ADDITIONAL SOLUTIONS for exercises in Introductory Symbolic Logic Without Formal Proofs

Size: px
Start display at page:

Download "ADDITIONAL SOLUTIONS for exercises in Introductory Symbolic Logic Without Formal Proofs"

Transcription

1 1 ADDITIONAL SOLUTIONS for exercises in Introductory Symbolic Logic Without Formal Proofs P P v ~J 3. ~P ~J 4. ~P (~A ~J) 5. ~(J v A) 6. [J v (~A ~J)] 7. J A 8. J (A P) 9. J (A v P) 11. P v (A J) 12. P v ~(J A); this could also be interpreted as P v (~J ~A) 13. ~(A J) 14. ~(J v A) or (~J ~A)16. A J 18. J P P. 42 (6 & 7 are logical equivalences; 2, and 5 are logical implications.) Pp I. 1. AB A B B 2. AC AvC A ~C TT T T TT T T F TF F F TF T T T FT F T FT T F F FF F F FF F F T 3. AB A B ~B ~A 4. AC A v C ~A C 5. DE D E E D TT T F F TT T F T TT T T T TF F T F TF T F F TF F F T FT T F T FT T T T FT F T F FF T T T FF F T F FF T F F II. The solutions below utilize the shorter truth table. 1. ST Sv~T T S 2. SR ~SvR R S TT T T T TT T T T TF T F TF F FT F FT T T F FF T F FF T F 3. PC P C ~C ~P 4. EP ~(E P) P ~E 5. PC ~(P C) C P TT T F TT F T TT F T TF F TF T F F TF T F F FT T F FT T F T T FT F T FF T T T FF T F F FF F T 7. JOH ~J ~O ~O H JvH 8. CTP C (TvP) ~T C P TTT F T F T T TTT T T T F TTF F T F T T TTF T T T F TFT F T T TT T TFT T T T T T TFF F T T FF TFF T F F FTT T FF FTT F T F FTF T FF FTF F T F FFT T TT T TT T FFT F T T T FFF T TT T FF FFF F T T T

2 2 9. APN A (PvN) ~N P 10. QD Q ~D ~Q D TTT T T T F TT FF TTF T T T T T TF TT F TFT T T T F FT TF T T TFF T F F FF FT FTT F T F FTF F T T T FFT F T F FFF F T T F P. 58 In what follows, (a) gives the truth table; (b), the argument form; (c), the argument proposition; (d), the statement form. 1. (a) AB A B ~B ~A (b) p q TT T F F T ~q ~p TF F FT T F T (c) (A B) (~B ~A) FF T T T T (d) (p q) (~q ~p) 2. (a) ABC A (B C) B C (b) [p (p r)] (p q) TTT T T T T TTF T F F (c) [A (B C)] (B C) TFT T T T T TFF T T T T (d) [p (q r)] (p r) FTT F F T FTF F F FFT F F FFF F F 3. (a) A B (A v B) (A B) (A v B) (A v B) A B T T T T T T T T F T F F F T T F F F F F T F (b) (p v q) (p q) (c) {[(A v B) (A B)] (A v B)} (A B) (p v q) (d) [(p v q) (p q)] (p v q)} (p q) (p q) 4. (a) P C ~(P C) C P (b) ~(p q) T T F T q p T F T F F F T F T (c) ~(P C) (C P) F F (d) ~(p q) (q p) 5. (a) E A G ~E v A A G ~(G ~E) (b) ~p v q T T T F T T T T T F F q r T T F F T T F ~(r ~p) T F T F F F T F F F F F (c) [(~E v A) (A G)] ~(G ~E) F T T T T T T T T F T T T F T F (d) [(~p v q) (q r)] ~(r ~p) F F T F F F

3 3 6. (a) H M H M M H (b) p q (c) (H M) (M H) T F T T q p T F F F T T F (d) (p q) (q p) PP I. When first stating what is in each path in (c) below, I begin with the first path on the left and move to the right. 1. (a) 6 branches; (b) 4 paths; (c) BCA; BC~D; BDA; BD~D 2. (a) 2 " (b) 2 " (c) BDA~E; BD~A. 3. (a) 6 " (b) 4 " (c) BDAE ~E; BDAEF; BD~C~E; BD~C F. 4. (a) O " (b) 1 " (c) CE~F. 5. (a) 4 " (b) 3 " (c) CFG; CFHA; CFHB or 4 " (b) 3 " (c) AG; AE; AF AGET; AG~BC~E F~E; FG; FH E~BG; E~BH; E~BI;F. II. For each of the problems, I indicate first whether the tree is open or closed and, if it is open, I indicate which paths are open, counting from the left. 1. open tree; left & right-hand paths are open 5. closed tree 2. closed tree 6. closed tree 3. open tree; left path is open 7. open tree; right path is open 4. open tree; left path is open 8. closed tree P. 76 In these exercises, I simply put statements on the tree in the order in which they appear in the argument, rather than in the economical way we do this later, to keep things simple. Note that #4 is an example where the student should add all of the information in premise 3 before the path is closed off. That is, as soon as the student adds "~C," the second and fourth paths close off. Nevertheless, for the sake of clarity, I require the students to add all of premise 3 "~C D," and then check for contradictions. 1. /\ 2. B 3. B A B / \ C / \ ~B A / \ ~B C ~B C x / \ A ~B ~C ~C x ~C ~B C / \ x ~A x x x ~C ~C H x x ~A x 4. /\ 5. / \ 6. B 7. B A B B H G ~A / \ / \ ~G ~G ~G C ~B A ~A C ~A C A A A / \ X ~C x ~C ~C ~C / \ x ~H G ~C D D D G C G C / \ /\ invalid: x ~C x x ~C x ~C ~B H ~B H B,A,~C invalid: x x x x x ~A B,~A,~C,D invalid: B,~A,C,G,H

4 4 8. / \ 9. / \ 10. ~D A C X ~X / \ B \ T ~T A B / ~B ~C / / \ / \ / \ ~B ~C ~B x A B A B D ~A D ~A x ~B X ~T X ~T x ~D x ~D x / / / \ \ x / \ ~A ~B ~A ~B ~A ~B ~A ~B G I x ~X ~X x x ~X ~X x H ~I invalid: x x x ~I x C,~B invalid invalid: ~X.~T,B,~A ~D,B,~A,G,H,~I P (1) p q ~q (2)~q p (3) ~p / \ (4) ~~p N.C.,3 ~p q (5) p D.N.,4 x x (6) ~p v q Impl.,1 2. (1) p q ~q (2) ~q p (3) ~p / \ (4) ~~p N.C.,3 p ~p (5) p D.N.,4 q ~q (6) (p q) v (~p ~q) Equiv.,1 x x 3. (1) p p (2) ~q ~q (3) p v q ~p (4) ~(p v q) N.C.,3 ~q (5) ~p ~q DeM., 4 x ~r 4. (1) ~r ~p ~p (2) p v q / \ (3) q v r p q (4) p q x / \ (5) ~(p q) N.C., 4 q r (6) ~pv~q DeM., 5 / \ x ~p ~q x r 5. (1) r ~q (2) p q / \ (3) r p ~p q (4) q / \ x (5) ~q N.C., 4 r ~r (6) ~p v q Impl.,2 p ~p (7) (r p) v (~r ~p) Equiv.,3 x x P. 88 I. 1. 1) A (B C) 2. 1) (C D) (S D) 2) ~A v (B C) Impl.,1 2) ~(C D) v (S D) Impl.,2 3) ~A v (~B v C) Impl.,2 3) (~C v ~D) v (S D) DeM.,2 4) (~C v ~D) v (~S v D) Impl, ) (A v B) C 2) ~(A v B) v C Impl.,1 4. 1) ~(E F) D 3) (~A ~B) v C DeM., 2 2) ~~(E F) v D Impl.,1 3) (E F) v D D.N.,2

5 5. 1) ~(A B) 6. 1) G (B D) 2) A ~B N.I.,1 2) ~G v (B D) Impl., ) A ~(C v E) 8. 1) D ~E 2) ~A v ~(C v E) Impl.,1 2) (D ~E) v (~D ~~E) Equiv.,1 3) ~A v (~C ~E) DeM.,3 3) (D ~E) v (~D E) D.N.,3 9. 1) ~[(A B) ~D] 10. 1) ~A (~B C) 2) (A B) ~D N.I.,1 2) ~~A v (~B C) Impl.,1 3) A v (~B C) D.N..,2 4) A v (~~B v C) Impl.,3 5) A v (B v C) D.N.,4 II. 1. 1) S D S 2. 1) (~D v ~P) C ~C 2) D F ~F 2)..C / \ 3).. S F / \ 3) ~C NC,2 D C 4) ~(S F) NC,3 ~S D 4) ~(~D v ~P) v C Impl,1 P x 5) S ~F NI,4 x / \ 5) (~~D ~~P) v C DeM,4 6) ~S v D Impl,1 ~D F 6) (D P) v C (2) DN,5* invalid: ~C,D,P 7) ~D v F Impl,2 x x ~A P. 95 I. 1. 5) ~A NC,4 / \ ~A C 6) ~A v C Impl,1 / \ / \ 7) ~C v ~D Impl,2 ~C ~D ~C ~D Invalid: X ~A,~C,D ~E 2. 3) B A B 5) ~E NC,4 A 6) ~A v B Impl,1 / \ 7) C (~B v E) Impl,2 ~A B x C / \ ~B E x x 3. 5) ~C ~C 6) ~B v C Impl,1 / \ 7) ~E v (~B v F) (2) Impl,2* ~B C 8) (B E) v (~B ~E) Equiv,3 / \ X B ~B E ~E INVALID: ~C,~B,~E X / \ ~E /\ B F *NOTE: I have applied the same rule twice in a single step, indicating in parentheses how many times I applied the rule. B ~F 4. 5) ~(B F) NC,4 / \ 6) B ~F NI,5 ~F E 7) ~F v E Impl,2 / \ / \ A ~B A ~B 8) ~(B A) v C Impl,3 C x C X invalid: 9) (~B v ~A) v C DeM,8 / \ \ / \ \ B,~F,A,C ~B ~A C ~B ~A C x x x x

6 6 5. 5) ~[(C A) B] NC,4 C 6) (C A) ~B NI,5 A 7) ~(F v C) v A Impl,1 ~B 8) (~F ~C) v A DeM,7 / \ 9) ~C v B Impl,2 ~C B 10) ~C v (~A v D) (2)Impl,3 X X C ~H II. 2. 1) C (V L) / \ 2) T (H v A)* ~C V 3) L T X L 4) C H / \ 5) ~(C H) NC,4 ~L T 6) C ~H NI,5 X /\ 7) ~C v (V L) Impl,1 ~T / \ 8) ~T v (H v A) Impl,2 invalid: X H A 9) ~L v T Impl,3 C,~H,V,L,T,A X *The consequent here is really an exclusive "or." It would be translated as T [(HvA) ~(H A)]. This will add another pair of branches to the open path, but one will remain open anyway, with the same information in the open path as this tree. T 3. 1) (P T) (I v D) ~I 2) P D / \ 3) T I / / \ 4) ~(T I) NC,3 ~P ~T I D 5) T ~I NI,4 / \ X X / \ 6) ~(P T) v (I v D) Impl,1 P ~P P ~P 7) (~P v ~T) v (I v D) DeM,6 D ~D D ~D invalid: 8) (P D) v (~P ~D) Equiv,2 X X T,~I,~P,~D or T,~I,D,P 4. 1) J (S C) S 2) S (J ~C) / \ 3)..~S ~S J 4) ~~S NC,3 X ~C 5) S DN,4 / \ 6) ~J v (~S v C) (2) Impl,1 ~J /\ 7) ~S v (J ~C) Impl,2 X ~S C X X P ) P J ~H 2) J H / \ 3) ~H ~J H 4) ~P ~J / \ x 5) ~(~P ~J) NC,4 ~P J 6) ~~P v ~~J DeM,5 / \ x 7) P v J (2)DN,6 P J 8) ~P v J Impl,1 x x 9) ~J v H Impl,2 6. 1) S v G ~R 2) (S v ~T) R / \ 3) G (R v S) ~S R 4)..R T X 5) ~R NC,4 / \ 6) ~(S v ~T) v R Impl,2 ~G \ 7) (~S ~~T) v R DeM,6 / R S 8) (~S T) v R DN,7 S G X X 9) ~G v (R v S) Impl,3 X X

7 7. 1) S (C I) S 2) C (~D ~H) ~D 3) ~H ~S / \ 4)..S D ~S C 5) ~(S D) NC,4 X I 6) S ~D NI,5 / \ 7) ~S v (C I) Impl,1 ~C / \ 8) ~C v (~~D v ~H) (2) Impl,2 X D ~H 9) ~C v (D v ~H) DN,8 X / \ 10) ~~H v ~S Impl,3 H ~S 11) H v ~S DN,10 X X ) I (C ~L) 10) L v ~D DN,9 I 2) ~L ~D 11) ~D v R Impl,3 R 3) D R / \ 4)..I ~R ~I C 5) ~(I ~R) NC,5 X ~L 6) I ~~R NI,5 / \ invalid: 7) I R DN,6 L ~D I,R,C,~L.~D 8) ~I v (C ~L) Impl,1 X / \ 9) ~~L v ~D Impl,2 ~D R 9. 1) I (~C ~T) I 2) ~(T v C) F ~R 3) F R / \ 4)..I R ~I ~C 5) ~(I R) NC,4 X ~T 6) I ~R NI, 5 / \ 7) ~I v (~C ~T) Impl,1 / F 8) ~~(T v C) v F Impl,2 T C / \ 9) (T v C) v F DN,8 X X ~F R 10) ~F v R Impl,3 X X P. 97 III. A. 5) ~B NC,4 ~B C. 5) ~B NC,4 / \ ~F B ~B / \ X G ~D F / \ ~E X B ~A A X / \ \ / \ H~F C A B D ~D B E ~G ~F C X E X / \ x x X X A C F D D D ~C~C~C x x x B. 5) ~~C NC,4 C C DN,5 / \ ~C ~D X / \ D ~G ~F X / \ \ F A F A / / \ \ \ invalid: C,~D,~F,A,G ~F D~F D~FD~F D G E G E GE G E x x x x xx x

8 IV. A. 5) ~(G E) NC,4 B. 5) ~(~C ~P) NC,4 6) ~G v ~E DeM,5 6) ~C ~~P) NI,5 7) (A E) v (~A ~E) Equiv,1 7) ~C P DN,6 8) ~A v C Impl,2 8) G [(H ~I)v(~H ~~I)] Equiv,1 9) ~~A v (~E v G) Impl,3 9) G [(H ~I)v(~HvI) DN,8 10) A v (~E v G) DN,9 10) ~(HvI)v(~HvC) (2)Impl,2 11) (~H ~I)v(~HvC) DeM,10 12) ~(~HvF)vP Impl,3 13) (~~H ~F)vP DeM,12 14) (H ~F)vP DN,13 P. 98 C. 5) ~(~CvAvI) NC,4 D. 5) ~[C (BvD)] NC,4 6) ~~C ~A ~I Dem,5 6) C ~(BvD) NI,5 7) C ~A ~I DN,6 7) C (~B ~D) DeM,6 8) (~I B)v(~~I ~B) Equiv,1 8) ~(~D H)v(L A) Impl,2 9) (~I B)v(I ~B) DN,8 9) (~~Dv~H)v(L A) DeM,8 10) ~(GvB)vI Impl,2 10) (Dv~H)v(L A) DN,9 11) (~G ~B)vI DeM,9 11) [(A B) C]v[~(A B) ~C] Equiv,1 12) [(AvB) C]v[~(AvB) ~C] Equiv,3 12) [(A B) C]v[(A ~B) ~C] NI,11 13) [(AvB) C]v[(~A ~B) ~C] DeM,12 13) [(~A v B) C]v[(A ~B) ~C] Impl, 13 14) ~~Hv(~AvD) (2)Impl,3 15) Hv(~AvD) DN,14 8 E. 5) ~[(~Cv~D)v(H ~I)] NC,4 V. C=there is a contracted pelvis 6) ~(~Cv~D) ~(H ~I) DeM,5 T=fetus is in the tranverse position 7) (~~C.~~D) (~Hv~~I) (2) DeM,6 P=Caesarian section should be performed 8) (C D) (~HvI) (3)DN,7 9) ~~Hv(~CvB) Impl,1 First question: (C T) P ~C 10) Hv(~CvB) DN,9 Second question: T P T 11) ~~Iv(BvH) Impl,2 Inference: C P 12) Iv(BvH) DN,11 / \ 13) ~HvI Impl,3 invalid ~C ~T P X P. l08 1.The argument is of course invalid. (The U.S. Supreme Court subsequently overturned the decision on free speech grounds.) 1) (TvO) V 2) V L 3) R (W V) 4) M 5) V O P. 113 I. 1. Only the left path closes off. 2. Only the right path closes off. 3. None of the paths closes off. 4. Both paths close off. P Only the right path remains open. 6. None of the paths closes off. 7. Only the middle path closes off. 8. Both paths close off. 9. Both paths close off. 10. All paths close off Hj Rj 2. Rs Ms 3. (Hs Ms) Rs 4. (HjvMj) Rj 5. (Hs Rs) Ms P (x)(ox Tx) 2. (x)(px Yx) 3. (x)(hx Rx) 4. (x)[hx (Rx v Mx] 5. (x)[(ox Ex) Vx] 6. (x)[(ox Bx) Dx] 7. (x)[(ox Bx) (Dx v Ex)]

9 9 P ) (x)[tx (Sx v Kx)] 2) (x)(kx Gx) Tj 3) Tj ~Kj 4) Kj / \ 5) ~Kj NC,4 ~Tj / \ 6) Tj (Sj v Kj) UI,1 x Sj Kj 7) Kj Gj UI,2 / \ x 8) ~Tj v (Sj v Kj) Impl,6 ~Kj Gj 9) ~Kj v Gj Impl,7 invalid: Tj,~Kj,Sj 2. 1) (x)[(gx v Kx) Tx] ~Tj 2) ~Tj Kj 3) ~Kj / \ 4) ~~Kj NC,3 ~Gj Tj 5) Kj DN,4 ~Kj x 6) (Gj v Kj) Tj UI,1 x 7) ~(Gj v Kj) v Tj Impl,6 8) (~Gj ~Kj) v Tj DeM,7 Df 3. 1) (x)(dx Fx) 7) ~Df v Ff Impl,6 ~Pf 2) (x)(fx Px) 8) Ff Pf UI,2 / \ 3) Df 9) ~Ff v Pf Impl,8 ~Df Ff 4) Pf x / \ 5) ~Pf NC,4 ~Ff Pf 6) Df Ff UI,1 x x 4. 1) (x)[(dx Tx) (Cx Tx)] ~Tr 2) ~Tr Cr 3) ~Cr / \ 4) ~~Cr NC,3 5) Cr DN,4 ~Dr Tr 6) (Dr Tr) (Cr Tr) UI,1 / \ 7) (~Dr v Cr) (~Cr v Tr) (2)Impl,6 ~Cr Tr ~Cr Tr x x x x (The first premise does not refer to all x's that are both dogs and cats, so it is not (x)[(dx Cx) Tx]. One could also read the "and" as an "or" yielding (x) (Dx v Cx) Tx.) 5. 1) (x)[(dx (Ix v Vx)] Dl 2) (x)[(ix Dx) Tx] ~Vl 3) Dl ~Vl ~Il 4) Il / \ 5) ~Il NC,4 ~Dl \ 6) Dl (Il v Vl) UI,1 x Il Vl 7) ~Dl v (Il v Vl) Impl,6 x x 8) (Ia Da) Ta UI,2 9) ~(Ia Da) v Ta Impl,8 10) (~Ia v ~Da) v Ta) DeM,9

10 10 P. 125 Dr 2. 1) (x)(dx ~Vx) ~Pr 2) (x)(vx ~Px) / \ 3) Dr ~Dr ~Vr 4) Pr x / \ 5) ~Pr NC,4 ~Vr ~Pr 6) Dr ~Vr UI,1 invalid: Dr,~Pr,~Vr 7) ~Dr v ~Vr Impl,6 8) Vr ~Pr UI,2 Dr Vr Pr Dr ~Vr Vr ~Pr Dr Pr 9) ~Vr v ~Pr Impl,8 T F F T T T F T T F 3. 1) (x)[dx ~(Ix.Gx)] Dr 2) Dr ~Ir 3) ~Ir ~Gr 4) Gr / \ 5) ~Gr NC,4 ~Dr / \ 6) Dr ~(Ir.Gr) UI,1 x ~Ir ~Gr 7) ~Dr v ~(Ir.Gr) Impl,1 8) ~Dr v (~Ir v ~Gr) Dem,7 invalid: Dr, ~Ir,~Gr 4. 1) (x)[(bx Sx) ~Nx] 2) (x)(tx Bx) Tr 3) Tr Nr 4) ~Nr / \ 5) ~~Nr NC,4 / \ ~Nr 6) Nr DN,5 ~Br ~Sr x 7) (Br Sr) ~Nr UI,1 / \ / \ 8) ~(Br Sr) v ~Nr Impl,7 ~Tr Br ~Tr Br 9) (~Br v ~Sr) v ~Nr DeM,8 x x x 10) Tr Br UI,2 11) ~Tr v Br Impl,10 invalid: Tr,Nr,~Sr,Br Br Sr Nr Tr (Br.Sr) ~Nr Tr. Br Tr ~Nr T F T T T F F T T T T F P ( x)(dx Vx) 2. ( x)(dx ~Gx) 3. ( x)[dx (Bx Gx)] 4. ( x)[px (Tx ~Ex)] 5. ( x)[px ~(Ix Hx)] P. 141, I. 1. ( x)~cx 2. ( x)(cx) 3. ( x)~(ax Bx) 4. ( x)(bx Cx) 5. (x)~bx 6. (x)~(ax Bx) 7. (x)(ax Bx) 8. (x)~(ax Cx Dx) P. 142 II. 1. 4) ~( x)ax NC,3 ~Aa 5) (x)~ax QE,4 Ba 6) ~Aa UI,5 / \ invalid 7) Aa Ba UI,1 ~Aa Ba 8) ~Aa v Ba Impl,7 9) Ba UI,2

11 11 / \ 2. 4) ~( x)(~bx Ax) NC,3 Ba ~Aa 5) (x)~(~bx Ax) QE,4 / \ \ 6) ~(~Ba Aa) UI,5 ~Ba Ca ~Ba Ca 7) ~~Ba v ~Aa DeM,6 x / \ \ 8) Ba v ~Aa DN,7 ~Aa Ba ~Aa Ba ~Aa Ba 9) Aa Ba UI,1 x 10) ~Aa v Ba Impl,9 invalid: Ba,Ca,~Aa or Ba, Ca or 11) Ba Ca UI,2 ~Aa,~Ba or ~Aa,Ca or ~Aa, 12) ~Ba v Ca Impl,11 Ca,Ba 3. 4) ~( x)(bx v Dx) NC,3 ~Ba 5) (x)~(bx v Dx) QE,4 ~Da 6) ~(Ba v Da) UI,5 / \ invalid 7) ~Ba ~Da DeM,6 ~Aa Ca 8)(Aa v Ba) Ca UI,1 ~Ba \ 9) ~(AavBa) v Ca Impl,8 / \ ~Ba Da 10) (~Aa ~Ba) v Ca DeM,9 ~Ba Da x 11) Ba Da UI,2 x 12) ~Ba v Da Impl, ) ~(~Aa.~Ba) NC,4 ~Ca 6) ~~Aa v ~~Ba DeM,5 / \ 7) Aa v Ba (2)DN,5 Aa Ba 8) Aa Ba UI,1 / \ / \ 9) ~Aa v Ba Impl,8 ~Aa Ba ~Aa Ba 10) Ba Ca UI,2 x / \ \ 11) ~Ba v Ca Impl,10 ~Ba Ca ~Ba Ca ~Ba Ca x x x x x x 5. 1) (x)(px Bx) 2) (x) (Mx ~Bx) / \ 3) ( x)(px ~Mx) ~Pa Ma 4) ~( x)(px ~Mx) NC,3 / \ / \ 5) x)~(px ~Mx) QE,4 ~Ma ~Ba ~Ma ~Ba 6)~(Pa ~Ma) UI,5 /\ / \ x / \ 7) ~Pa v ~~Ma DeM,6 ~Pa Ba ~Pa Ba ~Pa Ba 8) ~Pa v Ma DN,7 x x 9) Pa Ba UI, 1 10) ~Pa v Ba Impl,9 invalid 11) Ma ~Ba UI,2 12) ~Ma v ~Ba Impl, ) (x)[px (Cx v Ix)] / \ 2) (x)(gx ~Ix) / \ 3) ( x)(gx Cx) / / \ 4) ~( x)(gx Cx) NC,3 ~Pa Ca Ia 5) (x) ~(Gx Cx) QE,4 / \ / \ / \ 6) ~(Ga Ca) UI,5 ~Ga ~Ia ~Ga ~Ia ~Ga ~Ia 7) ~Ga v ~Ca DeM,6 / \ / \ / \ / \ / \ x 8) Pa (Ca v Ia) UI,1 ~Ga~Ca~Ga~Ca~Ga~Ca~Ga~Ca~Ga~Ca 9) ~Pa v (Ca v Ia) Impl,8 x x 10) Ga ~Ia UI,2 11) ~Ga v ~Ia Impl,10

12 12 P ) ~( x)cx NC,3 Aa 5) (x)~cx QE,4 ~Ca 6) Aa EI,2 / \ 7) ~Ca UI,5 ~Aa Ca 8) (Aa v Ba) Ca UI,1 ~Ba x 9) ~(Aa v Ba) v Ca Impl,8 x 10) (~Aa ~Ba) v Ca DeM,9 P ) ~( x)dx NC,4 Aa 6) (x)~dx QE,5 Ba 7) Aa Ba EI,1 ~Da 8) ~Da UI,6 / \ 9) (Ba Ca) Da UI,2 ~Aa Da 10) ~(Ba Ca) v Da Impl,9 x x (second premise is 11) (~Ba v ~Ca) v Da DeM,10 not really needed) 12) Aa Da UI,3 13) ~Aa v Da Impl, ) ~(x)(ex Ax) NC,4 14) Aa Ba UI,1 Ea 6) ( x)~(ex ~Ax) QE,5 15) ~Aa v Ba Impl,14 Aa 7) (x)(ex ~Dx) QE,3 16) Ba Da UI,2 / \ 8) ~(Ea ~Aa) EI,6 17) ~Ba v Da Impl,16 ~Ea ~Da 9) Ea ~~Aa NI,8 x / \ 10) Ea Aa DN,9 ~Ba Da 11) (x)(x ~Dx) QE,3 / \ x 12) Ea ~Da UI,11 ~Aa Ba 13) ~Ea v ~Da Impl,12 x x 5. 5) ~( x)~ax NC,4 12) ~(Ca v ~Da) v ~Ba Impl,11 Ca 6) (x)ax QE,5 13) (~Ca ~Da) v ~Ba DeM, 12 Aa 7) Ca EI,3 / \ 8) Aa UI,6 ~Ca ~Ba 9) Aa Ba UI,1 ~Da / \ 10) ~Aa v Ba Impl,9 x ~Aa Ba 11) (Ca v Da) ~Ba UI,2 x x 6. 1) (x)(cx Lx) 7) Ca ~Wa NI,6 Ca 2) (x)(lx Wx) 8) Ca La UI,1 ~Wa 3) (x)(cx Wx) 9) ~Ca v La Impl,8 / \ 4) ~(x)(cx Wx) NC,3 10) La Wa UI,2 ~Ca La 5) ( x)~(cx Wx) QE,4 11) ~La v Wa Impl,10 x / \ 6) ~(Ca Wa) EI,5 ~La Wa x x 7. Ca 1) (x)(fx Sx) 6) Ca Fa EI,2 Fa 2) ( x)(cx Fx) 7) ~(Ca Sa) UI,5 / \ 3) ( x)(cx Sx) 8) ~Ca v ~Sa DeM,7 ~Ca ~Sa 4) ~( x)(cx Sx) NC,3 9) Fa Sa UI,1 x / \ 5) (x)~(cx Sx) QE,4 10) ~Fa v Sa Impl,9 ~Fa Sa x x

13 ) ( x)(lx.~jx) 8) ~La v ~~Sa DeM,7 La 2) (x)[(lx.~jx) ~S] 9) ~La v Sa DN,8 ~Ja 3) ( x)(lx ~Sx) 10) (La ~Ja) ~Sa UI,2 / \ 4) ~( x)(lx ~Sx) NC3 11) ~(La ~Ja) v ~Sa Impl,10 ~La Sa 5) (x)~(lx ~Sx) QE,4 12) (~La v ~~Ja) v ~Sa DeM,11 x / \ 6) (La ~Ja) EI,1 13) (~La v Ja) v ~Sa DN,12 / \ ~Sa 7) ~(La ~Sa) UI,5 ~La Ja x x x 9. 1) (x)[px (Cx Ix)] 9) Pa (Ca Ia) UI,1 Pa 2) ( x)(px Lx) 10) ~Pa v (Ca Ia) Impl,9 La 3) ( x)(lx Cx) / \ 4) ~( x)(lx Cx) NC,3 ~La ~Ca 5) (x)~(lx Cx) QE,4 x / \ 6) (Pa La) EI,2 ~Pa Ca 7) ~(La Ca) UI,5 x Ia 8) ~La v ~Ca DeM,7 x 10. Ca 1) (x)[ca (Ix v Vx)] 9) Ca (~~Ra ~Fa) DeM,8 Ra 2) (x)(ix ~Rx) 10) Ca (Ra ~Fa) DN,9 ~Fa 3) (x)(vx Fx) 11) Ca (Ia v Va) UI,1 / \ 4) (x)[cx (~Rx v Fx)] 12) ~Ca v (Ia v Va) Impl,11 ~Ia ~Ra 5) ~(x)[cx (~Rx v Fx)] NC,4 13) Ia ~Ra UI,2 / \ x 6) ( x)~[cx (~Rx v Fx)] QE,5 14) ~Ia v ~Ra Impl,13 ~Ca / \ 7) ~[Ca (~Ra v Fa)] EI,6 15) Va Fa UI,3 x Ia Va 8) Ca ~(~Ra v Fa) NI,7 16) ~Va v Fa Impl,15 x / ~Va Fa x x P ) (x) (Cx Ex) 8) Ca ~Ma NI,7 Ca 2) (x)[ex (Mx v Ix)] 9) Ca Ea UI,1 ~Ma 3) (x)(cx ~Ix) 10) ~Ca v Ea Impl,9 / \ 4) (x)(cx Mx) 11) Ea (Ma v Ia) UI,2 ~Ca Ea 5) ~(x)(cx Mx) NC,4 12) ~Ea v (Ma v Ia) Impl,11 x / \ 6) ( x)~[cx Mx) QE,5 13) Ca ~Ia UI,3 ~Ea Ma Ia 7) ~(Ca Ma) EI,6 14) ~Ca v ~Ia Impl,13 x x / \ 2. La 1) ( x)(px.cx) 7) ~(La Ca) EI, 6 ~Ca 2) ~(x)(lx Cx) 8) La ~Ca NI,7 Pb 3) ( x)(lx ~Px) 9) Pb Cb EI,1 Cb 4) ~( x)(lx ~Px) NC,3 10) ~(La ~Pa) UI,5 / \ 5) (x)~(lx ~Px) QE,4 11) ~La v ~~Pa DeM,10 ~La Pa 6) ( x)~(lx Cx) QE,2 12) ~La v Pa DN,11 x 3. 1) (x) (Bx Fx) 10) Ba Fa UI,1 Ca 2) (x)(rx Bx) 11) ~Ba v Fa Impl,10 Ra 3) ( x)(cx Rx) 12) Ra Ba UI,2 / \ 4) ( x)(cx Fx) 13) ~Ra v Ba Impl,12 ~Ca ~Fa 5) ~( x)(cx Fx) NC,4 x / \ 6) (x)~(cx Fx) QE,5 ~Ba Fa 7) Ca Ra EI,3 / \ x 8) ~(Ca Fa) UI,6 ~Ra Ba 9) ~Ca v ~Fa DeM,8 x x ~Ca ~Ia x x

14 ) (x)[(px v Cx) Fx] Aa 2) ( x)(ax Px) Pa 3) ( x)(ax Cx) / \ 4) ~( x)(ax Cx) NC,3 ~Aa ~Ca 5) (x)~(ax Cx) QE,4 x / \ 6) Aa Pa EI,3 ~Pa Fa 7) ~(Aa Ca) UI,5 ~Ca 8) ~Aa v ~Ca DeM,7 x 9) (Pa v Ca) Fa UI,1 10) ~(Pa v Ca) v Fa Impl,9 11) (~Pa ~Ca) v Fa DeM, ) (x)[(px v Cx) Rx] 9) Pa Sa DN,8 Pa 2) (x)(ax ~Sx) 10) (Pa v Ca) Ra UI,1 Sa 3) (x)(cx ~Ax) 11) ~(Pa v Ca) v Ra Impl,10 / \ 4) (x)(px ~Sx) 12) (~Pa.~Ca) v Ra DeM,11 ~Pa Ra 5) ~(x)(px ~Sx) NC,4 13) Aa ~Sa UI,2 ~Ca / \ 6) ( x)~(px ~Sx) QE,5 14) ~Aa v ~Sa Impl,13 x ~Aa ~Sa 7) ~(Pa ~Sa) EI,6 15) Ca ~Aa UI,3 / \ x 8) Pa ~~Sa NI,7 16) ~Ca v ~Aa Impl,15 ~Ca ~Aa 6. 1) (x)(hx ~Vx) 7) La ~~Va) NI,6 La 2) (x)(lx Hx) 8) La Va DN,7 Va 3) (x)(lx ~Vx) 9) Ha ~Va UI,1 / \ 4) ~(x)(lx ~Vx) NC,3 10) ~Ha v ~Va) Impl,9 ~Ha ~Va 5) ( x)~(lx ~Vx) QE,4 11) La Ha UI,2 / \ x 6) ~(La ~Va) EI,5 12) ~La v Ha Impl,11 ~La Ha x x 7. 1) (x)(bx Fx) Oa 2) (x)(ox ~Tx) Ba 3) (x)[(fx ~Tx) Px] ~Pa 4) (x)[(ox Bx) Px] / \ 5) ~(x)[(ox Bx) Px] NC,4 ~Oa ~Ta 6) ( x)~[(ox Bx) Px] QE,5 x / \ 7) ~[(Oa Ba) Pa] EI,6 / \ Pa 8) (Oa Ba) ~Pa NI,7 ~Fa Ta x 9) Ba Fa UI,1 / \ x 10) ~Ba v Fa Impl,9 ~Ba Fa 11) Oa ~Ta UI,2 x x 12) ~Oa v ~Ta Impl,11 13) (Fa ~Ta) Pa UI,3 14) ~(Fa ~Ta) v Pa Impl,13 15) (~Fa ~~Ta) v Pa DeM,14 16) (~Fa v Ta) v Pa DN,15

15 ) (x)(bx Fx) Oa 2) (x)[(fx Rx) ~Px] Ba 3) ( x)[(ox Bx) (Fx Rx)] Fa 4) ( x)(bx ~Px) Ra 5) ~( x)(bx ~Px) NC,4 / \ 6) (x)~(bx ~Px) QE,5 / \ ~Pa 7) Oa Ba (Fa Ra) EI,3 ~Fa ~Ra \ 8) Ba Fa UI,1 x x ~Ba Pa 9) ~Ba v Fa Impl,8 x x 10) (Fa Ra) ~Pa UI,2 11) ~(Fa Ra) v ~Pa Impl,10 first premise is not needed 12) (~Fa v ~Ra) v ~Pa DeM,11 13) ~(Ba ~Pa) UI,6 14) ~Ba v ~~Pa DeM,13 15) ~Ba v Pa DN,14 Aa 9. 1) (x)(ax Fx) 8) ~(Fa ~Ea) UI,6 / \ 2) ( x)(ax (Rx v ~Hx) 9) ~Fa v ~~Ea DeM,8 Ra ~Ha 3) (x)(rx ~Ex) 10) ~Fa v Ea DN,9 / \ / \ 4) ( x)(fx ~Ex) 11) Aa Fa UI,1 ~Aa Fa ~Aa Fa 5) ~( x)(fx ~Ex) NC,4 12) ~Aa v Fa Impl,11 x / \ x / \ 6) (x)~(fx ~Ex) QE,5 13) Ra ~Ea UI,3 ~Ra ~Ea ~Ra ~Ea 7) Aa (Ra v ~Ha) EI,2 14) ~Ra v ~Ea Impl,13 x / \ / / \ (diagram 7,12,14,10) ~Fa Ea~Fa Ea ~Fa Ea x x x x x 10. 1) ( x)(bx ~Dx) 2) (x)(bx ~Sx) 3) (x)[(dx Bx) Hx] 4) ( x)(hx ~Sx 5) ~( x)(hx ~Sx) NC,4 Ba 6) (x)~(hx ~Sx) QE,5 Da 7) Ba ~Da EI,1 / \ 8) ~(Ha ~Sa) UI,6 ~Ba ~Sa 9) ~Ha v ~~Sa DeM,8 x / \ 10) ~Ha v Sa DN,9 / \ \ 11) Ba ~Sa UI,2 ~Da ~Ba Ha 12) ~Ba v ~Sa Impl,11 x x / \ 13) (Da Ba) Ha UI,3 ~Ha Sa 14) ~(Da Ba) v Ha Impl,13 x x 15) (~Da v ~Ba) v Ha DeM,14 (diagramming 7,12,15,10) P. 153 I. 3. [(x)(~bx)] [( x)(ex)] 1. [( x)(bx)] [(x)(gx)] 4. [(x)(bx Gx)] v [( x)[~px)] 2. [(x)~bx] [( x)ex] 5. [(x)(cx)] v (( x)(ex)] P. 154, II, 2. Ca 1) (x)[cx (Dx v ~Lx)] 9) Ca Da DN,8 Da 2) (x)~(lx ~Dx) 10) Cb ~Lb EI,3 Cb 3) ( x)(cx ~Lx) 11) Ca (Da v ~La) UI,1 ~Lb 4) (x)(cx ~Dx) 12) ~Ca v (Da v ~La) Impl,11 / \ 5) ~(x)(cx ~Dx) NC,4 13) ~(La ~Da) UI,2 / / \ 6) ( x)~(cx ~Dx) QE,5 14) ~La v ~~Da DeM,13 ~Ca Da ~La 7) ~(Ca ~Da) EI,6 15) ~La v Da DN,14 x / \ / \ 8) Ca ~~Da NI,7 ~La Da ~La Da

16 3. Ea 1) (x)(ax v Sx) 7) ( x)~[(ex ~Sx) Dx] QE,3 ~Da 2) ( x)ex 8) Ea EI,2 Eb 3) ~(x)[(ex ~Sx) Dx] 9) ~[(Eb ~Sb) Db] EI,7 ~Sb 4) ( x)dx 10) (Eb ~Sb) ~Db NI,9 ~Db 5) ~( x)dx NC,4 11) ~Da UI,6 / \ 6) (x)~dx QE,5 12) Aa v Sa UI,1 Aa Sa ) (x)(ex ~Sx) 2) ( x)(ex) 8) ~Da UI,6 Ea 3) (x)(ex Dx) 9) Ea ~Sa UI,1 ~Da 4) ( x)dx 10) ~Ea v ~Sa UI,3 / \ 5) ~( x)dx NC,4 11) Ea Da UI,3 ~Ea Da 6) (x)~dx QE,5 12) ~Ea v Da Impl,11 x x 7) Ea EI,2 (diagramming 7,8,12 only) 5. 1) (x)[(vx Dx) Mx] 2) (x) (Rx Vx) 3) ( x)(rx Dx) Ra 4) ( x)(rx Mx) Da 5) ~( x)(rx Mx) NC,4 / \ 6) (x)~(rx Mx) QE,5 ~Ra ~Ma 7) Ra Da EI,3 x / \ 8)~(Ra Ma) UI,6 / \ \ 9) ~Ra v ~Ma DeM,8 ~Va ~Da Ma 10) (Va Da) Ma UI,1 / \ x x 11) ~(Va Da) v Ma Impl,10 ~Ra Va 12) (~Va v ~Da) v Ma DeM,11 x x 13) (Ra Va) UI,2 14) ~Ra v Va Impl, ) (x)(hx Dx) 2) (x)(dx Ix) or (x) (~Ix ~Dx) Ia 3) (x)(ix Hx) ~Ha 4) ~(x)(ix Hx) NC,3 / \ 5) ( x)~(ix Hx) QE,4 ~Ha Da 6) ~(Ia Ha) EI,5 / \ / \ 7) Ia ~Ha NI,6 ~Da Ia ~Da Ia 8) Ha Da UI,1 x 9) ~Ha v Da Impl,8 10) Da Ia UI,2 11) ~Da v Ia Impl,10 Ia 7. ~Wa 1) (x)(ax Wx) 8) ~(Ia ~Da) UI,6 / \ 2) ( x)(ix ~Wx) 9) ~Ia v ~~Da DeM,8 ~Ia Da 3) (x)(dx Ax) 10) ~Ia v Da DN,9 x / \ 4) ( x)(ix ~Dx) 11) Aa Wa UI,1 ~Aa Wa 5) ~( x)(ix ~Dx) NC,4 12) ~Aa v Wa Impl,11 / \ x 6) (x)~(ix ~Dx) QE,5 13) Da Aa UI,3 ~Da Aa 7) Ia ~Wa EI,2 14) ~Da v Aa Impl,13 x x

17 ) (x)(cx Ex) 9) Sa Ta DN,8 Sa 2) (x)(sx ~Cx) 10) Cb Tb EI,3 Ta 3) ( x)(cx Tx) 11) Ca Ea UI,1 Cb 4) (x)(sx ~Tx) 12) ~Ca v Ea Impl,11 Tb 5) ~(x)(sx ~Tx) NC,4 13) Sa ~Ca UI,2 / \ 6) ( x)~(sx ~Tx) QE,5 14) ~Sa v ~Ca Impl,13 ~Sa ~Ca 7) ~(Sa ~Ta) EI,6 x / \ 8) Sa ~~Ta NI,7 ~Ca Ea P ( y) Py (x) (Px Sxy) 3. ( y) Py (x) (Px Syx) 4. (x)(y) {[(Px Py) Ixy] Sxy} 5. ~(x)(y) {[(Px Py) Sxy] Ixy} P. 198 I. 1. Abusive ad hominem; 2. circumstantial ad hominem; 3. appeal to force; 4. pointing to the other wrong; 5. appeal to self-righteousness; 6. appeal to tradition; 7. arguing beside the point; 8. appeal to authority. P. 199 II. 1. ad hominem (more circumstantial than abusive); 2. appeal to force; 3. equivocation on "war" (formally declared war as opposed to the commonsense understanding of war); 4. circumstantial ad hominem; 5. begging the question; 6. abusive ad hominem. P quantitative, classical; 3. quantitative; 4. quantitative, relative frequency; 5. quantitative (since this appears to be more precise than just a ballpark guess), relative frequency. Pp a..7; b..2 x.5 =.1; c =.6 2. a. 1/6 (of the 36 possible combinations totaling 7: 6+1, 1+6, 3+4, 4+3, 5+2, 2+5) b.2/9 (in addition to the above six combinations, there are two more: 5+6 and 6+5, yielding a total of 8 out of 36) 3.a. 4/52 = 7.7%; b. 4/51 = 7.9%; c. 4/53 x 4/51 = 16/2652 =.6%; d. 1-4/52 = 48/52 = 9.2% 5.1/365. The first person has a 100% chance of having a birthday. The odds that the second person has the same birthdate are 1/365. (1 x 1/365 1/365). (Note that these people are chosen at random. This is not the same question as the one at issue when recruits in the military are suckered into betting that two recruits in a room of, say, fifty people, share a birthday. In that situation, one keeps looking until one finds a match. The odds increase dramatically because one does not simply stop with the first two people picked at random.) 6. a. 1/2 x 1/90 = 1/180; b. 1/4 x 1/180 = 1/720 Solution to #8, p. 255 On the one hand, it would seem that it would not matter, because one of the two remaining doors contains the prize anyway, so your chances of winning seem to be the same whether you switch or not. This would certainly be true if the host opened door number two before you announced your choice to the host. But does it make a difference that he opened the door after you made your choice? Another way of analyzing the situation is this: Ask what the chances are of being wrong before receiving any help from the host. The answer is that the

18 odds are two out of three. And then ask whether those odds could possibly be improved by a policy of switching. That is, given all the possible combinations (of doors with goats and a Ferrari behind them and of initial choices one might make before the host opens a door with a goat), would a policy of switching be more likely to open the door with the Ferrari than with the remaining goat? 18 P The principle does not hold for every assignment, but it does hold when p = 1 or when P = 0. However, the principle that we discussed in Chapters III and V held only for those assignments anyway, because we introduced contradiction in crisp logic. 2. Where S =.25 and J =.8, the value of J S is max 1 - J, S, or max.2,.25, or Two reasons for believing crisp logic is a special case of fuzzy logic are the results of the principle of contradiction and of the application of disjunction and conjunction. Since the law of contradiction holds for all of crisp logic but only for special cases in fuzzy logic, it would seem that crisp logic is a special case of fuzzy logic. Similarly, the rules for fuzzy disjunction and conjunction yield the correct result regardless of the fuzzy assignment, including the extreme cases that fall into crisp logic, but the crisp logic rules hold only for crisp logic. 4. It means: the value of fuzzy p and fuzzy q is the lesser of fuzzy p and fuzzy q. This is false. 5. The translation is P Q = min P, Q. This is correct.

Predicate Logic. 1 Predicate Logic Symbolization

Predicate Logic. 1 Predicate Logic Symbolization 1 Predicate Logic Symbolization innovation of predicate logic: analysis of simple statements into two parts: the subject and the predicate. E.g. 1: John is a giant. subject = John predicate =... is a giant

More information

Formal Logic: Quantifiers, Predicates, and Validity. CS 130 Discrete Structures

Formal Logic: Quantifiers, Predicates, and Validity. CS 130 Discrete Structures Formal Logic: Quantifiers, Predicates, and Validity CS 130 Discrete Structures Variables and Statements Variables: A variable is a symbol that stands for an individual in a collection or set. For example,

More information

Denote John by j and Smith by s, is a bachelor by predicate letter B. The statements (1) and (2) may be written as B(j) and B(s).

Denote John by j and Smith by s, is a bachelor by predicate letter B. The statements (1) and (2) may be written as B(j) and B(s). PREDICATE CALCULUS Predicates Statement function Variables Free and bound variables Quantifiers Universe of discourse Logical equivalences and implications for quantified statements Theory of inference

More information

2. Use quantifiers to express the associative law for multiplication of real numbers.

2. Use quantifiers to express the associative law for multiplication of real numbers. 1. Define statement function of one variable. When it will become a statement? Statement function is an expression containing symbols and an individual variable. It becomes a statement when the variable

More information

SYMBOLIC LOGIC UNIT 10: SINGULAR SENTENCES

SYMBOLIC LOGIC UNIT 10: SINGULAR SENTENCES SYMBOLIC LOGIC UNIT 10: SINGULAR SENTENCES Singular Sentences name Paris is beautiful (monadic) predicate (monadic) predicate letter Bp individual constant Singular Sentences Bp These are our new simple

More information

Phil 2B03 (McMaster University Final Examination) Page 1 of 4

Phil 2B03 (McMaster University Final Examination) Page 1 of 4 Phil 2B03 (McMaster University Final Examination) Page 1 of 4 1. [SL proof] (a) Prove the formal validity of the following sequent: (F & G), F H, H G H (1) (F & G) Prem (2) F H Prem (3) H G Prem (4) H

More information

INSTITIÚID TEICNEOLAÍOCHTA CHEATHARLACH INSTITUTE OF TECHNOLOGY CARLOW PREDICATE LOGIC

INSTITIÚID TEICNEOLAÍOCHTA CHEATHARLACH INSTITUTE OF TECHNOLOGY CARLOW PREDICATE LOGIC 1 CHAPTER 7. PREDICATE LOGIC 1 INSTITIÚID TEICNEOLAÍOCHTA CHEATHARLACH INSTITUTE OF TECHNOLOGY CARLOW PREDICATE LOGIC 1 Predicate Logic 1.1 Introduction There are various arguments which cannot be dealt

More information

Bertie3 Exercises. 1 Problem Set #3, PD Exercises

Bertie3 Exercises. 1 Problem Set #3, PD Exercises Bertie3 Exercises 1 Problem Set #3, PD Exercises 1. 1 ( x)qx P 2 ( x)w x P ( x)(qx W x) 2. 1 ( x)(ax (Bx Cx)) P 2 Bd P Ad 3. 1 ( x)jxx P 2 ( y) Ry P ( y)(jyy Ry) 4. 1 ( x)(lx (Mx Bx)) P 2 ( y)(my Jy) P

More information

Philosophy 240 Symbolic Logic Russell Marcus Hamilton College Fall 2014

Philosophy 240 Symbolic Logic Russell Marcus Hamilton College Fall 2014 Philosophy 240 Symbolic Logic Russell Marcus Hamilton College Fall 2014 Class #23 - Translation into Predicate Logic II ( 3.2) Only as a Quantifier P Only Ps are Qs is logically equivalent to all Qs are

More information

Predicate Logic combines the distinctive features of syllogistic and propositional logic.

Predicate Logic combines the distinctive features of syllogistic and propositional logic. Predicate Logic combines the distinctive features of syllogistic and propositional logic. The fundamental component in predicate logic is the predicate, which is always symbolized with upper case letters.

More information

Formal (Natural) Deduction for Predicate Calculus

Formal (Natural) Deduction for Predicate Calculus Formal (Natural) Deduction for Predicate Calculus Lila Kari University of Waterloo Formal (Natural) Deduction for Predicate Calculus CS245, Logic and Computation 1 / 42 Formal deducibility for predicate

More information

Quantifiers Here is a (true) statement about real numbers: Every real number is either rational or irrational.

Quantifiers Here is a (true) statement about real numbers: Every real number is either rational or irrational. Quantifiers 1-17-2008 Here is a (true) statement about real numbers: Every real number is either rational or irrational. I could try to translate the statement as follows: Let P = x is a real number Q

More information

4 Quantifiers and Quantified Arguments 4.1 Quantifiers

4 Quantifiers and Quantified Arguments 4.1 Quantifiers 4 Quantifiers and Quantified Arguments 4.1 Quantifiers Recall from Chapter 3 the definition of a predicate as an assertion containing one or more variables such that, if the variables are replaced by objects

More information

March Algebra 2 Question 1. March Algebra 2 Question 1

March Algebra 2 Question 1. March Algebra 2 Question 1 March Algebra 2 Question 1 If the statement is always true for the domain, assign that part a 3. If it is sometimes true, assign it a 2. If it is never true, assign it a 1. Your answer for this question

More information

Logic. Definition [1] A logic is a formal language that comes with rules for deducing the truth of one proposition from the truth of another.

Logic. Definition [1] A logic is a formal language that comes with rules for deducing the truth of one proposition from the truth of another. Math 0413 Appendix A.0 Logic Definition [1] A logic is a formal language that comes with rules for deducing the truth of one proposition from the truth of another. This type of logic is called propositional.

More information

All psychiatrists are doctors All doctors are college graduates All psychiatrists are college graduates

All psychiatrists are doctors All doctors are college graduates All psychiatrists are college graduates Predicate Logic In what we ve discussed thus far, we haven t addressed other kinds of valid inferences: those involving quantification and predication. For example: All philosophers are wise Socrates is

More information

University of Ottawa CSI 2101 Midterm Test Instructor: Lucia Moura. March 1, :00 pm Duration: 1:15 hs

University of Ottawa CSI 2101 Midterm Test Instructor: Lucia Moura. March 1, :00 pm Duration: 1:15 hs University of Ottawa CSI 2101 Midterm Test Instructor: Lucia Moura March 1, 2012 1:00 pm Duration: 1:15 hs Closed book, no calculators THIS MIDTERM AND ITS SOLUTION IS SUBJECT TO COPYRIGHT; NO PARTS OF

More information

Introduction to Predicate Logic Part 1. Professor Anita Wasilewska Lecture Notes (1)

Introduction to Predicate Logic Part 1. Professor Anita Wasilewska Lecture Notes (1) Introduction to Predicate Logic Part 1 Professor Anita Wasilewska Lecture Notes (1) Introduction Lecture Notes (1) and (2) provide an OVERVIEW of a standard intuitive formalization and introduction to

More information

RULES OF UNIVERSAL INSTANTIATION AND GENERALIZATION, EXISTENTIAL INSTANTIATION AND GENERALIZATION, AND RULES OF QUANTIFIER EQUIVALENCE

RULES OF UNIVERSAL INSTANTIATION AND GENERALIZATION, EXISTENTIAL INSTANTIATION AND GENERALIZATION, AND RULES OF QUANTIFIER EQUIVALENCE 1 UNIT 2 RULES OF UNIVERSAL INSTANTIATION AND GENERALIZATION, EXISTENTIAL INSTANTIATION AND GENERALIZATION, AND RULES OF QUANTIFIER EQUIVALENCE Contents 2.0 Objectives 2.1 Introduction 2.2 Rules of Quantification

More information

(308 ) EXAMPLES. 1. FIND the quotient and remainder when. II. 1. Find a root of the equation x* = +J Find a root of the equation x 6 = ^ - 1.

(308 ) EXAMPLES. 1. FIND the quotient and remainder when. II. 1. Find a root of the equation x* = +J Find a root of the equation x 6 = ^ - 1. (308 ) EXAMPLES. N 1. FIND the quotient and remainder when is divided by x 4. I. x 5 + 7x* + 3a; 3 + 17a 2 + 10* - 14 2. Expand (a + bx) n in powers of x, and then obtain the first derived function of

More information

Answers to the Exercises -- Chapter 3

Answers to the Exercises -- Chapter 3 Answers to the Exercises -- Chapter 3 SECTION 1 1. a. Fred is an orangutan. Of b. Gertrude is an orangutan but Fred isn't. Gertrude is an orangutan [and] Fred is not [an orangutan]. Og ~Of c. Tony Blair

More information

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include PUTNAM TRAINING POLYNOMIALS (Last updated: December 11, 2017) Remark. This is a list of exercises on polynomials. Miguel A. Lerma Exercises 1. Find a polynomial with integral coefficients whose zeros include

More information

Discrete Mathematics Basic Proof Methods

Discrete Mathematics Basic Proof Methods Discrete Mathematics 1-2. Basic Proof Methods Nature & Importance of Proofs In mathematics, a proof is: a correct(well-reasoned, logically valid) and complete (clear, detailed) argument that rigorously

More information

University of Ottawa CSI 2101 Midterm Test Instructor: Lucia Moura. February 9, :30 pm Duration: 1:50 hs. Closed book, no calculators

University of Ottawa CSI 2101 Midterm Test Instructor: Lucia Moura. February 9, :30 pm Duration: 1:50 hs. Closed book, no calculators University of Ottawa CSI 2101 Midterm Test Instructor: Lucia Moura February 9, 2010 11:30 pm Duration: 1:50 hs Closed book, no calculators Last name: First name: Student number: There are 5 questions and

More information

Solutions to Exercises (Sections )

Solutions to Exercises (Sections ) s to Exercises (Sections 1.1-1.10) Section 1.1 Exercise 1.1.1: Identifying propositions (a) Have a nice day. : Command, not a proposition. (b) The soup is cold. : Proposition. Negation: The soup is not

More information

CITS2211: Test One. Student Number: 1. Use a truth table to prove or disprove the following statement.

CITS2211: Test One. Student Number: 1. Use a truth table to prove or disprove the following statement. CITS2211: Test One Name: Student Number: 1. Use a truth table to prove or disprove the following statement. ((P _ Q) ^ R)) is logically equivalent to ( P ) ^ ( Q ^ R) P Q R P _ Q (P _ Q) ^ R LHS P Q R

More information

Topic DPL: Answers. Exercise 1.1a Explain why the rule &E for MPL is a sound rule.

Topic DPL: Answers. Exercise 1.1a Explain why the rule &E for MPL is a sound rule. Topic DPL: Answers Exercise 1.1a Explain why the rule &E for MPL is a sound rule. In MPL, if (φ&ψ) is true under some interpretation then φ and ψ are true under that interpretation too. Thus, if (φ&ψ)

More information

Solutions for Chapter 3

Solutions for Chapter 3 Solutions for Chapter Solutions for exercises in section 0 a X b x, y 6, and z 0 a Neither b Sew symmetric c Symmetric d Neither The zero matrix trivially satisfies all conditions, and it is the only possible

More information

Deduction by Daniel Bonevac. Chapter 8 Identity and Functions

Deduction by Daniel Bonevac. Chapter 8 Identity and Functions Deduction by Daniel Bonevac Chapter 8 Identity and Functions Introduction 1 This chapter introduces two important extensions of Q that make it quite a bit more powerful. The first is the mathematical relation

More information

2/2/2018. CS 103 Discrete Structures. Chapter 1. Propositional Logic. Chapter 1.1. Propositional Logic

2/2/2018. CS 103 Discrete Structures. Chapter 1. Propositional Logic. Chapter 1.1. Propositional Logic CS 103 Discrete Structures Chapter 1 Propositional Logic Chapter 1.1 Propositional Logic 1 1.1 Propositional Logic Definition: A proposition :is a declarative sentence (that is, a sentence that declares

More information

Discrete Structures for Computer Science

Discrete Structures for Computer Science Discrete Structures for Computer Science William Garrison bill@cs.pitt.edu 6311 Sennott Square Lecture #4: Predicates and Quantifiers Based on materials developed by Dr. Adam Lee Topics n Predicates n

More information

Semantics I, Rutgers University Week 3-1 Yimei Xiang September 17, Predicate logic

Semantics I, Rutgers University Week 3-1 Yimei Xiang September 17, Predicate logic Semantics I, Rutgers University Week 3-1 Yimei Xiang September 17, 2018 Predicate logic 1. Why propositional logic is not enough? Discussion: (i) Does (1a) contradict (1b)? [Two sentences are contradictory

More information

True/False Problems from Old 115 Exam 1 s

True/False Problems from Old 115 Exam 1 s Douglass Houghton Workshop, September 2012 True/False Problems from Old 115 Exam 1 s Standard instructions: Answer true only if a statement MUST be true. No explanations are necessary. 1. Winter, 2001

More information

3/29/2017. Logic. Propositions and logical operations. Main concepts: propositions truth values propositional variables logical operations

3/29/2017. Logic. Propositions and logical operations. Main concepts: propositions truth values propositional variables logical operations Logic Propositions and logical operations Main concepts: propositions truth values propositional variables logical operations 1 Propositions and logical operations A proposition is the most basic element

More information

Predicate Logic Quantifier Rules

Predicate Logic Quantifier Rules Predicate Logic Quantifier Rules CS251 at CCUT, Spring 2017 David Lu May 8 th, 2017 Contents 1. Universal Instantiation (UI) 2. Existential Generalization (EG) 3. Universal Generalization (UG) 4. Existential

More information

1 FUNDAMENTALS OF LOGIC NO.8 SEMANTICS OF PREDICATE LOGIC Tatsuya Hagino hagino@sfc.keio.ac.jp lecture URL https://vu5.sfc.keio.ac.jp/slide/ 2 So Far Propositional Logic Logical connectives (,,, ) Truth

More information

1.3 Predicates and Quantifiers

1.3 Predicates and Quantifiers 1.3 Predicates and Quantifiers INTRODUCTION Statements x>3, x=y+3 and x + y=z are not propositions, if the variables are not specified. In this section we discuss the ways of producing propositions from

More information

Predicate Logic. Example. Statements in Predicate Logic. Some statements cannot be expressed in propositional logic, such as: Predicate Logic

Predicate Logic. Example. Statements in Predicate Logic. Some statements cannot be expressed in propositional logic, such as: Predicate Logic Predicate Logic Predicate Logic (Rosen, Chapter 1.4-1.6) TOPICS Predicate Logic Quantifiers Logical Equivalence Predicate Proofs Some statements cannot be expressed in propositional logic, such as: All

More information

Parts Manual. EPIC II Critical Care Bed REF 2031

Parts Manual. EPIC II Critical Care Bed REF 2031 EPIC II Critical Care Bed REF 2031 Parts Manual For parts or technical assistance call: USA: 1-800-327-0770 2013/05 B.0 2031-109-006 REV B www.stryker.com Table of Contents English Product Labels... 4

More information

,,,,..,,., {. (, ),, {,.,.,..,,.,.,,....... {.. : N {, Z {, Q {, Q p { p{ {. 3, R {, C {. : ord p {. 8, (k) {.42,!() { {. 24, () { {. 24, () { {. 25,., () { {. 26,. 9, () { {. 27,. 23, '() { ( ) {. 28,

More information

Peano Arithmetic. CSC 438F/2404F Notes (S. Cook) Fall, Goals Now

Peano Arithmetic. CSC 438F/2404F Notes (S. Cook) Fall, Goals Now CSC 438F/2404F Notes (S. Cook) Fall, 2008 Peano Arithmetic Goals Now 1) We will introduce a standard set of axioms for the language L A. The theory generated by these axioms is denoted PA and called Peano

More information

Propositional Logic Not Enough

Propositional Logic Not Enough Section 1.4 Propositional Logic Not Enough If we have: All men are mortal. Socrates is a man. Does it follow that Socrates is mortal? Can t be represented in propositional logic. Need a language that talks

More information

QUADRATIC FORMS. A mathematical vignette. Ed Barbeau, University of Toronto

QUADRATIC FORMS. A mathematical vignette. Ed Barbeau, University of Toronto QUADRATIC FORMS A mathematical vignette Ed Barbeau, University of Toronto 1. Difference of squares. Question: What positive integers can be written as the difference of two squares? This is a good problem

More information

06 From Propositional to Predicate Logic

06 From Propositional to Predicate Logic Martin Henz February 19, 2014 Generated on Wednesday 19 th February, 2014, 09:48 1 Syntax of Predicate Logic 2 3 4 5 6 Need for Richer Language Predicates Variables Functions 1 Syntax of Predicate Logic

More information

Lecture 3 : Predicates and Sets DRAFT

Lecture 3 : Predicates and Sets DRAFT CS/Math 240: Introduction to Discrete Mathematics 1/25/2010 Lecture 3 : Predicates and Sets Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený DRAFT Last time we discussed propositions, which are

More information

Lecture 3: Probability

Lecture 3: Probability Lecture 3: Probability 28th of October 2015 Lecture 3: Probability 28th of October 2015 1 / 36 Summary of previous lecture Define chance experiment, sample space and event Introduce the concept of the

More information

Mat 243 Exam 1 Review

Mat 243 Exam 1 Review OBJECTIVES (Review problems: on next page) 1.1 Distinguish between propositions and non-propositions. Know the truth tables (i.e., the definitions) of the logical operators,,,, and Write truth tables for

More information

Section Properties of Rational Expressions

Section Properties of Rational Expressions 88 Section. - Properties of Rational Expressions Recall that a rational number is any number that can be written as the ratio of two integers where the integer in the denominator cannot be. Rational Numbers:

More information

Symbolising Quantified Arguments

Symbolising Quantified Arguments Symbolising Quantified Arguments 1. (i) Symbolise the following argument, given the universe of discourse is U = set of all animals. Animals are either male or female. Not all Cats are male, Therefore,

More information

Section 1.1 Propositions

Section 1.1 Propositions Set Theory & Logic Section 1.1 Propositions Fall, 2009 Section 1.1 Propositions In Chapter 1, our main goals are to prove sentences about numbers, equations or functions and to write the proofs. Definition.

More information

Introduction to Sets and Logic (MATH 1190)

Introduction to Sets and Logic (MATH 1190) Introduction to Sets Logic () Instructor: Email: shenlili@yorku.ca Department of Mathematics Statistics York University Sept 18, 2014 Outline 1 2 Tautologies Definition A tautology is a compound proposition

More information

DO NOT FORGET!!! WRITE YOUR NAME HERE. Philosophy 109 Final Exam, Spring 2007 (80 points total) ~ ( x)

DO NOT FORGET!!! WRITE YOUR NAME HERE. Philosophy 109 Final Exam, Spring 2007 (80 points total) ~ ( x) Page 1 of 13 DO NOT FORGET!!! WRITE YOUR NAME HERE Philosophy 109 Final Exam, Spring 2007 (80 points total) ~ ( x) Part I: Symbolization into RL: Provide symbolizations of the following sentences, using

More information

Before you get started, make sure you ve read Chapter 1, which sets the tone for the work we will begin doing here.

Before you get started, make sure you ve read Chapter 1, which sets the tone for the work we will begin doing here. Chapter 2 Mathematics and Logic Before you get started, make sure you ve read Chapter 1, which sets the tone for the work we will begin doing here. 2.1 A Taste of Number Theory In this section, we will

More information

Logic of Sentences (Propositional Logic) is interested only in true or false statements; does not go inside.

Logic of Sentences (Propositional Logic) is interested only in true or false statements; does not go inside. You are a mathematician if 1.1 Overview you say to a car dealer, I ll take the red car or the blue one, but then you feel the need to add, but not both. --- 1. Logic and Mathematical Notation (not in the

More information

ICS141: Discrete Mathematics for Computer Science I

ICS141: Discrete Mathematics for Computer Science I ICS141: Discrete Mathematics for Computer Science I Dept. Information & Computer Sci., Originals slides by Dr. Baek and Dr. Still, adapted by J. Stelovsky Based on slides Dr. M. P. Frank and Dr. J.L. Gross

More information

Linear Cyclic Codes. Polynomial Word 1 + x + x x 4 + x 5 + x x + x

Linear Cyclic Codes. Polynomial Word 1 + x + x x 4 + x 5 + x x + x Coding Theory Massoud Malek Linear Cyclic Codes Polynomial and Words A polynomial of degree n over IK is a polynomial p(x) = a 0 + a 1 x + + a n 1 x n 1 + a n x n, where the coefficients a 0, a 1, a 2,,

More information

Lecture 2. Logic Compound Statements Conditional Statements Valid & Invalid Arguments Digital Logic Circuits. Reading (Epp s textbook)

Lecture 2. Logic Compound Statements Conditional Statements Valid & Invalid Arguments Digital Logic Circuits. Reading (Epp s textbook) Lecture 2 Logic Compound Statements Conditional Statements Valid & Invalid Arguments Digital Logic Circuits Reading (Epp s textbook) 2.1-2.4 1 Logic Logic is a system based on statements. A statement (or

More information

Mathematical Logic. Reasoning in First Order Logic. Chiara Ghidini. FBK-IRST, Trento, Italy

Mathematical Logic. Reasoning in First Order Logic. Chiara Ghidini. FBK-IRST, Trento, Italy Reasoning in First Order Logic FBK-IRST, Trento, Italy April 12, 2013 Reasoning tasks in FOL Model checking Question: Is φ true in the interpretation I with the assignment a? Answer: Yes if I = φ[a]. No

More information

Chapter 1. Logic and Proof

Chapter 1. Logic and Proof Chapter 1. Logic and Proof 1.1 Remark: A little over 100 years ago, it was found that some mathematical proofs contained paradoxes, and these paradoxes could be used to prove statements that were known

More information

Natural Deduction is a method for deriving the conclusion of valid arguments expressed in the symbolism of propositional logic.

Natural Deduction is a method for deriving the conclusion of valid arguments expressed in the symbolism of propositional logic. Natural Deduction is a method for deriving the conclusion of valid arguments expressed in the symbolism of propositional logic. The method consists of using sets of Rules of Inference (valid argument forms)

More information

Predicate Logic Thursday, January 17, 2013 Chittu Tripathy Lecture 04

Predicate Logic Thursday, January 17, 2013 Chittu Tripathy Lecture 04 Predicate Logic Today s Menu Predicate Logic Quantifiers: Universal and Existential Nesting of Quantifiers Applications Limitations of Propositional Logic Suppose we have: All human beings are mortal.

More information

LECTURE NOTES DISCRETE MATHEMATICS. Eusebius Doedel

LECTURE NOTES DISCRETE MATHEMATICS. Eusebius Doedel LECTURE NOTES on DISCRETE MATHEMATICS Eusebius Doedel 1 LOGIC Introduction. First we introduce some basic concepts needed in our discussion of logic. These will be covered in more detail later. A set is

More information

Chapter 3. Reading assignment: In this chapter we will cover Sections dx 1 + a 0(x)y(x) = g(x). (1)

Chapter 3. Reading assignment: In this chapter we will cover Sections dx 1 + a 0(x)y(x) = g(x). (1) Chapter 3 3 Introduction Reading assignment: In this chapter we will cover Sections 3.1 3.6. 3.1 Theory of Linear Equations Recall that an nth order Linear ODE is an equation that can be written in the

More information

KS MATEMATIKA DISKRIT (DISCRETE MATHEMATICS ) RULES OF INFERENCE. Discrete Math Team

KS MATEMATIKA DISKRIT (DISCRETE MATHEMATICS ) RULES OF INFERENCE. Discrete Math Team KS091201 MATEMATIKA DISKRIT (DISCRETE MATHEMATICS ) RULES OF INFERENCE Discrete Math Team 2 -- KS091201 MD W-04 Outline Valid Arguments Modus Ponens Modus Tollens Addition and Simplification More Rules

More information

CHAPTER 4 CLASSICAL PROPOSITIONAL SEMANTICS

CHAPTER 4 CLASSICAL PROPOSITIONAL SEMANTICS CHAPTER 4 CLASSICAL PROPOSITIONAL SEMANTICS 1 Language There are several propositional languages that are routinely called classical propositional logic languages. It is due to the functional dependency

More information

LECTURE NOTES DISCRETE MATHEMATICS. Eusebius Doedel

LECTURE NOTES DISCRETE MATHEMATICS. Eusebius Doedel LECTURE NOTES on DISCRETE MATHEMATICS Eusebius Doedel 1 LOGIC Introduction. First we introduce some basic concepts needed in our discussion of logic. These will be covered in more detail later. A set is

More information

Example: f(x) = 2x² + 1 Solution: Math 2 VM Part 5 Quadratic Functions April 25, 2017

Example: f(x) = 2x² + 1 Solution: Math 2 VM Part 5 Quadratic Functions April 25, 2017 Math 2 Variable Manipulation Part 5 Quadratic Functions MATH 1 REVIEW THE CONCEPT OF FUNCTIONS The concept of a function is both a different way of thinking about equations and a different way of notating

More information

! Predicates! Variables! Quantifiers. ! Universal Quantifier! Existential Quantifier. ! Negating Quantifiers. ! De Morgan s Laws for Quantifiers

! Predicates! Variables! Quantifiers. ! Universal Quantifier! Existential Quantifier. ! Negating Quantifiers. ! De Morgan s Laws for Quantifiers Sec$on Summary (K. Rosen notes for Ch. 1.4, 1.5 corrected and extended by A.Borgida)! Predicates! Variables! Quantifiers! Universal Quantifier! Existential Quantifier! Negating Quantifiers! De Morgan s

More information

Review: Potential stumbling blocks

Review: Potential stumbling blocks Review: Potential stumbling blocks Whether the negation sign is on the inside or the outside of a quantified statement makes a big difference! Example: Let T(x) x is tall. Consider the following: x T(x)

More information

MACM 101 Discrete Mathematics I. Exercises on Predicates and Quantifiers. Due: Tuesday, October 13th (at the beginning of the class)

MACM 101 Discrete Mathematics I. Exercises on Predicates and Quantifiers. Due: Tuesday, October 13th (at the beginning of the class) MACM 101 Discrete Mathematics I Exercises on Predicates and Quantifiers. Due: Tuesday, October 13th (at the beginning of the class) Reminder: the work you submit must be your own. Any collaboration and

More information

COMP 409: Logic Homework 5

COMP 409: Logic Homework 5 COMP 409: Logic Homework 5 Note: The pages below refer to the text from the book by Enderton. 1. Exercises 1-6 on p. 78. 1. Translate into this language the English sentences listed below. If the English

More information

Discrete Mathematics and Its Applications

Discrete Mathematics and Its Applications Discrete Mathematics and Its Applications Lecture 1: The Foundations: Logic and Proofs (1.3-1.5) MING GAO DASE @ ECNU (for course related communications) mgao@dase.ecnu.edu.cn Sep. 19, 2017 Outline 1 Logical

More information

Arithmetic Operations. The real numbers have the following properties: In particular, putting a 1 in the Distributive Law, we get

Arithmetic Operations. The real numbers have the following properties: In particular, putting a 1 in the Distributive Law, we get MCA AP Calculus AB Summer Assignment The following packet is a review of many of the skills needed as we begin the study of Calculus. There two major sections to this review. Pages 2-9 are review examples

More information

Linear Cyclic Codes. Polynomial Word 1 + x + x x 4 + x 5 + x x + x f(x) = q(x)h(x) + r(x),

Linear Cyclic Codes. Polynomial Word 1 + x + x x 4 + x 5 + x x + x f(x) = q(x)h(x) + r(x), Coding Theory Massoud Malek Linear Cyclic Codes Polynomial and Words A polynomial of degree n over IK is a polynomial p(x) = a 0 + a 1 + + a n 1 x n 1 + a n x n, where the coefficients a 1, a 2,, a n are

More information

Motivation. From Propositions To Fuzzy Logic and Rules. Propositional Logic What is a proposition anyway? Outline

Motivation. From Propositions To Fuzzy Logic and Rules. Propositional Logic What is a proposition anyway? Outline Harvard-MIT Division of Health Sciences and Technology HST.951J: Medical Decision Support, Fall 2005 Instructors: Professor Lucila Ohno-Machado and Professor Staal Vinterbo Motivation From Propositions

More information

Logical Operators. Conjunction Disjunction Negation Exclusive Or Implication Biconditional

Logical Operators. Conjunction Disjunction Negation Exclusive Or Implication Biconditional Logical Operators Conjunction Disjunction Negation Exclusive Or Implication Biconditional 1 Statement meaning p q p implies q if p, then q if p, q when p, q whenever p, q q if p q when p q whenever p p

More information

Logic Overview, I. and T T T T F F F T F F F F

Logic Overview, I. and T T T T F F F T F F F F Logic Overview, I DEFINITIONS A statement (proposition) is a declarative sentence that can be assigned a truth value T or F, but not both. Statements are denoted by letters p, q, r, s,... The 5 basic logical

More information

COMP 182 Algorithmic Thinking. Proofs. Luay Nakhleh Computer Science Rice University

COMP 182 Algorithmic Thinking. Proofs. Luay Nakhleh Computer Science Rice University COMP 182 Algorithmic Thinking Proofs Luay Nakhleh Computer Science Rice University 1 Reading Material Chapter 1, Section 3, 6, 7, 8 Propositional Equivalences The compound propositions p and q are called

More information

CALCULUS JIA-MING (FRANK) LIOU

CALCULUS JIA-MING (FRANK) LIOU CALCULUS JIA-MING (FRANK) LIOU Abstract. Contents. Power Series.. Polynomials and Formal Power Series.2. Radius of Convergence 2.3. Derivative and Antiderivative of Power Series 4.4. Power Series Expansion

More information

Algebra II Vocabulary Word Wall Cards

Algebra II Vocabulary Word Wall Cards Algebra II Vocabulary Word Wall Cards Mathematics vocabulary word wall cards provide a display of mathematics content words and associated visual cues to assist in vocabulary development. The cards should

More information

Solutions to Exercises (Sections )

Solutions to Exercises (Sections ) s to Exercises (Sections 1.11-1.12) Section 1.11 Exercise 1.11.1 (a) p q q r r p 1. q r Hypothesis 2. p q Hypothesis 3. p r Hypothetical syllogism, 1, 2 4. r Hypothesis 5. p Modus tollens, 3, 4. (b) p

More information

Section Summary. Predicate logic Quantifiers. Negating Quantifiers. Translating English to Logic. Universal Quantifier Existential Quantifier

Section Summary. Predicate logic Quantifiers. Negating Quantifiers. Translating English to Logic. Universal Quantifier Existential Quantifier Section 1.4 Section Summary Predicate logic Quantifiers Universal Quantifier Existential Quantifier Negating Quantifiers De Morgan s Laws for Quantifiers Translating English to Logic Propositional Logic

More information

CS 250/251 Discrete Structures I and II Section 005 Fall/Winter Professor York

CS 250/251 Discrete Structures I and II Section 005 Fall/Winter Professor York CS 250/251 Discrete Structures I and II Section 005 Fall/Winter 2013-2014 Professor York Practice Quiz March 10, 2014 CALCULATORS ALLOWED, SHOW ALL YOUR WORK 1. Construct the power set of the set A = {1,2,3}

More information

MAT 243 Test 1 SOLUTIONS, FORM A

MAT 243 Test 1 SOLUTIONS, FORM A t MAT 243 Test 1 SOLUTIONS, FORM A 1. [10 points] Rewrite the statement below in positive form (i.e., so that all negation symbols immediately precede a predicate). ( x IR)( y IR)((T (x, y) Q(x, y)) R(x,

More information

Proving Arguments Valid in Predicate Calculus

Proving Arguments Valid in Predicate Calculus Proving Arguments Valid in Predicate Calculus Lila Kari University of Waterloo Proving Arguments Valid in Predicate Calculus CS245, Logic and Computation 1 / 22 Predicate calculus - Logical consequence

More information

Exercises. Exercise Sheet 1: Propositional Logic

Exercises. Exercise Sheet 1: Propositional Logic B Exercises Exercise Sheet 1: Propositional Logic 1. Let p stand for the proposition I bought a lottery ticket and q for I won the jackpot. Express the following as natural English sentences: (a) p (b)

More information

CSE 20: Discrete Mathematics

CSE 20: Discrete Mathematics Spring 2018 Summary So far: Today: Logic and proofs Divisibility, modular arithmetics Number Systems More logic definitions and proofs Reading: All of Chap. 1 + Chap 4.1, 4.2. Divisibility P = 5 divides

More information

CS 214 Introduction to Discrete Structures. Chapter 1 Formal Logic. Mikel D. Petty, Ph.D.

CS 214 Introduction to Discrete Structures. Chapter 1 Formal Logic. Mikel D. Petty, Ph.D. CS 214 Introduction to Discrete Structures Chapter 1 Formal Logic Mikel D. Petty, Ph.D. Center for Modeling, Simulation, and Analysis CS 214 Formal Logic 1.2 Chapter sections and objectives 1.1 Statements,

More information

DEPARTMENT OF MATHEMATICS. MA1301 Discrete Mathematics

DEPARTMENT OF MATHEMATICS. MA1301 Discrete Mathematics SHRI ANGALAMMAN COLLEGE OF ENGINEERING AND TECHNOLOGY (An ISO 9001:2000 Certified Institution) SIRUGANOOR, TIRUCHIRAPPALLI 621 105 DEPARTMENT OF MATHEMATICS MA1301 Discrete Mathematics UNIT-I PART-A 1.Give

More information

1 Predicates and Quantifiers

1 Predicates and Quantifiers 1 Predicates and Quantifiers We have seen how to represent properties of objects. For example, B(x) may represent that x is a student at Bryn Mawr College. Here B stands for is a student at Bryn Mawr College

More information

Higher Order Derivatives

Higher Order Derivatives Higher Order Derivatives A higher order derivative is the derivative of a derivative. For example, let f(x) = 3x x. Its derivative is f (x) = x + x. The derivative of f (x) is an example of a higher order

More information

Predicates, Quantifiers and Nested Quantifiers

Predicates, Quantifiers and Nested Quantifiers Predicates, Quantifiers and Nested Quantifiers Predicates Recall the example of a non-proposition in our first presentation: 2x=1. Let us call this expression P(x). P(x) is not a proposition because x

More information

Generator Matrix. Theorem 6: If the generator polynomial g(x) of C has degree n-k then C is an [n,k]-cyclic code. If g(x) = a 0. a 1 a n k 1.

Generator Matrix. Theorem 6: If the generator polynomial g(x) of C has degree n-k then C is an [n,k]-cyclic code. If g(x) = a 0. a 1 a n k 1. Cyclic Codes II Generator Matrix We would now like to consider how the ideas we have previously discussed for linear codes are interpreted in this polynomial version of cyclic codes. Theorem 6: If the

More information

University of California, San Diego Department of Computer Science and Engineering CSE 20. Solutions to Midterm Exam Winter 2018

University of California, San Diego Department of Computer Science and Engineering CSE 20. Solutions to Midterm Exam Winter 2018 University of California, San Diego Department of Computer Science and Engineering CSE 20 Solutions to Midterm Exam Winter 2018 Problem 1 (30 points) a. The boolean function f(p, q) = (q p) ( q p) is specified

More information

I. Induction, Probability and Confirmation: Introduction

I. Induction, Probability and Confirmation: Introduction I. Induction, Probability and Confirmation: Introduction 1. Basic Definitions and Distinctions Singular statements vs. universal statements Observational terms vs. theoretical terms Observational statement

More information

Unit 2 Rational Functionals Exercises MHF 4UI Page 1

Unit 2 Rational Functionals Exercises MHF 4UI Page 1 Unit 2 Rational Functionals Exercises MHF 4UI Page Exercises 2.: Division of Polynomials. Divide, assuming the divisor is not equal to zero. a) x 3 + 2x 2 7x + 4 ) x + ) b) 3x 4 4x 2 2x + 3 ) x 4) 7. *)

More information

Mathacle. PSet ---- Algebra, Logic. Level Number Name: Date: I. BASICS OF PROPOSITIONAL LOGIC

Mathacle. PSet ---- Algebra, Logic. Level Number Name: Date: I. BASICS OF PROPOSITIONAL LOGIC I. BASICS OF PROPOSITIONAL LOGIC George Boole (1815-1864) developed logic as an abstract mathematical system consisting of propositions, operations (conjunction, disjunction, and negation), and rules for

More information

STRAIGHT LINES EXERCISE - 3

STRAIGHT LINES EXERCISE - 3 STRAIGHT LINES EXERCISE - 3 Q. D C (3,4) E A(, ) Mid point of A, C is B 3 E, Point D rotation of point C(3, 4) by angle 90 o about E. 3 o 3 3 i4 cis90 i 5i 3 i i 5 i 5 D, point E mid point of B & D. So

More information

Topic 2 [312 marks] The rectangle ABCD is inscribed in a circle. Sides [AD] and [AB] have lengths

Topic 2 [312 marks] The rectangle ABCD is inscribed in a circle. Sides [AD] and [AB] have lengths Topic 2 [312 marks] 1 The rectangle ABCD is inscribed in a circle Sides [AD] and [AB] have lengths [12 marks] 3 cm and (\9\) cm respectively E is a point on side [AB] such that AE is 3 cm Side [DE] is

More information

Properties of Context-free Languages. Reading: Chapter 7

Properties of Context-free Languages. Reading: Chapter 7 Properties of Context-free Languages Reading: Chapter 7 1 Topics 1) Simplifying CFGs, Normal forms 2) Pumping lemma for CFLs 3) Closure and decision properties of CFLs 2 How to simplify CFGs? 3 Three ways

More information