Active infrared thermography: frequency-modulated thermal wave imaging for sub surface fault recognition

Size: px
Start display at page:

Download "Active infrared thermography: frequency-modulated thermal wave imaging for sub surface fault recognition"

Transcription

1 Active infrared thermography: frequency-modulated thermal wave imaging for sub surface fault recognition Chinmayee Jena*, Alok Kumar Singh** *(Electronics & Communication Dept., ABES Engineering College, Ghaziabad) ** (Electronics & Communication Dept., ABES Engineering College, Ghaziabad) ABSTRACT Active thermography has been modeled in terms of electrical equivalent circuit by using the correspondence between the fundamental laws of heat transfer and electricity. 1D, 2D and 3D electrothermal models have been given for finding direct solutions of active thermography problems. A Thermal nondestructive testing (TNDT) method ensuring the determination of characteristics of tested objects from an analysis of their temperature fields including the heat engineering characteristics has been presented. Thermal non-destructive testing is a whole field and non-contact technique for defect detection. The current work describes a variation of TNDT for subsurface defect detection based on frequency modulated thermal wave imaging (FMTWI). The apply has been made for the frequency dependence of thermal diffusion length, to achieve entire depth scanning of a sample in one run. This novel technique overcomes some of the drawbacks associated with traditional pulse and Lock-in thermography. Experimental results are presented in sustain. Keywords - Active thermography,thermal nondestructive testing (TNDT), frequency modulated thermal wave imaging (FMTWI),thermal diffusion length, pulse thermography,lock-in thermography I. INTRODUCTION Direct solutions of active thermography problems are important for understanding the mechanism of formation and investigation of temperature fields, created by various types of defects and thermal stimulations. They are also useful in establishing the effect of various parameters on these temperature fields. TNDT stands for a new method in NDT which uses thermal wave for sub-surface defect detection. This is also a whole field technique. Here the sample under test produces unequal surface heating on external heat stimulus which, in turn, carries the signature of hidden defects inside the sample. Since all solids conduct heat, this technique can therefore be widely used for defect detection in a variety of materials such as metals, composites and ceramics [5.6]. With time many different ideas were proposed to carry out NDT using thermal techniques. This leads to two broad ways of TNDT, viz. Passive thermography and Active thermography. In the passive technique, a defect shows up if its inherent temperature is different from its surroundings. However, detection of defects below the surface of the test sample, especially if they are deep, is difficult with passive techniques, and active thermograph is preferred [7,8]. In active thermography an external stimulus is applied to view the deeper defects with higher contrast. Traditionally, two different approaches are possible: pulse thermography (PT) and lock-in (sinusoidal modulated) thermography (LT) [2]. In PT, a short-duration energy pulse (optical, eddy current,

2 ultrasonic pulse, etc.) is applied and the thermal response is recorded. The resultant sequence of infrared images indicates defects in the material at different depths. In practice, the method requires highpower heat sources and has the additional drawback of being sensitive to surface in-homogeneities. In contrast, lock-in thermography uses mono-frequency sinusoidal thermal excitation. From the recorded images, information about the phase and magnitude of the reflected thermal wave is derived. The phase angle has the advantage of being insensitive to local variations of illumination or of surface emissivity. However, the mono-frequency excitation in LT limits the depth resolution [2, 3]. The time taken, therefore, to take measurements over a span of frequencies, and hence depths, can be very large. In an attempt to address some of the drawbacks of PT and LT, the present work focuses on the use of frequency-modulated thermal waves. In this technique, being named Frequency-Modulated Thermal Wave Imaging (FMTWI), the surface heating is not at a single frequency (as in LT), or at all frequencies (as in PT), but in a predetermined, limited range of frequencies. The frequency range is decided by the sample characteristics, for example thermal diffusivity, thickness of the sample, thermal conductivity and defect depth. A similar approach to the one presented here has been reported recently, but which utilized elastic wave ultrasonic excitation [3]. II. THEROY Consider the case of LT of a test sample (diffusivity α) on to the surface of which a uniform heat source periodically deposits heat at a modulating angular frequency w. Then, neglecting convection and radiation losses, the variation of temperature T, as a function of depth z (within the sample), and time t 0 is given in (1) : T (z, t 0 ) =T a + T 0 exp (-z*sqrt (π/α*t 0 )) cos (2πz/λt 0 )... (1) Where T a is the ambient temperature, T 0 is the amplitude of the oscillating temperature, z is the distance from the sample surface, and t 0 is thermal wavelength. In a given material, the depth of penetration of the thermal waves characterized by the thermal diffusion length µ, dependent on the thermal diffusivity α and is given in (1,2) : µ= [2α/w] ½...(2) Thermal wave depth of penetration in the above equation depends not only on the thermal diffusivity but also on the excitation angular frequency, w. Therefore, if we modulate the frequency of the heat source with time (frequency modulation wave as shown in (Figure 2(a)), and then the depth of penetration would also vary with time. This permits scanning the entire material thickness in one (frequency modulated) cycle, leading to detection of defects at different depths in comparatively much less time than in LT. Therefore, in a given time, much better depth resolution is also achievable by FMTWI [4]. III.BASIC CONCEPTS OF THERMAL IMAGING SYSTEM A. Stefan s Law of Radiation We know from our daily experience that all bodies at finite temperature radiate heat. This was quantitatively explained by the Austrian physicist Joseph Stefan ( ). He proposed a law, known as Stefan s law of radiation, which states A body at temperature T radiates heat per unit area per unit time proportional to the fourth power of its absolute temperature. Where H: Heat radiated per unit area per unit time and σ: proportionality constant, known as Stefan s constant =5.67 x 10-8Wm -2 K -4. The body which follows the aforesaid law is termed as Black body. But, for any real object the law never

3 holds true. So, another parameter was introduced to quantitatively specify the resemblance of an object to a black body. This parameter is known as Emissivity and written as is defined as the ratio of the heat radiated by the real object (H o ) at some finite temperature to that radiated by an ideal black body (H B ) at the same temperature. H 0 H B Thus, = 1 signifies that the body is a perfect black body. Materials like lamp black are having 0.95 and are considered to be a black body in all practical purposes. B. Wien s Displacement Law So far, the radiated energy was referred to as heat. But strictly speaking the energy is released in the form of electro-magnetic wave. Light is an electro-magnetic wave that our eyes respond to. The typical wavelength of visible light varies from 4000A to 8000A where 1A = m. The red light is having the longest wavelength and is least energetic while the violet is having the shortest wavelength and is most energetic. But there is a whole lot of electro-magnetic wave lying beyond the range of visible light. They cannot be seen with the naked eye. Waves having wavelength longer than that of the red are known infra-red and are primarily emitted by a hot body. The intensity vs. wavelength plot for a hot body is shown in figure 1 below. Fig 1 Intensity vs. wavelength plot for a hot body at different temperatures In above intensity vs. wavelength plot the emitted radiation peak shifts toward the shorter wave length side with the increase in temperature. This is known as Wien s displacement law. Additionally, the total amount of radiated energy, which is a function of the area under the curve, also increases with temperature as suggested by Stefan s law. C. Atmospheric Transparency for IR Although a hot body emits all possible wavelengths in the IR region, air does not act as transparent medium for all wavelengths of IR. Most of them gets absorbed by the air molecules, While only a few photons with 2 5μm and 10 12μm wavelength passes through air. So, unfortunately, remote IR imaging systems have to rely only on these two IR spectral windows. D. Psedo-coluring of an Image The IR image, being gray-scale in nature, is difficult to read. To ease out the process, deferent colors are mapped to deferent intensity levels of the gray-scale image generating a beautiful color image of the 2D surface temperature profile. Generally, hot portions are represented with red and cold with blue or black. This mapping can be changed according to user s choice. A typical color mapped infrared image is show in figure 2 below.

4 Fm (t) = (1/2π) dθ/dt... (4) The chirp rate represents the rate of change of instantaneous frequency, and is defined by: Fig 2 A typical colour mapped IR Image. IV. TIME VARYING SINUSOIDS Most signals encountered in engineering applications are inherently non-stationary: i.e. having time-varying frequency and/or amplitude. The present work focuses on using linear frequency-modulated thermal excitation of the sample surface to overcome the problems associated with lock-in thermography (long measurement time) and pulse thermography (high peak powers). It is well-known that spread energy methods offer almost the only solutions for such combined (resolution-peak power-depth of penetration) problems.figure 3(a) shows a schematic of a linear frequency modulated(chirp) signal and its corresponding frequency spectra, figure 3(b). The advantage of using a chirp is that it provides good accuracy for time-of-flight measurements, as it only correlates well at a single well-defined instant of time of arrival (5, 6). Additionally, the received chirp signal can be detected even when its level is well below the noise floor [9]. A frequency modulated signal can be represented in time of (Figure 2(a)), by: X (t) = a(t) sin(θ(t)), 0 t t D...(3) Where a(t) is the envelope of the chirp signal which is zero outside the time interval t D, and t is the phase of the chirp signal. The instantaneous frequency F m (t), of the chirp signal can be obtained as follows: Fig 3(a) A linear frequency -modulated chirp signal x(t), and (b) its frequency spectrum X(f) The waveform is said to be an up-chirp if t and a down-chirp if t For a linear chirp is constant and hence f m (t) is a linear function of time. (a) (b) V. FMTWI: EXPERIMENTS AND RESULTS FMTWI experiments were carried out on a mild-steel sample (figure 4.), using a CEDIP IR system (3-5 µm). A frequency modulated signal of 500 sec duration and linear frequency variation from 0.01 Hz to 0.04 Hz, generated from a signal source is used to

5 drive the heat sources via a source control unit, as shown in Figure 5. The resultant temperature change over the sample surface was temporally captured in ALTAIR software. Various frequency components in the FMTWI are extracted using the Fourier transform (Fn) on each pixel of the thermogram sequence containing N images. Let T(k) be the temperature at a particular location of the kth thermogram in the image sequence(0<k<n). Then: = Re n + iim n...(6) length changes with time depending on the appropriate frequency modulated surface heating. The frequency dependent thermal diffusion length determines spatial resolution of LT. For a fixed test frequency (LT) the thermal diffusion length gets fixed and limits the depth resolution of the test. However in FMTWI the frequency varies with time causing variable depth probing. In this regard it can be compared to Pulse Phase thermography [1], in which a comparatively much wider range of frequencies are probed, simultaneously. Further as compared to PT, considerably less peak power is required from the heat sources. An = Re 2 n+im 2 n...(7) n = tan -1 (Im n / Re n )...(8) Here, Re and Im are the real and imaginary parts of the Fourier transform. The amplitude (An) and phase ( n) images are formed by repeating this process for all pixels in the frame/field of view All dimensions are in mm Fig 5 Experiments arrangement for Frequency Modulated Thermal Wave Imaging (FMTWI) Fig 4 Dimensional layout of the mild steel sample with flatbottom 2 holes as 2defects The phase and magnitude images of captured image sequence are obtained by the ALTAIR LI software. Figure 6. shows the phase image of FMTWI, at the modulation frequency of Hz. However measurements were made over only one frequencymodulated cycle for FMTWI (0.01 to 4 Hz in 500 s). It can be seen that FMTWI can scan the entire sample thickness by utilizing thermal waves whose diffusion

6 VII. REFERENCES [1] F. Amon and C. Pearson, 'Thermal imaging in firefighting and thermographyapplications', Experimental Methods in the Physical Sciences, 43, pp ,2010. Fig 6 Phase image obtained at Hz frequency after applying Fourier transform throughout the captured image sequence in Frequency Modulated Thermal Wave Imaging (FMTWI) VI. CONCLUSION The aim of this paper was to focus attention on the aid provided by frequency modulated thermal wave imaging for their nondestructive evaluation. The article describes results of the frequency modulated thermal wave imaging Experiments has been carried out for justification and demonstration of the capability to detect defects with much less peak power (compared to PT), and in much less time (compared to LT).This paper also reflects some world trends in the TNDT theory. Furthermore, the capability of FMTWI is yet not completely exploited since it is believed that it could be employed in many other applications. In some cases, results are equivalent from the qualitative point of view. However, some techniques are best suited than others in quantification stages. More sensitive and fast IR cameras together with more powerful computers are making possible to manage even more complex and efficient outcome. [2] A. Levy, A. Dayan, M. Ben-David, and I. Gannot, 'A new thermography based early detection of cancer approach based on magnetic nanoparticles Theory simulation and in vitro validation (in press)', Nanomedicine: Nanotechnology, Biology andmedicine, doi: /j.nano , [3] Louaayou, N. Naït-Saïd, and F.Z. Louai, '2D finite element method study ofthe stimulation induction heating in synchronic thermography NDT', NDT&E International, 41(8), pp , [4] P. Chaudhuri, P. Santra, S. Yoele, A. Prakash, D.C. Reddy, L.T. Lachhvani, J.Govindarajan, and Y.C. Saxena. 'Non-destructive evaluation of brazed joints between cooling tube and heat sink by IR thermography and its verification using FE analysis', NDT&E International, 39(2), pp 88-95, [5] C. Ibarra-Castanedo and X. Maldague. Pulsed Phase Thermography Reviewed, QIRT J., 1(1):47-70, [6] C. Ibarra-Castanedo, N. P. Avdelidis and X. Maldague. Quantitative assessment of steel plates using pulsed phase thermography, Materials Evaluation, 63(11): , November [7] Maldague X P V: Theory and Practice of Infrared Thermography for Non- destructive Testing, John Wiley & Sons Inc., 2001.

7 [8] S Yang, GY Tian, IZ Abidin, J Wilson "Simulation of edge cracks using pulsed eddy current stimulated thermography J. Dyn. Syst. Meas. Contr. Trans. ASME, 133 (2011). [9] Saintey M.B. and Almond D.P. (1995), Defect sizing by transient thermography II: a numerical treatment, J. Phys. D: Appl. Phys., 28, pp

Detection of Subsurface Defects using Active Infrared Thermography

Detection of Subsurface Defects using Active Infrared Thermography Detection of Subsurface Defects using Active Infrared Thermography More Info at Open Access Database www.ndt.net/?id=15141 Suman Tewary 1,2,a, Aparna Akula 1,2, Ripul Ghosh 1,2, Satish Kumar 2, H K Sardana

More information

NON-DESTRUCTIVE EVALUATION OF CONCRETE STRUCTURES BY NON-STATIONARY THERMAL WAVE IMAGING. Ropar, Nangal Road, Rupnagar, Punjab , India

NON-DESTRUCTIVE EVALUATION OF CONCRETE STRUCTURES BY NON-STATIONARY THERMAL WAVE IMAGING. Ropar, Nangal Road, Rupnagar, Punjab , India Progress In Electromagnetics Research Letters, Vol. 32, 39 48, 2012 NON-DESTRUCTIVE EVALUATION OF CONCRETE STRUCTURES BY NON-STATIONARY THERMAL WAVE IMAGING R. Mulaveesala 1, *, S. S. B. Panda 2, R. N.

More information

Surface crack detection using infrared thermography and ultraviolet excitation

Surface crack detection using infrared thermography and ultraviolet excitation Surface crack detection using infrared thermography and ultraviolet excitation * University West, SE-461 86 Trollhättan, Sweden, Anna.Runnemalm@hv.se by A. Runnemalm* and P. Broberg* Abstract High signal

More information

Pulse Compression with Gaussian Weighted Chirp Modulated Excitation for Infrared Thermal Wave Imaging

Pulse Compression with Gaussian Weighted Chirp Modulated Excitation for Infrared Thermal Wave Imaging Progress In Electromagnetics Research Letters, Vol. 44, 133 137, 2014 Pulse Compression with Gaussian Weighted Chirp Modulated Excitation for Infrared Thermal Wave Imaging Vanita Arora and Ravibabu Mulaveesala

More information

Non-Destructive Inspection of Brazed Joint by Pulsed Phase Thermography

Non-Destructive Inspection of Brazed Joint by Pulsed Phase Thermography Non-Destructive Inspection of Brazed Joint by Pulsed Phase Thermography Theerapol Sriyubol 1* and Udomkiat Nontakaew 2 1,2 Department of Mechanical and Aerospace Engineering, Faculty of Engineering, King

More information

QUADRATIC FREQUENCY MODULATED THERMAL WAVE IMAGING FOR NON-DESTRUCTIVE TESTING. Ropar, Nangal Road, Rupnagar, Punjab , India

QUADRATIC FREQUENCY MODULATED THERMAL WAVE IMAGING FOR NON-DESTRUCTIVE TESTING. Ropar, Nangal Road, Rupnagar, Punjab , India Progress In Electromagnetics Research M, Vol. 26, 11 22, 2012 QUADRATIC FREQUENCY MODULATED THERMAL WAVE IMAGING FOR NON-DESTRUCTIVE TESTING G. V. Subbarao 1, and R. Mulaveesala 2, * 1 K L University,

More information

3D Finite Element Analysis of Flat and Bent Plates for Crack Detection using Tone Burst Eddy Current Thermography

3D Finite Element Analysis of Flat and Bent Plates for Crack Detection using Tone Burst Eddy Current Thermography 11 th International Conference on Quantitative InfraRed Thermography 3D Finite Element Analysis of Flat and Bent Plates for Crack Detection using Tone Burst Eddy Current Thermography M.N. Libin*, Krishnan

More information

Defect detection with thermal imaging and phase shifting methods in lock-in thermography

Defect detection with thermal imaging and phase shifting methods in lock-in thermography More info about this article: http://www.ndt.net/?id=20672 Defect detection with thermal imaging and phase shifting methods in lock-in thermography Wontae Kim *, Ranjit Shrestha * and Manyong Choi ** *

More information

NON-DESTRUCTIVE EVALUATION OF COMPOSITES MATERIALS BY PULSED-PHASE THERMOGRAPHY: DEPTH INVERSION

NON-DESTRUCTIVE EVALUATION OF COMPOSITES MATERIALS BY PULSED-PHASE THERMOGRAPHY: DEPTH INVERSION NON-DESTRUCTIVE EVALUATION OF COMPOSITES MATERIALS BY PULSED-PHASE THERMOGRAPHY: DEPTH INVERSION Fernando López Rodríguez, flopez@cwpanama.net Vicente de Paulo Nicolau, vicente@emc.ufsc.br Hugo Oshiro,

More information

ACTIVE THERMOGRAPHY FOR MATERIALS NON-DESTRUCTIVE TESTING

ACTIVE THERMOGRAPHY FOR MATERIALS NON-DESTRUCTIVE TESTING ACTIVE THERMOGRAPHY FOR MATERIALS NON-DESTRUCTIVE TESTING Michal ŠVANTNER a, Zdeněk VESELÝ b a University of West Bohemia, Univerzitní 8, 30614 Plzeň, msvantne@ntc.zcu.cz b University of West Bohemia,

More information

Detectability of pulsed infrared thermography of delaminations in carbon fiber composites

Detectability of pulsed infrared thermography of delaminations in carbon fiber composites - November, 7, Xiamen, China Detectability of pulsed infrared thermography of delaminations in carbon fiber composites More info about this article: http://www.ndt.net/?id=7 Peiqi JIANG, Xingwang GUO School

More information

Defect detection in fiberglass reinforced epoxi composite pipes reproducing field inspection conditions

Defect detection in fiberglass reinforced epoxi composite pipes reproducing field inspection conditions July 2-5, 2008, Krakow - Poland Defect detection in fiberglass reinforced epoxi composite pipes reproducing field inspection conditions by Souza M. P. V 1, Rebello J. M. A 1, Soares S. D 2, Freitas G.

More information

Effect of object-to-camera distance on temperature and spatial resolution of a Thermal imaging system FLIR SC 5000

Effect of object-to-camera distance on temperature and spatial resolution of a Thermal imaging system FLIR SC 5000 Effect of object-to-camera distance on temperature and spatial resolution of a Thermal imaging system FLIR SC 5000 B. B. Lahiri, S. Bagavathiappan, John Philip, B.P.C. Rao & T. Jayakumar Non-Destructive

More information

Infrared vision applications for the nondestructive testing of materials. Outline. Clemente Ibarra Castanedo. 1. Active infrared thermography

Infrared vision applications for the nondestructive testing of materials. Outline. Clemente Ibarra Castanedo. 1. Active infrared thermography Chaire de recherche du Canada Titulaire : Xavier Maldague Infrared vision applications for the nondestructive testing of materials Clemente.Ibarra Castanedo@gel.ulaval.ca http://mivim.gel.ulaval.ca Clemente

More information

Modelling of pulse thermography for defect detection in aluminium structures: Assessment on reflection and transmission measurement

Modelling of pulse thermography for defect detection in aluminium structures: Assessment on reflection and transmission measurement ISSN 1 746-7233, England, UK World Journal of Modelling and Simulation Vol. 13 (2017) No. 1, pp. 45-51 Modelling of pulse thermography for defect detection in aluminium structures: Assessment on reflection

More information

Aspect Ratio Considerations for Flat Bottom Hole Defects in Active Thermography

Aspect Ratio Considerations for Flat Bottom Hole Defects in Active Thermography More info about this article: http://www.ndt.net/?id=20749 Aspect Ratio Considerations for Flat Bottom Hole Defects in Active Thermography Abstract by M. Frendberg Beemer and S. Shepard Thermal Wave Imaging,

More information

Thermography in manufacturing: nondestructive evaluation of ultrasonic spot welds of automotive battery pack

Thermography in manufacturing: nondestructive evaluation of ultrasonic spot welds of automotive battery pack th International Conference on Quantitative InfraRed Thermography Thermography in manufacturing: nondestructive evaluation of ultrasonic spot welds of automotive battery pack by P. Shpartko*, L. Lev**,

More information

* Institut für Kunststofftechnik, University of Stuttgart, Pfaffenwaldring 32, Stuttgart, Germany,

* Institut für Kunststofftechnik, University of Stuttgart, Pfaffenwaldring 32, Stuttgart, Germany, Optical excitation thermography with VCSEL-array source by M. Rahammer*, D. Vetter* and M. Kreutzbruck* * Institut für Kunststofftechnik, University of Stuttgart, Pfaffenwaldring 32, 70569 Stuttgart, Germany,

More information

3D Finite Element Analysis of Crack in Aluminium Plate Using Tone Burst Eddy Current Thermography

3D Finite Element Analysis of Crack in Aluminium Plate Using Tone Burst Eddy Current Thermography 3D Finite Element Analysis of Crack in Aluminium Plate Using Tone Burst Eddy Current Thermography Rajeev V.R* & Ramjith Krishnan R** *Assistant Professor, Archana College of Engineering Alappuzha, India

More information

CHARACTERIZING CRACKS WITH ACTIVE THERMOGRAPHY

CHARACTERIZING CRACKS WITH ACTIVE THERMOGRAPHY CHARACTERIZING CRACKS WITH ACTIVE THERMOGRAPHY J. Schlichting, G. N. Kervalishvili, Ch. Maierhofer, M. Kreutzbruck BAM Federal Institute for Materials Research and Testing, Berlin, Germany 1. Introduction

More information

by M. Susa *, H. Benitez**, C. Ibarra-Castanedo *, H. Loaiza**, A. Bendada, X. Maldague*

by M. Susa *, H. Benitez**, C. Ibarra-Castanedo *, H. Loaiza**, A. Bendada, X. Maldague* Phase contrast using Differentiated Absolute Contrast Method by M. Susa *, H. Benitez**, C. Ibarra-Castanedo *, H. Loaiza**, A. Bendada, X. Maldague* * Université Laval, Québec (QC), Canada ** Universidad

More information

Defect Detection Capability of Pulsed Transient Thermography

Defect Detection Capability of Pulsed Transient Thermography Defect Detection Capability of Pulsed Transient Thermography by S. Quek, and D.P. Almond UK Research Centre in NDE, Department of Engineering and Applied Science, University of Bath, Bath, BA 7AY. e-mail:

More information

Pulsed Thermography: evaluation and quantitative analysis of defects through different post-processing algorithms

Pulsed Thermography: evaluation and quantitative analysis of defects through different post-processing algorithms 14 th Quantitative InfraRed Thermography Conference Pulsed Thermography: evaluation and quantitative analysis of defects through different post-processing algorithms by E. D Accardi*, D. Palumbo*, R. Tamborrino*,

More information

Robotic Eddy Current Thermography: Simulations and experiments

Robotic Eddy Current Thermography: Simulations and experiments Robotic Eddy Current Thermography: Simulations and experiments By Y. Mokhtari*, C Ibarra-Castanedo*, P. Servais** and X Maldague* *Department of electrical and computer engineering, LAVAL University, Quebec

More information

9/16/08 Tuesday. Chapter 3. Properties of Light. Light the Astronomer s Tool. and sometimes it can be described as a particle!

9/16/08 Tuesday. Chapter 3. Properties of Light. Light the Astronomer s Tool. and sometimes it can be described as a particle! 9/16/08 Tuesday Announce: Observations? Milky Way Center movie Moon s Surface Gravity movie Questions on Gravity from Ch. 2 Ch. 3 Newton Movie Chapter 3 Light and Atoms Copyright (c) The McGraw-Hill Companies,

More information

Analysis of Thermal Diffusivity of Metals using Lock-in Thermography

Analysis of Thermal Diffusivity of Metals using Lock-in Thermography Analysis of Thermal Diffusivity of Metals using Lock-in Thermography by F. Wagner*, T. Malvisalo*, P. W. Nolte**, and S. Schweizer** * Department of Electrical Engineering, South Westphalia University

More information

Key words: NDT, Pulse thermography, Surface painting, Numerical modeling, Thermal contrast

Key words: NDT, Pulse thermography, Surface painting, Numerical modeling, Thermal contrast 9 th International Conference on Quantitative InfraRed Thermography July -5, 008, Krakow - Poland The influence of surface coatings on the differences between numerical and experimental results for samples

More information

ELECTROMAGNETIC WAVES ELECTROMAGNETIC SPECTRUM

ELECTROMAGNETIC WAVES ELECTROMAGNETIC SPECTRUM VISUAL PHYSICS ONLINE MODULE 7 NATURE OF LIGHT ELECTROMAGNETIC WAVES ELECTROMAGNETIC SPECTRUM When white light passes through a prism, it spreads out into a rainbow of colours, with red at one end and

More information

Reduced inspection time in active thermographic non-destructive testing of lowthermal-conductivity

Reduced inspection time in active thermographic non-destructive testing of lowthermal-conductivity 4 th Quantitative InfraRed Thermography Conference Reduced inspection time in active thermographic non-destructive testing of lowthermal-conductivity materials by M. Ishikawa*, M. Koyama**, H. Kasano***,

More information

Lecture 5: Greenhouse Effect

Lecture 5: Greenhouse Effect /30/2018 Lecture 5: Greenhouse Effect Global Energy Balance S/ * (1-A) terrestrial radiation cooling Solar radiation warming T S Global Temperature atmosphere Wien s Law Shortwave and Longwave Radiation

More information

Lecture 4: Radiation Transfer

Lecture 4: Radiation Transfer Lecture 4: Radiation Transfer Spectrum of radiation Stefan-Boltzmann law Selective absorption and emission Reflection and scattering Remote sensing Importance of Radiation Transfer Virtually all the exchange

More information

Lecture 5: Greenhouse Effect

Lecture 5: Greenhouse Effect Lecture 5: Greenhouse Effect S/4 * (1-A) T A 4 T S 4 T A 4 Wien s Law Shortwave and Longwave Radiation Selected Absorption Greenhouse Effect Global Energy Balance terrestrial radiation cooling Solar radiation

More information

Analysis algorithm for surface crack detection by thermography with UV light excitation

Analysis algorithm for surface crack detection by thermography with UV light excitation Analysis algorithm for surface crack detection by thermography with UV light excitation * University West, University West, SE-461 86 Trollhättan, Sweden, patrik.broberg@hv.se by P. Broberg* and A. Runnemalm*

More information

MEASUREMENT OF THERMAL STRESS AND PREDICTION OF FATIGUE FOR STS USING LOCK-IN THERMOGRAPHY

MEASUREMENT OF THERMAL STRESS AND PREDICTION OF FATIGUE FOR STS USING LOCK-IN THERMOGRAPHY 12 th A-PCNDT 2006 Asia-Pacific Conference on NDT, 5 th 10 th Nov 2006, Auckland, New Zealand MEASUREMENT OF THERMAL STRESS AND PREDICTION OF FATIGUE FOR STS USING LOCK-IN THERMOGRAPHY Won-Tae Kim 1+,

More information

THERMODYNAMICS METHODS OF HEAT TRANSFER RADIATION

THERMODYNAMICS METHODS OF HEAT TRANSFER RADIATION VISUAL PHYSICS ONLINE THERMODYNAMICS METHODS OF HEAT TRANSFER RADIATION Radiation is the energy transferred by electromagnetic waves mainly infrared (IR), visible and ultraviolet (UV). All materials radiate

More information

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information Concepts: Properties of Electromagnetic Radiation Chapter 5 Electromagnetic waves Types of spectra Temperature Blackbody radiation Dual nature of radiation Atomic structure Interaction of light and matter

More information

Thermal Radiation By: Prof. K M Joshi

Thermal Radiation By: Prof. K M Joshi Thermal Radiation By: Prof. K M Joshi Radiation originate due to emission of matter and its subsequent transports does not required any matter / medium. Que: Then what is the nature of this transport???

More information

progressive electromagnetic wave

progressive electromagnetic wave LECTURE 11 Ch17 A progressive electromagnetic wave is a self-supporting, energy-carrying disturbance that travels free of its source. The light from the Sun travels through space (no medium) for only 8.3

More information

Estimation of trial parameters for Pulse Phase Thermography with low power heat sources

Estimation of trial parameters for Pulse Phase Thermography with low power heat sources Estimation of trial parameters for Pulse Phase Thermography with low power heat sources L Vitali, D Fustinoni, P Gramazio and A Niro Energy Department, Politecnico di Milano, Campus Bovisa, Via Lambruschini

More information

Induction thermography on CFRP and the role of anisotropy

Induction thermography on CFRP and the role of anisotropy 14 th Quantitative InfraRed Thermography Conference Induction thermography on CFRP and the role of anisotropy by U. Netzelmann* and J. Guo** *Fraunhofer Institute for Nondestructive Testing IZFP, Dept.

More information

Advances in Pulsed Phase Thermography

Advances in Pulsed Phase Thermography 1 version n 1 (Sept. 14, 2001) Advances in Pulsed Phase Thermography X. Maldague a, F. Galmiche a, A. Ziadi a a Electrical and Computing Engineering Dept, Université Laval, Quebec City (Quebec), Canada

More information

Multi-cycle THz pulse generation in poled lithium niobate crystals

Multi-cycle THz pulse generation in poled lithium niobate crystals Laser Focus World April 2005 issue (pp. 67-72). Multi-cycle THz pulse generation in poled lithium niobate crystals Yun-Shik Lee and Theodore B. Norris Yun-Shik Lee is an assistant professor of physics

More information

LASER SPOT THERMOGRAPHY FOR CRACK DETECTION IN ALUMINUM STRUCTURES

LASER SPOT THERMOGRAPHY FOR CRACK DETECTION IN ALUMINUM STRUCTURES 7 th International Symposium on NDT in Aerospace We.5.A.5 LASER SPOT THERMOGRAPHY FOR CRACK DETECTION IN ALUMINUM STRUCTURES Jakub ROEMER 1, Tadeusz UHL 1, Łukasz PIECZONKA 1 1 AGH University of Science

More information

Dr. Linlin Ge The University of New South Wales

Dr. Linlin Ge  The University of New South Wales GMAT 9600 Principles of Remote Sensing Week2 Electromagnetic Radiation: Definition & Physics Dr. Linlin Ge www.gmat.unsw.edu.au/linlinge Basic radiation quantities Outline Wave and quantum properties Polarization

More information

Thermal model of multilayer structure for NDT thermal parameters evaluation

Thermal model of multilayer structure for NDT thermal parameters evaluation Thermal model of multilayer structure for NDT ermal parameters evaluation by G. Gralewicz *, G. Owczarek *, T. Świątczak **, B. Więcek ** * Department of Personal Protective Equipment, Central Institute

More information

Estimation of thickness in thermal barrier coatings by using Pulse Phase Thermography

Estimation of thickness in thermal barrier coatings by using Pulse Phase Thermography Estimation of thickness in thermal barrier coatings by using Pulse Phase Thermography M Mahesh Kumar1, M Swamy 2, M.S.Rawat 3 and R Markandeya 4 1,2&3 Metallurgy Department, Bharat Heavy Electricals Limited

More information

Active thermography evaluation of bonding defects in adhered ceramic tiling: thermal stimulation conditions and data analysis methods assessment

Active thermography evaluation of bonding defects in adhered ceramic tiling: thermal stimulation conditions and data analysis methods assessment More Info at Open Access Database www.ndt.net/?id=17692 Active thermography evaluation of bonding defects in adhered ceramic tiling: thermal stimulation conditions and data analysis methods assessment

More information

INFRARED THERMOGRAPHIC NONDESTRUCTIVE TESTING OF COMPOSITE MATERIALS: DETERMINING THERMAL PROPERTIES, DETECTING AND CHARACTERIZING HIDDEN DEFECTS

INFRARED THERMOGRAPHIC NONDESTRUCTIVE TESTING OF COMPOSITE MATERIALS: DETERMINING THERMAL PROPERTIES, DETECTING AND CHARACTERIZING HIDDEN DEFECTS INFRARED THERMOGRAPHIC NONDESTRUCTIVE TESTING OF COMPOSITE MATERIALS: DETERMINING THERMAL PROPERTIES, DETECTING AND CHARACTERIZING HIDDEN DEFECTS 1. Introduction Vladimir VAVILOV TOMSK POLYTECHNIC UNIVERSITY,

More information

Phys 100 Astronomy (Dr. Ilias Fernini) Review Questions for Chapter 5

Phys 100 Astronomy (Dr. Ilias Fernini) Review Questions for Chapter 5 Phys 100 Astronomy (Dr. Ilias Fernini) Review Questions for Chapter 5 MULTIPLE CHOICE 1. What is the wavelength of the longest wavelength light visible to the human eye? a. 400 nm b. 4000 nm c. 7000 nm

More information

NONDESTRUCTIVE EVALUATION OF PLEXIGLAS MATERIALS USING LOCK-IN AND PULSE PHASE INFRARED THERMOGRAPHY

NONDESTRUCTIVE EVALUATION OF PLEXIGLAS MATERIALS USING LOCK-IN AND PULSE PHASE INFRARED THERMOGRAPHY XIX IMEKO World Congress Fundamental and Applied Metrology September 6, 29, Lisbon, Portugal NONDESTRUCTIVE EVALUATION OF PLEXIGLAS MATERIALS USING LOCK-IN AND PULSE PHASE INFRARED THERMOGRAPHY R. Montanini,

More information

The Light of Your Life. We can see the universe because atoms emit photons

The Light of Your Life. We can see the universe because atoms emit photons The Light of Your Life We can see the universe because atoms emit photons Astronomy is an observational science Our messengers are Light (electromagnetic waves) Gravitational waves Cosmic rays (particles)

More information

Eddy Current Thermography: Advances in NDT Fusion Technology for Future Industrial Application

Eddy Current Thermography: Advances in NDT Fusion Technology for Future Industrial Application More Info at Open Access Database www.ndt.net/?id=15144 Eddy Current Thermography: Advances in NDT Fusion Technology for Future Industrial Application I.Z. Abidin, M.N. Salleh, M.Y. Yusof, M.N. Ikhsan.

More information

Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy

Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy Section I Q1. Answer (i) (b) (ii) (d) (iii) (c) (iv) (c) (v) (a) (vi) (b) (vii) (b) (viii) (a) (ix)

More information

Unsteady-state lock-in thermography Application to shunts in solar cells

Unsteady-state lock-in thermography Application to shunts in solar cells Unsteady-state lock-in thermography Application to shunts in solar cells Rajesh Gupta Otwin Breitenstein Max Planck Institute of Microstructure Physics Weinberg 2, D-62 Halle, Germany gupta@mpi-halle.mpg.de

More information

Quantification by Signal to Noise Ratio of Active Infrared Thermography Data Processing Techniques

Quantification by Signal to Noise Ratio of Active Infrared Thermography Data Processing Techniques Optics and Photonics Journal, 2013, 3, 20-26 http://dx.doi.org/10.4236/opj.2013.34a004 Published Online August 2013 (http://www.scirp.org/journal/opj) Quantification by Signal to Noise Ratio of Active

More information

1. The most important aspects of the quantum theory.

1. The most important aspects of the quantum theory. Lecture 5. Radiation and energy. Objectives: 1. The most important aspects of the quantum theory: atom, subatomic particles, atomic number, mass number, atomic mass, isotopes, simplified atomic diagrams,

More information

Thermal Resistance Measurement

Thermal Resistance Measurement Optotherm, Inc. 2591 Wexford-Bayne Rd Suite 304 Sewickley, PA 15143 USA phone +1 (724) 940-7600 fax +1 (724) 940-7611 www.optotherm.com Optotherm Sentris/Micro Application Note Thermal Resistance Measurement

More information

Thermographic analysis of turbulent non-isothermal water boundary layer

Thermographic analysis of turbulent non-isothermal water boundary layer Thermographic analysis of turbulent non-isothermal water boundary layer Irina A. Znamenskaya 1,*, Ekaterina Y. Koroteeva 1, Anastasiya M. Novinskaya 1, Vladimir I. Fomichev 2 1 Faculty of Physics, Lomonosov

More information

Enhanced Surface Metrology

Enhanced Surface Metrology Enhanced Surface Metrology Russell M. Kurtz RAN Science & Technology, LLC Ryder Nesbitt Hexagon Metrology, Inc. There is a constant search for more accurate measurement Traditionally 3 Parameters COST

More information

Extending Flash Thermography Method for Thermal Diffusivity Measurements using Finite Pulse Widths

Extending Flash Thermography Method for Thermal Diffusivity Measurements using Finite Pulse Widths 10 th International Conference on Quantitative InfraRed Thermography July 27-30, 2010, Québec (Canada) Extending Flash Thermography Method for Thermal Diffusivity Measurements using Finite Pulse Widths

More information

Emissivity: Understanding the difference between apparent and actual infrared temperatures

Emissivity: Understanding the difference between apparent and actual infrared temperatures Emissivity: Understanding the difference between apparent and actual infrared temperatures By L. Terry Clausing, P.E. ASNT Certified NDT Level III T/IR, for Fluke Corporation Application Note Taking infrared

More information

Lock-in Thermography on Electronic Devices Using Spatial Deconvolution

Lock-in Thermography on Electronic Devices Using Spatial Deconvolution Lock-in Thermography on Electronic Devices Using Spatial Deconvolution by M. Hejjo Al Rifai, O. Breitenstein and J.P. Rakotoniaina Max Planck Institute of Microstructure Physics, Halle, Germany Abstract

More information

INTRODUCTION Radiation differs from conduction and convection in that it does not require the presence of a material medium to take place.

INTRODUCTION Radiation differs from conduction and convection in that it does not require the presence of a material medium to take place. RADIATION INTRODUCTION Radiation differs from conduction and convection in that it does not require the presence of a material medium to take place. Radiation: The energy emitted by matter in the form

More information

Photochemical principles

Photochemical principles Chapter 1 Photochemical principles Dr. Suzan A. Khayyat 1 Photochemistry Photochemistry is concerned with the absorption, excitation and emission of photons by atoms, atomic ions, molecules, molecular

More information

Numerical modelling of the defect response in pulsed video thermography on samples with finite optical penetration by WALLE G..., BURGSCHWEIGER G.o and NETZELMANN U.".. Fraunhofer-Institute for Nondestructive

More information

In-Line Inspection of Hot-Rolled Steel Billets by Heat Flux Thermography

In-Line Inspection of Hot-Rolled Steel Billets by Heat Flux Thermography 18th World Conference on Nondestructive Testing, 16-20 April 2012, Durban, South Africa In-Line Inspection of Hot-Rolled Steel Billets by Heat Flux Thermography Stefan KOCH 1, Juergen SCHROEDER 1 1 Institut

More information

Active Thermography for Quantitative NDT of CFRP Components

Active Thermography for Quantitative NDT of CFRP Components 2nd International Symposium on NDT in Aerospace 2010 - Mo.3.A.2 Active Thermography for Quantitative NDT of CFRP Components Christian SPIESSBERGER, Alexander DILLENZ, Thomas ZWESCHPER edevis GmbH, Handwerkstr.

More information

Higher -o-o-o- Past Paper questions o-o-o- 3.4 Spectra

Higher -o-o-o- Past Paper questions o-o-o- 3.4 Spectra Higher -o-o-o- Past Paper questions 1991-2010 -o-o-o- 3.4 Spectra 1992 Q37 The diagram below shows the energy levels for the hydrogen atom. (a) Between which two energy levels would an electron transition

More information

Chapter 1: Introduction

Chapter 1: Introduction Chapter 1: Introduction Photogrammetry: Definition & applications What are we trying to do? Data acquisition systems 3-D viewing of 2-D imagery Automation (matching problem) Necessary tools: Image formation

More information

Imagent for fnirs and EROS measurements

Imagent for fnirs and EROS measurements TECHNICAL NOTE Imagent for fnirs and EROS measurements 1. Brain imaging using Infrared Photons Brain imaging techniques can be broadly classified in two groups. One group includes the techniques that have

More information

Inspection analyses on non-cured samples by lock-in and PPT thermography

Inspection analyses on non-cured samples by lock-in and PPT thermography More Info at Open Access Database www.ndt.net/?id=16971 Inspection analyses on non-cured samples by lock-in and PPT thermography Lucía FRANCO 1, Félix VIDAL 1, Álvaro SELAS 2, Ricardo ESCOLANO 2 1 Technological

More information

Transient Thermal Measurement and Behavior of Integrated Circuits

Transient Thermal Measurement and Behavior of Integrated Circuits Transient Thermal Measurement and Behavior of Integrated Circuits Dustin Kendig¹*, Kazuaki Kazawa 1,2, and Ali Shakouri 2 ¹Microsanj LLC 3287 Kifer Rd, Santa Clara, CA 95051, USA ² Birck Nanotechnology

More information

Lamb Waves in Plate Girder Geometries

Lamb Waves in Plate Girder Geometries Lamb Waves in Plate Girder Geometries D.W. Greve, 1 N. L. Tyson 2, and I.J. Oppenheim 2 1 Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213 2 Civil and Environmental

More information

SPECTROSCOPY PRELAB. 2) Name the 3 types of spectra and, in 1 sentence each, describe them.

SPECTROSCOPY PRELAB. 2) Name the 3 types of spectra and, in 1 sentence each, describe them. NAME: SPECTROSCOPY PRELAB 1) What is a spectrum? 2) Name the 3 types of spectra and, in 1 sentence each, describe them. a. b. c. 3) Use Wien s law to calculate the surface temperature of the star Alnilam

More information

Types of Spectra. How do spectrum lines form? 3/30/09. Electron cloud. Atom. Nucleus

Types of Spectra. How do spectrum lines form? 3/30/09. Electron cloud. Atom. Nucleus The electron should be thought of as a distribution or cloud of probability around the nucleus that on average behave like a point particle on a fixed circular path Types of Spectra How do spectrum lines

More information

Astronomy 1102 Exam #1 Chapters 1,2,5,6 & 16

Astronomy 1102 Exam #1 Chapters 1,2,5,6 & 16 Astronomy 1102 Exam #1 Chapters 1,2,5,6 & 16 Chapter 1 Degrees- basic unit of angle measurement, designated by the symbol -a full circle is divided into 360 and a right angle measures 90. arc minutes-one-sixtieth

More information

Module 1. Illumination Engineering Basics. Version 2 EE IIT, Kharagpur 1

Module 1. Illumination Engineering Basics. Version 2 EE IIT, Kharagpur 1 Module 1 Illumination Engineering Basics Version 2 EE IIT, Kharagpur 1 Lesson 2 Radiation Version 2 EE IIT, Kharagpur 2 Instructional objectives 1. State the Visible Range of light. 2. State the range

More information

Developments in Visual and Other NDE Methods II

Developments in Visual and Other NDE Methods II Developments in Visual and Other NDE Methods II Defect Detection using Dual-Beam Shearography and Lock-in Infrared Thermography S-W. La, K-S. Kim, H-C. Jung, H-S.Chang, S-O. Jang, K-S. Kim, Chosun University,

More information

Set-up for ultrafast time-resolved x-ray diffraction using a femtosecond laser-plasma kev x-ray-source

Set-up for ultrafast time-resolved x-ray diffraction using a femtosecond laser-plasma kev x-ray-source Set-up for ultrafast time-resolved x-ray diffraction using a femtosecond laser-plasma kev x-ray-source C. Blome, K. Sokolowski-Tinten *, C. Dietrich, A. Tarasevitch, D. von der Linde Inst. for Laser- and

More information

Atomic Emission Spectra

Atomic Emission Spectra Atomic Emission Spectra Objectives The objectives of this laboratory are as follows: To build and calibrate a simple meter-stick spectroscope that is capable of measuring wavelengths of visible light.

More information

Application of control volume numerical method in thermographic analysis of relative material loss

Application of control volume numerical method in thermographic analysis of relative material loss Application of control volume numerical method in thermographic analysis of relative material loss Faculty of mechanical engineering and naval architecture University of Zagreb, Croatia by S. Švaić and

More information

Frequency: the number of complete waves that pass a point in a given time. It has the symbol f. 1) SI Units: Hertz (Hz) Wavelength: The length from

Frequency: the number of complete waves that pass a point in a given time. It has the symbol f. 1) SI Units: Hertz (Hz) Wavelength: The length from Frequency: the number of complete waves that pass a point in a given time. It has the symbol f. 1) SI Units: Hertz (Hz) Wavelength: The length from the one crest of a wave to the next. I. Electromagnetic

More information

APPLICATION OF THERMOGRAPHY TO ANALYSIS OF THERMAL STRESS IN THE NDT FOR COMPACT TENSILE SPECIMEN

APPLICATION OF THERMOGRAPHY TO ANALYSIS OF THERMAL STRESS IN THE NDT FOR COMPACT TENSILE SPECIMEN 12 th A-PCNDT 2006 Asia-Pacific Conference on NDT, 5 th 10 th Nov 2006, Auckland, New Zealand APPLICATION OF THERMOGRAPHY TO ANALYSIS OF THERMAL STRESS IN THE NDT FOR COMPACT TENSILE SPECIMEN Man-Yong

More information

Electromagnetic Radiation. Radiation and the Planetary Energy Balance. Electromagnetic Spectrum of the Sun

Electromagnetic Radiation. Radiation and the Planetary Energy Balance. Electromagnetic Spectrum of the Sun Radiation and the Planetary Energy Balance Electromagnetic Radiation Solar radiation warms the planet Conversion of solar energy at the surface Absorption and emission by the atmosphere The greenhouse

More information

Spectrum of Radiation. Importance of Radiation Transfer. Radiation Intensity and Wavelength. Lecture 3: Atmospheric Radiative Transfer and Climate

Spectrum of Radiation. Importance of Radiation Transfer. Radiation Intensity and Wavelength. Lecture 3: Atmospheric Radiative Transfer and Climate Lecture 3: Atmospheric Radiative Transfer and Climate Radiation Intensity and Wavelength frequency Planck s constant Solar and infrared radiation selective absorption and emission Selective absorption

More information

LASERS AGAIN? Phys 1020, Day 17: Questions? LASERS: Next Up: Cameras and optics Eyes to web: Final Project Info

LASERS AGAIN? Phys 1020, Day 17: Questions? LASERS: Next Up: Cameras and optics Eyes to web: Final Project Info LASERS AGAIN? Phys 1020, Day 17: Questions? LASERS: 14.3 Next Up: Cameras and optics Eyes to web: Final Project Info 1 Group Exercise Your pennies will simulate a two state atom; tails = ground state,

More information

Lecture 3: Atmospheric Radiative Transfer and Climate

Lecture 3: Atmospheric Radiative Transfer and Climate Lecture 3: Atmospheric Radiative Transfer and Climate Solar and infrared radiation selective absorption and emission Selective absorption and emission Cloud and radiation Radiative-convective equilibrium

More information

2. Discrete means unique, that other states don t overlap it. 3. Electrons in the outer electron shells have greater potential energy.

2. Discrete means unique, that other states don t overlap it. 3. Electrons in the outer electron shells have greater potential energy. 30 Light Emission Answers and Solutions for Chapter 30 Reading Check Questions 1. At these high frequencies, ultraviolet light is emitted. 2. Discrete means unique, that other states don t overlap it.

More information

Radiative heat transfer

Radiative heat transfer Radiative heat transfer 22 mars 2017 Energy can be transported by the electromagnetic field radiated by an object at finite temperature. A very important example is the infrared radiation emitted towards

More information

Pulsed IR Thermography for Package Applications

Pulsed IR Thermography for Package Applications R Pulsed IR Thermography for Package Applications Yongmei Liu, Rajen Dias, Assembly Technology Development, Quality and Reliability Intel Corporation 5000 W. Chandler Blvd. Chandler, AZ 85226, USA 10/28/02

More information

Telescopes (Chapter 6)

Telescopes (Chapter 6) Telescopes (Chapter 6) Based on Chapter 6 This material will be useful for understanding Chapters 7 and 10 on Our planetary system and Jovian planet systems Chapter 5 on Light will be useful for understanding

More information

Dynamic characteristics of water surface irradiated by different lamps by using infrared thermography

Dynamic characteristics of water surface irradiated by different lamps by using infrared thermography Québec City (Canada),2-4 Aug. 2. X. Maldague ed., É. du CAO (26), ISBN 2-989199--X Dynamic characteristics of water surface irradiated by different lamps by using infrared thermography by A. Kamoi 1 and

More information

Deployment of Infrared Inspection Technologies at Sandia National Laboratories

Deployment of Infrared Inspection Technologies at Sandia National Laboratories Deployment of Infrared Inspection Technologies at Sandia National Laboratories Experimental Mechanics/NDE & Model Validation Non Destructive Test Laboratory Sandia National Laboratories Albuquerque, New

More information

Satellite Remote Sensing SIO 135/SIO 236. Electromagnetic Radiation and Polarization

Satellite Remote Sensing SIO 135/SIO 236. Electromagnetic Radiation and Polarization Satellite Remote Sensing SIO 135/SIO 236 Electromagnetic Radiation and Polarization 1 Electromagnetic Radiation The first requirement for remote sensing is to have an energy source to illuminate the target.

More information

Chapter 6. Fiber Optic Thermometer. Ho Suk Ryou

Chapter 6. Fiber Optic Thermometer. Ho Suk Ryou Chapter 6. Fiber Optic Thermometer Ho Suk Ryou Properties of Optical Fiber Optical Fiber Composed of rod core surrounded by sheath Core: conducts electromagnetic wave Sheath: contains wave within the core

More information

Lecture 2: Global Energy Cycle

Lecture 2: Global Energy Cycle Lecture 2: Global Energy Cycle Planetary energy balance Greenhouse Effect Vertical energy balance Solar Flux and Flux Density Solar Luminosity (L) the constant flux of energy put out by the sun L = 3.9

More information

Planetary Science: Investigations 9-10 I-Check Quiz STUDY GUIDE Name HR Date

Planetary Science: Investigations 9-10 I-Check Quiz STUDY GUIDE Name HR Date 1. How are different types of radiation arranged along the electromagnetic spectrum? A. By how fast they travel incorrect answer B. By their sources incorrect answer C. By the amount of energy they carry

More information

Chapter 11 FUNDAMENTALS OF THERMAL RADIATION

Chapter 11 FUNDAMENTALS OF THERMAL RADIATION Chapter Chapter Fundamentals of Thermal Radiation FUNDAMENTALS OF THERMAL RADIATION Electromagnetic and Thermal Radiation -C Electromagnetic waves are caused by accelerated charges or changing electric

More information

The ELECTRON: Wave Particle Duality. chapter 4

The ELECTRON: Wave Particle Duality. chapter 4 The ELECTRON: Wave Particle Duality chapter 4 What do we know about light? Before 1900 s scientists thought light behaved as a wave. This belief changed when it was discovered that light also has particle

More information

Background The power radiated by a black body of temperature T, is given by the Stefan-Boltzmann Law

Background The power radiated by a black body of temperature T, is given by the Stefan-Boltzmann Law Phys316 Exploration 2: Verifying Stefan-Boltzmann Relationship Background The power radiated by a black body of temperature T, is given by the Stefan-Boltzmann Law Where A is the effective radiating area,

More information