Dilatonic Black Saturn

Size: px
Start display at page:

Download "Dilatonic Black Saturn"

Transcription

1 Dilatonic Black Saturn Saskia Grunau Carl von Ossietzky Universität Oldenburg

2 Introduction In higher dimensions black holes can have various forms: Black rings Black di-rings Black saturns... Picture: Max Planck Institute for Gravitational Physics

3 Outline 1. The Black Saturn Solution 2. Adding the Dilaton 3. Analysis of the Dilatonic Black Saturn 4. Conclusion

4 Outline The Black Saturn Solution 1. The Black Saturn Solution 2. Adding the Dilaton 3. Analysis of the Dilatonic Black Saturn 4. Conclusion

5 The black saturn The Black Saturn Solution Metric of a black Saturn: ds 2 = H [ ( y ωψ ) ] 2 dt + + q dψ H x H y + H x {k 2 P ( dρ 2 + dz 2) + G y H y dψ 2 + G x H x dφ 2 } Stationary axisymmetric metric in canonical coordinates: ds 2 = G ab dx a dx b + e 2ν( dρ 2 + dz 2) The metric functions depend onρand z only: G ab = G ab (ρ, z) andν=ν(ρ, z). [ H. Elvang and P. Figueras, JHEP 0705, 050 (2007) ]

6 The Black Saturn Solution Metric functions of the black saturn Metric functions: H x = F [M c 2 1 M 1 + c 2 2 M 2 + c 1 c 2 M 3 + c 2 1 c2 2 M 4 [ ] H y = F 1µ 3 µ 1 M 0 c 2 1 µ 4 µ M ρ 2 1 c µ 1 µ M µ 1 µ ρ 2 + c 1 c 2 M 3 + c 2 1 c2 2 M µ 2 4 µ 1 c 1 R 1 M 0 M 1 c 2 R 2 ω ψ = 2 P = (µ 3 µ 4 +ρ 2 ) 2 (µ 1 µ 5 +ρ 2 )(µ 4 µ 5 +ρ 2 ) ], G x = ρ2 µ 4 µ 3 µ 5, M 0 M 2 + c 2 1 c 2 R 2 M 1 M 4 c 1 c 2 2 R 1 M 2 M 4, F G x F =µ 1 µ 5 (µ 1 µ 3 ) 2 (µ 2 µ 4 ) 2 (ρ 2 +µ 1 µ 3 )(ρ 2 +µ 2 µ 3 )(ρ 2 +µ 1 µ 4 )(ρ 2 +µ 2 µ 4 ) (ρ 2 +µ 2 µ 5 )(ρ 2 +µ 3 µ 5 )(ρ 2 +µ 2 1 )(ρ2 +µ 2 2 )(ρ2 +µ 2 3 )(ρ2 +µ 2 4 )(ρ2 +µ 2 5 ) Whereµ i = ρ 2 + (z a i ) 2 (z a i ), R i = ρ 2 + (z a i ) 2 and, G y = µ 3µ 5 µ 4, M 0 =µ 2 µ 2 5 (µ 1 µ 3 ) 2 (µ 2 µ 4 ) 2 (ρ 2 +µ 1 µ 2 ) 2 (ρ 2 +µ 1 µ 4 ) 2 (ρ 2 +µ 2 µ 3 ) 2, M 1 =µ 2 1 µ 2µ 3 µ 4 µ 5 ρ 2 (µ 1 µ 2 ) 2 (µ 2 µ 4 ) 2 (µ 1 µ 5 ) 2 (ρ 2 +µ 2 µ 3 ) 2, M 2 =µ 2 µ 3 µ 4 µ 5 ρ 2 (µ 1 µ 2 ) 2 (µ 1 µ 3 ) 2 (ρ 2 +µ 1 µ 4 ) 2 (ρ 2 +µ 2 µ 5 ) 2, M 3 = 2µ 1 µ 2 µ 3 µ 4 µ 5 (µ 1 µ 3 )(µ 1 µ 5 )(µ 2 µ 4 )(ρ 2 +µ 2 1 )(ρ2 +µ 2 2 )(ρ2 +µ 1 µ 4 )(ρ 2 +µ 2 µ 3 )(ρ 2 +µ 2 µ 5 ), M 4 =µ 2 1 µ 2µ 2 3 µ2 4 (µ 1 µ 5 ) 2 (ρ 2 +µ 1 µ 2 ) 2 (ρ 2 +µ 2 µ 5 ) 2.

7 The Black Saturn Solution Rod structure z-axis:ρ = 0 The z-axis is divided into intervalls, called rods. On the rods we have dim(ker[g(ρ = 0, z)]) = 1 Kernel: kerg ={ v G v = 0} t (1, 0, Ω BR ψ ) (1, 0, Ω BH ψ ) φ ψ (0, 1, 0) (0, 1, 0) 0 κ 3 κ 2 κ 1 1 (0, 0, 1) [ H. Elvang and P. Figueras, JHEP 0705, 050 (2007) ]

8 Outline Adding the Dilaton 1. The Black Saturn Solution 2. Adding the Dilaton 3. Analysis of the Dilatonic Black Saturn 4. Conclusion

9 The dilaton Adding the Dilaton Gravitational scalar field Φ Coupling: interaction of gravitational and electromagnetic field Action in 5-D EMD-theory: S = 1 d 5 x g (R 12 16πG Φ,µΦ,µ 14 ) e 2hΦ F µν F µν Kaluza-Klein value of the dilaton coupling constant: h = 2 6

10 Adding the Dilaton Construction of a Kaluza-Klein black hole 1. Add an extra coordinate U to any (D-dimensional) black hole metric: 2. Perfom a boost in the t-u plane: ds 2 D+1 = ds2 D + du t t cosh(β) + U sinh(β) U t sinh(β) + U cosh(β) 3. Compare the boosted metric to the Kaluza-Klein parametrization of a (D + 1)-dimensional metric ds 2 D+1 = e2ιφ g µν dx µ dx ν + e 2(D 2)ιΦ (du + A µ dx µ ) 2 and read off the metric g µν of the new D-dimensional Kaluza-Klein black hole, the vector potential A µ and the scalar potential Φ.

11 Adding the Dilaton Kaluza-Klein black hole in 5 dimensions Let ds 2 5 be the metric of a 5-dimensional rotating black hole: ds 2 5 = g ttdt 2 + 2g tψ dtdψ + g ψψ dψ 2 + g φφ dφ 2 + g ρρ dρ 2 + g zz dz 2. Then the corresponding Kaluza-Klein black hole has the metric dskk 2 = 1 V 2/3 g ttdt cosh(β) V 2/3 g tψdtdψ sinh(β)2 V 2/3 gtψdψ V 1/3 g ψψ dψ 2 + V 1/3 g φφ dφ 2 + V 1/3 g ρρ dρ 2 + V 1/3 g zz dz 2, where V = cosh(β) 2 + g tt sinh(β) 2.

12 Outline Analysis of the Dilatonic Black Saturn 1. The Black Saturn Solution 2. Adding the Dilaton 3. Analysis of the Dilatonic Black Saturn 4. Conclusion

13 Analysis of the Dilatonic Black Saturn The dilatonic black saturn The metric: ds 2 = 1 H [ y V 2/3 dt + cosh(β) 2( ω ) ] ψ 2 + q dψ H x H y + V 1/3 H x {k 2 P where V = cosh(β) 2 sinh(β) 2 H y H x. ( dρ 2 + dz 2) + G y H y dψ 2 + G x H x dφ 2 }

14 Analysis of the Dilatonic Black Saturn Saturn in equilibrium The black saturn consists of 2 black objects: a sphere and a ring. Conical singularity between the two objects The sphere and the ring can rotate differently, can have different Hawking temperatures,... Conditions for equilibrium 1. Mechanical equilibrium No conical singulariy:δ = 0 2. Thermodynamical equilibrium Same angular momentum: Ω BH ψ = ΩBR ψ Same Hawking temperature: T BH H Same electrostatic potential: Ψ BH el = T BR H = Ψ BR el

15 Analysis of the Dilatonic Black Saturn Parameter space: Concial singularity The dilaton parameter β has no influence on the conical singularity. Coloured area: thermodynamical equilibrium δ< 0: conical deficit δ> 0: conical excess Curved black line: mechanical equilibrium

16 Analysis of the Dilatonic Black Saturn Mechanical moment of inertia β has no influence on the mechanical moment of inertia. 1 I = Ω J M,δ I< 0: thin solutions I> 0: fat solutions : regular solutions (δ = 0)

17 Analysis of the Dilatonic Black Saturn Physical quantities of the dilatonic black saturn Physical quantities of the dilatonic solution in relation to the physical quantities without the dilaton (β = 0). Area of the horizon: A β = cosh(β) A 0 Hawking temperature: T β = Mass: M β = ( 2 3 sinh(β)2 + 1) M 0 1 cosh(β) T 0 Angular momentum: J β = cosh(β) J 0 Charge: Q = 2 3 sinh(β) cosh(β) M 0 Electrostatic potential: Ψ el = sinh(β) cosh(β)

18 Phase diagram Analysis of the Dilatonic Black Saturn Phase diagram of the dilatonic black saturn in equilibrium

19 Phase diagram Analysis of the Dilatonic Black Saturn j q-diagram a H q-diagrams

20 Analysis of the Dilatonic Black Saturn Temperature Temperature of the dilatonic black saturn in equilibrium S. Grunau (Uni Oldenburg) Dilatonic Black Saturn

21 Analysis of the Dilatonic Black Saturn The first law of thermodynamics First law of thermodynamics for vacuum, stationary, asymptotically flat spacetimes with conical singularities: dm = T H ds + ΩdJ + Ψ el dq AdP P: Pressure by conical singularity A T H : Area spanned by the conical singularity [C. Herdeiro, B. Kleihaus, J. Kunz and E. Radu, Phys. Rev. D. 81, (2010)] Analysis of thermodynamical stability: S Specific heat at constant angular momentum C J = T H T H Isothermal moment of inertiaǫ = J Ω TH,A J,A

22 Analysis of the Dilatonic Black Saturn Specific heat at constant J (fixed Q ensemble) S C J = T H T H J,A,Q : regular solutions β = 0 β = 1 β = 5

23 Analysis of the Dilatonic Black Saturn Isothermal moment of inertia (fixed Q ensemble) ǫ = J Ω TH,A,Q : regular solutions β = 0 β = 0.5 β = 1 It is not possible that C J andǫare positive at the same time. thermodynamically instable

24 Analysis of the Dilatonic Black Saturn Fixed Φ el ensemble specific heat at constant J isothermal moment of inertia Hereβ has no influence on C J andǫ. It is not possible that C J andǫare positive at the same time.

25 Outline Conclusion 1. The Black Saturn Solution 2. Adding the Dilaton 3. Analysis of the Dilatonic Black Saturn 4. Conclusion

26 Conclusion Summary Dilatonic black saturn: 1. Start with neutral solution and add new dimension 2. Boost with respect to time and the new dimension 3. Obtain dilatonic solution by dimensional reduction Analysis: The dilatonic black saturn is not thermodynamically stable.

Black Holes in Four and More Dimensions

Black Holes in Four and More Dimensions Black Holes in Four and More Dimensions Jutta Kunz Institute of Physics CvO University Oldenburg International Workshop on In-Medium Effects in Hadronic and Partonic Systems Obergurgl, Austria, February

More information

Rotating Black Holes in Higher Dimensions

Rotating Black Holes in Higher Dimensions Rotating Black Holes in Higher Dimensions Jutta Kunz Institute of Physics CvO University Oldenburg Models of Gravity in Higher Dimensions Bremen, 25.-29. 8. 2008 Jutta Kunz (Universität Oldenburg) Rotating

More information

ON THE BLACK HOLE SPECIES

ON THE BLACK HOLE SPECIES Paris ON THE BLACK HOLE SPECIES (by means of natural selection) Maria J. Rodriguez 16.07.09 Dumitru Astefanesei and MJR ( to appear) Marco Calderelli, Roberto Emparan and MJR ( 0806.1954 [hep-th] ) Henriette

More information

The Role of Black Holes in the AdS/CFT Correspondence

The Role of Black Holes in the AdS/CFT Correspondence The Role of Black Holes in the AdS/CFT Correspondence Mario Flory 23.07.2013 Mario Flory BHs in AdS/CFT 1 / 30 GR and BHs Part I: General Relativity and Black Holes Einstein Field Equations Lightcones

More information

Einstein-Maxwell-Chern-Simons Black Holes

Einstein-Maxwell-Chern-Simons Black Holes .. Einstein-Maxwell-Chern-Simons Black Holes Jutta Kunz Institute of Physics CvO University Oldenburg 3rd Karl Schwarzschild Meeting Gravity and the Gauge/Gravity Correspondence Frankfurt, July 2017 Jutta

More information

Kerr black hole and rotating wormhole

Kerr black hole and rotating wormhole Kerr Fest (Christchurch, August 26-28, 2004) Kerr black hole and rotating wormhole Sung-Won Kim(Ewha Womans Univ.) August 27, 2004 INTRODUCTION STATIC WORMHOLE ROTATING WORMHOLE KERR METRIC SUMMARY AND

More information

Rotating Charged Black Holes in D>4

Rotating Charged Black Holes in D>4 Rotating Charged Black Holes in D>4 Marco Caldarelli LPT Orsay & CPhT Ecole Polytechnique based on arxiv:1012.4517 with R. Emparan and B. Van Pol Orsay, 19/01/2010 Summary The many scales of higher D black

More information

WHY BLACK HOLES PHYSICS?

WHY BLACK HOLES PHYSICS? WHY BLACK HOLES PHYSICS? Nicolò Petri 13/10/2015 Nicolò Petri 13/10/2015 1 / 13 General motivations I Find a microscopic description of gravity, compatibile with the Standard Model (SM) and whose low-energy

More information

κ = f (r 0 ) k µ µ k ν = κk ν (5)

κ = f (r 0 ) k µ µ k ν = κk ν (5) 1. Horizon regularity and surface gravity Consider a static, spherically symmetric metric of the form where f(r) vanishes at r = r 0 linearly, and g(r 0 ) 0. Show that near r = r 0 the metric is approximately

More information

Black holes in the 1/D expansion

Black holes in the 1/D expansion Black holes in the 1/D expansion Roberto Emparan ICREA & UBarcelona w/ Tetsuya Shiromizu, Ryotaku Suzuki, Kentaro Tanabe, Takahiro Tanaka R μν = 0 R μν = Λg μν Black holes are very important objects in

More information

The abundant richness of Einstein-Yang-Mills

The abundant richness of Einstein-Yang-Mills The abundant richness of Einstein-Yang-Mills Elizabeth Winstanley Thanks to my collaborators: Jason Baxter, Marc Helbling, Eugen Radu and Olivier Sarbach Astro-Particle Theory and Cosmology Group, Department

More information

Holography for 3D Einstein gravity. with a conformal scalar field

Holography for 3D Einstein gravity. with a conformal scalar field Holography for 3D Einstein gravity with a conformal scalar field Farhang Loran Department of Physics, Isfahan University of Technology, Isfahan 84156-83111, Iran. Abstract: We review AdS 3 /CFT 2 correspondence

More information

Classification theorem for the static and asymptotically flat Einstein-Maxwell-dilaton spacetimes possessing a photon sphere

Classification theorem for the static and asymptotically flat Einstein-Maxwell-dilaton spacetimes possessing a photon sphere Classification theorem for the static and asymptotically flat Einstein-Maxwell-dilaton spacetimes possessing a photon sphere Boian Lazov and Stoytcho Yazadjiev Varna, 2017 Outline 1 Motivation 2 Preliminaries

More information

ACOUSTIC BLACK HOLES. MASSIMILIANO RINALDI Université de Genève

ACOUSTIC BLACK HOLES. MASSIMILIANO RINALDI Université de Genève ACOUSTIC BLACK HOLES MASSIMILIANO RINALDI Université de Genève OUTLINE Prelude: GR vs QM Hawking Radiation: a primer Acoustic Black Holes Hawking Radiation in Acoustic Black Holes Acoustic Black Holes

More information

Black holes, Holography and Thermodynamics of Gauge Theories

Black holes, Holography and Thermodynamics of Gauge Theories Black holes, Holography and Thermodynamics of Gauge Theories N. Tetradis University of Athens Duality between a five-dimensional AdS-Schwarzschild geometry and a four-dimensional thermalized, strongly

More information

arxiv: v1 [gr-qc] 19 Jun 2009

arxiv: v1 [gr-qc] 19 Jun 2009 SURFACE DENSITIES IN GENERAL RELATIVITY arxiv:0906.3690v1 [gr-qc] 19 Jun 2009 L. FERNÁNDEZ-JAMBRINA and F. J. CHINEA Departamento de Física Teórica II, Facultad de Ciencias Físicas Ciudad Universitaria,

More information

TOPIC V BLACK HOLES IN STRING THEORY

TOPIC V BLACK HOLES IN STRING THEORY TOPIC V BLACK HOLES IN STRING THEORY Lecture notes Making black holes How should we make a black hole in string theory? A black hole forms when a large amount of mass is collected together. In classical

More information

Black hole instabilities and violation of the weak cosmic censorship in higher dimensions

Black hole instabilities and violation of the weak cosmic censorship in higher dimensions Black hole instabilities and violation of the weak cosmic censorship in higher dimensions Pau Figueras School of Mathematical Sciences, Queen Mary University of London w/ Markus Kunesch, Luis Lehner and

More information

Geometric inequalities for black holes

Geometric inequalities for black holes Geometric inequalities for black holes Sergio Dain FaMAF-Universidad Nacional de Córdoba, CONICET, Argentina. 3 August, 2012 Einstein equations (vacuum) The spacetime is a four dimensional manifold M with

More information

Neutron Star) Lecture 22

Neutron Star) Lecture 22 Neutron Star) Lecture 22 1 Neutron star A neutron star is a stellar object held together by gravity but kept from collapsing by electromagnetic (atomic) and strong (nuclear including Pauli exclusion) forces.

More information

On Black Hole Structures in Scalar-Tensor Theories of Gravity

On Black Hole Structures in Scalar-Tensor Theories of Gravity On Black Hole Structures in Scalar-Tensor Theories of Gravity III Amazonian Symposium on Physics, Belém, 2015 Black holes in General Relativity The types There are essentially four kind of black hole solutions

More information

String/Brane charge & the non-integral dimension

String/Brane charge & the non-integral dimension Jian-Xin Lu (With Wei and Xu) The Interdisciplinary Center for Theoretical Study (ICTS) University of Science & Technology of China September 28, 2012 Introduction Introduction Found four laws of black

More information

Exact Solutions of the Einstein Equations

Exact Solutions of the Einstein Equations Notes from phz 6607, Special and General Relativity University of Florida, Fall 2004, Detweiler Exact Solutions of the Einstein Equations These notes are not a substitute in any manner for class lectures.

More information

The thermodynamics of Kaluza Klein black hole/ bubble chains

The thermodynamics of Kaluza Klein black hole/ bubble chains University of Massachusetts Amherst ScholarWorks@UMass Amherst Physics Department Faculty Publication Series Physics 2008 The thermodynamics of Kaluza Klein black hole/ bubble chains David Kastor University

More information

Mass and thermodynamics of Kaluza Klein black holes with squashed horizons

Mass and thermodynamics of Kaluza Klein black holes with squashed horizons Physics Letters B 639 (006 354 361 www.elsevier.com/locate/physletb Mass and thermodynamics of Kaluza Klein black holes with squashed horizons Rong-Gen Cai ac Li-Ming Cao ab Nobuyoshi Ohta c1 a Institute

More information

arxiv:hep-th/ v1 24 Apr 2001

arxiv:hep-th/ v1 24 Apr 2001 CERN-TH/2001-113 hep-th/0104206 arxiv:hep-th/0104206v1 24 Apr 2001 Macroscopic and Microscopic Description of Black Diholes Roberto Emparan a1 and Edward Teo b a Theory Division, CERN, CH-1211 Geneva 23,

More information

Regular solutions of the Einstein equations with parametric transition to black holes

Regular solutions of the Einstein equations with parametric transition to black holes Regular solutions of the Einstein equations with parametric transition to black holes Reinhard Meinel Friedrich-Schiller-Universität Jena 1. Introduction 2. Black hole limit of relativistic figures of

More information

Geometric inequalities for black holes

Geometric inequalities for black holes Geometric inequalities for black holes Sergio Dain FaMAF-Universidad Nacional de Córdoba, CONICET, Argentina. 26 July, 2013 Geometric inequalities Geometric inequalities have an ancient history in Mathematics.

More information

A rotating charged black hole solution in f (R) gravity

A rotating charged black hole solution in f (R) gravity PRAMANA c Indian Academy of Sciences Vol. 78, No. 5 journal of May 01 physics pp. 697 703 A rotating charged black hole solution in f R) gravity ALEXIS LARRAÑAGA National Astronomical Observatory, National

More information

SPACETIME FROM ENTANGLEMENT - journal club notes -

SPACETIME FROM ENTANGLEMENT - journal club notes - SPACETIME FROM ENTANGLEMENT - journal club notes - Chris Heinrich 1 Outline 1. Introduction Big picture: Want a quantum theory of gravity Best understanding of quantum gravity so far arises through AdS/CFT

More information

( ) = 1 r 2. ( r) r=a. Ka d. M in/out. 8(d 2) d(d 1) πm d. + 4K d. = 2K d 1 ad + V in/out

( ) = 1 r 2. ( r) r=a. Ka d. M in/out. 8(d 2) d(d 1) πm d. + 4K d. = 2K d 1 ad + V in/out ds = g(r)dt + f ( r) = 1 ad Regularity r d r d g r Δψ = 4π p = f (r) dψ + ( ) = 1 r r f l k cos(θ i )dφ i i=1 8π = π ( r) r=a a / l + Λ = +(D )(D ) l dr g(r) f (r) + r d Geometry depends on relative size

More information

Integrability of five dimensional gravity theories and inverse scattering construction of dipole black rings

Integrability of five dimensional gravity theories and inverse scattering construction of dipole black rings Integrability of five dimensional gravity theories and inverse scattering construction of dipole black rings Jorge V. Rocha CENTRA, Instituto Superior Técnico based on: arxiv:0912.3199 with P. Figueras,

More information

Black hole thermodynamics

Black hole thermodynamics Black hole thermodynamics Daniel Grumiller Institute for Theoretical Physics Vienna University of Technology Spring workshop/kosmologietag, Bielefeld, May 2014 with R. McNees and J. Salzer: 1402.5127 Main

More information

AdS and Af Horndeski black hole solutions in four dimensions

AdS and Af Horndeski black hole solutions in four dimensions AdS and Af Horndeski black hole solutions in four dimensions Physics and Mathematics Department, Universidad Austral de Chile December 17, 2014 (UACh) AdS and Af Horndeski black hole solutions December

More information

An introduction to General Relativity and the positive mass theorem

An introduction to General Relativity and the positive mass theorem An introduction to General Relativity and the positive mass theorem National Center for Theoretical Sciences, Mathematics Division March 2 nd, 2007 Wen-ling Huang Department of Mathematics University of

More information

A Panoramic Tour in Black Holes Physics

A Panoramic Tour in Black Holes Physics Figure 1: The ergosphere of Kerr s black hole A Panoramic Tour in Black Holes Physics - A brief history of black holes The milestones of black holes physics Astronomical observations - Exact solutions

More information

Brane-World Black Holes

Brane-World Black Holes Brane-World Black Holes A. Chamblin, S.W. Hawking and H.S. Reall DAMTP University of Cambridge Silver Street, Cambridge CB3 9EW, United Kingdom. Preprint DAMTP-1999-133 arxiv:hep-th/990905v 1 Oct 1999

More information

Gravitational perturbations on branes

Gravitational perturbations on branes º ( Ò Ò ) Ò ± 2015.4.9 Content 1. Introduction and Motivation 2. Braneworld solutions in various gravities 2.1 General relativity 2.2 Scalar-tensor gravity 2.3 f(r) gravity 3. Gravitational perturbation

More information

Black Holes and Thermodynamics I: Classical Black Holes

Black Holes and Thermodynamics I: Classical Black Holes Black Holes and Thermodynamics I: Classical Black Holes Robert M. Wald General references: R.M. Wald General Relativity University of Chicago Press (Chicago, 1984); R.M. Wald Living Rev. Rel. 4, 6 (2001).

More information

Jose Luis Blázquez Salcedo

Jose Luis Blázquez Salcedo Physical Review Letters 112 (2014) 011101 Jose Luis Blázquez Salcedo In collaboration with Jutta Kunz, Eugen Radu and Francisco Navarro Lérida 1. Introduction: Ansatz and general properties 2. Near-horizon

More information

Gravitational waves, solitons, and causality in modified gravity

Gravitational waves, solitons, and causality in modified gravity Gravitational waves, solitons, and causality in modified gravity Arthur Suvorov University of Melbourne December 14, 2017 1 of 14 General ideas of causality Causality as a hand wave Two events are causally

More information

(2 + 1)-dimensional black holes with a nonminimally coupled scalar hair

(2 + 1)-dimensional black holes with a nonminimally coupled scalar hair (2 + 1)-dimensional black holes with a nonminimally coupled scalar hair Liu Zhao School of Physics, Nankai University Collaborators: Wei Xu, Kun Meng, Bin Zhu Liu Zhao School of Physics, Nankai University

More information

Self trapped gravitational waves (geons) with anti-de Sitter asymptotics

Self trapped gravitational waves (geons) with anti-de Sitter asymptotics Self trapped gravitational waves (geons) with anti-de Sitter asymptotics Gyula Fodor Wigner Research Centre for Physics, Budapest ELTE, 20 March 2017 in collaboration with Péter Forgács (Wigner Research

More information

Holography Duality (8.821/8.871) Fall 2014 Assignment 2

Holography Duality (8.821/8.871) Fall 2014 Assignment 2 Holography Duality (8.821/8.871) Fall 2014 Assignment 2 Sept. 27, 2014 Due Thursday, Oct. 9, 2014 Please remember to put your name at the top of your paper. Note: The four laws of black hole mechanics

More information

Electromagnetic Energy for a Charged Kerr Black Hole. in a Uniform Magnetic Field. Abstract

Electromagnetic Energy for a Charged Kerr Black Hole. in a Uniform Magnetic Field. Abstract Electromagnetic Energy for a Charged Kerr Black Hole in a Uniform Magnetic Field Li-Xin Li Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (December 12, 1999) arxiv:astro-ph/0001494v1

More information

Stability of Black Holes and Black Branes. Robert M. Wald with Stefan Hollands arxiv: Commun. Math. Phys. (in press)

Stability of Black Holes and Black Branes. Robert M. Wald with Stefan Hollands arxiv: Commun. Math. Phys. (in press) Stability of Black Holes and Black Branes Robert M. Wald with Stefan Hollands arxiv:1201.0463 Commun. Math. Phys. (in press) Stability It is of considerable interest to determine the linear stablity of

More information

Thermodynamics of rotating charged dilaton black holes in an external magnetic field

Thermodynamics of rotating charged dilaton black holes in an external magnetic field Thermodynamics of rotating charged dilaton black holes in an external magnetic field arxiv:1304.5906v [gr-qc] 9 Sep 013 Stoytcho S. Yazadjiev Department of Theoretical Physics, Faculty of Physics, Sofia

More information

On two dimensional black holes. and matrix models

On two dimensional black holes. and matrix models On two dimensional black holes and matrix models Based on: On Black Hole Thermodynamics of 2-D Type 0A, JHEP 0403 (04) 007, hep-th/0402152 with J. L. Davis and D. Vaman Madison April, 2004 Motivation:

More information

Problem 1, Lorentz transformations of electric and magnetic

Problem 1, Lorentz transformations of electric and magnetic Problem 1, Lorentz transformations of electric and magnetic fields We have that where, F µν = F µ ν = L µ µ Lν ν F µν, 0 B 3 B 2 ie 1 B 3 0 B 1 ie 2 B 2 B 1 0 ie 3 ie 2 ie 2 ie 3 0. Note that we use the

More information

Formation and Evaporation of Regular Black Holes in New 2d Gravity BIRS, 2016

Formation and Evaporation of Regular Black Holes in New 2d Gravity BIRS, 2016 Formation and Evaporation of Regular Black Holes in New 2d Gravity BIRS, 2016 G. Kunstatter University of Winnipeg Based on PRD90,2014 and CQG-102342.R1, 2016 Collaborators: Hideki Maeda (Hokkai-Gakuen

More information

Structure of black holes in theories beyond general relativity

Structure of black holes in theories beyond general relativity Structure of black holes in theories beyond general relativity Weiming Wayne Zhao LIGO SURF Project Caltech TAPIR August 18, 2016 Wayne Zhao (LIGO SURF) Structure of BHs beyond GR August 18, 2016 1 / 16

More information

General Relativity and Cosmology Mock exam

General Relativity and Cosmology Mock exam Physikalisches Institut Mock Exam Universität Bonn 29. June 2011 Theoretische Physik SS 2011 General Relativity and Cosmology Mock exam Priv. Doz. Dr. S. Förste Exercise 1: Overview Give short answers

More information

Horizontal Charge Excitation of Supertranslation and Superrotation

Horizontal Charge Excitation of Supertranslation and Superrotation Horizontal Charge Excitation of Supertranslation and Superrotation Masahiro Hotta Tohoku University Based on M. Hotta, J. Trevison and K. Yamaguchi arxiv:1606.02443. M. Hotta, K. Sasaki and T. Sasaki,

More information

Dynamic and Thermodynamic Stability of Black Holes and Black Branes

Dynamic and Thermodynamic Stability of Black Holes and Black Branes Dynamic and Thermodynamic Stability of Black Holes and Black Branes Robert M. Wald with Stefan Hollands arxiv:1201.0463 Commun. Math. Phys. 321, 629 (2013) (see also K. Prabhu and R.M. Wald, Commun. Math.

More information

Black holes in loop quantum gravity

Black holes in loop quantum gravity Black holes in loop quantum gravity Javier Olmedo Physics Department - Institute for Gravitation & the Cosmos Pennsylvania State University Quantum Gravity in the Southern Cone VII March, 31st 2017 1 /

More information

arxiv:gr-qc/ v2 24 Oct 2003

arxiv:gr-qc/ v2 24 Oct 2003 The black holes of topologically massive gravity arxiv:gr-qc/0303042v2 24 Oct 2003 Karim Ait Moussa a,b, Gérard Clément a and Cédric Leygnac a a Laboratoire de Physique Théorique LAPTH (CNRS), B.P.110,

More information

Non-Perturbative Thermal QCD from AdS/QCD

Non-Perturbative Thermal QCD from AdS/QCD Issues Non-Perturbative Thermal QCD from AdS/QCD * Collaborators: B. Galow, M. Ilgenfritz, J. Nian, H.J. Pirner, K. Veshgini Research Fellow of the Alexander von Humboldt Foundation Institute for Theoretical

More information

A. Larrañaga 1,2 1 Universidad Nacional de Colombia. Observatorio Astronomico Nacional. 1 Introduction

A. Larrañaga 1,2 1 Universidad Nacional de Colombia. Observatorio Astronomico Nacional. 1 Introduction Bulg. J. Phys. 37 (2010) 10 15 Thermodynamics of the (2 + 1)-dimensional Black Hole with non linear Electrodynamics and without Cosmological Constant from the Generalized Uncertainty Principle A. Larrañaga

More information

Cosmological constant is a conserved charge

Cosmological constant is a conserved charge Cosmological constant is a conserved Kamal Hajian Institute for Research in Fundamental Sciences (IPM) In collaboration with Dmitry Chernyavsky (Tomsk Polytechnic U.) arxiv:1710.07904, to appear in Classical

More information

Black hole entropy of gauge fields

Black hole entropy of gauge fields Black hole entropy of gauge fields William Donnelly (University of Waterloo) with Aron Wall (UC Santa Barbara) September 29 th, 2012 William Donnelly (UW) Black hole entropy of gauge fields September 29

More information

arxiv: v1 [hep-th] 3 Feb 2016

arxiv: v1 [hep-th] 3 Feb 2016 Noname manuscript No. (will be inserted by the editor) Thermodynamics of Asymptotically Flat Black Holes in Lovelock Background N. Abbasvandi M. J. Soleimani Shahidan Radiman W.A.T. Wan Abdullah G. Gopir

More information

Black Holes. Jan Gutowski. King s College London

Black Holes. Jan Gutowski. King s College London Black Holes Jan Gutowski King s College London A Very Brief History John Michell and Pierre Simon de Laplace calculated (1784, 1796) that light emitted radially from a sphere of radius R and mass M would

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.286: The Early Universe October 27, 2013 Prof. Alan Guth PROBLEM SET 6

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.286: The Early Universe October 27, 2013 Prof. Alan Guth PROBLEM SET 6 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.86: The Early Universe October 7, 013 Prof. Alan Guth PROBLEM SET 6 DUE DATE: Monday, November 4, 013 READING ASSIGNMENT: Steven Weinberg,

More information

BLACK HOLES (ADVANCED GENERAL RELATIV- ITY)

BLACK HOLES (ADVANCED GENERAL RELATIV- ITY) Imperial College London MSc EXAMINATION May 2015 BLACK HOLES (ADVANCED GENERAL RELATIV- ITY) For MSc students, including QFFF students Wednesday, 13th May 2015: 14:00 17:00 Answer Question 1 (40%) and

More information

Black holes & Blackfolds in Higher Dimensions

Black holes & Blackfolds in Higher Dimensions Black holes & Blackfolds in Higher Dimensions Roberto Emparan ICREA & U. Barcelona Based on RE, T. Harmark, V. Niarchos, N. Obers to appear Out today! 0902.0427 Why study D>4 gravity? Main motivation (at

More information

My talk Two different points of view:

My talk Two different points of view: Shin Nakamura (Dept. Phys. Kyoto Univ.) Reference: S.N., Hirosi Ooguri, Chang-Soon Park, arxiv:09.0679[hep-th] (to appear in Phys. Rev. D) ( k B = h= c=) My talk Two different points of view: rom the viewpoint

More information

Entropy, Area, and Black Hole Pairs

Entropy, Area, and Black Hole Pairs NI-9-012 DAMTP/R 9-26 UCSBTH-9-25 gr-qc/909013 arxiv:gr-qc/909013v2 22 Sep 199 Entropy, Area, and Black Hole Pairs S. W. Hawking, 1 Gary T. Horowitz, 1 and Simon F. Ross 2 1 Isaac Newton Institute for

More information

Electricity & Magnetism Qualifier

Electricity & Magnetism Qualifier Electricity & Magnetism Qualifier For each problem state what system of units you are using. 1. Imagine that a spherical balloon is being filled with a charged gas in such a way that the rate of charge

More information

arxiv: v1 [gr-qc] 1 Nov 2017

arxiv: v1 [gr-qc] 1 Nov 2017 Uniqueness theorem for static phantom wormholes in Einstein-Maxwell-dilaton theory Boian Lazov 1, Petya Nedkova 1,, and Stoytcho Yazadjiev 1,3 arxiv:1711.0090v1 [gr-qc] 1 Nov 017 1 Department of Theoretical

More information

The Quadrupole Moment of Rotating Fluid Balls

The Quadrupole Moment of Rotating Fluid Balls The Quadrupole Moment of Rotating Fluid Balls Michael Bradley, Umeå University, Sweden Gyula Fodor, KFKI, Budapest, Hungary Current topics in Exact Solutions, Gent, 8- April 04 Phys. Rev. D 79, 04408 (009)

More information

Charged Rotating Black Holes in Higher Dimensions

Charged Rotating Black Holes in Higher Dimensions Charged Rotating Black Holes in Higher Dimensions Francisco Navarro-Lérida1, Jutta Kunz1, Dieter Maison2, Jan Viebahn1 MG11 Meeting, Berlin 25.7.2006 Outline Introduction Einstein-Maxwell Black Holes Einstein-Maxwell-Dilaton

More information

Virasoro hair on locally AdS 3 geometries

Virasoro hair on locally AdS 3 geometries Virasoro hair on locally AdS 3 geometries Kavli Institute for Theoretical Physics China Institute of Theoretical Physics ICTS (USTC) arxiv: 1603.05272, M. M. Sheikh-Jabbari and H. Y Motivation Introduction

More information

Thermodynamics of f(r) Gravity with the Disformal Transformation

Thermodynamics of f(r) Gravity with the Disformal Transformation Thermodynamics of f(r) Gravity with the Disformal Transformation Jhih-Rong Lu National Tsing Hua University(NTHU) Collaborators: Chao-Qiang Geng(NCTS, NTHU), Wei-Cheng Hsu(NTHU), Ling-Wei Luo(AS) Outline

More information

Radiation from the non-extremal fuzzball

Radiation from the non-extremal fuzzball adiation from the non-extremal fuzzball Borun D. Chowdhury The Ohio State University The Great Lakes Strings Conference 2008 work in collaboration with Samir D. Mathur (arxiv:0711.4817) Plan Describe non-extremal

More information

Non-Abelian Einstein-Born-Infeld Black Holes

Non-Abelian Einstein-Born-Infeld Black Holes Non-Abelian Einstein-Born-Infeld Black Holes arxiv:hep-th/0004130v1 18 Apr 2000 Marion Wirschins, Abha Sood and Jutta Kunz Fachbereich Physik, Universität Oldenburg, Postfach 2503 D-26111 Oldenburg, Germany

More information

Accelerating Cosmologies and Black Holes in the Dilatonic Einstein-Gauss-Bonnet (EGB) Theory

Accelerating Cosmologies and Black Holes in the Dilatonic Einstein-Gauss-Bonnet (EGB) Theory Accelerating Cosmologies and Black Holes in the Dilatonic Einstein-Gauss-Bonnet (EGB) Theory Zong-Kuan Guo Fakultät für Physik, Universität Bielefeld Zong-Kuan Guo (Universität Bielefeld) Dilatonic Einstein-Gauss-Bonnet

More information

UNIVERSITY OF OSLO Faculty of Mathematics and Natural Sciences

UNIVERSITY OF OSLO Faculty of Mathematics and Natural Sciences UNIVERSITY OF OSLO Faculty of Mathematics and Natural Sciences Exam for AST5220 Cosmology II Date: Tuesday, June 4th, 2013 Time: 09.00 13.00 The exam set consists of 13 pages. Appendix: Equation summary

More information

Stability of Black Holes and Black Branes. Robert M. Wald with Stefan Hollands arxiv:

Stability of Black Holes and Black Branes. Robert M. Wald with Stefan Hollands arxiv: Stability of Black Holes and Black Branes Robert M. Wald with Stefan Hollands arxiv:1201.0463 Stability It is of considerable interest to determine the linear stablity of black holes in (D-dimensional)

More information

Effect of Global Expansion on Bending of Null Geodesics

Effect of Global Expansion on Bending of Null Geodesics Effect of Global Expansion on Bending of Null Geodesics Brett Bolen, Mir Emad Aghili, Luca Bombelli Grand Valley State University University of Mississippi Midwest Relativity Meeting 2013 Outline Introduction

More information

The Holographic Principal and its Interplay with Cosmology. T. Nicholas Kypreos Final Presentation: General Relativity 09 December, 2008

The Holographic Principal and its Interplay with Cosmology. T. Nicholas Kypreos Final Presentation: General Relativity 09 December, 2008 The Holographic Principal and its Interplay with Cosmology T. Nicholas Kypreos Final Presentation: General Relativity 09 December, 2008 What is the temperature of a Black Hole? for simplicity, use the

More information

arxiv:hep-th/ v3 25 Sep 2006

arxiv:hep-th/ v3 25 Sep 2006 OCU-PHYS 46 AP-GR 33 Kaluza-Klein Multi-Black Holes in Five-Dimensional arxiv:hep-th/0605030v3 5 Sep 006 Einstein-Maxwell Theory Hideki Ishihara, Masashi Kimura, Ken Matsuno, and Shinya Tomizawa Department

More information

arxiv: v1 [gr-qc] 24 Sep 2009

arxiv: v1 [gr-qc] 24 Sep 2009 Relativistic Euler s 3-body problem, optical geometry and the golden ratio Flávio S. Coelho and Carlos A. R. Herdeiro arxiv:0909.4413v1 [gr-qc] 4 Sep 009 Departamento de Física e Centro de Física do Porto

More information

Colliding scalar pulses in the Einstein-Gauss-Bonnet gravity

Colliding scalar pulses in the Einstein-Gauss-Bonnet gravity Colliding scalar pulses in the Einstein-Gauss-Bonnet gravity Hisaaki Shinkai 1, and Takashi Torii 2, 1 Department of Information Systems, Osaka Institute of Technology, Hirakata City, Osaka 573-0196, Japan

More information

Are spacetime horizons higher dimensional sources of energy fields? (The black hole case).

Are spacetime horizons higher dimensional sources of energy fields? (The black hole case). Are spacetime horizons higher dimensional sources of energy fields? (The black hole case). Manasse R. Mbonye Michigan Center for Theoretical Physics Physics Department, University of Michigan, Ann Arbor,

More information

arxiv:gr-qc/ v1 19 Feb 2004

arxiv:gr-qc/ v1 19 Feb 2004 On the construction of global models describing isolated rotating charged bodies; uniqueness of the exterior gravitational field Raül Vera Dublin City University, Ireland. arxiv:gr-qc/0402086v1 19 Feb

More information

arxiv:hep-th/ v1 15 Mar 1996

arxiv:hep-th/ v1 15 Mar 1996 RUSSIAN GRAVITATIONAL SOCIETY INSTITUTE OF METROLOGICAL SERVICE CENTER OF GRAVITATION AND FUNDAMENTAL METROLOGY RGS-CSVR-002/96 hep-th/9603xxx arxiv:hep-th/9603107v1 15 Mar 1996 Multidimensional Extremal

More information

Black rings with a small electric charge: gyromagnetic ratios and algebraic alignment

Black rings with a small electric charge: gyromagnetic ratios and algebraic alignment Published by Institute of Physics Publishing for SISSA Received: September 18, 2006 Accepted: November 16, 2006 Published: December 18, 2006 Black rings with a small electric charge: gyromagnetic ratios

More information

Accelerating Kerr-Newman black holes in (anti-) de Sitter space-time

Accelerating Kerr-Newman black holes in (anti-) de Sitter space-time Loughborough University Institutional Repository Accelerating Kerr-Newman black holes in (anti- de Sitter space-time This item was submitted to Loughborough University's Institutional Repository by the/an

More information

Phase structure of balck branes

Phase structure of balck branes Phase structure of balck branes Zhiguang Xiao Collaborators: J. X. Lu, Shibaji Roy December 2, 2010 Introduction Canonical ensemble Grand canonical ensemble Summary and Disscusion Introduction: Partition

More information

Glueballs at finite temperature from AdS/QCD

Glueballs at finite temperature from AdS/QCD Light-Cone 2009: Relativistic Hadronic and Particle Physics Instituto de Física Universidade Federal do Rio de Janeiro Glueballs at finite temperature from AdS/QCD Alex S. Miranda Work done in collaboration

More information

Toward Binary Black Hole Simulations in Numerical Relativity

Toward Binary Black Hole Simulations in Numerical Relativity Toward Binary Black Hole Simulations in Numerical Relativity Frans Pretorius California Institute of Technology BIRS Workshop on Numerical Relativity Banff, April 19 2005 Outline generalized harmonic coordinates

More information

arxiv:hep-th/ v1 27 May 2004

arxiv:hep-th/ v1 27 May 2004 No-boundary Codimension-two Braneworld arxiv:hep-th/0405249v1 27 May 2004 Zhong Chao Wu Dept. of Physics Zhejiang University of Technology Hangzhou 310032, China Abstract The quantum creation probability

More information

Global and local problems with. Kerr s solution.

Global and local problems with. Kerr s solution. Global and local problems with Kerr s solution. Brandon Carter, Obs. Paris-Meudon, France, Presentation at Christchurch, N.Z., August, 2004. 1 Contents 1. Conclusions of Roy Kerr s PRL 11, 237 63. 2. Transformation

More information

Black hole thermodynamics under the microscope

Black hole thermodynamics under the microscope DELTA 2013 January 11, 2013 Outline Introduction Main Ideas 1 : Understanding black hole (BH) thermodynamics as arising from an averaging of degrees of freedom via the renormalisation group. Go beyond

More information

Black-Holes in AdS: Hawking-Page Phase Transition

Black-Holes in AdS: Hawking-Page Phase Transition Black-Holes in AdS: Hawking-Page Phase Transition Guilherme Franzmann December 4, 2014 1 / 14 References Thermodynamics of Black Holes in Anti-de Sitter space, S.W. Hawking and Don. N Page (1983); Black

More information

Chapter 12. Quantum black holes

Chapter 12. Quantum black holes Chapter 12 Quantum black holes Classically, the fundamental structure of curved spacetime ensures that nothing can escape from within the Schwarzschild event horizon. That is an emphatically deterministic

More information

Holography on the Horizon and at Infinity

Holography on the Horizon and at Infinity Holography on the Horizon and at Infinity Suvankar Dutta H. R. I. Allahabad Indian String Meeting, PURI 2006 Reference: Phys.Rev.D74:044007,2006. (with Rajesh Gopakumar) Work in progress (with D. Astefanesei

More information

Trapped ghost wormholes and regular black holes. The stability problem

Trapped ghost wormholes and regular black holes. The stability problem Trapped ghost wormholes and regular black holes. The stability problem Kirill Bronnikov in collab. with Sergei Bolokhov, Arislan Makhmudov, Milena Skvortsova (VNIIMS, Moscow; RUDN University, Moscow; MEPhI,

More information

Supergravity Supertubes

Supergravity Supertubes Preprint typeset in JHEP style. - PAPER VERSION DAMTP-2001-49 hep-th/0106012 Supergravity Supertubes arxiv:hep-th/0106012v1 1 Jun 2001 David Mateos and Paul K. Townsend Department of Applied Mathematics

More information

Interacting non-bps black holes

Interacting non-bps black holes Interacting non-bps black holes Guillaume Bossard CPhT, Ecole Polytechnique Istanbul, August 2011 Outline Time-like Kaluza Klein reduction From solvable algebras to solvable systems Two-centre interacting

More information