information

Dilatonic Black Saturn

Dilatonic Black Saturn Dilatonic Black Saturn Saskia Grunau Carl von Ossietzky Universität Oldenburg 7.5.2014 Introduction In higher dimensions black holes can have various forms: Black rings Black di-rings Black saturns...

More information

Cold atoms and AdS/CFT

Cold atoms and AdS/CFT Cold atoms and AdS/CFT D. T. Son Institute for Nuclear Theory, University of Washington Cold atoms and AdS/CFT p.1/20 What is common for strong coupled cold atoms and QGP? Cold atoms and AdS/CFT p.2/20

More information

8.821 F2008 Lecture 05

8.821 F2008 Lecture 05 8.821 F2008 Lecture 05 Lecturer: McGreevy Scribe: Evangelos Sfakianakis September 22, 2008 Today 1. Finish hindsight derivation 2. What holds up the throat? 3. Initial checks (counting of states) 4. next

More information

Rotating Black Holes in Higher Dimensions

Rotating Black Holes in Higher Dimensions Rotating Black Holes in Higher Dimensions Jutta Kunz Institute of Physics CvO University Oldenburg Models of Gravity in Higher Dimensions Bremen, 25.-29. 8. 2008 Jutta Kunz (Universität Oldenburg) Rotating

More information

THE MASTER SPACE OF N=1 GAUGE THEORIES

THE MASTER SPACE OF N=1 GAUGE THEORIES THE MASTER SPACE OF N=1 GAUGE THEORIES Alberto Zaffaroni CAQCD 2008 Butti, Forcella, Zaffaroni hepth/0611229 Forcella, Hanany, Zaffaroni hepth/0701236 Butti,Forcella,Hanany,Vegh, Zaffaroni, arxiv 0705.2771

More information

The Holography of F -maximization

The Holography of F -maximization SU-ITP-13/01 MIT-CTP-4443 The Holography of F -maximization arxiv:1302.7310v2 [hep-th] 31 Jan 2014 Daniel Z. Freedman 1,2,3 and Silviu S. Pufu 1,4 1 Center for Theoretical Physics, Massachusetts Institute

More information

Isotropic harmonic oscillator

Isotropic harmonic oscillator Isotropic harmonic oscillator 1 Isotropic harmonic oscillator The hamiltonian of the isotropic harmonic oscillator is H = h m + 1 mω r (1) = [ h d m dρ + 1 ] m ω ρ, () ρ=x,y,z a sum of three one-dimensional

More information

t Hooft loop path integral in N = 2 gauge theories

t Hooft loop path integral in N = 2 gauge theories t Hooft loop path integral in N = 2 gauge theories Jaume Gomis (based on work with Takuya Okuda and Vasily Pestun) Perimeter Institute December 17, 2010 Jaume Gomis (Perimeter Institute) t Hooft loop path

More information

Topological reduction of supersymmetric gauge theories and S-duality

Topological reduction of supersymmetric gauge theories and S-duality Topological reduction of supersymmetric gauge theories and S-duality Anton Kapustin California Institute of Technology Topological reduction of supersymmetric gauge theories and S-duality p. 1/2 Outline

More information

Microstates of AdS black holes and supersymmetric localization

Microstates of AdS black holes and supersymmetric localization Microstates of AdS black holes and supersymmetric localization Seyed Morteza Hosseini Università di Milano-Bicocca IPM, Tehran, May 8-11, 2017 Recent Trends in String Theory and Related Topics in collaboration

More information

arxiv:hep-th/ v2 9 Feb 1999

arxiv:hep-th/ v2 9 Feb 1999 arxiv:hep-th/9812160v2 9 Feb 1999 BPS BLACK HOLES IN SUPERGRAVITY Duality Groups, p Branes, Central Charges and the Entropy by RICCARDO D AURIA and PIETRO FRE February 1, 2008 2 Contents 1 INTRODUCTION

More information

Integrability of five dimensional gravity theories and inverse scattering construction of dipole black rings

Integrability of five dimensional gravity theories and inverse scattering construction of dipole black rings Integrability of five dimensional gravity theories and inverse scattering construction of dipole black rings Jorge V. Rocha CENTRA, Instituto Superior Técnico based on: arxiv:0912.3199 with P. Figueras,

More information

Quantization of gravity, giants and sound waves p.1/12

Quantization of gravity, giants and sound waves p.1/12 Quantization of gravity, giants and sound waves Gautam Mandal ISM06 December 14, 2006 Quantization of gravity, giants and sound waves p.1/12 Based on... GM 0502104 A.Dhar, GM, N.Suryanarayana 0509164 A.Dhar,

More information

Cold atoms and AdS/CFT

Cold atoms and AdS/CFT Cold atoms and AdS/CFT D. T. Son Institute for Nuclear Theory, University of Washington Cold atoms and AdS/CFT p.1/27 History/motivation BCS/BEC crossover Unitarity regime Schrödinger symmetry Plan Geometric

More information

Contact interactions in string theory and a reformulation of QED

Contact interactions in string theory and a reformulation of QED Contact interactions in string theory and a reformulation of QED James Edwards QFT Seminar November 2014 Based on arxiv:1409.4948 [hep-th] and arxiv:1410.3288 [hep-th] Outline Introduction Worldline formalism

More information

Chern-Simons Theory and Its Applications. The 10 th Summer Institute for Theoretical Physics Ki-Myeong Lee

Chern-Simons Theory and Its Applications. The 10 th Summer Institute for Theoretical Physics Ki-Myeong Lee Chern-Simons Theory and Its Applications The 10 th Summer Institute for Theoretical Physics Ki-Myeong Lee Maxwell Theory Maxwell Theory: Gauge Transformation and Invariance Gauss Law Charge Degrees of

More information

Solitons in the SU(3) Faddeev-Niemi Model

Solitons in the SU(3) Faddeev-Niemi Model Solitons in the SU(3) Faddeev-Niemi Model Yuki Amari Tokyo University of Science amari.yuki.ph@gmail.com Based on arxiv:1805,10008 with PRD 97, 065012 (2018) In collaboration with Nobuyuki Sawado (TUS)

More information

Cosmic acceleration from fuzzball evolution. Great Lakes 2012

Cosmic acceleration from fuzzball evolution. Great Lakes 2012 Cosmic acceleration from fuzzball evolution Great Lakes 2012 Outline (A) Black hole information paradox tells us something new about quantum gravity (B) Early Universe had a high density, so these new

More information

Simon Salamon. Turin, 24 April 2004

Simon Salamon. Turin, 24 April 2004 G 2 METRICS AND M THEORY Simon Salamon Turin, 24 April 2004 I Weak holonomy and supergravity II S 1 actions and triality in six dimensions III G 2 and SU(3) structures from each other 1 PART I The exceptional

More information

Brane Backreaction: antidote to no-gos

Brane Backreaction: antidote to no-gos Brane Backreaction: antidote to no-gos Getting de Sitter (and flat) space unexpectedly w Leo van Nierop Outline New tool: high codim back-reaction RS models on steroids Outline New tool: high codim back-reaction

More information

Ten and eleven dimensional perspectives on N=2 black holes

Ten and eleven dimensional perspectives on N=2 black holes BCCUNY-HEP /06-01 hep-th/0603141 arxiv:hep-th/0603141v3 23 Aug 2006 Ten and eleven dimensional perspectives on N=2 black holes Ansar Fayyazuddin February 7, 2008 Department of Natural Sciences, Baruch

More information

Non-associative Deformations of Geometry in Double Field Theory

Non-associative Deformations of Geometry in Double Field Theory Non-associative Deformations of Geometry in Double Field Theory Michael Fuchs Workshop Frontiers in String Phenomenology based on JHEP 04(2014)141 or arxiv:1312.0719 by R. Blumenhagen, MF, F. Haßler, D.

More information

Rotating Charged Black Holes in D>4

Rotating Charged Black Holes in D>4 Rotating Charged Black Holes in D>4 Marco Caldarelli LPT Orsay & CPhT Ecole Polytechnique based on arxiv:1012.4517 with R. Emparan and B. Van Pol Orsay, 19/01/2010 Summary The many scales of higher D black

More information

Classical field theory 2012 (NS-364B) Feynman propagator

Classical field theory 2012 (NS-364B) Feynman propagator Classical field theory 212 (NS-364B Feynman propagator 1. Introduction States in quantum mechanics in Schrödinger picture evolve as ( Ψt = Û(t,t Ψt, Û(t,t = T exp ı t dt Ĥ(t, (1 t where Û(t,t denotes the

More information

What happens at the horizon of an extreme black hole?

What happens at the horizon of an extreme black hole? What happens at the horizon of an extreme black hole? Harvey Reall DAMTP, Cambridge University Lucietti and HSR arxiv:1208.1437 Lucietti, Murata, HSR and Tanahashi arxiv:1212.2557 Murata, HSR and Tanahashi,

More information

Flux Compactification of Type IIB Supergravity

Flux Compactification of Type IIB Supergravity Flux Compactification of Type IIB Supergravity based Klaus Behrndt, LMU Munich Based work done with: M. Cvetic and P. Gao 1) Introduction 2) Fluxes in type IIA supergravity 4) Fluxes in type IIB supergravity

More information

Dualities and Topological Strings

Dualities and Topological Strings Dualities and Topological Strings Strings 2006, Beijing - RD, C. Vafa, E.Verlinde, hep-th/0602087 - work in progress w/ C. Vafa & C. Beasley, L. Hollands Robbert Dijkgraaf University of Amsterdam Topological

More information

Classification theorem for the static and asymptotically flat Einstein-Maxwell-dilaton spacetimes possessing a photon sphere

Classification theorem for the static and asymptotically flat Einstein-Maxwell-dilaton spacetimes possessing a photon sphere Classification theorem for the static and asymptotically flat Einstein-Maxwell-dilaton spacetimes possessing a photon sphere Boian Lazov and Stoytcho Yazadjiev Varna, 2017 Outline 1 Motivation 2 Preliminaries

More information

Electromagnetic. G. A. Krafft Jefferson Lab Jefferson Lab Professor of Physics Old Dominion University TAADI Electromagnetic Theory

Electromagnetic. G. A. Krafft Jefferson Lab Jefferson Lab Professor of Physics Old Dominion University TAADI Electromagnetic Theory TAAD1 Electromagnetic Theory G. A. Krafft Jefferson Lab Jefferson Lab Professor of Physics Old Dominion University 8-31-12 Classical Electrodynamics A main physics discovery of the last half of the 2 th

More information

Instantons in string theory via F-theory

Instantons in string theory via F-theory Instantons in string theory via F-theory Andrés Collinucci ASC, LMU, Munich Padova, May 12, 2010 arxiv:1002.1894 in collaboration with R. Blumenhagen and B. Jurke Outline 1. Intro: From string theory to

More information

Microstates for non-extremal black holes

Microstates for non-extremal black holes Microstates for non-extremal black holes Bert Vercnocke CEA Saclay ArXiv: 1109.5180 + 1208.3468 with Iosif Bena and Andrea Puhm (Saclay) 1110.5641 + in progress with Borun Chowdhury (Amsterdam) Corfu,

More information

Black Hole Entropy and Gauge/Gravity Duality

Black Hole Entropy and Gauge/Gravity Duality Tatsuma Nishioka (Kyoto,IPMU) based on PRD 77:064005,2008 with T. Azeyanagi and T. Takayanagi JHEP 0904:019,2009 with T. Hartman, K. Murata and A. Strominger JHEP 0905:077,2009 with G. Compere and K. Murata

More information

Black holes with AdS asymptotics and holographic RG flows

Black holes with AdS asymptotics and holographic RG flows Black holes with AdS asymptotics and holographic RG flows Anastasia Golubtsova 1 based on work with Irina Aref eva (MI RAS, Moscow) and Giuseppe Policastro (ENS, Paris) arxiv:1803.06764 (1) BLTP JINR,

More information

Dimensional reduction

Dimensional reduction Chapter 3 Dimensional reduction In this chapter we will explain how to obtain massive deformations, i.e. scalar potentials and cosmological constants from dimensional reduction. We start by reviewing some

More information

The boundary state from open string fields. Yuji Okawa University of Tokyo, Komaba. March 9, 2009 at Nagoya

The boundary state from open string fields. Yuji Okawa University of Tokyo, Komaba. March 9, 2009 at Nagoya The boundary state from open string fields Yuji Okawa University of Tokyo, Komaba March 9, 2009 at Nagoya Based on arxiv:0810.1737 in collaboration with Kiermaier and Zwiebach (MIT) 1 1. Introduction Quantum

More information

Extended Space for. Falk Hassler. bases on. arxiv: and in collaboration with. Pascal du Bosque and Dieter Lüst

Extended Space for. Falk Hassler. bases on. arxiv: and in collaboration with. Pascal du Bosque and Dieter Lüst Extended Space for (half) Maximally Supersymmetric Theories Falk Hassler bases on arxiv: 1611.07978 and 1705.09304 in collaboration with Pascal du Bosque and Dieter Lüst University of North Carolina at

More information

Jose Luis Blázquez Salcedo

Jose Luis Blázquez Salcedo Physical Review Letters 112 (2014) 011101 Jose Luis Blázquez Salcedo In collaboration with Jutta Kunz, Eugen Radu and Francisco Navarro Lérida 1. Introduction: Ansatz and general properties 2. Near-horizon

More information