Appendix A Time Evolution of the Wave Packet

Size: px
Start display at page:

Download "Appendix A Time Evolution of the Wave Packet"

Transcription

1 Appendix A Time Evolution of the Wave Packet This appendix presents how to calculate the evolution of the wave packet Û(t) ϕ RP and [ ˆX, Û(t)] ϕ RP which are used in the application of the real space method to calculate the transport properties. In order to do that, we divide the time t into small time steps T = t/n and approximate Û(T ) with the series of orthogonal Chebyshev polynomials Q n (Ĥ) i ĤT Û(T ) = e = c n (T )Q n (Ĥ) (A.) The original Chebyshev polynomials T n which satisfy the recurrent relations T 0 (x) = T (x) = x T 2 (x) = 2x 2. T n+ (x) = 2x T n (x) T n (x) (A.2) (A.3) (A.4) (A.5) and act on the interval [ ; ] are rescaled to the rescaled Chebyshev polynomials Q n which cover the bandwidth of system Hamiltonian E [a : a + ], with the band center and bandwidth are a and 4b, respectively. These rescaled Chebyshev polynomials Q n satisfy Q n (E) = ( ) E a 2T n ( n ) (A.6) Q 0 (E) = (A.7) Q (E) = 2 E a (A.8) Springer International Publishing Switzerland 206 D.V. Tuan, Charge and Spin Transport in Disordered Graphene-Based Materials, Springer Theses, DOI 0.007/

2 44 Appendix A: Time Evolution of the Wave Packet Q 2 (E) = 2 ( ) E a (A.9). ( ) E a Q n+ (E) = 2 Q n (E) Q n (E) (A.0) With above definition, we have the orthonormal relations for Q n (E) Q n (E)Q m (E)p Q (E)dE = δ mn (A.) with respect to the weight p Q (E) = 2πb ( ) (A.2) E a 2 Once the Q n polynomials are well defined, one can compute the related c n (T ) coefficients c n (T ) = de p Q (E)Q n (E)e i E T (A.3) ( E a ) 2Tn = de 2πb ( ) e i E T (A.4) E a 2 = 2 dx T n (x) x 2 (x+a) e i T (A.5) π = ( 2i n e i a T J n ) T, n (A.6) and the first coefficients c 0 (T ) = i n e i a T J 0 ( T ) with J n (x) is the Bessel function of the first kind and order n We can now calculate ϕ RP (T ) ϕ RP (T ) =Û(T ) ϕ RP (A.7) N N ϕ RP (T ) c n (T )Q n (Ĥ) ϕ RP = c n (T ) α n (A.8) where α n =Q n (Ĥ) ϕ RP. With the definitions introduced in Eqs. (A.7, A.8 and A.9) and the recurrence relation Eq. (A.0), we obtain

3 Appendix A: Time Evolution of the Wave Packet 45 α 0 = ϕ RP (A.9) ( ) Ĥ a α = α 0 (A.20) ( ) Ĥ a α 2 = α 2 α 0 (A.2) b ( ) Ĥ a α n+ = α n α n ( n 2) (A.22) b Following the same reasoning as for ϕ RP (T ), ϕ RP (T ) can be evaluated first writting ϕ RP (T ) =[ˆX, Û(T )] ϕ RP (A.23) N ϕ RP (T ) N c n (T )[ ˆX, Q n (Ĥ)] ϕ RP = c n (T ) β n (A.24) with β n =[ˆX, Q n (Ĥ)] ϕ RP. Using the Eqs. (A.0) and (A.9 A.22), we obtain the recurrence relation for β n β 0 =0 (A.25) [ ˆX, Ĥ] β = ϕ RP (A.26) ( ) Ĥ a β n+ = β n β n + b b [ ˆX, Ĥ] α n ( n ) (A.27) which contain α n and the commutator [ ˆX, Ĥ] determined by the hopings and the distances between neighbours 0... Hij X ij [ ˆX, Ĥ] =.... H ji X.. ji 0 (A.28) where X ij = (X i X j ) is the distance between orbitals ϕ i and ϕ j.

4 Appendix B Lanczos Method In this appendix the Lanczos method is introduced. Instead of diagonalizing the Hamiltonian the Lanczos method is a useful method to transform the Hamiltonian into tridiagonal matrix which is more convenient to compute the density of state or spin polarization. The general idea of this method is building from the initial state ϕ RP a new basis in which the Hamiltonian is tridiagonal. Here are the basic steps: The first step starts with the first vector in the new basis ψ = ϕ RP and builds the second one ψ 2 which is orthonormal to the first one a = ψ Ĥ ψ (B.) ψ 2 =Ĥ ψ a ψ (B.2) b = ψ 2 = ψ 2 ψ 2 (B.3) ψ 2 = b ψ 2 (B.4) All other recursion steps ( n ) are identical, we build the (n + ) th vector which is orthonormal to the previous ones and given by a n = ψ n Ĥ ψ n (B.5) ψ n+ =Ĥ ψ n a n ψ n b n ψ n (B.6) b n = ψ n+ ψ n+ (B.7) ψ n+ = b n ψ n+ (B.8) The coefficients a n and b n are named recursion coefficients which are respectively the diagonal and off-diagonal of the matrix representation of Ĥ in the Lanczos basis (that we write Ĥ). Springer International Publishing Switzerland 206 D.V. Tuan, Charge and Spin Transport in Disordered Graphene-Based Materials, Springer Theses, DOI 0.007/

5 48 Appendix B: Lanczos Method while a b b a 2 b 2 Ĥ =. b bn b N a N With simple linear algebra, one shows that ϕ RP δ(e Ĥ) ϕ RP = ψ δ(e Ĥ) ψ = lim ( ) η 0 π I m ψ E + iη Ĥ ψ (B.9) ψ E + iη Ĥ ψ = E + iη a E + iη a 2 E + iη a 3 b (B.0) which is referred as a continued fraction G with the definition of G n as, b 2 b 2 2 G n = E + iη a n E + iη a n+ b 2 n b 2 n+ E + iη a n+2 b2 n+2... (B.) G = G n = E + iη a b 2G 2 E + iη a n bn 2G n+ (B.2) (B.3) Since we compute a finite number of recursion coefficients, the subspace of Lanczos if of finite dimension (N), so it is crucial to terminate the continued fraction by an

6 Appendix B: Lanczos Method 49 appropriate choice of the last {a n=n, b n=n } elements. Let us rewrite the continued fraction as G = E + iη a E + iη a 2 b 2 E + iη a 3 b 2 2 b E + iη a N b 2 N G N+ (B.4) where G N+ denotes such termination. The simplest case is when all the spectrum is contained in a finite bandwidth [a ; a + ], a the spectrum center and 4b its bandwidth. Recursion coefficients a n and b n oscillate around their average value a et b, and the damping is usually fast after a few hundreds of recursion steps. The termination then satisfies G N+ = E + iη a b 2 G N+2 = E + iη a b 2 G N+ (B.5) from which a polynomial of second degree is found (b 2 )G 2 N+ + (E + iη a)g N+ = 0 (B.6) and straightforwardly solved = (E + iη a) 2 () 2 G N+ = (E + iη a) i 2 G N+ = (E + iη a) i () 2 (E + iη a) 2 2 (B.7) (B.8) (B.9)

7 Curriculum Vitae Dinh Van Tuan Contact information Postdoctoral Researcher Theoretical and Computational Nanoscience Group, Catalan Institute of Nanoscience and Nanotechnology Research Interests Quantum Condensed Matter Theory: Charge and spin transport, quantum Hall effect, spin Hall effect, topological electronic phases and disordered electronic systems. Professional Preparation Ph.D., Materials Science, Department of Physics, Autonomous University of Barcelona, Spain Thesis Topic: Charge and Spin Transport in Disordered Graphene-Based Materials Supervisor: Prof. Stephan Roche Springer International Publishing Switzerland 206 D.V. Tuan, Charge and Spin Transport in Disordered Graphene-Based Materials, Springer Theses, DOI 0.007/

8 52 Curriculum Vitae M. Sc., Theoretical and Mathematical Physics, Department of Theoretical Physics, Ho Chi Minh city University of Science, Vietnam Thesis Topic: The Graphene Polarizability and Applications Supervisor: Associate Prof. Nguyen Quoc Khanh Professional Appointments 9/204 Postdoctoral Researcher, Catalan Institute of Nanoscience and Nanotechnology 9/20 9/204 Ph.D. student, Catalan Institute of Nanoscience and Nanotechnology 9/2007 9/20 Research Assistant, Ho Chi Minh city University of Science Publications. Dinh Van Tuan, Frank Ortmann, David Soriano, Sergio O. Valenzuela, and Stephan Roche. Pseudospin-driven spin relaxation mechanism in graphene. Nature Physics, 0, (204) 2. Alessandro Cresti, David Soriano, Dinh Van Tuan, Aron W. Cummings, and Stephan Roche. Multiple Quantum Phases in Graphene with Enhanced Spin- Orbit Coupling: from Quantum Spin Hall Regime to Spin Hall Effect and Robust Metallic State. Physical Review Letter, 3, (204) 3. Aron W. Cummings, Dinh Loc Duong, Van Luan Nguyen, Dinh Van Tuan, Jani Kotakoski, Jose Eduardo Barrios Vargas, Young Hee Lee and Stephan Roche. Charge Transport in Polycrystalline Graphene: Challenges and Opportunities. Advanced Materials, 26, Issue 30, (204) 4. David Jiménez, Aron W. Cummings, Ferney Chaves, Dinh Van Tuan, Jani Kotakoski, and Stephan Roche. Impact of graphene polycrystallinity on the performance of graphene field-effect transistors. Appl. Phys. Lett., 04, (204) 5. Dinh Van Tuan, Jani Kotakoski, Thibaud Louvet, Frank Ortmann, Jannik C. Meyer, and Stephan Roche. Scaling Properties of Charge Transport in Polycrystalline Graphene. Nano Letters, 3 (4), (203) 6. Alessandro Cresti, Frank Ortmann, Thibaud Louvet, Dinh Van Tuan, and Stephan Roche. Broken Symmetries, Zero-Energy Modes, and Quantum Transport in Disordered Graphene. Phys. Rev. Lett., 0, 9660 (203). 7. Alessandro Cresti, Thibaud Louvet, Frank Ortmann, Dinh Van Tuan, Paweł Lenarczyk, Georg Huhs and Stephan Roche. Impact of Vacancies on Diffusive and Pseudodiffusive Electronic Transport in Graphene. Crystals, 3, (203). 8. Dinh Van Tuan and Nguyen Quoc Khanh. Plasmon modes of double-layer graphene at finite temperature. Physica E: Low-dimensional Systems and Nanostructures, 54, 267 (203)

9 Curriculum Vitae Dinh Van Tuan, Avishek Kumar, Stephan Roche, Frank Ortmann, M. F. Thorpe, and Pablo Ordejon. Insulating behavior of an amorphous graphene membrane. Phys. Rev. B, 86, 2408 (Rapid Communications) (202) 0. Dinh Van Tuan and Nguyen Quoc Khanh. Temperature effects on Plasmon modes of double-layer graphene. Communications in Physics, 22, 45 (202). David Soriano, Dinh Van Tuan, Simon M.-M. Dubois, Martin Gmitra, Aron W. Cummings, Denis Kochan, Frank Ortmann, Jean-Christophe Charlier, Jaroslav Fabian, and Stephan Roche. Spin Transport in Hydrogenated Graphene. accepted for publication in 2D Materials as a Topical Review, (205) Honors and Awards Award for the best graduate student, 200 Vietnamese Ministry of Education award, 2005 Sliver Medal at the National Physics Olympiad for the students of national universities, 2005 Bronze Medal at the National Physics Olympiad, 2003

arxiv: v1 [cond-mat.mes-hall] 1 Nov 2011

arxiv: v1 [cond-mat.mes-hall] 1 Nov 2011 V The next nearest neighbor effect on the D materials properties Maher Ahmed Department of Physics and Astronomy, University of Western Ontario, London ON N6A K7, Canada and arxiv:.v [cond-mat.mes-hall]

More information

Energy spectrum for a short-range 1/r singular potential with a nonorbital barrier using the asymptotic iteration method

Energy spectrum for a short-range 1/r singular potential with a nonorbital barrier using the asymptotic iteration method Energy spectrum for a short-range 1/r singular potential with a nonorbital barrier using the asymptotic iteration method A. J. Sous 1 and A. D. Alhaidari 1 Al-Quds Open University, Tulkarm, Palestine Saudi

More information

Coulomb blockade and single electron tunnelling

Coulomb blockade and single electron tunnelling Coulomb blockade and single electron tunnelling Andrea Donarini Institute of theoretical physics, University of Regensburg Three terminal device Source System Drain Gate Variation of the electrostatic

More information

Computational Nanoscience

Computational Nanoscience Computational Nanoscience Applications for Molecules, Clusters, and Solids KALMÄN VARGA AND JOSEPH A. DRISCOLL Vanderbilt University, Tennessee Щ CAMBRIDGE HP UNIVERSITY PRESS Preface Part I One-dimensional

More information

APPENDIX B GRAM-SCHMIDT PROCEDURE OF ORTHOGONALIZATION. Let V be a finite dimensional inner product space spanned by basis vector functions

APPENDIX B GRAM-SCHMIDT PROCEDURE OF ORTHOGONALIZATION. Let V be a finite dimensional inner product space spanned by basis vector functions 301 APPENDIX B GRAM-SCHMIDT PROCEDURE OF ORTHOGONALIZATION Let V be a finite dimensional inner product space spanned by basis vector functions {w 1, w 2,, w n }. According to the Gram-Schmidt Process an

More information

Computational Nanoscience

Computational Nanoscience Computational Nanoscience Applications for Molecules, Clusters, and Solids Computer simulation is an indispensable research tool in modeling, understanding, and predicting nanoscale phenomena. However,

More information

in terms of the classical frequency, ω = , puts the classical Hamiltonian in the form H = p2 2m + mω2 x 2

in terms of the classical frequency, ω = , puts the classical Hamiltonian in the form H = p2 2m + mω2 x 2 One of the most important problems in quantum mechanics is the simple harmonic oscillator, in part because its properties are directly applicable to field theory. The treatment in Dirac notation is particularly

More information

Spin-orbit proximity effects in graphene on TMDCs. Jaroslav Fabian

Spin-orbit proximity effects in graphene on TMDCs. Jaroslav Fabian Hvar, 4.10.2017 Spin-orbit proximity effects in graphene on TMDCs Jaroslav Fabian Institute for Theoretical Physics University of Regensburg SFB1277 GRK TI SPP 1666 SFB689 GRK1570 SPP 1538 Arbeitsgruppe

More information

Dr. Karl Saunders Resume

Dr. Karl Saunders Resume Dr. Karl Saunders Resume Address Contact Information Department of Physics California Polytechnic State University Phone: (805) 756-1696 San Luis Obispo, CA 93407 Fax: (805) 756-2435 Email: ksaunder@calpoly.edu

More information

Curriculum Vitae. Professional Appointments: Current positions: - Director of Institute of Mathematics, Hanoi: since June Previous positions:

Curriculum Vitae. Professional Appointments: Current positions: - Director of Institute of Mathematics, Hanoi: since June Previous positions: Curriculum Vitae Name: Le Tuan Hoa (Mr.) Nationality: Vietnamese Year of birth: 1957 Place of birth: Thanh hoa, Vietnam Marital status: married, two sons Spouse s name: Dinh Thi Quynh Van Sons: Le Tuan

More information

PRESENT STATUS OF EDUCATIONAL PROGRAM IN NUCLEAR PHYSICS & NUCLEAR ENGINERRING AT UNIVERSITY OF SCIENCE VNU-HCMC

PRESENT STATUS OF EDUCATIONAL PROGRAM IN NUCLEAR PHYSICS & NUCLEAR ENGINERRING AT UNIVERSITY OF SCIENCE VNU-HCMC PRESENT STATUS OF EDUCATIONAL PROGRAM IN NUCLEAR PHYSICS & NUCLEAR ENGINERRING AT UNIVERSITY OF SCIENCE VNU-HCMC VO HONG HAI, PhD Department of Nuclear Physics Vienne, 19-22 May 2014 1. Brief Introduction

More information

Resume. Last updated 28 January 2019

Resume. Last updated 28 January 2019 Resume Last updated 28 January 2019 PERSONAL DATA: Surname: Moradi First name: Afshin Date of birth: 07/08/1977 Place of birth: Kermanshah, Iran Position: Associate Professor in Nano-Optics Address: Department

More information

Second Quantization Model of Surface Plasmon Polariton at Metal Planar Surface

Second Quantization Model of Surface Plasmon Polariton at Metal Planar Surface Journal of Physics: Conference Series PAPER OPEN ACCESS Second Quantization Model of Surface Plasmon Polariton at Metal Planar Surface To cite this article: Dao Thi Thuy Nga et al 2015 J. Phys.: Conf.

More information

MATH3383. Quantum Mechanics. Appendix D: Hermite Equation; Orthogonal Polynomials

MATH3383. Quantum Mechanics. Appendix D: Hermite Equation; Orthogonal Polynomials MATH3383. Quantum Mechanics. Appendix D: Hermite Equation; Orthogonal Polynomials. Hermite Equation In the study of the eigenvalue problem of the Hamiltonian for the quantum harmonic oscillator we have

More information

1.1 Variational principle Variational calculations with Gaussian basis functions 5

1.1 Variational principle Variational calculations with Gaussian basis functions 5 Preface page xi Part I One-dimensional problems 1 1 Variational solution of the Schrödinger equation 3 1.1 Variational principle 3 1.2 Variational calculations with Gaussian basis functions 5 2 Solution

More information

Curriculum Vitae. Personal details

Curriculum Vitae. Personal details Curriculum Vitae Personal details Name Position Institute Office phone E-mail Takács, Gábor Full professor Head of BME Momentum Statistical Field Theory Research Group Department of Theoretical Physics

More information

Spin Orbit Coupling (SOC) in Graphene

Spin Orbit Coupling (SOC) in Graphene Spin Orbit Coupling (SOC) in Graphene MMM, Mirko Rehmann, 12.10.2015 Motivation Weak intrinsic SOC in graphene: [84]: Phys. Rev. B 80, 235431 (2009) [85]: Phys. Rev. B 82, 125424 (2010) [86]: Phys. Rev.

More information

Introduction to Computational Chemistry

Introduction to Computational Chemistry Introduction to Computational Chemistry Vesa Hänninen Laboratory of Physical Chemistry room B430, Chemicum 4th floor vesa.hanninen@helsinki.fi September 3, 2013 Introduction and theoretical backround September

More information

Dat Tien Cao. B.S. in Mathematics, University of Science, Vietnam National University of Ho Chi Minh City, Ho Chi Minh City, Vietnam

Dat Tien Cao. B.S. in Mathematics, University of Science, Vietnam National University of Ho Chi Minh City, Ho Chi Minh City, Vietnam Dat Tien Cao Department of Mathematics and Statistics Texas Tech University, Box 41042 Lubbock, TX 79409-1042 Email: dat.cao@ttu.edu http: // www. math. ttu. edu/ ~ dacao/ Education 07.2015 07.2008 06.2006

More information

Sample Quantum Chemistry Exam 2 Solutions

Sample Quantum Chemistry Exam 2 Solutions Chemistry 46 Fall 7 Dr. Jean M. Standard Name SAMPE EXAM Sample Quantum Chemistry Exam Solutions.) ( points) Answer the following questions by selecting the correct answer from the choices provided. a.)

More information

Optical properties of wurtzite and zinc-blende GaNÕAlN quantum dots

Optical properties of wurtzite and zinc-blende GaNÕAlN quantum dots Optical properties of wurtzite and zinc-blende GaNÕAlN quantum dots Vladimir A. Fonoberov a) and Alexander A. Balandin b) Nano-Device Laboratory, Department of Electrical Engineering, University of California

More information

Curriculum Vitae. Golomb Visiting Assistant Professor of Mathematics at Purdue University

Curriculum Vitae. Golomb Visiting Assistant Professor of Mathematics at Purdue University Dan Li Curriculum Vitae Contact Information Department of Mathematics, Purdue University 150 N. University Street, West Lafayette, IN, USA 47907-2067 Email: li1863@math.purdue.edu Phone: +1 (765) 494-1948

More information

CURRICULUM VITAE. Develop and explore the different type of nanostructures of TiO 2 and utilizing these structures in fundamental research.

CURRICULUM VITAE. Develop and explore the different type of nanostructures of TiO 2 and utilizing these structures in fundamental research. P a g e 1 CURRICULUM VITAE Dr. PARTHA ROY Assisstant Professor Department of Chemistry School of Chemical Science and Phermacy Central University of Rajasthan NH-8 Bandarsindri, Kishangarh-305817, Rajasthan

More information

Electronic structure theory: Fundamentals to frontiers. 1. Hartree-Fock theory

Electronic structure theory: Fundamentals to frontiers. 1. Hartree-Fock theory Electronic structure theory: Fundamentals to frontiers. 1. Hartree-Fock theory MARTIN HEAD-GORDON, Department of Chemistry, University of California, and Chemical Sciences Division, Lawrence Berkeley National

More information

arxiv: v1 [quant-ph] 8 Sep 2010

arxiv: v1 [quant-ph] 8 Sep 2010 Few-Body Systems, (8) Few- Body Systems c by Springer-Verlag 8 Printed in Austria arxiv:9.48v [quant-ph] 8 Sep Two-boson Correlations in Various One-dimensional Traps A. Okopińska, P. Kościk Institute

More information

Interpolating between Wishart and inverse-wishart distributions

Interpolating between Wishart and inverse-wishart distributions Interpolating between Wishart and inverse-wishart distributions Topological phase transitions in 1D multichannel disordered wires with a chiral symmetry Christophe Texier December 11, 2015 with Aurélien

More information

arxiv: v1 [cond-mat.quant-gas] 18 Sep 2015

arxiv: v1 [cond-mat.quant-gas] 18 Sep 2015 Slightly imbalanced system of a few attractive fermions in a one-dimensional harmonic trap Tomasz Sowiński arxiv:1509.05515v1 [cond-mat.quant-gas] 18 Sep 2015 Institute of Physics of the Polish Academy

More information

Haydock s recursive solution of self-adjoint problems. Discrete spectrum

Haydock s recursive solution of self-adjoint problems. Discrete spectrum Haydock s recursive solution of self-adjoint problems. Discrete spectrum Alexander Moroz Wave-scattering.com wavescattering@yahoo.com January 3, 2015 Alexander Moroz (WS) Recursive solution January 3,

More information

Preface Introduction to the electron liquid

Preface Introduction to the electron liquid Table of Preface page xvii 1 Introduction to the electron liquid 1 1.1 A tale of many electrons 1 1.2 Where the electrons roam: physical realizations of the electron liquid 5 1.2.1 Three dimensions 5 1.2.2

More information

The Quantum Heisenberg Ferromagnet

The Quantum Heisenberg Ferromagnet The Quantum Heisenberg Ferromagnet Soon after Schrödinger discovered the wave equation of quantum mechanics, Heisenberg and Dirac developed the first successful quantum theory of ferromagnetism W. Heisenberg,

More information

Massachusetts Institute of Technology Physics Department

Massachusetts Institute of Technology Physics Department Massachusetts Institute of Technology Physics Department Physics 8.32 Fall 2006 Quantum Theory I October 9, 2006 Assignment 6 Due October 20, 2006 Announcements There will be a makeup lecture on Friday,

More information

Introduction to orthogonal polynomials. Michael Anshelevich

Introduction to orthogonal polynomials. Michael Anshelevich Introduction to orthogonal polynomials Michael Anshelevich November 6, 2003 µ = probability measure on R with finite moments m n (µ) = R xn dµ(x)

More information

Nguyet Minh Mach. Curriculum Vitae. Personal Data. Education. Awards and Scholarships. Birth. Phone +358 (0) (mobile)

Nguyet Minh Mach. Curriculum Vitae. Personal Data. Education. Awards and Scholarships. Birth. Phone +358 (0) (mobile) Nguyet Minh Mach Curriculum Vitae Birth Email Personal Data 3 rd of July, 1985, Can Tho, Viet Nam minh.mach@helsinki.fi Phone +358 (0)44 956 1064 (mobile) Gender Nationality Work address Current position

More information

Many Body Quantum Mechanics

Many Body Quantum Mechanics Many Body Quantum Mechanics In this section, we set up the many body formalism for quantum systems. This is useful in any problem involving identical particles. For example, it automatically takes care

More information

Appendix A SPR Sensorgrams for Interactions of 3 Serum Proteins with Gold Nanoparticles

Appendix A SPR Sensorgrams for Interactions of 3 Serum Proteins with Gold Nanoparticles Appendix A SPR Sensorgrams for Interactions of 3 Serum Proteins with Gold Nanoparticles Further from Sect. 5.3.2 (Figs. A.1, A.2 and A.3). Springer International Publishing Switzerland 2017 A. Patra, Quantifying

More information

Computational strongly correlated materials R. Torsten Clay Physics & Astronomy

Computational strongly correlated materials R. Torsten Clay Physics & Astronomy Computational strongly correlated materials R. Torsten Clay Physics & Astronomy Current/recent students Saurabh Dayal (current PhD student) Wasanthi De Silva (new grad student 212) Jeong-Pil Song (finished

More information

6. Arthur Adamson Postdoctoral Recognition Award, University of Southern California

6. Arthur Adamson Postdoctoral Recognition Award, University of Southern California Kaushik D. Nanda Address: SSC-401C, University of Southern California, Los Angeles, CA 90089-0482 Email: kaushikdnanda@gmail.com; Phone: 408-406-0690 (Cell) EDUCATION AND DEGREES Ph.D. in Chemistry (2013)

More information

Physics 215 Quantum Mechanics 1 Assignment 5

Physics 215 Quantum Mechanics 1 Assignment 5 Physics 15 Quantum Mechanics 1 Assignment 5 Logan A. Morrison February 10, 016 Problem 1 A particle of mass m is confined to a one-dimensional region 0 x a. At t 0 its normalized wave function is 8 πx

More information

1 Mathematical preliminaries

1 Mathematical preliminaries 1 Mathematical preliminaries The mathematical language of quantum mechanics is that of vector spaces and linear algebra. In this preliminary section, we will collect the various definitions and mathematical

More information

Topological Defects inside a Topological Band Insulator

Topological Defects inside a Topological Band Insulator Topological Defects inside a Topological Band Insulator Ashvin Vishwanath UC Berkeley Refs: Ran, Zhang A.V., Nature Physics 5, 289 (2009). Hosur, Ryu, AV arxiv: 0908.2691 Part 1: Outline A toy model of

More information

Curriculum Vitae. Shkolnykov Vladyslav, MPhys.

Curriculum Vitae. Shkolnykov Vladyslav, MPhys. Curriculum Vitae Personal Data Shkolnykov Vladyslav, MPhys. Date of birth 8 November, 1991 Residence Reutestrasse 104, 78467 Konstanz, Germany Citizenship Ukraine Marital status single Tel. +49 (162) 544-20-98

More information

Adam Tarte Holley. Postdoctoral Fellow Graduate Student Research Assistant Teaching Assistant

Adam Tarte Holley. Postdoctoral Fellow Graduate Student Research Assistant Teaching Assistant Adam Tarte Holley aholley@tntech.edu 1908 Brown Ave. Cookeville, TN 38501 (919) 649-0273 Department of Physics Bruner Hall 222 110 University Drive Cookeville, TN 38501 (931) 372-3145 Academic Positions

More information

Curriculum Vitae. Department of Mathematics, UC Berkeley 970 Evans Hall, Berkeley, CA

Curriculum Vitae. Department of Mathematics, UC Berkeley 970 Evans Hall, Berkeley, CA Personal Information Official Name: Transliteration used in papers: Mailing Address: E-mail: Semen Artamonov Semeon Arthamonov Department of Mathematics, UC Berkeley 970 Evans Hall, Berkeley, CA 94720

More information

A theoretical study of the single-molecule transistor

A theoretical study of the single-molecule transistor A theoretical study of the single-molecule transistor B. C. Friesen Department of Physics, Oklahoma Baptist University, Shawnee, OK 74804 J. K. Ingersent Department of Physics, University of Florida, Gainesville,

More information

Marios Mattheakis (Matthaiakis)

Marios Mattheakis (Matthaiakis) Marios Mattheakis (Matthaiakis) August, 2017 School of Engineering and Applied Sciences Harvard University Email: mariosmat@g.harvard.edu scholar.harvard.edu/marios matthaiakis Education Postdoctoral in

More information

31st Jerusalem Winter School in Theoretical Physics: Problem Set 2

31st Jerusalem Winter School in Theoretical Physics: Problem Set 2 31st Jerusalem Winter School in Theoretical Physics: Problem Set Contents Frank Verstraete: Quantum Information and Quantum Matter : 3 : Solution to Problem 9 7 Daniel Harlow: Black Holes and Quantum Information

More information

Linear Algebra and Dirac Notation, Pt. 1

Linear Algebra and Dirac Notation, Pt. 1 Linear Algebra and Dirac Notation, Pt. 1 PHYS 500 - Southern Illinois University February 1, 2017 PHYS 500 - Southern Illinois University Linear Algebra and Dirac Notation, Pt. 1 February 1, 2017 1 / 13

More information

Giant Enhancement of Quantum Decoherence by Frustrated Environments

Giant Enhancement of Quantum Decoherence by Frustrated Environments ISSN 0021-3640, JETP Letters, 2006, Vol. 84, No. 2, pp. 99 103. Pleiades Publishing, Inc., 2006.. Giant Enhancement of Quantum Decoherence by Frustrated Environments S. Yuan a, M. I. Katsnelson b, and

More information

Calculation of Orthogonal Polynomials and Their Derivatives

Calculation of Orthogonal Polynomials and Their Derivatives Biostatistics Department R eport Technical BST2017-0 01 C alculation of Orthogonal Polynomials T heir Derivatives and C harles R. Katholi, PhD M ay 2017 D epartment of Biostatistics S chool of Public Health

More information

Floquet Topological Insulators and Majorana Modes

Floquet Topological Insulators and Majorana Modes Floquet Topological Insulators and Majorana Modes Manisha Thakurathi Journal Club Centre for High Energy Physics IISc Bangalore January 17, 2013 References Floquet Topological Insulators by J. Cayssol

More information

Floquet Topological Insulator:

Floquet Topological Insulator: Floquet Topological Insulator: Understanding Floquet topological insulator in semiconductor quantum wells by Lindner et al. Condensed Matter Journal Club Caltech February 12 2014 Motivation Motivation

More information

Local currents in a two-dimensional topological insulator

Local currents in a two-dimensional topological insulator Local currents in a two-dimensional topological insulator Xiaoqian Dang, J. D. Burton and Evgeny Y. Tsymbal Department of Physics and Astronomy Nebraska Center for Materials and Nanoscience University

More information

Introduction to Graphene-Based Nanomaterials

Introduction to Graphene-Based Nanomaterials Introduction to Graphene-Based Nanomaterials Beginning with an introduction to carbon-based nanomaterials, their electronic properties, and general concepts in quantum transport, this detailed primer describes

More information

I. Perturbation Theory and the Problem of Degeneracy[?,?,?]

I. Perturbation Theory and the Problem of Degeneracy[?,?,?] MASSACHUSETTS INSTITUTE OF TECHNOLOGY Chemistry 5.76 Spring 19 THE VAN VLECK TRANSFORMATION IN PERTURBATION THEORY 1 Although frequently it is desirable to carry a perturbation treatment to second or third

More information

KOROSH TORABI. Ph.D. Chemical Engineering, Purdue University, West Lafayette, IN Dec. 2011

KOROSH TORABI. Ph.D. Chemical Engineering, Purdue University, West Lafayette, IN Dec. 2011 KOROSH TORABI 2 7 2 5 C E N T R A L S T. A P T 2 S E V A N S T O N, I L 6 0 2 0 1 P H O N E ( 3 1 2 ) 3 3 9-0 6 6 5 E - M A I L : K O R O S H. T O R A B I @ N O R T H W E S T E R N. E D U W E B P A G E

More information

First, Second Quantization and Q-Deformed Harmonic Oscillator

First, Second Quantization and Q-Deformed Harmonic Oscillator Journal of Physics: Conference Series PAPER OPEN ACCESS First, Second Quantization and Q-Deformed Harmonic Oscillator To cite this article: Man Van Ngu et al 015 J. Phys.: Conf. Ser. 67 0101 View the article

More information

2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties

2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties 2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties Artem Pulkin California Institute of Technology (Caltech), Pasadena, CA 91125, US Institute of Physics, Ecole

More information

Finding eigenvalues for matrices acting on subspaces

Finding eigenvalues for matrices acting on subspaces Finding eigenvalues for matrices acting on subspaces Jakeniah Christiansen Department of Mathematics and Statistics Calvin College Grand Rapids, MI 49546 Faculty advisor: Prof Todd Kapitula Department

More information

Effective theory of quadratic degeneracies

Effective theory of quadratic degeneracies Effective theory of quadratic degeneracies Y. D. Chong,* Xiao-Gang Wen, and Marin Soljačić Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA Received 28

More information

ON ORTHOGONAL REDUCTION TO HESSENBERG FORM WITH SMALL BANDWIDTH

ON ORTHOGONAL REDUCTION TO HESSENBERG FORM WITH SMALL BANDWIDTH ON ORTHOGONAL REDUCTION TO HESSENBERG FORM WITH SMALL BANDWIDTH V. FABER, J. LIESEN, AND P. TICHÝ Abstract. Numerous algorithms in numerical linear algebra are based on the reduction of a given matrix

More information

Curriculum Vitae. Biographical Information. Personal. Name: Zhuang, Chao Degrees

Curriculum Vitae. Biographical Information. Personal. Name: Zhuang, Chao   Degrees Curriculum Vitae Date of Revision: Sep. 26th, 2013 Biographical Information Personal Degrees Name: Zhuang, Chao Email: c.zhuang@gmail.com 2006-2013 Ph.D. in Physics Supervisor: Steinberg, Aephraim 2005-2006

More information

Academic Appointments Graduate Student, Chemistry Department, Temple University Academic advisor: Professor Eric Borguet

Academic Appointments Graduate Student, Chemistry Department, Temple University Academic advisor: Professor Eric Borguet Department of Chemistry 130 Beury Hall Temple University 1901 N. 13 th Street Philadelphia, Pennsylvania 19122 OLEKSANDR ISAIENKO Phone: 215-204-2368 (office) 215-204-9704 (lab) e-mail: isaienko@temple.edu

More information

Graphene and Planar Dirac Equation

Graphene and Planar Dirac Equation Graphene and Planar Dirac Equation Marina de la Torre Mayado 2016 Marina de la Torre Mayado Graphene and Planar Dirac Equation June 2016 1 / 48 Outline 1 Introduction 2 The Dirac Model Tight-binding model

More information

Quantum Mechanics I Physics 5701

Quantum Mechanics I Physics 5701 Quantum Mechanics I Physics 5701 Z. E. Meziani 02/24//2017 Physics 5701 Lecture Commutation of Observables and First Consequences of the Postulates Outline 1 Commutation Relations 2 Uncertainty Relations

More information

Universal Post-quench Dynamics at a Quantum Critical Point

Universal Post-quench Dynamics at a Quantum Critical Point Universal Post-quench Dynamics at a Quantum Critical Point Peter P. Orth University of Minnesota, Minneapolis, USA Rutgers University, 10 March 2016 References: P. Gagel, P. P. Orth, J. Schmalian Phys.

More information

and S is in the state ( )

and S is in the state ( ) Physics 517 Homework Set #8 Autumn 2016 Due in class 12/9/16 1. Consider a spin 1/2 particle S that interacts with a measuring apparatus that is another spin 1/2 particle, A. The state vector of the system

More information

Time-dependent density functional theory

Time-dependent density functional theory Time-dependent density functional theory E.K.U. Gross Max-Planck Institute for Microstructure Physics OUTLINE LECTURE I Phenomena to be described by TDDFT LECTURE II Review of ground-state DFT LECTURE

More information

Curriculum Vitae. Gholam Hossein Fathtabar Firouzjaei

Curriculum Vitae. Gholam Hossein Fathtabar Firouzjaei Curriculum Vitae Gholam Hossein Fathtabar Firouzjaei Address: Department of Mathematics Faculty of Science University of Kashan Km. 6, Ravand Road Kashan, Iran. E-Mail: fathtabar@kashanu.ac.ir gh.fathtabar@gmail.com

More information

Quantum Mechanics Solutions. λ i λ j v j v j v i v i.

Quantum Mechanics Solutions. λ i λ j v j v j v i v i. Quantum Mechanics Solutions 1. (a) If H has an orthonormal basis consisting of the eigenvectors { v i } of A with eigenvalues λ i C, then A can be written in terms of its spectral decomposition as A =

More information

Curriculum Vitae. Address: Department of Mathematics, National Cheng Kung University, 701 Tainan, Taiwan.

Curriculum Vitae. Address: Department of Mathematics, National Cheng Kung University, 701 Tainan, Taiwan. Curriculum Vitae 1. Personal Details: Name: Kung-Chien Wu Gender: Male E-mail address kcwu@mail.ncku.edu.tw kungchienwu@gmail.com Address: Department of Mathematics, National Cheng Kung University, 701

More information

1 Fundamental physical postulates. C/CS/Phys C191 Quantum Mechanics in a Nutshell I 10/04/07 Fall 2007 Lecture 12

1 Fundamental physical postulates. C/CS/Phys C191 Quantum Mechanics in a Nutshell I 10/04/07 Fall 2007 Lecture 12 C/CS/Phys C191 Quantum Mechanics in a Nutshell I 10/04/07 Fall 2007 Lecture 12 In this and the next lecture we summarize the essential physical and mathematical aspects of quantum mechanics relevant to

More information

Lecture 4.6: Some special orthogonal functions

Lecture 4.6: Some special orthogonal functions Lecture 4.6: Some special orthogonal functions Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 4340, Advanced Engineering Mathematics

More information

Multilinear Singular Value Decomposition for Two Qubits

Multilinear Singular Value Decomposition for Two Qubits Malaysian Journal of Mathematical Sciences 10(S) August: 69 83 (2016) Special Issue: The 7 th International Conference on Research and Education in Mathematics (ICREM7) MALAYSIAN JOURNAL OF MATHEMATICAL

More information

The end is (not) in sight: exact diagonalization, Lanczos, and DMRG

The end is (not) in sight: exact diagonalization, Lanczos, and DMRG The end is (not) in sight: exact diagonalization, Lanczos, and DMRG Jürgen Schnack, Matthias Exler, Peter Hage, Frank Hesmer Department of Physics - University of Osnabrück http://www.physik.uni-osnabrueck.de/makrosysteme/

More information

Degenerate Perturbation Theory. 1 General framework and strategy

Degenerate Perturbation Theory. 1 General framework and strategy Physics G6037 Professor Christ 12/22/2015 Degenerate Perturbation Theory The treatment of degenerate perturbation theory presented in class is written out here in detail. The appendix presents the underlying

More information

Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours.

Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours. Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours. There are 10 problems, totalling 180 points. Do all problems. Answer all problems in the white books provided.

More information

Universal conductance fluctuation of mesoscopic systems in the metal-insulator crossover regime

Universal conductance fluctuation of mesoscopic systems in the metal-insulator crossover regime Universal conductance fluctuation of mesoscopic systems in the metal-insulator crossover regime Zhenhua Qiao, Yanxia Xing, and Jian Wang* Department of Physics and the Center of Theoretical and Computational

More information

MP463 QUANTUM MECHANICS

MP463 QUANTUM MECHANICS MP463 QUANTUM MECHANICS Introduction Quantum theory of angular momentum Quantum theory of a particle in a central potential - Hydrogen atom - Three-dimensional isotropic harmonic oscillator (a model of

More information

This ODE arises in many physical systems that we shall investigate. + ( + 1)u = 0. (λ + s)x λ + s + ( + 1) a λ. (s + 1)(s + 2) a 0

This ODE arises in many physical systems that we shall investigate. + ( + 1)u = 0. (λ + s)x λ + s + ( + 1) a λ. (s + 1)(s + 2) a 0 Legendre equation This ODE arises in many physical systems that we shall investigate We choose We then have Substitution gives ( x 2 ) d 2 u du 2x 2 dx dx + ( + )u u x s a λ x λ a du dx λ a λ (λ + s)x

More information

MATRIX REPRESENTATIONS FOR MULTIPLICATIVE NESTED SUMS. 1. Introduction. The harmonic sums, defined by [BK99, eq. 4, p. 1] sign (i 1 ) n 1 (N) :=

MATRIX REPRESENTATIONS FOR MULTIPLICATIVE NESTED SUMS. 1. Introduction. The harmonic sums, defined by [BK99, eq. 4, p. 1] sign (i 1 ) n 1 (N) := MATRIX REPRESENTATIONS FOR MULTIPLICATIVE NESTED SUMS LIN JIU AND DIANE YAHUI SHI* Abstract We study the multiplicative nested sums which are generalizations of the harmonic sums and provide a calculation

More information

Santiago Velilla. Curriculum Vitae

Santiago Velilla. Curriculum Vitae Santiago Velilla Departamento de Estadística Universidad Carlos III de Madrid 28903 - Getafe, Madrid, Spain. Tel: +34-91 - 624-9855. Fax: +34-91 - 624-9849 e-mail: santiago.velilla@uc3m.es Curriculum Vitae

More information

P3317 HW from Lecture and Recitation 7

P3317 HW from Lecture and Recitation 7 P3317 HW from Lecture 1+13 and Recitation 7 Due Oct 16, 018 Problem 1. Separation of variables Suppose we have two masses that can move in 1D. They are attached by a spring, yielding a Hamiltonian where

More information

Ch 125a Problem Set 1

Ch 125a Problem Set 1 Ch 5a Problem Set Due Monday, Oct 5, 05, am Problem : Bra-ket notation (Dirac notation) Bra-ket notation is a standard and convenient way to describe quantum state vectors For example, φ is an abstract

More information

20 The Hydrogen Atom. Ze2 r R (20.1) H( r, R) = h2 2m 2 r h2 2M 2 R

20 The Hydrogen Atom. Ze2 r R (20.1) H( r, R) = h2 2m 2 r h2 2M 2 R 20 The Hydrogen Atom 1. We want to solve the time independent Schrödinger Equation for the hydrogen atom. 2. There are two particles in the system, an electron and a nucleus, and so we can write the Hamiltonian

More information

Entanglement in Topological Phases

Entanglement in Topological Phases Entanglement in Topological Phases Dylan Liu August 31, 2012 Abstract In this report, the research conducted on entanglement in topological phases is detailed and summarized. This includes background developed

More information

ECEN 5005 Crystals, Nanocrystals and Device Applications Class 20 Group Theory For Crystals

ECEN 5005 Crystals, Nanocrystals and Device Applications Class 20 Group Theory For Crystals ECEN 5005 Crystals, Nanocrystals and Device Applications Class 20 Group Theory For Crystals Laporte Selection Rule Polarization Dependence Spin Selection Rule 1 Laporte Selection Rule We first apply this

More information

E.G. KALNINS AND WILLARD MILLER, JR. The notation used for -series and -integrals in this paper follows that of Gasper and Rahman [3].. A generalizati

E.G. KALNINS AND WILLARD MILLER, JR. The notation used for -series and -integrals in this paper follows that of Gasper and Rahman [3].. A generalizati A NOTE ON TENSOR PRODUCTS OF -ALGEBRA REPRESENTATIONS AND ORTHOGONAL POLYNOMIALS E.G. KALNINSy AND WILLARD MILLER, Jr.z Abstract. We work out examples of tensor products of distinct generalized s`) algebras

More information

Schrödinger equation for central potentials

Schrödinger equation for central potentials Chapter 2 Schrödinger equation for central potentials In this chapter we will extend the concepts and methods introduced in the previous chapter ifor a one-dimenional problem to a specific and very important

More information

Renormalization Group Study of a One Dimensional Generalised Alternating Superlattice at Half - Filling

Renormalization Group Study of a One Dimensional Generalised Alternating Superlattice at Half - Filling International Journal of Pure and pplied Physics. ISSN 0973-1776 Volume 13, Number 3 (2017), pp. 271-277 Research India Publications http://www.ripublication.com Renormalization Group Study of a One Dimensional

More information

Advanced Program in Chemistry General education knowledge Basic courses - Fundamental courses - Core courses: - Advanced courses:

Advanced Program in Chemistry General education knowledge Basic courses - Fundamental courses - Core courses: - Advanced courses: Advanced Program in Chemistry The Advanced Program in Chemistry started in 2006 with the collaboration from the University of Illinois at Urbana-Champaign (U.S.A). The total minimum required number of

More information

Recitation 1 (Sep. 15, 2017)

Recitation 1 (Sep. 15, 2017) Lecture 1 8.321 Quantum Theory I, Fall 2017 1 Recitation 1 (Sep. 15, 2017) 1.1 Simultaneous Diagonalization In the last lecture, we discussed the situations in which two operators can be simultaneously

More information

Berry s phase in Hall Effects and Topological Insulators

Berry s phase in Hall Effects and Topological Insulators Lecture 6 Berry s phase in Hall Effects and Topological Insulators Given the analogs between Berry s phase and vector potentials, it is not surprising that Berry s phase can be important in the Hall effect.

More information

Vibronic quantum dynamics of exciton relaxation/trapping in molecular aggregates

Vibronic quantum dynamics of exciton relaxation/trapping in molecular aggregates Symposium, Bordeaux Vibronic quantum dynamics of exciton relaxation/trapping in molecular aggregates Alexander Schubert Institute of Physical and Theoretical Chemistry, University of Würzburg November

More information

The Sommerfeld Polynomial Method: Harmonic Oscillator Example

The Sommerfeld Polynomial Method: Harmonic Oscillator Example Chemistry 460 Fall 2017 Dr. Jean M. Standard October 2, 2017 The Sommerfeld Polynomial Method: Harmonic Oscillator Example Scaling the Harmonic Oscillator Equation Recall the basic definitions of the harmonic

More information

Derrick Kiley, Ph.D.

Derrick Kiley, Ph.D. Derrick Kiley, Ph.D. Curriculum Vitae Dept. Address 177 AOB Department of Natural Sciences 5200 North Lake Road Merced, CA 95344 (209) 228-3077 Website and E-Mail http://faculty.ucmerced.edu/dkiley dkiley@ucmerced.edu

More information

Transient grating measurements of spin diffusion. Joe Orenstein UC Berkeley and Lawrence Berkeley National Lab

Transient grating measurements of spin diffusion. Joe Orenstein UC Berkeley and Lawrence Berkeley National Lab Transient grating measurements of spin diffusion Joe Orenstein UC Berkeley and Lawrence Berkeley National Lab LBNL, UC Berkeley and UCSB collaboration Chris Weber, Nuh Gedik, Joel Moore, JO UC Berkeley

More information

The Simple Harmonic Oscillator

The Simple Harmonic Oscillator The Simple Harmonic Oscillator Asaf Pe er 1 November 4, 215 This part of the course is based on Refs [1] [3] 1 Introduction We return now to the study of a 1-d stationary problem: that of the simple harmonic

More information

10. Linear Systems of ODEs, Matrix multiplication, superposition principle (parts of sections )

10. Linear Systems of ODEs, Matrix multiplication, superposition principle (parts of sections ) c Dr. Igor Zelenko, Fall 2017 1 10. Linear Systems of ODEs, Matrix multiplication, superposition principle (parts of sections 7.2-7.4) 1. When each of the functions F 1, F 2,..., F n in right-hand side

More information

TEXAS STATE VITA. A. Name: Niem Tu HUYNH Title: Assistant Professor

TEXAS STATE VITA. A. Name: Niem Tu HUYNH Title: Assistant Professor TEXAS STATE VITA I. Academic/Professional Background A. Name: Niem Tu HUYNH Title: Assistant Professor B. Educational Background Degree Year University Major Thesis/Dissertation Ph.d 2009 Wilfrid Laurier

More information

Vectors in Function Spaces

Vectors in Function Spaces Jim Lambers MAT 66 Spring Semester 15-16 Lecture 18 Notes These notes correspond to Section 6.3 in the text. Vectors in Function Spaces We begin with some necessary terminology. A vector space V, also

More information