Non-integer optical modes in a Möbius-ring resonator

Size: px
Start display at page:

Download "Non-integer optical modes in a Möbius-ring resonator"

Transcription

1 Non-integer optical modes in a Möbius-ring resonator S. L. Li 1, L. B. Ma, 1, * V. M. Fomin 1, S. Böttner 1, M. R. Jorgensen 1, O. G. Schmidt 1,2,3, * 1 Institute for Integrative Nanosciences, IFW Dresden, Helmholtzstr. 20, Dresden, Germany 2 Material Systems for Nanoelectronics, Chemnitz University of Technology, Reichenhainer Str. 70, Chemnitz, Germany 3 Center for Advancing Electronics Dresden, TU Dresden, Georg-Schumann-Str. 11, Dresden, Germany *Corresponding authors: L.B.M. (l.ma@ifw-dresden.de), and O.G.S. (o.schmidt@ifw-dresden.de). Abstract: In-plane polarized light experiences a non-trivial topological evolution as it propagates resonantly in a Möbius ring resonator. The resultant geometric phase varies continuously when changing the light ellipticity, which leads to constructive interference for a non-integer number of wavelengths, and therefore to the occurrence of an arbitrary fractional number of optical modes. The geometric phase in Möbius-ring resonators is topologically robust and implies excellent intrinsic fault-tolerance. PACS numbers: Hz, Ex, Da When propagating light experiences non-trivial topological evolution in parameter space, it acquires geometric phase [1, 2]. This geometric phase has been explored in open light paths by recording polarization rotations in helical waveguides [3-5] and by measuring the interference fringe shift in a nonplanar Mach-Zehnder interferometer[6]. A closed light path, such as that in whispering-gallery-mode (WGM) microcavities [7], was assumed to preclude the existence of geometric phase due to the absence of spin-orbit coupling. Here, we demonstrate the generation of topologically protected geometric phase for light confined in a special type of optical microcavity the Möbius-ring resonator. The geometric phase causes light to constructively interfere for a non-integer number of wavelengths manifesting itself through the appearance of non-integer optical modes. The Möbius-ring [8] is a fascinating loop structure which is well-known for its onesided topology. While the behaviour of electronic waves in Möbius-ring structures has been 1

2 theoretically studied for Möbius aromaticity [9] and twisted semiconductor strips [10], the topological behaviour of light circulating in Möbius-rings has remained unexplored. In this Letter we investigate the topological impact on constructive optical interference in a Möbiusring made of a twisted dielectric strip. The strip thickness d is assumed smaller than the wavelength λ of the considered light, i.e. d < λ/n, so that the electric field is stringently confined within the strip during propagation. The strip width is taken larger than the wavelength and the strip length is chosen to be in the micrometer range to support optical modes in the visible spectral range. It is well known that constructive interference of two waves requires a phase difference corresponding to an integer number of their wavelengths. When light propagates around a closed trajectory (with a perimeter of L), optical resonances form by selfinterference after a full-round trip when a multiple number m of wavelengths matches L (mλ = L), where the integer number m is the mode number. These kind of resonances are known from many types of optical structures, in particular from WGM microcavities such as microspheres, micro-disks, and micro-rings[7]. The integer m implies that an even number (N = 2m) of antinodes is accommodated in the microcavity because each wavelength possesses two antinodes. We start our discussion with linearly polarized light for WGM resonances in ring-type resonators. Calculations for a cylindrical ring cavity confirm the expected optical resonant modes with wavelength λ = L/m and an even number N = 2m of antinodes. In contrast to this, optical resonant modes supported by the Möbius-ring accommodate an odd number (2m-1) of antinodes, which is equivalent to a half-integer number (l = m-1/2) of wavelengths interfering in the ring resonator, and which we correspondingly index by a half-integer mode number (m- 1/2). Figure 1 shows examples of antinode patterns for optical resonances in a cylindrical ring 2

3 and a Möbius-ring with antinode numbers N=16 (m=8) and N=15 (l=7.5), respectively. Both ring structures are formed from strips equal in size and with the same refractive index n. FIG. 1 (color online). Constructive self-interference of light with integer and non-integer number of wavelengths for a cylindrical ring and a Möbius-ring (with air as surrounding medium). (a) Crosssectional resonant antinode amplitude profiles calculated in a cylindrical ring (left) and Möbius-ring (right) resonator with numbers of antinodes N=16 and N=15, respectively. The odd numbers of antinodes are a result of constructive self-interference of light with a half-integer number of wavelengths. (b) Calculated resonant spectra including two resonant modes for the cylindrical ring and Möbius-ring. The modes labelled with half-integer azimuthal mode numbers correspond to the Möbius ring. Both ring structures are formed from strips equal in size (320 nm wide, 2510 nm long, 80 nm thick) with a refractive index of n = 3.5. The occurrence of non-integer optical modes in the Möbius-ring contradicts the conventional picture of constructive interference. Even though the length of the optical path in the cylindrical ring and the Möbius-ring is the same, the mode energies are different [see Fig. 1(b)]. This unusual phenomenon is explained below by the presence of a geometric phase. The phase factor in a physical wave system can be divided into two parts: the dynamical phase determined by the system energy, which reflects the system s evolution in time, and the geometric phase, which memorizes the evolution path in a parameter space. The geometric phase does not occur in trivial topologies, while the dynamical phase is always 3

4 present and evolves over time. Light in conventional WGM optical cavities [7] experiences trivial topological evolution, and therefore geometric phase is not generated. However, when a linearly polarized light enters the Möbius-ring structure considered here, the optical electric field is forced to remain parallel to the plane of the twisted strip, and consequently the polarization orientation continuously varies along the twisted strip during propagation [see Fig. 2(a)]. This behaviour represents an adiabatic parallel transport of linearly polarized light in a smoothly curved Möbius-ring [11]. FIG. 2 (color online). Constructive interference of light with a half-integer number of wavelengths caused by the presence of a geometric phase of π after parallel transport of polarization along a Möbius ring. (a) Sketch of parallel transport of linear polarization along a Möbius-ring in real space. (b) In polarization vector space the linear polarization state evolves along the equator of a Poincaré sphere. (c) Τhe generation of a geometric phase of π in addition to the dynamical phase of (2m-1)π leads to constructive interference with a half-integer number of wavelengths. The solid circles represent optical resonant antinodes. Solid blue curve represents the light wave carrying the dynamical phase. Dashed red curve represents the wave-flip caused by the geometric phase. The green arrow points at the starting point while the black arrows indicate the propagation direction in the Möbiusring. For the adiabatic transport of a degenerate physical system, the geometric phase can be quantified by the corresponding solid angle in parameter space determined by either the wave vector k, which forms a sphere in the momentum space, or the wave polarization state, which 4

5 spans a Poincarésphere. The geometric phase is equal to the solid angle subtended by the trace of the wave vector at the origin of the momentum space [3-5] and a half of the solid angle subtended by the loop of the polarization vector at the origin of a Poincarésphere [2, 12]. For the Möbius ring, the k-direction changes during light propagation along the circular trajectory and k evolves along a great circle on a sphere in the momentum space resulting in a solid angle Ω = 2π. However, the angle of 2π does not provide any observable phase changes, so the evolution of k does not contribute to the geometric phase in WGM microcavities. For the parallel transport of in-plane polarized light [described by ), where and are right and left circular bases] in a Möbius-ring, the continuous variation of the polarization orientation can be visualized by a closed loop along the equator of the Poincarésphere [see Fig. 2(b)]. One full round trip generates a geometric phase equal to half of the solid angle Ω/2 = π for the right and left circular polarization bases as ). Figure 2(c) shows the optical self-interference for half-integer mode numbers in a Möbius-ring. Apparently, the dynamical phase, which changes by 2π for one wavelength, cannot accomplish constructive interference in the Möbius-ring because it is exactly off-phase in the case of half-integer numbers of wavelengths. However, the presence of the geometric phase π leads to an effective wave-flip, which precisely compensates for the unmatched dynamical phase. It is therefore the geometric phase π that allows for constructive interference in the Möbius-ring in spite of the presence of non-integer number of wavelengths. In this sense, the occurrence of the geometric phase changes the conventional requirement that a difference equal to an integer number of wavelengths is needed for constructive interference. Remarkably, the geometric phase is wavelength independent, since it is only related to the intrinsic topological property of the physical evolution. In the model shown in Fig. 2, a single light wave self-interfering after one round-trip is assumed. An alternative way to describe the resonances in a ring cavity considers two light 5

6 waves starting from the same point but propagating in opposite directions. In this model the two beams meet after a half round-trip and interfere with each other [13]. Both considerations result in an equivalent loop on the Poincarésphere [12], and therefore lead to the same result. A geometric phase represents the global topological feature of a physical evolution, which is therefore invariant to local distortions. In particular, the geometric phase in a Möbius-ring is topologically robust, since all topologically-equivalent paths will project to the same loop on the Poincarésphere. These topologically-equivalent paths exist for instance, when the Möbius-ring is deformed by stretching and twisting the ring structure, or transformed by twisting the strip with an odd number of half-twists. As shown in Fig. 3, in the case of linearly polarized light, the geometric phase of π is invariant in both cases and causes waves to interfere with a non-integer number of wavelengths. FIG. 3 (color online). Topological protection of the geometric phase in transformed Möbius-ring structures. From left to right: Optical resonant profiles in a three-half-twisted Möbius-ring, a Möbiusring, a stretched and twisted Möbius-ring. A number of antinodes N=15, that corresponds to 7.5λ over the perimeter, is shown as an example. The topological robustness of the geometric phase is a result of the gauge invariance in the adiabatic evolution [14]. The gauge invariance, in turn, indicates that the geometric phase is an important property of a physical system. It has been shown that geometric phases can act as quantum logic gates in quantum computation [15]. A topologically-protected geometric phase therefore implies an intrinsic fault-tolerance towards environmental perturbance, which is of profound importance for practical applications. 6

7 Following the analysis above, consider the introduction of light with different ellipticities e ( ) propagating in the Möbius ring. In this case, the major axis orientation of the ellipse is confined locally to stay in-plane in the twisted strip, performing a cyclic evolution. The propagation of differently polarized light in the Möbius ring projects a series of loops on a Poincarésphere, varying from the equator (linear polarization, e = 1) to the two poles (circular polarization, e = 0), as shown in Fig. 4(a). The left (right) handed chirality is defined as that of the Möbius strip along the propagation direction, which is found the southern (northern) hemisphere of the Poincarésphere. The solid angle (Ω) subtended by the corresponding loop varies from 0 to 2π (in the northern hemisphere) and 2π to 4π (in the southern hemisphere), and consequently the geometric phase (γ=ω/2) varies from 0 to π and π to 2 π, respectively[2, 12]. The optical mode number can now be defined as, where M i is an integer number. By correlating the solid angle Ω, and therefore the geometric phase γ, with the polarization ellipticity e spread over the Poincarésphere [16], the optical mode number behaves as shown in Fig. 4(b). When changing the ellipticity from linear (e=1) to circular (e=0) the optical mode symmetrically approaches the neighbouring integer numbers owing to opposite light chiralities. The mode number rapidly changes from a half integer towards a whole integer when e changes from 0.5 to 1. At e=0, the right and left handed circular polarizations are degenerated at integer mode numbers due to trivial topology. This trivial topological effect is due to the arbitrary rotational symmetry of the circle depicted by the electric field vector in circular polarization. In this way, the optical mode number is continuously tuned into an arbitrary fractional number other than only a half integer. Alternatively, an arbitrary fractional number can also be realized, for example, in a Möbiusring made of an anisotropic inhomogeneous medium where the geometric phase might be no longer restricted to π due to a non-abelian evolution [17]. 7

8 FIG. 4 (color online). Optical mode number continuously tuned into an arbitrary fractional number. (a) The propagation of differently polarized light in a Möbius ring projects to a series of loops on a Poincarésphere, which leads to a variation of the geometric phase from 0 to 2 π. (b) Optical mode number m (here: between 7 and 8) as a function of light ellipticity e. For elliptically polarized light (0<e<1), each ellipticity leads to two different fractional mode numbers due to opposite chiralities (left and right). The linearly polarized light (e=1) results in a half integer mode number, while circularly polarized light (e=0) results in integer mode number due to a trivial topological effect. The geometric phase naturally evolves from solving Maxwell s equations in the Möbius-ring structure. We found that certain structural features are required for the occurrence of a geometric phase in Möbius-rings. For example, the ultra-thin strip (of subwavelength thickness) is critical for delivering topology information to the propagating light. When the strip is too thick (greater than or equal to the wavelength), even numbers of antinodes emerge because the polarization is no longer strictly required to rotate along the twisted strip structure, and therefore does not undergo a pure non-trivial topological evolution. In summary, this work demonstrates the generation of geometric phase for light propagating in the closed light path of a Möbius-ring resonator. The presence of geometric phase breaks the paradigm that a light-path difference equal to an integer number of wavelengths is required for constructive interference. The Möbius-ring structures considered here are of micrometer size, which is much smaller than previously reported for helical waveguide structures [3, 5, 6]. Such small sized optical components seem well-suited for a new generation of on-chip photonic devices with excellent topological robustness. Our work introduces non-trivial topology to the field of optical microcavities, and may lead to many promising applications in nanophotonics and quantum information technologies. 8

9 [1] S. Pancharatnam, Proc. Ind. Acad. Sci. A 44, 247 (1956). [2] M. V. Berry, Proc. R. Soc. London Ser. A 392, 45 (1984). [3] K. Y. Bliokh, A. Niv, V. Kleiner, and E. Hasman, Nat. Photon. 2, 748 (2008). [4] R. Y. Chiao, and Y.-S. Wu, Phys. Rev. Lett. 57, 933 (1986). [5] A. Tomita, and R. Y. Chiao, Phys. Rev. Lett. 57, 937 (1986). [6] R. Y. Chiao, A. Antaramian, K. M. Ganga, H. Jiao, S. R. Wilkinson, and H. Nathel, Phys. Rev. Lett. 60, 1214 (1988). [7] K. J. Vahala, Nature 424, 839 (2003). [8] S. Tanda, T. Tsuneta, Y. Okajima, K. Inagaki, K. Yamaya, and N. Hatakenaka, Nature 417, 397 (2002). [9] H. S. Rzepa, Chem. Rev. 105, 3697 (2005). [10] V. M. Fomin, S. Kiravittaya, and O. G. Schmidt, Phys. Rev. B 86, (2012). [11] M. V. Berry, Nature 326, 277 (1987). [12] M. V. Berry, J. Mod. Opt. 34, 1401 (1987). [13] M. Hosoda, and T. Shigaki, Appl. Phys. Lett. 90, (2007). [14] Y. Aharonov, and J. Anandan, Phys. Rev. Lett. 58, 1593 (1987). [15] J. A. Jones, V. Vedral, A. Ekert, and G. Castagnoli, Nature 403, 869 (2000). [16] M. Born, and E. Wolf, in Principles of Optics ( Cambridge University Press, Cambridge, England, 1980). [17] K. Y. Bliokh, D. Y. Frolov, and Y. A. Kravtsov, Phys. Rev. A 75, (2007). Acknowledgements The authors gratefully acknowledge Y. Yin for fruitful discussions. This work was supported by the Volkswagen Foundation (I/84072), the U.S. Air Force Office of Scientific Research MURI program under Grant FA , and the DFG priority program FOR S.L.L. thanks the financial support from China Scholarship Council (CSC, File No ). L.B.M. thanks the support from National Science Foundation of China (NSFC) with the Grant No M.R.J thanks the Alexander von Humboldt foundation for financial support. 9

Topology induced anomalous plasmon modes in metallic Möbius nanorings

Topology induced anomalous plasmon modes in metallic Möbius nanorings Topology induced anomalous plasmon modes in metallic Möbius nanorings Yin Yin 1,2, *, Shilong Li 1, Vivienne Engemaier 1, Ehsan Saei Ghareh Naz 1, Silvia Giudicatti 1, Libo Ma 1,*, and Oliver G. Schmidt

More information

Geometric interpretation of the Pancharatnam connection and non-cyclic polarization changes

Geometric interpretation of the Pancharatnam connection and non-cyclic polarization changes 1972 J. Opt. Soc. Am. A/ Vol. 27, No. 9/ September 2010 van Dijk et al. Geometric interpretation of the Pancharatnam connection and non-cyclic polarization changes Thomas van Dijk, 1 Hugo F. Schouten,

More information

Gravitational field around blackhole induces photonic spin-orbit interaction that twists. light

Gravitational field around blackhole induces photonic spin-orbit interaction that twists. light Gravitational field around blackhole induces photonic spin-orbit interaction that twists light Deng Pan, Hong-Xing Xu ǂ School of Physics and Technology, Wuhan University, Wuhan 430072, China Corresponding

More information

Quantum Information through Angular momentum of Photon

Quantum Information through Angular momentum of Photon Quantum Information through Angular momentum of Photon Dipti Banerjee# and Dipan Sinha* Department of Physics Vidyasagar College for Women, 39, Sankar Ghosh Lane, Kolkata-76 Abstract The angular momentum

More information

Generation of helical modes of light by spin-to-orbital angular momentum conversion in inhomogeneous liquid crystals

Generation of helical modes of light by spin-to-orbital angular momentum conversion in inhomogeneous liquid crystals electronic-liquid Crystal Crystal Generation of helical modes of light by spin-to-orbital angular momentum conversion in inhomogeneous liquid crystals Lorenzo Marrucci Dipartimento di Scienze Fisiche Università

More information

Vector Vortex Beam Generation with a Single Plasmonic Metasurface

Vector Vortex Beam Generation with a Single Plasmonic Metasurface Vector Vortex Beam Generation with a Single Plasmonic Metasurface Fuyong Yue 1, Dandan Wen 1, Jingtao Xin, Brian D. Gerardot 1, Jensen Li 3, Xianzhong Chen 1* 1. SUPA, Institute of Photonics and Quantum

More information

Nanoscale shift of the intensity distribution of dipole radiation

Nanoscale shift of the intensity distribution of dipole radiation Shu et al. Vol. 26, No. 2/ February 2009/ J. Opt. Soc. Am. A 395 Nanoscale shift of the intensity distribution of dipole radiation Jie Shu, Xin Li, and Henk F. Arnoldus* Department of Physics and Astronomy,

More information

A microring multimode laser using hollow polymer optical fibre

A microring multimode laser using hollow polymer optical fibre PRAMANA c Indian Academy of Sciences Vol. 75, No. 5 journal of November 2010 physics pp. 923 927 A microring multimode laser using hollow polymer optical fibre M KAILASNATH, V P N NAMPOORI and P RADHAKRISHNAN

More information

Nonachromaticity and reversals of topological phase as a function of wavelength

Nonachromaticity and reversals of topological phase as a function of wavelength arxiv:physics/0307097v1 [physics.optics] 19 Jul 2003 Nonachromaticity and reversals of topological phase as a function of wavelength Rajendra Bhandari Raman Research Institute, Bangalore 560 080, India.

More information

POEM: Physics of Emergent Materials

POEM: Physics of Emergent Materials POEM: Physics of Emergent Materials Nandini Trivedi L1: Spin Orbit Coupling L2: Topology and Topological Insulators Tutorials: May 24, 25 (2017) Scope of Lectures and Anchor Points: 1.Spin-Orbit Interaction

More information

Observation of the spin-based plasmonic effect in nanoscale. structures

Observation of the spin-based plasmonic effect in nanoscale. structures Observation of the spin-based plasmonic effect in nanoscale structures Y.Gorodetski, A. Niv, V. Kleiner and E. Hasman * Micro and Nanooptics Laboratory, Russel Berrie Nanotechnology Institute, Technion

More information

Experimental Reconstruction of the Berry Curvature in a Floquet Bloch Band

Experimental Reconstruction of the Berry Curvature in a Floquet Bloch Band Experimental Reconstruction of the Berry Curvature in a Floquet Bloch Band Christof Weitenberg with: Nick Fläschner, Benno Rem, Matthias Tarnowski, Dominik Vogel, Dirk-Sören Lühmann, Klaus Sengstock Rice

More information

Enhancement mechanisms for optical forces in integrated optics

Enhancement mechanisms for optical forces in integrated optics Enhancement mechanisms for optical forces in integrated optics M. L. Povinelli (a),m.lončar (b),e.j.smythe (b),m.ibanescu (c), S. G. Johnson (d), F. Capasso (b), and J. D. Joannopoulos (c) (a) Ginzton

More information

Orientational Kerr effect in liquid crystal ferroelectrics and modulation of partially polarized light

Orientational Kerr effect in liquid crystal ferroelectrics and modulation of partially polarized light Journal of Physics: Conference Series PAPER OPEN ACCESS Orientational Kerr effect in liquid crystal ferroelectrics and modulation of partially polarized light To cite this article: Alexei D. Kiselev et

More information

Application of quantum control techniques to design broadband and ultra-broadband half-wave plates

Application of quantum control techniques to design broadband and ultra-broadband half-wave plates Journal of Physics: Conference Series PAPER OPEN ACCESS Application of quantum control techniques to design broadband and ultra-broadband half-wave plates To cite this article: Wei Huang and Elica Kyoseva

More information

Optical phase shifts and diabolic topology in Möbius-type strips

Optical phase shifts and diabolic topology in Möbius-type strips Optical phase shifts and diabolic topology in Möbius-type strips Indubala I Satija and Radha Balakrishnan 2 () Department of Physics, George Mason University, Fairfax, VA 223. (2)The Institute of Mathematical

More information

by M.W. Evans, British Civil List (

by M.W. Evans, British Civil List ( Derivation of relativity and the Sagnac Effect from the rotation of the Minkowski and other metrics of the ECE Orbital Theorem: the effect of rotation on spectra. by M.W. Evans, British Civil List (www.aias.us)

More information

GEOMETRIC PHASES IN PHYSICS

GEOMETRIC PHASES IN PHYSICS Advanced Series in Mathematical Physics. Vol. 5 GEOMETRIC PHASES IN PHYSICS UNiVEKSH&TSBBUOTHEK HANNOVER TECWNiSCHE INFORMAT1ONSBI8UOTHEK Alfred Shapere Frank Wilczek World Scientific Singapore New Jersey

More information

Investigation on Mode Splitting and Degeneracy in the L3 Photonic Crystal Nanocavity via Unsymmetrical Displacement of Air-Holes

Investigation on Mode Splitting and Degeneracy in the L3 Photonic Crystal Nanocavity via Unsymmetrical Displacement of Air-Holes The International Journal Of Engineering And Science (Ijes) Volume 2 Issue 2 Pages 146-150 2013 Issn: 2319 1813 Isbn: 2319 1805 Investigation on Mode Splitting and Degeneracy in the L3 Photonic Crystal

More information

Generation of vortex beams by an image-rotating optical parametric oscillator

Generation of vortex beams by an image-rotating optical parametric oscillator Generation of vortex beams by an image-rotating optical parametric oscillator Arlee V. Smith and Darrell J. Armstrong Dept. 1118, Sandia National Laboratories, Albuquerque, NM 87185-1423 arlee.smith@osa.org

More information

Supplementary Information: Three-dimensional quantum photonic elements based on single nitrogen vacancy-centres in laser-written microstructures

Supplementary Information: Three-dimensional quantum photonic elements based on single nitrogen vacancy-centres in laser-written microstructures Supplementary Information: Three-dimensional quantum photonic elements based on single nitrogen vacancy-centres in laser-written microstructures Andreas W. Schell, 1, a) Johannes Kaschke, 2 Joachim Fischer,

More information

Best Student Paper Award

Best Student Paper Award Best Student Paper Award Giant Spin Hall Effect of Light in an Exotic Optical System A. Bag, S. Chandel, C. Banerjee, D. Saha, M. Pal, A. Banerjee and N. Ghosh* Indian Institute of Science Education and

More information

Time Resolved Faraday Rotation Measurements of Spin Polarized Currents in Quantum Wells

Time Resolved Faraday Rotation Measurements of Spin Polarized Currents in Quantum Wells Time Resolved Faraday Rotation Measurements of Spin Polarized Currents in Quantum Wells M. R. Beversluis 17 December 2001 1 Introduction For over thirty years, silicon based electronics have continued

More information

BISTABLE twisted nematic (BTN) liquid crystal displays

BISTABLE twisted nematic (BTN) liquid crystal displays JOURNAL OF DISPLAY TECHNOLOGY, VOL 1, NO 2, DECEMBER 2005 217 Analytic Solution of Film Compensated Bistable Twisted Nematic Liquid Crystal Displays Fushan Zhou and Deng-Ke Yang Abstract In this paper,

More information

Observable topological effects in molecular devices with Möbius topology

Observable topological effects in molecular devices with Möbius topology Observable topological effects in molecular devices with Möbius topology Nan Zhao, 1, H. Dong, Shuo Yang, and C. P. Sun 1 Department of Physics, Tsinghua University, Beijing 100084, China Institute of

More information

Resonantly Trapped Bound State in the Continuum Laser Abstract

Resonantly Trapped Bound State in the Continuum Laser Abstract Resonantly Trapped Bound State in the Continuum Laser T. Lepetit*, Q. Gu*, A. Kodigala*, B. Bahari, Y. Fainman, B. Kanté Department of Electrical and Computer Engineering, University of California San

More information

Chapter 4: Polarization of light

Chapter 4: Polarization of light Chapter 4: Polarization of light 1 Preliminaries and definitions B E Plane-wave approximation: E(r,t) ) and B(r,t) are uniform in the plane ^ k We will say that light polarization vector is along E(r,t)

More information

Photonic Micro and Nanoresonators

Photonic Micro and Nanoresonators Photonic Micro and Nanoresonators Hauptseminar Nanooptics and Nanophotonics IHFG Stuttgart Overview 2 I. Motivation II. Cavity properties and species III. Physics in coupled systems Cavity QED Strong and

More information

Nonreciprocal Bloch Oscillations in Magneto-Optic Waveguide Arrays

Nonreciprocal Bloch Oscillations in Magneto-Optic Waveguide Arrays Nonreciprocal Bloch Oscillations in Magneto-Optic Waveguide Arrays Miguel Levy and Pradeep Kumar Department of Physics, Michigan Technological University, Houghton, Michigan 49931 ABSTRACT We show that

More information

arxiv: v1 [physics.optics] 1 Dec 2007

arxiv: v1 [physics.optics] 1 Dec 2007 Pancharatnam-Berry phase optical elements for wavefront shaping in the visible domain: switchable helical modes generation L. Marrucci, C. Manzo, and D. Paparo CNR-INFM Coherentia and Dipartimento di Scienze

More information

Physics 221A Fall 2005 Homework 8 Due Thursday, October 27, 2005

Physics 221A Fall 2005 Homework 8 Due Thursday, October 27, 2005 Physics 22A Fall 2005 Homework 8 Due Thursday, October 27, 2005 Reading Assignment: Sakurai pp. 56 74, 87 95, Notes 0, Notes.. The axis ˆn of a rotation R is a vector that is left invariant by the action

More information

Resonance on Air Column

Resonance on Air Column Resonance on Air Column Objectives a. To measure the speed of sound with the help of sound wave resonance in air column inside the tube with one end closed. b. To do error analysis of speed of sound measurement.

More information

Weak measurement and quantum interference

Weak measurement and quantum interference Weak measurement and quantum interference from a geometrical point of view Masao Kitano Department of Electronic Science and Engineering, Kyoto University February 13-15, 2012 GCOE Symposium, Links among

More information

Critical entanglement and geometric phase of a two-qubit model with Dzyaloshinski Moriya anisotropic interaction

Critical entanglement and geometric phase of a two-qubit model with Dzyaloshinski Moriya anisotropic interaction Chin. Phys. B Vol. 19, No. 1 010) 010305 Critical entanglement and geometric phase of a two-qubit model with Dzyaloshinski Moriya anisotropic interaction Li Zhi-Jian 李志坚 ), Cheng Lu 程璐 ), and Wen Jiao-Jin

More information

Spectral Degree of Coherence of a Random Three- Dimensional Electromagnetic Field

Spectral Degree of Coherence of a Random Three- Dimensional Electromagnetic Field University of Miami Scholarly Repository Physics Articles and Papers Physics 1-1-004 Spectral Degree of Coherence of a Random Three- Dimensional Electromagnetic Field Olga Korotkova University of Miami,

More information

Physics Letters A 374 (2010) Contents lists available at ScienceDirect. Physics Letters A.

Physics Letters A 374 (2010) Contents lists available at ScienceDirect. Physics Letters A. Physics Letters A 374 (2010) 1063 1067 Contents lists available at ScienceDirect Physics Letters A www.elsevier.com/locate/pla Macroscopic far-field observation of the sub-wavelength near-field dipole

More information

Resonant modes and laser spectrum of microdisk lasers. N. C. Frateschi and A. F. J. Levi

Resonant modes and laser spectrum of microdisk lasers. N. C. Frateschi and A. F. J. Levi Resonant modes and laser spectrum of microdisk lasers N. C. Frateschi and A. F. J. Levi Department of Electrical Engineering University of Southern California Los Angeles, California 90089-1111 ABSTRACT

More information

Part 1: Fano resonances Part 2: Airy beams Part 3: Parity-time symmetric systems

Part 1: Fano resonances Part 2: Airy beams Part 3: Parity-time symmetric systems Lecture 3 Part 1: Fano resonances Part 2: Airy beams Part 3: Parity-time symmetric systems Yuri S. Kivshar Nonlinear Physics Centre, Australian National University, Canberra, Australia http://wwwrsphysse.anu.edu.au/nonlinear/

More information

SUPPLEMENTARY FIGURES

SUPPLEMENTARY FIGURES SUPPLEMENTARY FIGURES Supplementary Figure 1. Projected band structures for different coupling strengths. (a) The non-dispersive quasi-energy diagrams and (b) projected band structures for constant coupling

More information

Quantum Computation by Geometrical Means

Quantum Computation by Geometrical Means ontemporary Mathematics Quantum omputation by Geometrical Means Jiannis Pachos Abstract. A geometrical approach to quantum computation is presented, where a non-abelian connection is introduced in order

More information

Adiabatic Approximation

Adiabatic Approximation Adiabatic Approximation The reaction of a system to a time-dependent perturbation depends in detail on the time scale of the perturbation. Consider, for example, an ideal pendulum, with no friction or

More information

Scattering of light from quasi-homogeneous sources by quasi-homogeneous media

Scattering of light from quasi-homogeneous sources by quasi-homogeneous media Visser et al. Vol. 23, No. 7/July 2006/J. Opt. Soc. Am. A 1631 Scattering of light from quasi-homogeneous sources by quasi-homogeneous media Taco D. Visser* Department of Physics and Astronomy, University

More information

Experimental observation of optical vortex evolution in a Gaussian beam. with an embedded fractional phase step

Experimental observation of optical vortex evolution in a Gaussian beam. with an embedded fractional phase step Experimental observation of optical vortex evolution in a Gaussian beam with an embedded fractional phase step W.M. Lee 1, X.-C. Yuan 1 * and K.Dholakia 1 Photonics Research Center, School of Electrical

More information

Vector theory of four-wave mixing: polarization effects in fiber-optic parametric amplifiers

Vector theory of four-wave mixing: polarization effects in fiber-optic parametric amplifiers 1216 J. Opt. Soc. Am. B/ Vol. 21, No. 6/ June 2004 Q. Lin and G. P. Agrawal Vector theory of four-wave mixing: polarization effects in fiber-optic parametric amplifiers Qiang Lin and Govind P. Agrawal

More information

Lightlike solitons with spin

Lightlike solitons with spin Journal of Physics: Conference Series PAPER OPEN ACCESS Lightlike solitons with spin To cite this article: Alexander A. Chernitskii 2016 J. Phys.: Conf. Ser. 678 012016 Related content - On solitons in

More information

The Phase of a Bose-Einstein Condensate by the Interference of Matter Waves. W. H. Kuan and T. F. Jiang

The Phase of a Bose-Einstein Condensate by the Interference of Matter Waves. W. H. Kuan and T. F. Jiang CHINESE JOURNAL OF PHYSICS VOL. 43, NO. 5 OCTOBER 2005 The Phase of a Bose-Einstein Condensate by the Interference of Matter Waves W. H. Kuan and T. F. Jiang Institute of Physics, National Chiao Tung University,

More information

Novel All-Optical Logic Gates Based on Photonic Crystal Structure

Novel All-Optical Logic Gates Based on Photonic Crystal Structure Journal of Physics: Conference Series Novel All-Optical Logic Gates Based on Photonic Crystal Structure To cite this article: Mortaza Noshad et al 2012 J. Phys.: Conf. Ser. 350 012007 View the article

More information

Konstantin Y. Bliokh, Daria Smirnova, Franco Nori. Center for Emergent Matter Science, RIKEN, Japan. Science 348, 1448 (2015)

Konstantin Y. Bliokh, Daria Smirnova, Franco Nori. Center for Emergent Matter Science, RIKEN, Japan. Science 348, 1448 (2015) Konstantin Y. Bliokh, Daria Smirnova, Franco Nori Center for Emergent Matter Science, RIKEN, Japan Science 348, 1448 (2015) QSHE and topological insulators The quantum spin Hall effect means the presence

More information

Coulomb entangler and entanglement-testing network for waveguide qubits

Coulomb entangler and entanglement-testing network for waveguide qubits PHYSICAL REVIEW A 72, 032330 2005 Coulomb entangler and entanglement-testing network for waveguide qubits Linda E. Reichl and Michael G. Snyder Center for Studies in Statistical Mechanics and Complex Systems,

More information

GEOMETRIC PHASES IN QUANTUM THEORY

GEOMETRIC PHASES IN QUANTUM THEORY GEOMETRIC PHASES IN QUANTUM THEORY Diplomarbeit zur Erlangung des akademischen Grades einer Magistra der Naturwissenschaften an der UNIVERSITÄT WIEN eingereicht von Katharina Durstberger betreut von Ao.

More information

Quantum correlations and atomic speckle

Quantum correlations and atomic speckle Quantum correlations and atomic speckle S. S. Hodgman R. G. Dall A. G. Manning M. T. Johnsson K. G. H. Baldwin A. G. Truscott ARC Centre of Excellence for Quantum-Atom Optics, Research School of Physics

More information

Invisible lenses with positive isotropic refractive index

Invisible lenses with positive isotropic refractive index Invisible lenses with positive isotropic refractive index Tomáš Tyc, 1, Huanyang Chen, 2 Aaron Danner, 3 and Yadong Xu 2 1 Faculty of Science and Faculty of Informatics, Masaryk University, Kotlářská 2,

More information

Effective theory of quadratic degeneracies

Effective theory of quadratic degeneracies Effective theory of quadratic degeneracies Y. D. Chong,* Xiao-Gang Wen, and Marin Soljačić Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA Received 28

More information

Analysis of high-quality modes in open chaotic microcavities

Analysis of high-quality modes in open chaotic microcavities Analysis of high-quality modes in open chaotic microcavities W. Fang, A. Yamilov, and H. Cao Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208-3112, USA Received 2

More information

Polarization independent broadband reflectors based on cross-stacked gratings

Polarization independent broadband reflectors based on cross-stacked gratings Polarization independent broadband reflectors based on cross-stacked gratings Deyin Zhao, Hongjun Yang, Zhenqiang Ma, and Weidong Zhou,* Department of Electrical Engineering, NanoFAB Center, University

More information

Light Waves and Polarization

Light Waves and Polarization Light Waves and Polarization Xavier Fernando Ryerson Communications Lab http://www.ee.ryerson.ca/~fernando The Nature of Light There are three theories explain the nature of light: Quantum Theory Light

More information

Measurement and Control of Transverse Photonic Degrees of Freedom via Parity Sorting and Spin-Orbit Interaction

Measurement and Control of Transverse Photonic Degrees of Freedom via Parity Sorting and Spin-Orbit Interaction Measurement and Control of Transverse Photonic Degrees of Freedom via Parity Sorting and Spin-Orbit Interaction Cody Leary University of Warsaw October 21, 2010 Institute of Experimental Physics Optics

More information

Excitation of high angular momentum Rydberg states

Excitation of high angular momentum Rydberg states J. Phys. B: At. Mol. Phys. 19 (1986) L461-L465. Printed in Great Britain LE ITER TO THE EDITOR Excitation of high angular momentum Rydberg states W A Molanderi, C R Stroud Jr and John A Yeazell The Institute

More information

A Highly Tunable Sub-Wavelength Chiral Structure for Circular Polarizer

A Highly Tunable Sub-Wavelength Chiral Structure for Circular Polarizer A Highly Tunable Sub-Wavelength Chiral Structure for Circular Polarizer Menglin. L. N. Chen 1, Li Jun Jiang 1, Wei E. I. Sha 1 and Tatsuo Itoh 2 1 Dept. Of EEE, The University Of Hong Kong 2 EE Dept.,

More information

3.1 The Plane Mirror Resonator 3.2 The Spherical Mirror Resonator 3.3 Gaussian modes and resonance frequencies 3.4 The Unstable Resonator

3.1 The Plane Mirror Resonator 3.2 The Spherical Mirror Resonator 3.3 Gaussian modes and resonance frequencies 3.4 The Unstable Resonator Quantum Electronics Laser Physics Chapter 3 The Optical Resonator 3.1 The Plane Mirror Resonator 3. The Spherical Mirror Resonator 3.3 Gaussian modes and resonance frequencies 3.4 The Unstable Resonator

More information

Zeno logic gates using micro-cavities

Zeno logic gates using micro-cavities Zeno logic gates using micro-cavities J.D. Franson, B.C. Jacobs, and T.B. Pittman Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 20723 The linear optics approach to quantum computing

More information

noncyclic and nonadiabatic. tlt) exp[i

noncyclic and nonadiabatic. tlt) exp[i S(t) VOLUME 60, NUMBER 13 PHYSICAL REVIEW LETTERS 28 MARcH 1988 Study of the Aharonov-Anandan Quantum Phase by NMR Interferometry D. Suter, K. T. Mueller, and A. Pines() University of California and Lawrence

More information

arxiv: v1 [math-ph] 3 Nov 2011

arxiv: v1 [math-ph] 3 Nov 2011 Formalism of operators for Laguerre-Gauss modes A. L. F. da Silva (α), A. T. B. Celeste (β), M. Pazetti (γ), C. E. F. Lopes (δ) (α,β) Instituto Federal do Sertão Pernambucano, Petrolina - PE, Brazil (γ)

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary Information I. Schematic representation of the zero- n superlattices Schematic representation of a superlattice with 3 superperiods is shown in Fig. S1. The superlattice

More information

Photonic crystal enabled THz sources and one-way waveguides

Photonic crystal enabled THz sources and one-way waveguides Photonic crystal enabled THz sources and one-way waveguides The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Wang, Z., Y.

More information

The Two-Slit Interference of Vector Optical Fields with Both Radially and Azimuthally Variant States of Polarization

The Two-Slit Interference of Vector Optical Fields with Both Radially and Azimuthally Variant States of Polarization Progress In Electromagnetics Research M, Vol. 5, 75 8, 7 The Two-Slit Interference of Vector Optical Fields with Both Radially and Azimuthally Variant States of Polarization Tengyue Gao, Chaoyang Qian,

More information

Nanomaterials and their Optical Applications

Nanomaterials and their Optical Applications Nanomaterials and their Optical Applications Winter Semester 2012 Lecture 08 rachel.grange@uni-jena.de http://www.iap.uni-jena.de/multiphoton Outline: Photonic crystals 2 1. Photonic crystals vs electronic

More information

Generating Bessel beams by use of localized modes

Generating Bessel beams by use of localized modes 992 J. Opt. Soc. Am. A/ Vol. 22, No. 5/ May 2005 W. B. Williams and J. B. Pendry Generating Bessel beams by use of localized modes W. B. Williams and J. B. Pendry Condensed Matter Theory Group, The Blackett

More information

Introduction to optical waveguide modes

Introduction to optical waveguide modes Chap. Introduction to optical waveguide modes PHILIPPE LALANNE (IOGS nd année) Chapter Introduction to optical waveguide modes The optical waveguide is the fundamental element that interconnects the various

More information

A Multipass Optics for Quantum-Well-Pumped Semiconductor Disk Lasers

A Multipass Optics for Quantum-Well-Pumped Semiconductor Disk Lasers Multipass-Pumped Semiconductor Disk Lasers 37 A Multipass Optics for Quantum-Well-Pumped Semiconductor Disk Lasers Markus Polanik The pump absorption of quantum-well-pumped semiconductor disk lasers can

More information

Optical Simulation Analysis of a Geometrical-phase-based. Nulling Interferometer

Optical Simulation Analysis of a Geometrical-phase-based. Nulling Interferometer Optical Simulation Analysis of a Geometrical-phase-based Nulling Interferometer Kuo-Hui Chang and Jyh-Long Chern Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan Abstract The

More information

Backscattering enhancement of light by nanoparticles positioned in localized optical intensity peaks

Backscattering enhancement of light by nanoparticles positioned in localized optical intensity peaks Backscattering enhancement of light by nanoparticles positioned in localized optical intensity peaks Zhigang Chen, Xu Li, Allen Taflove, and Vadim Backman We report what we believe to be a novel backscattering

More information

Chap. 5. Jones Calculus and Its Application to Birefringent Optical Systems

Chap. 5. Jones Calculus and Its Application to Birefringent Optical Systems Chap. 5. Jones Calculus and Its Application to Birefringent Optical Systems - The overall optical transmission through many optical components such as polarizers, EO modulators, filters, retardation plates.

More information

Exploiting the Entanglement in Classical Optics Systems

Exploiting the Entanglement in Classical Optics Systems February 23 th, 2015 Dep. of Physics - University of Virginia Exploiting the Entanglement in Classical Optics Systems Carlos Eduardo R. de Souza carloseduardosouza@id.uff.br $$$ Financial Support $$$ Universidade

More information

Analysis of Modified Bowtie Nanoantennas in the Excitation and Emission Regimes

Analysis of Modified Bowtie Nanoantennas in the Excitation and Emission Regimes 232 Analysis of Modified Bowtie Nanoantennas in the Excitation and Emission Regimes Karlo Q. da Costa, Victor A. Dmitriev, Federal University of Para, Belém-PA, Brazil, e-mails: karlo@ufpa.br, victor@ufpa.br

More information

Resonance Interaction Free. Measurement. International Journal of Theoretical Physics, 35, (1996) Harry Paul and Mladen Pavičić, 1

Resonance Interaction Free. Measurement. International Journal of Theoretical Physics, 35, (1996) Harry Paul and Mladen Pavičić, 1 1 International Journal of Theoretical Physics, 35, 2085 2091 (1996) Resonance Interaction Free Measurement Harry Paul and Mladen Pavičić, 1 We show that one can use a single optical cavity as a simplest

More information

Near-perfect modulator for polarization state of light

Near-perfect modulator for polarization state of light Journal of Nanophotonics, Vol. 2, 029504 (11 November 2008) Near-perfect modulator for polarization state of light Yi-Jun Jen, Yung-Hsun Chen, Ching-Wei Yu, and Yen-Pu Li Department of Electro-Optical

More information

How quantum computation gates can be realized in terms of scattering theory approach to quantum tunneling of charge transport

How quantum computation gates can be realized in terms of scattering theory approach to quantum tunneling of charge transport ISSN: 2347-3215 Volume 3 Number 3 (March-2015) pp. 62-66 www.ijcrar.com How quantum computation gates can be realized in terms of scattering theory approach to quantum tunneling of charge transport Anita

More information

The concept of free electromagnetic field in quantum domain

The concept of free electromagnetic field in quantum domain Tr. J. of Physics 23 (1999), 839 845. c TÜBİTAK The concept of free electromagnetic field in quantum domain Alexander SHUMOVSKY and Özgür MÜSTECAPLIOĞLU Physics Department, Bilkent University 06533 Ankara-TURKEY

More information

Optical Control of Coherent Interactions between Electron Spins in InGaAs Quantum Dots

Optical Control of Coherent Interactions between Electron Spins in InGaAs Quantum Dots Optical Control of Coherent Interactions between Electron Spins in InGaAs Quantum Dots S. Spatzek, 1 A. Greilich, 1, * Sophia E. Economou, 2 S. Varwig, 1 A. Schwan, 1 D. R. Yakovlev, 1,3 D. Reuter, 4 A.

More information

Absorption suppression in photonic crystals

Absorption suppression in photonic crystals PHYSICAL REVIEW B 77, 442 28 Absorption suppression in photonic crystals A. Figotin and I. Vitebskiy Department of Mathematics, University of California at Irvine, Irvine, California 92697, USA Received

More information

Single Semiconductor Nanostructures for Quantum Photonics Applications: A solid-state cavity-qed system with semiconductor quantum dots

Single Semiconductor Nanostructures for Quantum Photonics Applications: A solid-state cavity-qed system with semiconductor quantum dots The 3 rd GCOE Symposium 2/17-19, 19, 2011 Tohoku University, Sendai, Japan Single Semiconductor Nanostructures for Quantum Photonics Applications: A solid-state cavity-qed system with semiconductor quantum

More information

CREATING UNCONVENTIONALLY

CREATING UNCONVENTIONALLY CREATING UNCONVENTIONALLY POLARIZED BEAMS BY STRESS INDUCED BIREFRINGENCE Jacob Chamoun Cornell University Advisors: Dr. John Noe Dr. Marty Cohen October 25, 2010 OUTLINE Theory i. Birefringence ii. Cylindrical

More information

arxiv: v1 [physics.optics] 24 Oct 2011

arxiv: v1 [physics.optics] 24 Oct 2011 Oscillatory coupling between a monolithic whispering-gallery resonator and a buried bus waveguide M. Ghulinyan, 1, R. Guider,, I. Carusotto, 3 A. Pitanti, 4 G. Pucker, 1 and L. Pavesi 1 Advanced Photonics

More information

From optical graphene to topological insulator

From optical graphene to topological insulator From optical graphene to topological insulator Xiangdong Zhang Beijing Institute of Technology (BIT), China zhangxd@bit.edu.cn Collaborator: Wei Zhong (PhD student, BNU) Outline Background: From solid

More information

QUASI-CLASSICAL MODEL FOR ONE-DIMENSIONAL POTENTIAL WELL

QUASI-CLASSICAL MODEL FOR ONE-DIMENSIONAL POTENTIAL WELL QUASI-CLASSICAL MODEL FOR ONE-DIMENSIONAL POTENTIAL WELL Guangye Chen, (Associate Professor) Shanghai Jiaotong University, Shanghai, China Abstract Particle in one dimensional potential well demonstrates

More information

Focal shift in vector beams

Focal shift in vector beams Focal shift in vector beams Pamela L. Greene The Institute of Optics, University of Rochester, Rochester, New York 1467-186 pgreene@optics.rochester.edu Dennis G. Hall The Institute of Optics and The Rochester

More information

Factoring Families of Positive Knots on Lorenz-like Templates

Factoring Families of Positive Knots on Lorenz-like Templates Southern Illinois University Carbondale OpenSIUC Articles and Preprints Department of Mathematics 10-2008 Factoring Families of Positive Knots on Lorenz-like Templates Michael C. Sullivan Southern Illinois

More information

Bragg-induced orbital angular-momentum mixing in paraxial high-finesse cavities

Bragg-induced orbital angular-momentum mixing in paraxial high-finesse cavities Bragg-induced orbital angular-momentum mixing in paraxial high-finesse cavities David H. Foster and Jens U. Nöckel Department of Physics, University of Oregon 1371 E 13th Avenue Eugene, OR 97403 http://darkwing.uoregon.edu/~noeckel

More information

Defect-based Photonic Crystal Cavity for Silicon Laser

Defect-based Photonic Crystal Cavity for Silicon Laser Defect-based Photonic Crystal Cavity for Silicon Laser Final Term Paper for Nonlinear Optics PHYC/ECE 568 Arezou Khoshakhlagh Instructor: Prof. M. Sheikh-Bahae University of New Mexico karezou@unm.edu

More information

Two-Dimensional simulation of thermal blooming effects in ring pattern laser beam propagating into absorbing CO2 gas

Two-Dimensional simulation of thermal blooming effects in ring pattern laser beam propagating into absorbing CO2 gas Two-Dimensional simulation of thermal blooming effects in ring pattern laser beam propagating into absorbing CO gas M. H. Mahdieh 1, and B. Lotfi Department of Physics, Iran University of Science and Technology,

More information

Polarization-controlled evolution of light transverse modes and associated Pancharatnam geometric phase in orbital angular momentum

Polarization-controlled evolution of light transverse modes and associated Pancharatnam geometric phase in orbital angular momentum Polarization-controlled evolution of light transverse modes and associated Pancharatnam geometric phase in orbital angular momentum Author Karimi, Ebrahim, Slussarenko, Sergei, Piccirillo, Bruno, Marrucci,

More information

arxiv:quant-ph/ v1 30 Aug 2006

arxiv:quant-ph/ v1 30 Aug 2006 Acta Phys. Hung. B / () QUANTUM ELECTRONICS arxiv:quant-ph/0608237v1 30 Aug 2006 On geometric phases for quantum trajectories Erik Sjöqvist 1,a 1 Department of Quantum Chemistry, Uppsala University, Box

More information

Topological Defects inside a Topological Band Insulator

Topological Defects inside a Topological Band Insulator Topological Defects inside a Topological Band Insulator Ashvin Vishwanath UC Berkeley Refs: Ran, Zhang A.V., Nature Physics 5, 289 (2009). Hosur, Ryu, AV arxiv: 0908.2691 Part 1: Outline A toy model of

More information

SMR WINTER COLLEGE QUANTUM AND CLASSICAL ASPECTS INFORMATION OPTICS. The Origins of Light s angular Momentum

SMR WINTER COLLEGE QUANTUM AND CLASSICAL ASPECTS INFORMATION OPTICS. The Origins of Light s angular Momentum SMR.1738-8 WINTER COLLEGE on QUANTUM AND CLASSICAL ASPECTS of INFORMATION OPTICS 30 January - 10 February 2006 The Origins of Light s angular Momentum Miles PADGETT University of Glasgow Dept. of Physics

More information

Photonic crystal laser threshold analysis using 3D FDTD with a material gain model

Photonic crystal laser threshold analysis using 3D FDTD with a material gain model Photonic crystal laser threshold analysis using 3D FDTD with a material gain model Adam Mock and John O'Brien Microphotonic Device Group University of Southern California July 14, 2009 Session: ITuD6 Integrated

More information

The first results of the 3-D experiment for investigating a dependence of spatial light dragging in a rotating medium on speed of rotation

The first results of the 3-D experiment for investigating a dependence of spatial light dragging in a rotating medium on speed of rotation The first results of the 3-D experiment for investigating a dependence of spatial light dragging in a rotating medium on speed of rotation V.O.Gladyshev, T.M.Gladysheva, M.Dashko, N.Trofimov, Ye.A.Sharandin

More information

AP Physics 1 Second Semester Final Exam Review

AP Physics 1 Second Semester Final Exam Review AP Physics 1 Second Semester Final Exam Review Chapter 7: Circular Motion 1. What does centripetal mean? What direction does it indicate?. Does the centripetal force do work on the object it is rotating?

More information

White light generation and amplification using a soliton pulse within a nano-waveguide

White light generation and amplification using a soliton pulse within a nano-waveguide Available online at www.sciencedirect.com Physics Procedia 00 (009) 000 000 53 57 www.elsevier.com/locate/procedia Frontier Research in Nanoscale Science and Technology White light generation and amplification

More information

Arbitrary and reconfigurable optics - new opportunities for integrated photonics

Arbitrary and reconfigurable optics - new opportunities for integrated photonics Arbitrary and reconfigurable optics - new opportunities for integrated photonics David Miller, Stanford University For a copy of these slides, please e-mail dabm@ee.stanford.edu How to design any linear

More information