Trapped ghost wormholes and regular black holes. The stability problem

Size: px
Start display at page:

Download "Trapped ghost wormholes and regular black holes. The stability problem"

Transcription

1 Trapped ghost wormholes and regular black holes. The stability problem Kirill Bronnikov in collab. with Sergei Bolokhov, Arislan Makhmudov, Milena Skvortsova (VNIIMS, Moscow; RUDN University, Moscow; MEPhI, Moscow) Modern Physics of Compact Stars and Relativistic Gravity 2017 Yerevan, K. Bronnikov, S. Bolokhov, A. Makhmudov, M. Skvortsova Trapped ghost wormholes and regular black holes. The stability problem

2 Motivation and plan Singularity problem in GR and other classical theories of gravity. Black hole singularities, their avoidance: a regular center or no center at all. The notions of a wormhole and a black universe. The necessity of exotic matter for both wormholes and black universes if considered in GR. In particular, such a source is a phantom (ghost) scalar field (more or less favored by cosmol. observations). Ghosts are predicted by some theories (e.g. multidimensional) but not observed around us. Possible explanation: they exist only in strong field regions trapped ghosts, like a jenie in a bottle [KB, S. Sushkov, 2010]. Explicit examples of trapped-ghost wormholes and black universes. Stability under radial perturbations: gauge-invariant effective potentials, generic poles at throats and transition surfaces from a usual scalar field to a ghost. Poles at throats: regularization and known instability results. Poles at transition surfaces to ghosts stabilizing properties due to boundary conditions.

3 What is a wormhole?

4 Kip Thorne on wormholes

5 Wormholes 2

6 Wormholes 3

7 Wormholes 4

8 Wormholes 5

9 Wormholes 6

10 Wormholes 7

11 Wormholes 8

12 Wormholes 9

13 What is a black universe? A black universe (BU) is a regular black hole where, beyond the horizon, instead of a singularity there is an expanding, asymptotically isotropic, e.g., ds space-time (K.B., J. Fabris, 2005; K.B. et al., 2006). For a spherically symmetric metric ds 2 = A(x)dt 2 dx 2 /A(x) r 2 (x)(dθ 2 + sin 2 θdϕ 2 ), A 1 and r as x +, A r 2, so that B(x) = A/r 2 B 0 < 0 as x.

14 Black universe 2 A black universe combines the properties of the following objects: A black hole (BH) a Killing horizon separating static and non-static spacetime regions; A wormhole (WH) no center and a regular minimum of the area of coordinate spheres A nonsingular cosmological model at large times the nonstatic region reaches a de Sitter (ds) mode of isotropic expansion Black universes, having no center at all, make an alternative to widely discussed BH models with a regular center, for example, with a de Sitter core, and sources like nonlinear electrodynamics (e.g., Dymnikova, 1992; K.B., 2001)

15 Trapped ghosts: possible origin Example from multidimensional gravity [KB, R. Konoplich, S. Rubin, CQG 24, 1261 (2007)]: S = d D x g D [F (R) + c 1R AB R AB + c 2R ABCD R ABCD ] converted after reduction to 4D theory in Einstein s picture to S d 4 x g 4[R 4 + K Ein( φ) 2 2V Ein]. With F (R) = R + cr 2 2Λ D and some particular parameter values:

16 Basic equations for trapped ghosts in 4D Action: S = m2 4 2 g [ ] R + 2h(φ)g µν µ φ ν φ 2V (φ) ; h(φ) > 0 for a canonical scalar field, h(φ) < 0 for a phantom one. Metric: ds 2 = A(x)dt 2 dx 2 A(x) r 2 (x)(dθ 2 + sin 2 θ ϕ 2 ). Equations: Scalar : 2(Ar 2 hφ ) Ar 2 h φ = r 2 dv /dφ, (1) R t t = : (A r 2 ) = 2r 2 V ; (2) R t t R x x = : r /r = h(φ)φ 2 ; (3) R t t R θ θ = : A(r 2 ) r 2 A = 2, (4) G x x = : 1 + A rr + Ar 2 = r 2 (haφ 2 V ), (5) Eq. (4) is once immediately integrated: B (x) (A/r 2 ) = 2(3m x)/r 4, B A/r 2. m = const. (6)

17 Wormholes and black universes with trapped ghosts: Conditions and choice of r(x) Conditions: < x <. Asympt. flatness or (A)dS: r(x) x, r(x) must have a minimum x ±. h(φ) < 0 near it. Trapped ghost: h(φ) > 0 far from that minimum. Wormhole: A > 0; A 1 (flat asympt.), A x 2 (AdS asympt.) Black universe: A 1 (x + ), A x 2, x. Example: choose r(x) = a (x/a)2 + 1, n = const > 2. For n = 3, a = 1: (x/a)2 + n 5 r(x), n=3 0.4 r^2 r''(x), n= r < 0 h < 0 for x <

18 Example with n = 3: solution for B(x) and V (x) m = -0,02 m = 0 1 [ B = B x 2 + 6x 4 6(1 + x 2 ) 3 ] + 3mx( x x 4 ) + 39m arctan x, B0 = const, 2 1 { V (x) = 32(6 x 2 3x 4 ) 12(1 + x 2 ) 2 (3 + x 2 ) 3 6mx( x x x x 8 ) } + 117m(1 + x 2 ) 2 ( x x 4 + 3x 6 )(π 2 arctan x). B(x), n= m = 0, m = m = 0 m = V(x) Plots of B(x) for different values of m: wormholes for m 0, black universes for m > 0 (with B 0 chosen to provide asymptotic flatness as x )

19 The stability problem: monopole perturbations Action: S gd ] x[ 4 R + 2h(φ)g αβ φ ;αφ ;β 2V (φ), Equations: 2h µ µφ + dv /dφ = 0, G ν µ = T ν µ [φ] = h(φ)[2φ µφ ν δ ν µφ α φ α] + δ ν µv (φ). Metric: ds 2 = e 2γ dt 2 e 2α du 2 e 2β dω 2, where γ, α, β, φ are now functions of both u (radial coordinate) and time t. Here u is an arbitrary coordinate [we previously used the coordinate condition α + γ = 0 and denoted u = x, e 2γ = A(x), e β = r(x).] Consider linear spherically symmetric perturbations of static solutions to the field equations, so that φ(u, t) = φ(u) + δφ(u, t), γ(u, t) = γ(u) + δγ and similarly for other quantities, with small deltas.

20 Linear perturbation equations 2 e 2α 2γ hδ φ 2h[δφ + δφ (γ + 2β α ) + φ (δγ + 2δβ δα )] 2δh[φ + φ (2β + γ α )] h δφ φ δh + δ( e 2α V φ ) = 0, (7) δ β + β δ β β δ α γ δ β = hφ δ φ, (8) δ( e 2α 2β ) + e 2α 2γ δ β δβ δβ (γ + 2β α ) β (δγ + 2δβ δα ) = δ( e 2α V ), (9) In this problem, we have two independent forms of arbitrariness: one consists in the freedom of choosing a radial coordinate u in the static configuration, the other is a perturbation gauge, connected with the freedom to choose a reference frame in perturbed space-time. This can be fixed in imposing a certain relation for δα, δβ, δγ, δφ. In what follows we employ both kinds of freedom. The above equations have been written in the most universal form, without fixing the u coordinate or the perturbation gauge.

21 Master equation for perturbations The only dynamic degree of freedom for radial perturbations is δφ. Thus: Choose the gauge δβ = 0 for convenience and the tortoise (wave) coordinate u z such that α = γ. Exclude δα, δγ from Eq. (7) using (8) and (9). Reduce the resulting wave equation for δφ to its canonical form using the substitution δφ = ψ(z, t) e η, η = β + h /(2h). The result is ψ ψ + V eff (z)ψ = 0, (10) [ V eff (z) = e 2α 2hφ 2 (V e 2β ) + 2φ β 2 β V φ h φ 4h V 2 φ + V ] φφ + β + β 2. 2h One can show that the final wave equation is gauge-invariant. A further substitution, possible since the background is static, ψ(x, t) = Y (x) e iωt, ω = const, leads to the Schrödinger-like equation Y + [ω 2 V eff (x)]y = 0. (11)

22 Physical conditions for perturbations Now, if there is a nontrivial solution to (11) with Im ω 0 satisfying some physically reasonable conditions at the ends of the range of z (finiteness of δφ, absence of ingoing waves), then the static system is unstable since δφ can exponentially grow with time (or linearly if Im ω = 0). Otherwise the static system is linearly stable. Thus, as usual in such studies, the stability problem is reduced to a boundary-value problem for the Schrödinger-like equation (11). Conditions: Regularity of δφ in the whole static region (the whole space for a wormhole, the domain of outer communication for a black universe). δφ 0 as z ±. z + : spatial infinity, z : another spatial infinity for a wormhole, the event horizon for a black universe.

23 Perturbations near the throat If the throat z = z 0 has a generic shape, that is, r(z) = r throat + O((z z 0) 2 ), then independently of model details V eff (z) = 2 + O(1). (12) (z z 0) 2 In a more general case, such that r(z) = r throat + O((z z 0) 2n ), V eff (z) = 2(2n 1) + O(1). (13) (z z 0) 2 It can seem that such a potential wall completely separates perturbations on different sides of the throat. But with such potentials we are unable to consider the most important mode: changes of the throat radius itself. Way out: Regularization of V eff (z) using the so-called S-transformation [C. Gundlach et al., 1995; J. Gonzalez at al., 2009]. However, it turns out that this method really regularizes V eff (z) only in the case n = 1, that is for the behavior (12) but does not work for other n, e.g., for long throats (n > 1).

24 S-transformation Consider a wave equation of the type (10) ψ ψ + W (z)ψ = 0, (14) with an arbitrary potential W (z) (its specific example is the above potential V eff ). Let us present W (z) in the form W (z) = S 2 (z) + S, a Riccati equation for S(z), so this is always possible. Then Eq. (14) can be rewritten as ψ + ( z + S)( z + S)ψ = 0. (15) Now, introduce the new function χ = ( z + S)ψ then, applying the operator z + S to Eq. (15), we obtain a wave equation for χ: χ χ + W 1(z)χ = 0, (16) with the new effective potential W 1(x) = S + S 2 = W (z) + 2S 2. (17) One can verify that if W = 2/z 2 + O(1), then W 1(z) is regular at z = 0, and all perturbation modes can be studied.

25 Some known stability results-1 Regularized effective potential for perturbations of some anti-fisher wormhole solution (with a massless phantom scalar) and the time-domain profile showing the instability. [J. Gonzalez et al., 2009; KB, J. Fabris, A. Zhidenko, 2011]

26 Some known stability results-2 Regularized effective potentials for perturbations of some black universe solutions with phantom scalars and the time-domain profiles. One of the models is stable: it is a black universe where the throat coincides with the horizon. [KB, R. Konoplya, A. Zhidenko, 2012]

27 Perturbations near a transition surface h = 0 Near a surface h = 0, say, z = 0, independently of model details, the effective potential behaves as V eff 1/(4z 2 ). (18) It is an infinitely deep potential well. In QM such a potential would lead to unlimitedly deep energy levels (like falling to a center ). Here: other physical conditions: instead of quadratic integrability, we require δφ < everywhere. With Eq. (18), the Schrödinger-like equation (11) gives, independently of ω, Y (z) = z (C 1 + C 2 ln z ) + O(z 3/2 ), C 1, C 2 = const. (19) Since δφ Y / h Y / x, we have δφ C 1 + C 2 ln z + O(z). Physical requirements C 2 = 0. It is a new constraint to be added to other boundary conditions the whole space splits into regions where the boundary-value problem should be solved separately. There is an instability if there are coinciding eigenvalues ω 2 0. Thus a canonical phantom transition plays a strong stabilizing role. But for each particular trapped-ghost solution a special study is necessary.

28 Example B(x), n=3 2 h = 0 h = 0 1 V eff(x) 3 m = -0,02 m = m = 0,02-1 (a) B(x) for three values of m, (b) The effective potential for a symmetric wormhole with m = 0. There are 4 regions in which the boundary-value problem should be considered (though only two different ones). Moreover, due to the pole at the throat x = 0 the potential V eff needs regularization before seeking ω; then its whole shape will change, including the behavior at the surfaces h = 0. -2

29 Example 2 2 B(x) Veff(x) m= m= m= (a) B(x) for three larger values of m (black universe solutions); at m there is no throat outside the horizon (B = 0). (b) The effective potentials for black universes with no throat outside the horizon. In such cases a regularization of V eff is not needed. A tentative result is that ω = 0 is a common eigenvalue in the regions to the left and to the right of h = 15 at m = , hence there is instability with a linear growth of δφ(t).

30 Conclusion A possible explanation of the absence of phantom matter around us: ghosts are trapped in strong field regions like jenies in bottles. There are many examples of explicit solutions for trapped-ghost wormholes and black universes. The effective potentials for radial perturbations of wormhole and black universe configurations contain universal forms of poles at throats and transition surfaces from a usual scalar field to a ghost. Generic poles at throats can be regularized, and instabilities have been revealed for many known wormhole and black universe solutions. Poles at transition surfaces to ghosts exhibit stabilizing properties due to the perturbation regularity condition. A tentative result for some trapped-ghost solutions is that they are unstable with at least linear growth of perturbations. It is desirable to verify these results and to try to build stable solutions.

31

Visible, invisible and trapped ghosts as sources of wormholes and black universes

Visible, invisible and trapped ghosts as sources of wormholes and black universes Journal of Physics: Conference Series PAPER OPEN ACCESS Visible, invisible and trapped ghosts as sources of wormholes and black universes To cite this article: S V Bolokhov et al 2016 J. Phys.: Conf. Ser.

More information

On Black Hole Structures in Scalar-Tensor Theories of Gravity

On Black Hole Structures in Scalar-Tensor Theories of Gravity On Black Hole Structures in Scalar-Tensor Theories of Gravity III Amazonian Symposium on Physics, Belém, 2015 Black holes in General Relativity The types There are essentially four kind of black hole solutions

More information

Kerr black hole and rotating wormhole

Kerr black hole and rotating wormhole Kerr Fest (Christchurch, August 26-28, 2004) Kerr black hole and rotating wormhole Sung-Won Kim(Ewha Womans Univ.) August 27, 2004 INTRODUCTION STATIC WORMHOLE ROTATING WORMHOLE KERR METRIC SUMMARY AND

More information

Exact Solutions of the Einstein Equations

Exact Solutions of the Einstein Equations Notes from phz 6607, Special and General Relativity University of Florida, Fall 2004, Detweiler Exact Solutions of the Einstein Equations These notes are not a substitute in any manner for class lectures.

More information

Equation of state of dark energy. Phys. Rev. D 91, (2015)

Equation of state of dark energy. Phys. Rev. D 91, (2015) Equation of state of dark energy in f R gravity The University of Tokyo, RESCEU K. Takahashi, J. Yokoyama Phys. Rev. D 91, 084060 (2015) Motivation Many modified theories of gravity have been considered

More information

arxiv: v1 [gr-qc] 25 Dec 2013

arxiv: v1 [gr-qc] 25 Dec 2013 1 Example of a stable wormhole in general relativity K. A. Bronnikov, a,b,1 L. N. Lipatova, c I. D. Novikov, c,d and A. A. Shatskiy c a Center for Gravitation and Fundamental Metrology, VNIIMS, Ozyornaya

More information

Asymptotic Quasinormal Frequencies for d Dimensional Black Holes

Asymptotic Quasinormal Frequencies for d Dimensional Black Holes Asymptotic Quasinormal Frequencies for d Dimensional Black Holes José Natário (Instituto Superior Técnico, Lisbon) Based on hep-th/0411267 with Ricardo Schiappa Oxford, February 2009 Outline What exactly

More information

arxiv:gr-qc/ v1 10 Nov 1997

arxiv:gr-qc/ v1 10 Nov 1997 Multidimensional Gravity on the Principal Bundles Dzhunushaliev V.D. Theoretical Physics Department Kyrgyz State National University, Bishkek, 7004, Kyrgyzstan Home address: mcr.asanbai, d.5, kw.4, Bishkek,

More information

On the Hawking Wormhole Horizon Entropy

On the Hawking Wormhole Horizon Entropy ESI The Erwin Schrödinger International Boltzmanngasse 9 Institute for Mathematical Physics A-1090 Wien, Austria On the Hawking Wormhole Horizon Entropy Hristu Culetu Vienna, Preprint ESI 1760 (2005) December

More information

Black-hole binary inspiral and merger in scalar-tensor theory of gravity

Black-hole binary inspiral and merger in scalar-tensor theory of gravity Black-hole binary inspiral and merger in scalar-tensor theory of gravity U. Sperhake DAMTP, University of Cambridge General Relativity Seminar, DAMTP, University of Cambridge 24 th January 2014 U. Sperhake

More information

arxiv: v1 [gr-qc] 14 Apr 2010

arxiv: v1 [gr-qc] 14 Apr 2010 Regular black holes and energy conditions O. B. Zaslavskii Astronomical Institute of Kharkov V.N. Karazin National University, 35 Sumskaya St., Kharkov, 61022, Ukraine arxiv:1004.2362v1 [gr-qc] 14 Apr

More information

Late-time tails of self-gravitating waves

Late-time tails of self-gravitating waves Late-time tails of self-gravitating waves (non-rigorous quantitative analysis) Piotr Bizoń Jagiellonian University, Kraków Based on joint work with Tadek Chmaj and Andrzej Rostworowski Outline: Motivation

More information

Übungen zu RT2 SS (4) Show that (any) contraction of a (p, q) - tensor results in a (p 1, q 1) - tensor.

Übungen zu RT2 SS (4) Show that (any) contraction of a (p, q) - tensor results in a (p 1, q 1) - tensor. Übungen zu RT2 SS 2010 (1) Show that the tensor field g µν (x) = η µν is invariant under Poincaré transformations, i.e. x µ x µ = L µ νx ν + c µ, where L µ ν is a constant matrix subject to L µ ρl ν ση

More information

General Relativity and Cosmology Mock exam

General Relativity and Cosmology Mock exam Physikalisches Institut Mock Exam Universität Bonn 29. June 2011 Theoretische Physik SS 2011 General Relativity and Cosmology Mock exam Priv. Doz. Dr. S. Förste Exercise 1: Overview Give short answers

More information

What happens at the horizon of an extreme black hole?

What happens at the horizon of an extreme black hole? What happens at the horizon of an extreme black hole? Harvey Reall DAMTP, Cambridge University Lucietti and HSR arxiv:1208.1437 Lucietti, Murata, HSR and Tanahashi arxiv:1212.2557 Murata, HSR and Tanahashi,

More information

A5682: Introduction to Cosmology Course Notes. 2. General Relativity

A5682: Introduction to Cosmology Course Notes. 2. General Relativity 2. General Relativity Reading: Chapter 3 (sections 3.1 and 3.2) Special Relativity Postulates of theory: 1. There is no state of absolute rest. 2. The speed of light in vacuum is constant, independent

More information

arxiv: v2 [gr-qc] 27 Apr 2013

arxiv: v2 [gr-qc] 27 Apr 2013 Free of centrifugal acceleration spacetime - Geodesics arxiv:1303.7376v2 [gr-qc] 27 Apr 2013 Hristu Culetu Ovidius University, Dept.of Physics and Electronics, B-dul Mamaia 124, 900527 Constanta, Romania

More information

Classification theorem for the static and asymptotically flat Einstein-Maxwell-dilaton spacetimes possessing a photon sphere

Classification theorem for the static and asymptotically flat Einstein-Maxwell-dilaton spacetimes possessing a photon sphere Classification theorem for the static and asymptotically flat Einstein-Maxwell-dilaton spacetimes possessing a photon sphere Boian Lazov and Stoytcho Yazadjiev Varna, 2017 Outline 1 Motivation 2 Preliminaries

More information

Chapter 2 General Relativity and Black Holes

Chapter 2 General Relativity and Black Holes Chapter 2 General Relativity and Black Holes In this book, black holes frequently appear, so we will describe the simplest black hole, the Schwarzschild black hole and its physics. Roughly speaking, a

More information

Black-hole & white-hole horizons for capillary-gravity waves in superfluids

Black-hole & white-hole horizons for capillary-gravity waves in superfluids Black-hole & white-hole horizons for capillary-gravity waves in superfluids G. Volovik Helsinki University of Technology & Landau Institute Cosmology COSLAB Particle Particle physics Condensed matter Warwick

More information

arxiv:gr-qc/ v1 27 Jan 1998

arxiv:gr-qc/ v1 27 Jan 1998 Instability of three dimensional conformally dressed black hole Cristián Martínez Centro de Estudios Científicos de Santiago, Casilla 6443, Santiago 9, Chile. (April, 08) The three dimensional black hole

More information

Ask class: what is the Minkowski spacetime in spherical coordinates? ds 2 = dt 2 +dr 2 +r 2 (dθ 2 +sin 2 θdφ 2 ). (1)

Ask class: what is the Minkowski spacetime in spherical coordinates? ds 2 = dt 2 +dr 2 +r 2 (dθ 2 +sin 2 θdφ 2 ). (1) 1 Tensor manipulations One final thing to learn about tensor manipulation is that the metric tensor is what allows you to raise and lower indices. That is, for example, v α = g αβ v β, where again we use

More information

Covariant Equations of Motion of Extended Bodies with Mass and Spin Multipoles

Covariant Equations of Motion of Extended Bodies with Mass and Spin Multipoles Covariant Equations of Motion of Extended Bodies with Mass and Spin Multipoles Sergei Kopeikin University of Missouri-Columbia 1 Content of lecture: Motivations Statement of the problem Notable issues

More information

WHY BLACK HOLES PHYSICS?

WHY BLACK HOLES PHYSICS? WHY BLACK HOLES PHYSICS? Nicolò Petri 13/10/2015 Nicolò Petri 13/10/2015 1 / 13 General motivations I Find a microscopic description of gravity, compatibile with the Standard Model (SM) and whose low-energy

More information

Instability of extreme black holes

Instability of extreme black holes Instability of extreme black holes James Lucietti University of Edinburgh EMPG seminar, 31 Oct 2012 Based on: J.L., H. Reall arxiv:1208.1437 Extreme black holes Extreme black holes do not emit Hawking

More information

Dynamical compactification from higher dimensional de Sitter space

Dynamical compactification from higher dimensional de Sitter space Dynamical compactification from higher dimensional de Sitter space Matthew C. Johnson Caltech In collaboration with: Sean Carroll Lisa Randall 0904.3115 Landscapes and extra dimensions Extra dimensions

More information

κ = f (r 0 ) k µ µ k ν = κk ν (5)

κ = f (r 0 ) k µ µ k ν = κk ν (5) 1. Horizon regularity and surface gravity Consider a static, spherically symmetric metric of the form where f(r) vanishes at r = r 0 linearly, and g(r 0 ) 0. Show that near r = r 0 the metric is approximately

More information

A Holographic Description of Black Hole Singularities. Gary Horowitz UC Santa Barbara

A Holographic Description of Black Hole Singularities. Gary Horowitz UC Santa Barbara A Holographic Description of Black Hole Singularities Gary Horowitz UC Santa Barbara Global event horizons do not exist in quantum gravity: String theory predicts that quantum gravity is holographic:

More information

Lecture XIX: Particle motion exterior to a spherical star

Lecture XIX: Particle motion exterior to a spherical star Lecture XIX: Particle motion exterior to a spherical star Christopher M. Hirata Caltech M/C 350-7, Pasadena CA 95, USA Dated: January 8, 0 I. OVERVIEW Our next objective is to consider the motion of test

More information

A Summary of the Black Hole Perturbation Theory. Steven Hochman

A Summary of the Black Hole Perturbation Theory. Steven Hochman A Summary of the Black Hole Perturbation Theory Steven Hochman Introduction Many frameworks for doing perturbation theory The two most popular ones Direct examination of the Einstein equations -> Zerilli-Regge-Wheeler

More information

arxiv:gr-qc/ v1 24 Apr 1998

arxiv:gr-qc/ v1 24 Apr 1998 gr-qc/9804064 COLD SCALAR-TENSOR BLACK HOLES: CAUSAL STRUCTURE, GEODESICS, STABILITY arxiv:gr-qc/9804064v 24 Apr 998 K.A. Bronnikov, G. Clément 2, C.P. Constantinidis and J.C. Fabris 4 Departamento de

More information

Holography on the Horizon and at Infinity

Holography on the Horizon and at Infinity Holography on the Horizon and at Infinity Suvankar Dutta H. R. I. Allahabad Indian String Meeting, PURI 2006 Reference: Phys.Rev.D74:044007,2006. (with Rajesh Gopakumar) Work in progress (with D. Astefanesei

More information

D. f(r) gravity. φ = 1 + f R (R). (48)

D. f(r) gravity. φ = 1 + f R (R). (48) 5 D. f(r) gravity f(r) gravity is the first modified gravity model proposed as an alternative explanation for the accelerated expansion of the Universe [9]. We write the gravitational action as S = d 4

More information

Gravitation: Tensor Calculus

Gravitation: Tensor Calculus An Introduction to General Relativity Center for Relativistic Astrophysics School of Physics Georgia Institute of Technology Notes based on textbook: Spacetime and Geometry by S.M. Carroll Spring 2013

More information

Black Holes in Higher-Derivative Gravity. Classical and Quantum Black Holes

Black Holes in Higher-Derivative Gravity. Classical and Quantum Black Holes Black Holes in Higher-Derivative Gravity Classical and Quantum Black Holes LMPT, Tours May 30th, 2016 Work with Hong Lü, Alun Perkins, Kelly Stelle Phys. Rev. Lett. 114 (2015) 17, 171601 Introduction Black

More information

General Birkhoff s Theorem

General Birkhoff s Theorem General Birkhoff s Theorem Amir H. Abbassi Department of Physics, School of Sciences, Tarbiat Modarres University, P.O.Box 14155-4838, Tehran, I.R.Iran E-mail: ahabbasi@net1cs.modares.ac.ir Abstract Space-time

More information

LOCALIZATION OF FIELDS ON A BRANE IN SIX DIMENSIONS.

LOCALIZATION OF FIELDS ON A BRANE IN SIX DIMENSIONS. LOCALIZATION OF FIELDS ON A BRANE IN SIX DIMENSIONS Merab Gogberashvili a and Paul Midodashvili b a Andronikashvili Institute of Physics, 6 Tamarashvili Str., Tbilisi 3877, Georgia E-mail: gogber@hotmail.com

More information

Theory. V H Satheeshkumar. XXVII Texas Symposium, Dallas, TX December 8 13, 2013

Theory. V H Satheeshkumar. XXVII Texas Symposium, Dallas, TX December 8 13, 2013 Department of Physics Baylor University Waco, TX 76798-7316, based on my paper with J Greenwald, J Lenells and A Wang Phys. Rev. D 88 (2013) 024044 with XXVII Texas Symposium, Dallas, TX December 8 13,

More information

Properties of Traversable Wormholes in Spacetime

Properties of Traversable Wormholes in Spacetime Properties of Traversable Wormholes in Spacetime Vincent Hui Department of Physics, The College of Wooster, Wooster, Ohio 44691, USA. (Dated: May 16, 2018) In this project, the Morris-Thorne metric of

More information

A rotating charged black hole solution in f (R) gravity

A rotating charged black hole solution in f (R) gravity PRAMANA c Indian Academy of Sciences Vol. 78, No. 5 journal of May 01 physics pp. 697 703 A rotating charged black hole solution in f R) gravity ALEXIS LARRAÑAGA National Astronomical Observatory, National

More information

Thick Brane World. Seyen Kouwn Korea Astronomy and Space Science Institute Korea

Thick Brane World. Seyen Kouwn Korea Astronomy and Space Science Institute Korea Thick Brane World Seyen Kouwn Korea Astronomy and Space Science Institute Korea Introduction - Multidimensional theory 1 Why are the physically observed dimensions of our Universe = 3 + 1 (space + time)?

More information

TO GET SCHWARZSCHILD BLACKHOLE SOLUTION USING MATHEMATICA FOR COMPULSORY COURSE WORK PAPER PHY 601

TO GET SCHWARZSCHILD BLACKHOLE SOLUTION USING MATHEMATICA FOR COMPULSORY COURSE WORK PAPER PHY 601 TO GET SCHWARZSCHILD BLACKHOLE SOLUTION USING MATHEMATICA FOR COMPULSORY COURSE WORK PAPER PHY 601 PRESENTED BY: DEOBRAT SINGH RESEARCH SCHOLAR DEPARTMENT OF PHYSICS AND ASTROPHYSICS UNIVERSITY OF DELHI

More information

Self trapped gravitational waves (geons) with anti-de Sitter asymptotics

Self trapped gravitational waves (geons) with anti-de Sitter asymptotics Self trapped gravitational waves (geons) with anti-de Sitter asymptotics Gyula Fodor Wigner Research Centre for Physics, Budapest ELTE, 20 March 2017 in collaboration with Péter Forgács (Wigner Research

More information

On the Classification of Asymptotic Quasinormal Frequencies for d Dimensional Black Holes and Quantum Gravity

On the Classification of Asymptotic Quasinormal Frequencies for d Dimensional Black Holes and Quantum Gravity c 004 International Press Adv. Theor. Math. Phys. 8 004) 1001 1131 On the Classification of Asymptotic Quasinormal Frequencies for d Dimensional Black Holes and Quantum Gravity José Natário and Ricardo

More information

Fourth Aegean Summer School: Black Holes Mytilene, Island of Lesvos September 18, 2007

Fourth Aegean Summer School: Black Holes Mytilene, Island of Lesvos September 18, 2007 Fourth Aegean Summer School: Black Holes Mytilene, Island of Lesvos September 18, 2007 Central extensions in flat spacetimes Duality & Thermodynamics of BH dyons New classical central extension in asymptotically

More information

arxiv:gr-qc/ v1 6 Nov 2006

arxiv:gr-qc/ v1 6 Nov 2006 Different faces of the phantom K.A. Bronnikov, J.C. Fabris and S.V.B. Gonçalves Departamento de Física, Universidade Federal do Espírito Santo, Vitória, ES, Brazil arxiv:gr-qc/0611038v1 6 Nov 2006 1. Introduction

More information

An exact solution for 2+1 dimensional critical collapse

An exact solution for 2+1 dimensional critical collapse An exact solution for + dimensional critical collapse David Garfinkle Department of Physics, Oakland University, Rochester, Michigan 839 We find an exact solution in closed form for the critical collapse

More information

PROBLEM SET 6 EXTRA CREDIT PROBLEM SET

PROBLEM SET 6 EXTRA CREDIT PROBLEM SET MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.286: The Early Universe May 3, 2004 Prof. Alan Guth PROBLEM SET 6 EXTRA CREDIT PROBLEM SET CAN BE HANDED IN THROUGH: Thursday, May 13,

More information

Georgia Tech PHYS 6124 Mathematical Methods of Physics I

Georgia Tech PHYS 6124 Mathematical Methods of Physics I Georgia Tech PHYS 6124 Mathematical Methods of Physics I Instructor: Predrag Cvitanović Fall semester 2012 Homework Set #6a due Thursday, October 25, 2012 Notes for lectures 14 and 15: Calculus on smooth

More information

Black Holes, Thermodynamics, and Lagrangians. Robert M. Wald

Black Holes, Thermodynamics, and Lagrangians. Robert M. Wald Black Holes, Thermodynamics, and Lagrangians Robert M. Wald Lagrangians If you had asked me 25 years ago, I would have said that Lagrangians in classical field theory were mainly useful as nmemonic devices

More information

General Relativity and Differential

General Relativity and Differential Lecture Series on... General Relativity and Differential Geometry CHAD A. MIDDLETON Department of Physics Rhodes College November 1, 2005 OUTLINE Distance in 3D Euclidean Space Distance in 4D Minkowski

More information

Black-Hole Solutions with Scalar Hair in Einstein-Scalar-Gauss-Bonnet Theories

Black-Hole Solutions with Scalar Hair in Einstein-Scalar-Gauss-Bonnet Theories Black-Hole Solutions with Scalar Hair in Einstein-Scalar-Gauss-Bonnet Theories Athanasios Bakopoulos Physics Department University of Ioannina In collaboration with: George Antoniou and Panagiota Kanti

More information

arxiv: v1 [gr-qc] 19 Jun 2009

arxiv: v1 [gr-qc] 19 Jun 2009 SURFACE DENSITIES IN GENERAL RELATIVITY arxiv:0906.3690v1 [gr-qc] 19 Jun 2009 L. FERNÁNDEZ-JAMBRINA and F. J. CHINEA Departamento de Física Teórica II, Facultad de Ciencias Físicas Ciudad Universitaria,

More information

FRW cosmology: an application of Einstein s equations to universe. 1. The metric of a FRW cosmology is given by (without proof)

FRW cosmology: an application of Einstein s equations to universe. 1. The metric of a FRW cosmology is given by (without proof) FRW cosmology: an application of Einstein s equations to universe 1. The metric of a FRW cosmology is given by (without proof) [ ] dr = d(ct) R(t) 1 kr + r (dθ + sin θdφ ),. For generalized coordinates

More information

arxiv: v1 [gr-qc] 1 Aug 2016

arxiv: v1 [gr-qc] 1 Aug 2016 Stability Aspects of Wormholes in R Gravity James B. Dent a, Damien A. Easson b, Thomas W. Kephart c, and Sara C. White a a Department of Physics, University of Louisiana at Lafayette, Lafayette, LA 70504,

More information

Formation and Evaporation of Regular Black Holes in New 2d Gravity BIRS, 2016

Formation and Evaporation of Regular Black Holes in New 2d Gravity BIRS, 2016 Formation and Evaporation of Regular Black Holes in New 2d Gravity BIRS, 2016 G. Kunstatter University of Winnipeg Based on PRD90,2014 and CQG-102342.R1, 2016 Collaborators: Hideki Maeda (Hokkai-Gakuen

More information

Lecture 9: RR-sector and D-branes

Lecture 9: RR-sector and D-branes Lecture 9: RR-sector and D-branes José D. Edelstein University of Santiago de Compostela STRING THEORY Santiago de Compostela, March 6, 2013 José D. Edelstein (USC) Lecture 9: RR-sector and D-branes 6-mar-2013

More information

arxiv:gr-qc/ v3 11 Aug 1998

arxiv:gr-qc/ v3 11 Aug 1998 No Scalar Hair Theorem for a Charged Spherical Black Hole arxiv:gr-qc/9803019v3 11 Aug 1998 N.Banerjee and S.Sen Relativity and Cosmology Research Centre, Department of Physics, Jadavpur University, Calcutta-700032,

More information

Stationarity of non-radiating spacetimes

Stationarity of non-radiating spacetimes University of Warwick April 4th, 2016 Motivation Theorem Motivation Newtonian gravity: Periodic solutions for two-body system. Einstein gravity: Periodic solutions? At first Post-Newtonian order, Yes!

More information

The Geometric Scalar Gravity Theory

The Geometric Scalar Gravity Theory The Geometric Scalar Gravity Theory M. Novello 1 E. Bittencourt 2 J.D. Toniato 1 U. Moschella 3 J.M. Salim 1 E. Goulart 4 1 ICRA/CBPF, Brazil 2 University of Roma, Italy 3 University of Insubria, Italy

More information

Introduction to AdS/CFT

Introduction to AdS/CFT Introduction to AdS/CFT Who? From? Where? When? Nina Miekley University of Würzburg Young Scientists Workshop 2017 July 17, 2017 (Figure by Stan Brodsky) Intuitive motivation What is meant by holography?

More information

arxiv: v2 [hep-th] 21 Jul 2017

arxiv: v2 [hep-th] 21 Jul 2017 Effective Temperatures and Radiation Spectra for a Higher-Dimensional Schwarzschild-de-Sitter Black-Hole arxiv:1705.09108v2 [hep-th] 21 Jul 2017 P. Kanti and T. Pappas Division of Theoretical Physics,

More information

Causality, hyperbolicity, and shock formation in Lovelock theories

Causality, hyperbolicity, and shock formation in Lovelock theories Causality, hyperbolicity, and shock formation in Lovelock theories Harvey Reall DAMTP, Cambridge University HSR, N. Tanahashi and B. Way, arxiv:1406.3379, 1409.3874 G. Papallo, HSR arxiv:1508.05303 Lovelock

More information

Studying the cosmological apparent horizon with quasistatic coordinates

Studying the cosmological apparent horizon with quasistatic coordinates PRAMANA c Indian Academy of Sciences Vol. 80, No. journal of February 013 physics pp. 349 354 Studying the cosmological apparent horizon with quasistatic coordinates RUI-YAN YU 1, and TOWE WANG 1 School

More information

Physics 325: General Relativity Spring Final Review Problem Set

Physics 325: General Relativity Spring Final Review Problem Set Physics 325: General Relativity Spring 2012 Final Review Problem Set Date: Friday 4 May 2012 Instructions: This is the third of three review problem sets in Physics 325. It will count for twice as much

More information

THE 2D ANALOGUE OF THE REISSNER-NORDSTROM SOLUTION. S. Monni and M. Cadoni ABSTRACT

THE 2D ANALOGUE OF THE REISSNER-NORDSTROM SOLUTION. S. Monni and M. Cadoni ABSTRACT INFNCA-TH9618 September 1996 THE 2D ANALOGUE OF THE REISSNER-NORDSTROM SOLUTION S. Monni and M. Cadoni Dipartimento di Scienze Fisiche, Università di Cagliari, Via Ospedale 72, I-09100 Cagliari, Italy.

More information

HOMEWORK 10. Applications: special relativity, Newtonian limit, gravitational waves, gravitational lensing, cosmology, 1 black holes

HOMEWORK 10. Applications: special relativity, Newtonian limit, gravitational waves, gravitational lensing, cosmology, 1 black holes General Relativity 8.96 (Petters, spring 003) HOMEWORK 10. Applications: special relativity, Newtonian limit, gravitational waves, gravitational lensing, cosmology, 1 black holes 1. Special Relativity

More information

Bachelor Thesis. General Relativity: An alternative derivation of the Kruskal-Schwarzschild solution

Bachelor Thesis. General Relativity: An alternative derivation of the Kruskal-Schwarzschild solution Bachelor Thesis General Relativity: An alternative derivation of the Kruskal-Schwarzschild solution Author: Samo Jordan Supervisor: Prof. Markus Heusler Institute of Theoretical Physics, University of

More information

Einstein Toolkit Workshop. Joshua Faber Apr

Einstein Toolkit Workshop. Joshua Faber Apr Einstein Toolkit Workshop Joshua Faber Apr 05 2012 Outline Space, time, and special relativity The metric tensor and geometry Curvature Geodesics Einstein s equations The Stress-energy tensor 3+1 formalisms

More information

Einstein Double Field Equations

Einstein Double Field Equations Einstein Double Field Equations Stephen Angus Ewha Woman s University based on arxiv:1804.00964 in collaboration with Kyoungho Cho and Jeong-Hyuck Park (Sogang Univ.) KIAS Workshop on Fields, Strings and

More information

arxiv: v2 [hep-th] 13 Aug 2016

arxiv: v2 [hep-th] 13 Aug 2016 Hawking Radiation Spectra for Scalar Fields by a Higher-Dimensional Schwarzschild-de-Sitter Black Hole arxiv:1604.08617v2 [hep-th] 13 Aug 2016 T. Pappas 1, P. Kanti 1 and N. Pappas 2 1 Division of Theoretical

More information

Conserved Quantities and the Evolution of Perturbations in Lemaître-Tolman-Bondi Cosmology

Conserved Quantities and the Evolution of Perturbations in Lemaître-Tolman-Bondi Cosmology NAM 2015 1/17 Conserved Quantities and the Evolution of Perturbations in Lemaître-Tolman-Bondi Cosmology Alexander Leithes From arxiv:1403.7661 (published CQG) by AL and Karim A. Malik NAM 2015 2/17 Overview

More information

EXTREMELY CHARGED STATIC DUST DISTRIBUTIONS IN GENERAL RELATIVITY

EXTREMELY CHARGED STATIC DUST DISTRIBUTIONS IN GENERAL RELATIVITY arxiv:gr-qc/9806038v1 8 Jun 1998 EXTREMELY CHARGED STATIC DUST DISTRIBUTIONS IN GENERAL RELATIVITY METÍN GÜRSES Mathematics department, Bilkent University, 06533 Ankara-TURKEY E-mail: gurses@fen.bilkent.edu.tr

More information

A A + B. ra + A + 1. We now want to solve the Einstein equations in the following cases:

A A + B. ra + A + 1. We now want to solve the Einstein equations in the following cases: Lecture 29: Cosmology Cosmology Reading: Weinberg, Ch A metric tensor appropriate to infalling matter In general (see, eg, Weinberg, Ch ) we may write a spherically symmetric, time-dependent metric in

More information

Black holes in massive gravity

Black holes in massive gravity Black holes in massive gravity Eugeny Babichev LPT, Orsay IAP PARIS, MARCH 14 2016 REVIEW: in collaboration with: R. Brito, M. Crisostomi, C. Deffayet, A. Fabbri,P. Pani, ARXIV:1503.07529 1512.04058 1406.6096

More information

2 General Relativity. 2.1 Curved 2D and 3D space

2 General Relativity. 2.1 Curved 2D and 3D space 22 2 General Relativity The general theory of relativity (Einstein 1915) is the theory of gravity. General relativity ( Einstein s theory ) replaced the previous theory of gravity, Newton s theory. The

More information

arxiv:gr-qc/ v1 29 Jan 2003

arxiv:gr-qc/ v1 29 Jan 2003 Some properties of a string V. Dzhunushaliev June, 8 Dept. Phys. and Microel. Engineer., KRSU, Bishkek, Kievskaya Str., 7, Kyrgyz Republic arxiv:gr-qc/38v 9 Jan 3 Abstract The properties of 5D gravitational

More information

Gravitational waves, solitons, and causality in modified gravity

Gravitational waves, solitons, and causality in modified gravity Gravitational waves, solitons, and causality in modified gravity Arthur Suvorov University of Melbourne December 14, 2017 1 of 14 General ideas of causality Causality as a hand wave Two events are causally

More information

Geometric inequalities for black holes

Geometric inequalities for black holes Geometric inequalities for black holes Sergio Dain FaMAF-Universidad Nacional de Córdoba, CONICET, Argentina. 3 August, 2012 Einstein equations (vacuum) The spacetime is a four dimensional manifold M with

More information

Cosmology in generalized Proca theories

Cosmology in generalized Proca theories 3-rd Korea-Japan workshop on dark energy, April, 2016 Cosmology in generalized Proca theories Shinji Tsujikawa (Tokyo University of Science) Collaboration with A.De Felice, L.Heisenberg, R.Kase, S.Mukohyama,

More information

Quantum Gravity and Black Holes

Quantum Gravity and Black Holes Quantum Gravity and Black Holes Viqar Husain March 30, 2007 Outline Classical setting Quantum theory Gravitational collapse in quantum gravity Summary/Outlook Role of metrics In conventional theories the

More information

PAPER 311 BLACK HOLES

PAPER 311 BLACK HOLES MATHEMATICAL TRIPOS Part III Friday, 8 June, 018 9:00 am to 1:00 pm PAPER 311 BLACK HOLES Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal weight. STATIONERY

More information

Testing cosmic censorship with black hole collisions

Testing cosmic censorship with black hole collisions University of Massachusetts Amherst ScholarWorks@UMass Amherst Physics Department Faculty Publication Series Physics 1994 Testing cosmic censorship with black hole collisions D Brill G Horowitz David Kastor

More information

4. MiSaTaQuWa force for radiation reaction

4. MiSaTaQuWa force for radiation reaction 4. MiSaTaQuWa force for radiation reaction [ ] g = πgt G 8 g = g ( 0 ) + h M>>μ v/c can be large + h ( ) M + BH μ Energy-momentum of a point particle 4 μ ν δ ( x z( τ)) μ dz T ( x) = μ dτ z z z = -g dτ

More information

carroll/notes/ has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general

carroll/notes/ has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general http://pancake.uchicago.edu/ carroll/notes/ has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general relativity. As with any major theory in physics, GR has been

More information

arxiv: v1 [gr-qc] 1 Nov 2017

arxiv: v1 [gr-qc] 1 Nov 2017 Uniqueness theorem for static phantom wormholes in Einstein-Maxwell-dilaton theory Boian Lazov 1, Petya Nedkova 1,, and Stoytcho Yazadjiev 1,3 arxiv:1711.0090v1 [gr-qc] 1 Nov 017 1 Department of Theoretical

More information

Symmetries, Horizons, and Black Hole Entropy. Steve Carlip U.C. Davis

Symmetries, Horizons, and Black Hole Entropy. Steve Carlip U.C. Davis Symmetries, Horizons, and Black Hole Entropy Steve Carlip U.C. Davis UC Davis June 2007 Black holes behave as thermodynamic objects T = κ 2πc S BH = A 4 G Quantum ( ) and gravitational (G) Does this thermodynamic

More information

Yun Soo Myung Inje University

Yun Soo Myung Inje University On the Lifshitz black holes Yun Soo Myung Inje University in collaboration with T. Moon Contents 1. Introduction. Transition between Lifshitz black holes and other configurations 3. Quasinormal modes and

More information

Are spacetime horizons higher dimensional sources of energy fields? (The black hole case).

Are spacetime horizons higher dimensional sources of energy fields? (The black hole case). Are spacetime horizons higher dimensional sources of energy fields? (The black hole case). Manasse R. Mbonye Michigan Center for Theoretical Physics Physics Department, University of Michigan, Ann Arbor,

More information

arxiv:gr-qc/ v1 11 May 2000

arxiv:gr-qc/ v1 11 May 2000 EPHOU 00-004 May 000 A Conserved Energy Integral for Perturbation Equations arxiv:gr-qc/0005037v1 11 May 000 in the Kerr-de Sitter Geometry Hiroshi Umetsu Department of Physics, Hokkaido University Sapporo,

More information

AdS and Af Horndeski black hole solutions in four dimensions

AdS and Af Horndeski black hole solutions in four dimensions AdS and Af Horndeski black hole solutions in four dimensions Physics and Mathematics Department, Universidad Austral de Chile December 17, 2014 (UACh) AdS and Af Horndeski black hole solutions December

More information

Entropy of Quasiblack holes and entropy of black holes in membrane approach

Entropy of Quasiblack holes and entropy of black holes in membrane approach Entropy of Quasiblack holes and entropy of black holes in membrane approach José P. S. Lemos Centro Multidisciplinar de Astrofísica, CENTRA, Lisbon, Portugal Oleg B. Zaslavskii Department of Physics and

More information

Domain Wall Brane in Eddington Inspired Born-Infeld Gravity

Domain Wall Brane in Eddington Inspired Born-Infeld Gravity 2012cüWâfÔn»Æï? Domain Wall Brane in Eddington Inspired Born-Infeld Gravity µ4œ Ç =²ŒÆnØÔnïÄ Email: yangke09@lzu.edu.cn I# Ÿ 2012.05.10 Outline Introduction to Brane World Introduction to Eddington Inspired

More information

8.821 F2008 Lecture 05

8.821 F2008 Lecture 05 8.821 F2008 Lecture 05 Lecturer: McGreevy Scribe: Evangelos Sfakianakis September 22, 2008 Today 1. Finish hindsight derivation 2. What holds up the throat? 3. Initial checks (counting of states) 4. next

More information

Massive gravitons in arbitrary spacetimes

Massive gravitons in arbitrary spacetimes Massive gravitons in arbitrary spacetimes Mikhail S. Volkov LMPT, University of Tours, FRANCE Kyoto, YITP, Gravity and Cosmology Workshop, 6-th February 2018 C.Mazuet and M.S.V., Phys.Rev. D96, 124023

More information

Gravitation: Cosmology

Gravitation: Cosmology An Introduction to General Relativity Center for Relativistic Astrophysics School of Physics Georgia Institute of Technology Notes based on textbook: Spacetime and Geometry by S.M. Carroll Spring 2013

More information

Waveforms produced by a particle plunging into a black hole in massive gravity : Excitation of quasibound states and quasinormal modes

Waveforms produced by a particle plunging into a black hole in massive gravity : Excitation of quasibound states and quasinormal modes Waveforms produced by a particle plunging into a black hole in massive gravity : Excitation of quasibound states and quasinormal modes Mohamed OULD EL HADJ Université de Corse, Corte, France Projet : COMPA

More information

PROBLEM SET 10 (The Last!)

PROBLEM SET 10 (The Last!) MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.286: The Early Universe December 8, 2016 Prof. Alan Guth PROBLEM SET 10 (The Last!) DUE DATE: Wednesday, December 14, 2016, at 4:00 pm.

More information

UNIVERSITY OF DUBLIN

UNIVERSITY OF DUBLIN UNIVERSITY OF DUBLIN TRINITY COLLEGE JS & SS Mathematics SS Theoretical Physics SS TSM Mathematics Faculty of Engineering, Mathematics and Science school of mathematics Trinity Term 2015 Module MA3429

More information

Classical Oscilators in General Relativity

Classical Oscilators in General Relativity Classical Oscilators in General Relativity arxiv:gr-qc/9709020v2 22 Oct 2000 Ion I. Cotăescu and Dumitru N. Vulcanov The West University of Timişoara, V. Pârvan Ave. 4, RO-1900 Timişoara, Romania Abstract

More information