P(I -ni < an for all n > in) = 1 - Pm# 1

Size: px
Start display at page:

Download "P(I -ni < an for all n > in) = 1 - Pm# 1"

Transcription

1 ITERATED LOGARITHM INEQUALITIES* By D. A. DARLING AND HERBERT ROBBINS UNIVERSITY OF CALIFORNIA, BERKELEY Communicated by J. Neyman, March 10, Introduction.-Let x,x1,x2,... be a sequence of independent, identically distributed random variables with mean 0, variance 1, and moment generating function sp(t) = E(eix) finite in some neighborhood of t = 0, and put s,, = xl+.* +X, Tn = sn/n. For any sequence of positive constants an, n > 1, let Pm = P(f > an for some n > in). The law of the iterated logarithm gives conditions on the sequence an which guarantee that Pm -* 0 as mn -a* c, e.g. it suffices that an > (2c log2 n/n) 1/2 for some c > 1 (we write log log n = log2 n, etc.), but says nothing about the rate at which Pm tends to 0. In the present note we give explicit upper bounds for Pm as a function of m for various sequences an, including sequences such that a,, - (2 log2 n/n) 1/2 as n a o, and for which Pm = O(1/log2 in). Such bounds have interesting statistical applications, based on the following considerations. Suppose yl,y2,... are i.i.d. with distribution depending on an unknown mean, and with known variance a2. Put Xn = (Yn - M)/a and define the interval In = Then (.n- aanagn + aan). P(,1 e In for all n > inr) = P(I -ni < an for all n > in) = 1 - Pm# 1 n asm- c. (1) Defining Jn = n Ij for n > m, we can therefore assert with probability > 1 - Pm m that for every n > mn the confidence interval J,,, of length. 2aan, contains,11 (cf. ref. 1). Example 1, Optional stopping: To test Ho: 1A =,io with a given type I error without fixing the sample size in advance, reject Ho if for any desired N > In, Jio X IN Then PH, (reject Ho) < P, which can be made arbitrarily small by taking in large enough. The power function P5,(reject Ho) is bounded below by a calculable function of ja which tends rapidly to 1 as A- o o Example 2, Tests with uniformly small error probability: To test Hi: JA < jo against H2: At > 1o, stop sampling with N = first n > m such that juoz In, and accept H1 or H2 according as IN is to the left or to the right of 1Ao. The error probability is then < Pm and EAN < o for all /.L #,u (cf. ref. 3). Example 3, Tests with zero type II error: To test Ho: = Ao against H1: A > /Uo, reject Ho with N = first n > m such that In is to the right of IAO. Then PH, (reject Ho) < Pm and for yt > /Ao, P,,(reject Ho) - 1. (EJSN < o for,a > I.'o but PHO(N = co) > 0, which may be an advantage.) The case in which a2 is unknown can also be treated. The applicability of bounds on the Pm of (1) goes beyond the usual statistical decision framework in which a stopping rule and single terminal action are assumed. We proceed to derive the basic inequality (8) below. Under the assumptions of the first sentence of this section, let zn - e31n/' "(t) for any fixed t for which 1188

2 VOL..57, 1967 MATHEMATICS: DARLING AND ROBBINS 1189 sp(t) < co. Then z,, is a nonnegative martingale with expected value 1. A simple martingale inequality asserts that for any positive constant b, 1 P(z. >b forsomen 1) <. (2) (G. Haggstrom called it to our attention and has independently considered using it to obtain simultaneous confidence intervals.) Putting b = emt'21 for any fixed m and t > 0 gives ( Sn > Mt + n log sp(t) for some n > 1 _e-mt' /2, (3) 2f t/ Define hd(t)e 1 logp(t) (-*.las t 0); (4) 2 t then P(xn > t h(t) for some n > m) < emt212 (5) Let mn -o c be any increasing sequence of positive constants and tl any sequence of positive constants, i > 1. From (5) we have for any integer j > 1, P(tn > tih(to) for some mi < n < mn+l, i > j) < co E e- it,2/2 = Qj, say. (6) Defining the sequence of constants b. for n > ml by putting bn = tsh(t1) for all n such that mni < n < mi+i (i > 1), (7) we can write (6) in the form P(tn > bn for some n > m;). Qj (j _ 1). (8) We obtain various iterated logarithm inequalities by making different choices of the sequences mi, tj that enter into (8). 2. A Special Case of (8).-Put for i _ 3 mi = exp(i/log i), (9) tj = (2 log i + 4 log2 i + 2 log A)112.nMi-l2, (10) where A is any positive constant. Then from (6), AXi=ji(logi)2 A log(j1 /2) - Oasj cx (11) We shall now find an upper bound for the be of (8). A little algebra shows that for mi < n < mj+j, log i < log2 n +log n + log 2, log2 i. log3 n + log 2,

3 1190 MATHEMATICS: DARLING AND ROBBINS PROC. N. A. S. Hence from (10) tj < (2 1og2 n + 6 1og3 n + 6 log log A)12n-1/2e(2 10g2 n)' = f(n), say, (12) and from (7) b. < f(n)h(v.), (13) where Vn (= the t1 of (7)) is some constant such that 0 < Vn < f(n) - (2 log2n/n)112 as n - o. (14) For the normal (0,1) distribution, h(t) = 1. For coin tossing with p = 1/2 and more generally whenever (p(t) _ etl/2,h(t). 1 and we can omit the term h(v.) in (13). In any case, since h(t) 1 as t 0 and f(n) 0 as n Xo h(vn) 1 as n -* c. From (6), (7), and (13) we have forj _ 3 P(t. _ f(n)h(vvn) for some n > elog j) < Qj (15) By com- where f(n) is defined by (12), h(t) by (4), Qj by (11), and vn satisfies (14). bining (15) with the analogous inequality for - tn we obtain P( -n >_ f(n)h(vn) for some n > elok). 2Qj (16) where now (14) is replaced by 0<jvnj <f(n). (17) Putting an = f(n)h(vn) we have an inequality for the Pm of (1) with an (2 log2 n/n)112 and for which Pm O(1/log2 m). 3. Other Choices.-Replacing (10) by tj = (2 c log i + 2 log A) 1/2.m-l/2 (18) for some c > 1, we find the same results (15) and (16) as before, where now f(n) = (2c log2 n + 2c log3 n + 2c log log A) 1/2n-1/2e(2 1og2 n) 1 (19) and -A(c- 1) j - 1/2) (20) A somewhat different result is obtained by putting mn = ai where a is any number > 1, (21) and retaining (18) for to. We obtain from (3) for j > 1 P >tn 1 +-ND/ A(C f(n) for some n > ai) = - 1) (j l/)c (22) where now f(n) = (2c log2 n - 2c log2 a + 2 log A)112n-1/2, (23)- and D= 1 + 2(h(v.) - 1)+ for 0 < v, < a1/2 f(n) (If so~t) _et212, then Do-1.) (24) (If (p(t) < e12/2,then D, =1.

4 VOL. 57, 1967 MATHEMATICS: DARLING AND ROBBINS An Extension.-There is an immediate extension of the preceding results to additive processes. Let X(r) be an infinitely divisible process, T > 0, with X(O) = 0, and let E(X(1)) = 0, E2(X(1)) = 1, and suppose X(1) has a moment generating function sp(t) = E(etX(1)) in some neighborhood of t = 0. Suppose X(r) is separable. A necessary and sufficient condition for X(T) to be such a process is that log E(etX(T)) = Tg(t), where gw (e'x tx) df(x) 9(t) = J (ex- 1 - ) and F(x) is a distribution function whose moment generating futiction exists in some neighborhood of the origin. Then exp (tx(t) - rg(t)), T _ 0, is a positive martingale, and an almost literal repetition of the steps leading to (15) yields for j > 3 P( ) > f(t)h(vt) for some r > e < Q (25) where (2 log2 r+ 6 log3 + 6 log log A 1/2 f(t) = 2lg +6lg e2 10g2 T)~ h(t) = g(t) 2 t2 and v, < f(r), Qj as in (11). We remark that in the case of Brownian motion, where h(t) 1, there are inequalities due to Ito and McKean4 and Strassen,6 the latter giving asymptotic results for j co also. The bound Qj in (25) is of the same order of magnitude as their bounds, though the theorems are not, strictly speaking, comparable. 5. Remarks.-An inequality for the Pm of (1) should be obtainable from Chow's inequality2 (which generalizes (2) and ref. 5) without our subdivision of the n-axis by the points mti. Even within the framework of the present method, a great variety of inequalities can be obtained, and by a closer analysis minor improvements in the inequalities of Sections 2 and 3 are possible; for example, by letting rnj -o a little more slowly than in (9) we can replace the exponential factor of (12) by something closer to 1. In general, however, sharper inequalities for large n require a larger initial sample size m. In a subsequent issue of these PROCEEDINGS we shall give results analogous to the above for random variables for which the moment generating function does not exist; such results, based on different specializations of reference 2, are necessarily less sharp. We shall also give explicit bounds on the EN of Examples 2 and 3 above. * Supported in part by National Science Foundation grant GP Blum, J. R., and J. Rosenblatt, 'On some statistical problems requiring purely sequential sampling schemes," Ann. Inst. Stat. Math., 18, (1966). 2 Chow, Y. S., "A martingale inequality and the law of large numbers," Proc. Am. Math. Soc., 11, (1960).

5 1192 MATHEMATICS: DARLING AND ROBBINS PRoc. N. A. S. I Farrell, R. H., "Asymptotic behavior of expected sample size in certain one sided tests," Ann. Math. Stat., 35, (1964). 4 Ito, K., and H. P. McKean, "Diffusion processes and their sample paths," in Grundlehren der Mathematischen Wiasensehaften (Berlin: Springer, 1965), vol Rnyi, A., and J. H~jek, "Generalization of an inequality of Kolmogorov," Acta. Math. Acad. Sci. Hungar., 6, (1955). 6 Strassen, V., "Almost sure behavior of sums of independent random variables and martingales," Proc. Fifth Berk. Symp. (1965), in press.

1.1 Review of Probability Theory

1.1 Review of Probability Theory 1.1 Review of Probability Theory Angela Peace Biomathemtics II MATH 5355 Spring 2017 Lecture notes follow: Allen, Linda JS. An introduction to stochastic processes with applications to biology. CRC Press,

More information

Real Analysis Math 131AH Rudin, Chapter #1. Dominique Abdi

Real Analysis Math 131AH Rudin, Chapter #1. Dominique Abdi Real Analysis Math 3AH Rudin, Chapter # Dominique Abdi.. If r is rational (r 0) and x is irrational, prove that r + x and rx are irrational. Solution. Assume the contrary, that r+x and rx are rational.

More information

Mi-Hwa Ko. t=1 Z t is true. j=0

Mi-Hwa Ko. t=1 Z t is true. j=0 Commun. Korean Math. Soc. 21 (2006), No. 4, pp. 779 786 FUNCTIONAL CENTRAL LIMIT THEOREMS FOR MULTIVARIATE LINEAR PROCESSES GENERATED BY DEPENDENT RANDOM VECTORS Mi-Hwa Ko Abstract. Let X t be an m-dimensional

More information

THE PRESERVATION OF CONVERGENCE OF MEASURABLE FUNCTIONS UNDER COMPOSITION

THE PRESERVATION OF CONVERGENCE OF MEASURABLE FUNCTIONS UNDER COMPOSITION THE PRESERVATION OF CONVERGENCE OF MEASURABLE FUNCTIONS UNDER COMPOSITION ROBERT G. BARTLE AND JAMES T. JOICHI1 Let / be a real-valued measurable function on a measure space (S,, p.) and let

More information

Random Bernstein-Markov factors

Random Bernstein-Markov factors Random Bernstein-Markov factors Igor Pritsker and Koushik Ramachandran October 20, 208 Abstract For a polynomial P n of degree n, Bernstein s inequality states that P n n P n for all L p norms on the unit

More information

Selected Exercises on Expectations and Some Probability Inequalities

Selected Exercises on Expectations and Some Probability Inequalities Selected Exercises on Expectations and Some Probability Inequalities # If E(X 2 ) = and E X a > 0, then P( X λa) ( λ) 2 a 2 for 0 < λ

More information

CONTINUOUS STATE BRANCHING PROCESSES

CONTINUOUS STATE BRANCHING PROCESSES CONTINUOUS STATE BRANCHING PROCESSES BY JOHN LAMPERTI 1 Communicated by Henry McKean, January 20, 1967 1. Introduction. A class of Markov processes having properties resembling those of ordinary branching

More information

Complete moment convergence of weighted sums for processes under asymptotically almost negatively associated assumptions

Complete moment convergence of weighted sums for processes under asymptotically almost negatively associated assumptions Proc. Indian Acad. Sci. Math. Sci.) Vol. 124, No. 2, May 214, pp. 267 279. c Indian Academy of Sciences Complete moment convergence of weighted sums for processes under asymptotically almost negatively

More information

GAUSSIAN PROCESSES GROWTH RATE OF CERTAIN. successfully employed in dealing with certain Gaussian processes not possessing

GAUSSIAN PROCESSES GROWTH RATE OF CERTAIN. successfully employed in dealing with certain Gaussian processes not possessing 1. Introduction GROWTH RATE OF CERTAIN GAUSSIAN PROCESSES STEVEN OREY UNIVERSITY OF MINNESOTA We will be concerned with real, continuous Gaussian processes. In (A) of Theorem 1.1, a result on the growth

More information

A NOTE ON THE COMPLETE MOMENT CONVERGENCE FOR ARRAYS OF B-VALUED RANDOM VARIABLES

A NOTE ON THE COMPLETE MOMENT CONVERGENCE FOR ARRAYS OF B-VALUED RANDOM VARIABLES Bull. Korean Math. Soc. 52 (205), No. 3, pp. 825 836 http://dx.doi.org/0.434/bkms.205.52.3.825 A NOTE ON THE COMPLETE MOMENT CONVERGENCE FOR ARRAYS OF B-VALUED RANDOM VARIABLES Yongfeng Wu and Mingzhu

More information

A = A U. U [n] P(A U ). n 1. 2 k(n k). k. k=1

A = A U. U [n] P(A U ). n 1. 2 k(n k). k. k=1 Lecture I jacques@ucsd.edu Notation: Throughout, P denotes probability and E denotes expectation. Denote (X) (r) = X(X 1)... (X r + 1) and let G n,p denote the Erdős-Rényi model of random graphs. 10 Random

More information

The Codimension of the Zeros of a Stable Process in Random Scenery

The Codimension of the Zeros of a Stable Process in Random Scenery The Codimension of the Zeros of a Stable Process in Random Scenery Davar Khoshnevisan The University of Utah, Department of Mathematics Salt Lake City, UT 84105 0090, U.S.A. davar@math.utah.edu http://www.math.utah.edu/~davar

More information

Lecture 4. P r[x > ce[x]] 1/c. = ap r[x = a] + a>ce[x] P r[x = a]

Lecture 4. P r[x > ce[x]] 1/c. = ap r[x = a] + a>ce[x] P r[x = a] U.C. Berkeley CS273: Parallel and Distributed Theory Lecture 4 Professor Satish Rao September 7, 2010 Lecturer: Satish Rao Last revised September 13, 2010 Lecture 4 1 Deviation bounds. Deviation bounds

More information

ON LARGE SAMPLE PROPERTIES OF CERTAIN NONPARAMETRIC PROCEDURES

ON LARGE SAMPLE PROPERTIES OF CERTAIN NONPARAMETRIC PROCEDURES ON LARGE SAMPLE PROPERTIES OF CERTAIN NONPARAMETRIC PROCEDURES 1. Summary and introduction HERMAN RUBIN PURDUE UNIVERSITY Efficiencies of one sided and two sided procedures are considered from the standpoint

More information

MOMENT CONVERGENCE RATES OF LIL FOR NEGATIVELY ASSOCIATED SEQUENCES

MOMENT CONVERGENCE RATES OF LIL FOR NEGATIVELY ASSOCIATED SEQUENCES J. Korean Math. Soc. 47 1, No., pp. 63 75 DOI 1.4134/JKMS.1.47..63 MOMENT CONVERGENCE RATES OF LIL FOR NEGATIVELY ASSOCIATED SEQUENCES Ke-Ang Fu Li-Hua Hu Abstract. Let X n ; n 1 be a strictly stationary

More information

A central limit theorem for randomly indexed m-dependent random variables

A central limit theorem for randomly indexed m-dependent random variables Filomat 26:4 (2012), 71 717 DOI 10.2298/FIL120471S ublished by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat A central limit theorem for randomly

More information

The concentration of the chromatic number of random graphs

The concentration of the chromatic number of random graphs The concentration of the chromatic number of random graphs Noga Alon Michael Krivelevich Abstract We prove that for every constant δ > 0 the chromatic number of the random graph G(n, p) with p = n 1/2

More information

Zeros of lacunary random polynomials

Zeros of lacunary random polynomials Zeros of lacunary random polynomials Igor E. Pritsker Dedicated to Norm Levenberg on his 60th birthday Abstract We study the asymptotic distribution of zeros for the lacunary random polynomials. It is

More information

Exercises. T 2T. e ita φ(t)dt.

Exercises. T 2T. e ita φ(t)dt. Exercises. Set #. Construct an example of a sequence of probability measures P n on R which converge weakly to a probability measure P but so that the first moments m,n = xdp n do not converge to m = xdp.

More information

Continued Fraction Digit Averages and Maclaurin s Inequalities

Continued Fraction Digit Averages and Maclaurin s Inequalities Continued Fraction Digit Averages and Maclaurin s Inequalities Steven J. Miller, Williams College sjm1@williams.edu, Steven.Miller.MC.96@aya.yale.edu Joint with Francesco Cellarosi, Doug Hensley and Jake

More information

Asymptotic Nonequivalence of Nonparametric Experiments When the Smoothness Index is ½

Asymptotic Nonequivalence of Nonparametric Experiments When the Smoothness Index is ½ University of Pennsylvania ScholarlyCommons Statistics Papers Wharton Faculty Research 1998 Asymptotic Nonequivalence of Nonparametric Experiments When the Smoothness Index is ½ Lawrence D. Brown University

More information

A CLT FOR MULTI-DIMENSIONAL MARTINGALE DIFFERENCES IN A LEXICOGRAPHIC ORDER GUY COHEN. Dedicated to the memory of Mikhail Gordin

A CLT FOR MULTI-DIMENSIONAL MARTINGALE DIFFERENCES IN A LEXICOGRAPHIC ORDER GUY COHEN. Dedicated to the memory of Mikhail Gordin A CLT FOR MULTI-DIMENSIONAL MARTINGALE DIFFERENCES IN A LEXICOGRAPHIC ORDER GUY COHEN Dedicated to the memory of Mikhail Gordin Abstract. We prove a central limit theorem for a square-integrable ergodic

More information

Chapter 2 Solutions of Equations of One Variable

Chapter 2 Solutions of Equations of One Variable Chapter 2 Solutions of Equations of One Variable 2.1 Bisection Method In this chapter we consider one of the most basic problems of numerical approximation, the root-finding problem. This process involves

More information

Math From Scratch Lesson 28: Rational Exponents

Math From Scratch Lesson 28: Rational Exponents Math From Scratch Lesson 28: Rational Exponents W. Blaine Dowler October 8, 2012 Contents 1 Exponent Review 1 1.1 x m................................. 2 x 1.2 n x................................... 2 m

More information

ON EQUIVALENCE OF ANALYTIC FUNCTIONS TO RATIONAL REGULAR FUNCTIONS

ON EQUIVALENCE OF ANALYTIC FUNCTIONS TO RATIONAL REGULAR FUNCTIONS J. Austral. Math. Soc. (Series A) 43 (1987), 279-286 ON EQUIVALENCE OF ANALYTIC FUNCTIONS TO RATIONAL REGULAR FUNCTIONS WOJC3ECH KUCHARZ (Received 15 April 1986) Communicated by J. H. Rubinstein Abstract

More information

Problem Sheet 1. You may assume that both F and F are σ-fields. (a) Show that F F is not a σ-field. (b) Let X : Ω R be defined by 1 if n = 1

Problem Sheet 1. You may assume that both F and F are σ-fields. (a) Show that F F is not a σ-field. (b) Let X : Ω R be defined by 1 if n = 1 Problem Sheet 1 1. Let Ω = {1, 2, 3}. Let F = {, {1}, {2, 3}, {1, 2, 3}}, F = {, {2}, {1, 3}, {1, 2, 3}}. You may assume that both F and F are σ-fields. (a) Show that F F is not a σ-field. (b) Let X :

More information

A generalization of Strassen s functional LIL

A generalization of Strassen s functional LIL A generalization of Strassen s functional LIL Uwe Einmahl Departement Wiskunde Vrije Universiteit Brussel Pleinlaan 2 B-1050 Brussel, Belgium E-mail: ueinmahl@vub.ac.be Abstract Let X 1, X 2,... be a sequence

More information

252 P. ERDÖS [December sequence of integers then for some m, g(m) >_ 1. Theorem 1 would follow from u,(n) = 0(n/(logn) 1/2 ). THEOREM 2. u 2 <<(n) < c

252 P. ERDÖS [December sequence of integers then for some m, g(m) >_ 1. Theorem 1 would follow from u,(n) = 0(n/(logn) 1/2 ). THEOREM 2. u 2 <<(n) < c Reprinted from ISRAEL JOURNAL OF MATHEMATICS Vol. 2, No. 4, December 1964 Define ON THE MULTIPLICATIVE REPRESENTATION OF INTEGERS BY P. ERDÖS Dedicated to my friend A. D. Wallace on the occasion of his

More information

Optional Stopping Theorem Let X be a martingale and T be a stopping time such

Optional Stopping Theorem Let X be a martingale and T be a stopping time such Plan Counting, Renewal, and Point Processes 0. Finish FDR Example 1. The Basic Renewal Process 2. The Poisson Process Revisited 3. Variants and Extensions 4. Point Processes Reading: G&S: 7.1 7.3, 7.10

More information

NOTE ON A THEOREM OF KAKUTANI

NOTE ON A THEOREM OF KAKUTANI NOTE ON A THEOREM OF KAKUTANI H. D. BRUNK 1. Introduction. Limit theorems of probability have attracted much attention for a number of years. For a wide class of limit theorems, the language and methods

More information

Recurrence of Simple Random Walk on Z 2 is Dynamically Sensitive

Recurrence of Simple Random Walk on Z 2 is Dynamically Sensitive arxiv:math/5365v [math.pr] 3 Mar 25 Recurrence of Simple Random Walk on Z 2 is Dynamically Sensitive Christopher Hoffman August 27, 28 Abstract Benjamini, Häggström, Peres and Steif [2] introduced the

More information

Lecture 1: Brief Review on Stochastic Processes

Lecture 1: Brief Review on Stochastic Processes Lecture 1: Brief Review on Stochastic Processes A stochastic process is a collection of random variables {X t (s) : t T, s S}, where T is some index set and S is the common sample space of the random variables.

More information

ON THE ASYMPTOTIC GROWTH OF SOLUTIONS TO A NONLINEAR EQUATION

ON THE ASYMPTOTIC GROWTH OF SOLUTIONS TO A NONLINEAR EQUATION ON THE ASYMPTOTIC GROWTH OF SOLUTIONS TO A NONLINEAR EQUATION S. P. HASTINGS We shall consider the nonlinear integral equation (1) x(t) - x(0) + f a(s)g(x(s)) ds = h(t), 0^

More information

AN INEQUALITY FOR TAIL PROBABILITIES OF MARTINGALES WITH BOUNDED DIFFERENCES

AN INEQUALITY FOR TAIL PROBABILITIES OF MARTINGALES WITH BOUNDED DIFFERENCES Lithuanian Mathematical Journal, Vol. 4, No. 3, 00 AN INEQUALITY FOR TAIL PROBABILITIES OF MARTINGALES WITH BOUNDED DIFFERENCES V. Bentkus Vilnius Institute of Mathematics and Informatics, Akademijos 4,

More information

Self-normalized Cramér-Type Large Deviations for Independent Random Variables

Self-normalized Cramér-Type Large Deviations for Independent Random Variables Self-normalized Cramér-Type Large Deviations for Independent Random Variables Qi-Man Shao National University of Singapore and University of Oregon qmshao@darkwing.uoregon.edu 1. Introduction Let X, X

More information

On the law of the iterated logarithm for the discrepancy of lacunary sequences

On the law of the iterated logarithm for the discrepancy of lacunary sequences On the law of the iterated logarithm for the discrepancy of lacunary sequences Christoph Aistleitner Abstract A classical result of Philipp (1975) states that for any sequence (n k ) k 1 of integers satisfying

More information

A SKOROHOD REPRESENTATION AND AN INVARIANCE PRINCIPLE FOR SUMS OF WEIGHTED i.i.d. RANDOM VARIABLES

A SKOROHOD REPRESENTATION AND AN INVARIANCE PRINCIPLE FOR SUMS OF WEIGHTED i.i.d. RANDOM VARIABLES ROCKY MOUNTAIN JOURNA OF MATHEMATICS Volume 22, Number 1, Winter 1992 A SKOROHOD REPRESENTATION AND AN INVARIANCE PRINCIPE FOR SUMS OF WEIGHTED i.i.d. RANDOM VARIABES EVAN FISHER ABSTRACT. A Skorohod representation

More information

Limiting Distributions

Limiting Distributions Limiting Distributions We introduce the mode of convergence for a sequence of random variables, and discuss the convergence in probability and in distribution. The concept of convergence leads us to the

More information

3b,12x2y + 3b,=xy2 + b22y3)..., (19) f(x, y) = bo + b,x + b2y + (1/2) (b Ix2 + 2bI2xy + b?2y2) + (1/6) (bilix' + H(u, B) = Prob (xn+1 e BIxn = u).

3b,12x2y + 3b,=xy2 + b22y3)..., (19) f(x, y) = bo + b,x + b2y + (1/2) (b Ix2 + 2bI2xy + b?2y2) + (1/6) (bilix' + H(u, B) = Prob (xn+1 e BIxn = u). 860 MA THEMA TICS: HARRIS AND ROBBINS PROC. N. A. S. The method described here gives the development of the solution of the partial differential equation for the neighborhood of x = y = 0. It can break

More information

Chapter 6. Convergence. Probability Theory. Four different convergence concepts. Four different convergence concepts. Convergence in probability

Chapter 6. Convergence. Probability Theory. Four different convergence concepts. Four different convergence concepts. Convergence in probability Probability Theory Chapter 6 Convergence Four different convergence concepts Let X 1, X 2, be a sequence of (usually dependent) random variables Definition 1.1. X n converges almost surely (a.s.), or with

More information

SOME CHARACTERIZATION

SOME CHARACTERIZATION 1. Introduction SOME CHARACTERIZATION PROBLEMS IN STATISTICS YU. V. PROHOROV V. A. STEKLOV INSTITUTE, MOSCOW In this paper we shall discuss problems connected with tests of the hypothesis that a theoretical

More information

Convergence at first and second order of some approximations of stochastic integrals

Convergence at first and second order of some approximations of stochastic integrals Convergence at first and second order of some approximations of stochastic integrals Bérard Bergery Blandine, Vallois Pierre IECN, Nancy-Université, CNRS, INRIA, Boulevard des Aiguillettes B.P. 239 F-5456

More information

Krzysztof Burdzy University of Washington. = X(Y (t)), t 0}

Krzysztof Burdzy University of Washington. = X(Y (t)), t 0} VARIATION OF ITERATED BROWNIAN MOTION Krzysztof Burdzy University of Washington 1. Introduction and main results. Suppose that X 1, X 2 and Y are independent standard Brownian motions starting from 0 and

More information

Limiting Distributions

Limiting Distributions We introduce the mode of convergence for a sequence of random variables, and discuss the convergence in probability and in distribution. The concept of convergence leads us to the two fundamental results

More information

Introduction to Probability

Introduction to Probability LECTURE NOTES Course 6.041-6.431 M.I.T. FALL 2000 Introduction to Probability Dimitri P. Bertsekas and John N. Tsitsiklis Professors of Electrical Engineering and Computer Science Massachusetts Institute

More information

Introduction and Preliminaries

Introduction and Preliminaries Chapter 1 Introduction and Preliminaries This chapter serves two purposes. The first purpose is to prepare the readers for the more systematic development in later chapters of methods of real analysis

More information

ON THE SIMILARITY OF CENTERED OPERATORS TO CONTRACTIONS. Srdjan Petrović

ON THE SIMILARITY OF CENTERED OPERATORS TO CONTRACTIONS. Srdjan Petrović ON THE SIMILARITY OF CENTERED OPERATORS TO CONTRACTIONS Srdjan Petrović Abstract. In this paper we show that every power bounded operator weighted shift with commuting normal weights is similar to a contraction.

More information

Uses of Asymptotic Distributions: In order to get distribution theory, we need to norm the random variable; we usually look at n 1=2 ( X n ).

Uses of Asymptotic Distributions: In order to get distribution theory, we need to norm the random variable; we usually look at n 1=2 ( X n ). 1 Economics 620, Lecture 8a: Asymptotics II Uses of Asymptotic Distributions: Suppose X n! 0 in probability. (What can be said about the distribution of X n?) In order to get distribution theory, we need

More information

Complexity Oscillations in Infinite Binary Sequences

Complexity Oscillations in Infinite Binary Sequences Z. Wahrscheinlicfikeitstheorie verw. Geb. 19, 225-230 (1971) 9 by Springer-Verlag 1971 Complexity Oscillations in Infinite Binary Sequences PER MARTIN-LOF We shall consider finite and infinite binary sequences

More information

Theory and Applications of Stochastic Systems Lecture Exponential Martingale for Random Walk

Theory and Applications of Stochastic Systems Lecture Exponential Martingale for Random Walk Instructor: Victor F. Araman December 4, 2003 Theory and Applications of Stochastic Systems Lecture 0 B60.432.0 Exponential Martingale for Random Walk Let (S n : n 0) be a random walk with i.i.d. increments

More information

On probabilities of large and moderate deviations for L-statistics: a survey of some recent developments

On probabilities of large and moderate deviations for L-statistics: a survey of some recent developments UDC 519.2 On probabilities of large and moderate deviations for L-statistics: a survey of some recent developments N. V. Gribkova Department of Probability Theory and Mathematical Statistics, St.-Petersburg

More information

Econ 508B: Lecture 5

Econ 508B: Lecture 5 Econ 508B: Lecture 5 Expectation, MGF and CGF Hongyi Liu Washington University in St. Louis July 31, 2017 Hongyi Liu (Washington University in St. Louis) Math Camp 2017 Stats July 31, 2017 1 / 23 Outline

More information

Lecture 12. F o s, (1.1) F t := s>t

Lecture 12. F o s, (1.1) F t := s>t Lecture 12 1 Brownian motion: the Markov property Let C := C(0, ), R) be the space of continuous functions mapping from 0, ) to R, in which a Brownian motion (B t ) t 0 almost surely takes its value. Let

More information

ON EXPONENTIAL DIVISORS

ON EXPONENTIAL DIVISORS ON EXPONENTIAL DIVISORS E. G. STRAUS AND M. V. SUBBARAO Let ()(N) denote the sum of the exponential divisors of N, that is, divisors of the form pl b... pbr, b. a, 1, r, when N has the cnonical form pla...,

More information

. Find E(V ) and var(v ).

. Find E(V ) and var(v ). Math 6382/6383: Probability Models and Mathematical Statistics Sample Preliminary Exam Questions 1. A person tosses a fair coin until she obtains 2 heads in a row. She then tosses a fair die the same number

More information

SEQUENTIAL TESTS FOR COMPOSITE HYPOTHESES

SEQUENTIAL TESTS FOR COMPOSITE HYPOTHESES [ 290 ] SEQUENTIAL TESTS FOR COMPOSITE HYPOTHESES BYD. R. COX Communicated by F. J. ANSCOMBE Beceived 14 August 1951 ABSTRACT. A method is given for obtaining sequential tests in the presence of nuisance

More information

Observer design for a general class of triangular systems

Observer design for a general class of triangular systems 1st International Symposium on Mathematical Theory of Networks and Systems July 7-11, 014. Observer design for a general class of triangular systems Dimitris Boskos 1 John Tsinias Abstract The paper deals

More information

Stability of Stochastic Differential Equations

Stability of Stochastic Differential Equations Lyapunov stability theory for ODEs s Stability of Stochastic Differential Equations Part 1: Introduction Department of Mathematics and Statistics University of Strathclyde Glasgow, G1 1XH December 2010

More information

Entropy and Ergodic Theory Lecture 15: A first look at concentration

Entropy and Ergodic Theory Lecture 15: A first look at concentration Entropy and Ergodic Theory Lecture 15: A first look at concentration 1 Introduction to concentration Let X 1, X 2,... be i.i.d. R-valued RVs with common distribution µ, and suppose for simplicity that

More information

Explicit evaluation of the transmission factor T 1. Part I: For small dead-time ratios. by Jorg W. MUller

Explicit evaluation of the transmission factor T 1. Part I: For small dead-time ratios. by Jorg W. MUller Rapport BIPM-87/5 Explicit evaluation of the transmission factor T (8,E) Part I: For small dead-time ratios by Jorg W. MUller Bureau International des Poids et Mesures, F-930 Sevres Abstract By a detailed

More information

ON PITMAN EFFICIENCY OF

ON PITMAN EFFICIENCY OF 1. Summary ON PITMAN EFFICIENCY OF SOME TESTS OF SCALE FOR THE GAMMA DISTRIBUTION BARRY R. JAMES UNIVERSITY OF CALIFORNIA, BERKELEY A comparison is made of several two sample rank tests for scale change

More information

Lecture 4: September Reminder: convergence of sequences

Lecture 4: September Reminder: convergence of sequences 36-705: Intermediate Statistics Fall 2017 Lecturer: Siva Balakrishnan Lecture 4: September 6 In this lecture we discuss the convergence of random variables. At a high-level, our first few lectures focused

More information

Wald for non-stopping times: The rewards of impatient prophets

Wald for non-stopping times: The rewards of impatient prophets Electron. Commun. Probab. 19 (2014), no. 78, 1 9. DOI: 10.1214/ECP.v19-3609 ISSN: 1083-589X ELECTRONIC COMMUNICATIONS in PROBABILITY Wald for non-stopping times: The rewards of impatient prophets Alexander

More information

PRECISE ASYMPTOTIC IN THE LAW OF THE ITERATED LOGARITHM AND COMPLETE CONVERGENCE FOR U-STATISTICS

PRECISE ASYMPTOTIC IN THE LAW OF THE ITERATED LOGARITHM AND COMPLETE CONVERGENCE FOR U-STATISTICS PRECISE ASYMPTOTIC IN THE LAW OF THE ITERATED LOGARITHM AND COMPLETE CONVERGENCE FOR U-STATISTICS REZA HASHEMI and MOLUD ABDOLAHI Department of Statistics, Faculty of Science, Razi University, 67149, Kermanshah,

More information

ON THE COMPOUND POISSON DISTRIBUTION

ON THE COMPOUND POISSON DISTRIBUTION Acta Sci. Math. Szeged) 18 1957), pp. 23 28. ON THE COMPOUND POISSON DISTRIBUTION András Préopa Budapest) Received: March 1, 1957 A probability distribution is called a compound Poisson distribution if

More information

Han-Ying Liang, Dong-Xia Zhang, and Jong-Il Baek

Han-Ying Liang, Dong-Xia Zhang, and Jong-Il Baek J. Korean Math. Soc. 41 (2004), No. 5, pp. 883 894 CONVERGENCE OF WEIGHTED SUMS FOR DEPENDENT RANDOM VARIABLES Han-Ying Liang, Dong-Xia Zhang, and Jong-Il Baek Abstract. We discuss in this paper the strong

More information

AN EXTREME-VALUE ANALYSIS OF THE LIL FOR BROWNIAN MOTION 1. INTRODUCTION

AN EXTREME-VALUE ANALYSIS OF THE LIL FOR BROWNIAN MOTION 1. INTRODUCTION AN EXTREME-VALUE ANALYSIS OF THE LIL FOR BROWNIAN MOTION DAVAR KHOSHNEVISAN, DAVID A. LEVIN, AND ZHAN SHI ABSTRACT. We present an extreme-value analysis of the classical law of the iterated logarithm LIL

More information

Sequential Decisions

Sequential Decisions Sequential Decisions A Basic Theorem of (Bayesian) Expected Utility Theory: If you can postpone a terminal decision in order to observe, cost free, an experiment whose outcome might change your terminal

More information

8 Laws of large numbers

8 Laws of large numbers 8 Laws of large numbers 8.1 Introduction We first start with the idea of standardizing a random variable. Let X be a random variable with mean µ and variance σ 2. Then Z = (X µ)/σ will be a random variable

More information

ON THE DENSITY OF SOME SEQUENCES OF INTEGERS P. ERDOS

ON THE DENSITY OF SOME SEQUENCES OF INTEGERS P. ERDOS ON THE DENSITY OF SOME SEQUENCES OF INTEGERS P. ERDOS Let ai

More information

DOUBLE SERIES AND PRODUCTS OF SERIES

DOUBLE SERIES AND PRODUCTS OF SERIES DOUBLE SERIES AND PRODUCTS OF SERIES KENT MERRYFIELD. Various ways to add up a doubly-indexed series: Let be a sequence of numbers depending on the two variables j and k. I will assume that 0 j < and 0

More information

AN ARCSINE LAW FOR MARKOV CHAINS

AN ARCSINE LAW FOR MARKOV CHAINS AN ARCSINE LAW FOR MARKOV CHAINS DAVID A. FREEDMAN1 1. Introduction. Suppose {xn} is a sequence of independent, identically distributed random variables with mean 0. Under certain mild assumptions [4],

More information

University of Mannheim, West Germany

University of Mannheim, West Germany - - XI,..., - - XI,..., ARTICLES CONVERGENCE OF BAYES AND CREDIBILITY PREMIUMS BY KLAUS D. SCHMIDT University of Mannheim, West Germany ABSTRACT For a risk whose annual claim amounts are conditionally

More information

µ X (A) = P ( X 1 (A) )

µ X (A) = P ( X 1 (A) ) 1 STOCHASTIC PROCESSES This appendix provides a very basic introduction to the language of probability theory and stochastic processes. We assume the reader is familiar with the general measure and integration

More information

Brownian Motion and Stochastic Calculus

Brownian Motion and Stochastic Calculus ETHZ, Spring 17 D-MATH Prof Dr Martin Larsson Coordinator A Sepúlveda Brownian Motion and Stochastic Calculus Exercise sheet 6 Please hand in your solutions during exercise class or in your assistant s

More information

SOME TAÜBERIAN PROPERTIES OF HOLDER TRANSFORMATIONS AMNON JAKIMOVSKI1

SOME TAÜBERIAN PROPERTIES OF HOLDER TRANSFORMATIONS AMNON JAKIMOVSKI1 SOME TAÜBERIAN PROPERTIES OF HOLDER TRANSFORMATIONS AMNON JAKIMOVSKI1 1. Introduction. The result which follows was proved by me, recently, in [l],2 Theorem (9.2). If, for some o> 1, the sequence {sn},

More information

A simple branching process approach to the phase transition in G n,p

A simple branching process approach to the phase transition in G n,p A simple branching process approach to the phase transition in G n,p Béla Bollobás Department of Pure Mathematics and Mathematical Statistics Wilberforce Road, Cambridge CB3 0WB, UK b.bollobas@dpmms.cam.ac.uk

More information

Asymptotic efficiency of simple decisions for the compound decision problem

Asymptotic efficiency of simple decisions for the compound decision problem Asymptotic efficiency of simple decisions for the compound decision problem Eitan Greenshtein and Ya acov Ritov Department of Statistical Sciences Duke University Durham, NC 27708-0251, USA e-mail: eitan.greenshtein@gmail.com

More information

Random Process Lecture 1. Fundamentals of Probability

Random Process Lecture 1. Fundamentals of Probability Random Process Lecture 1. Fundamentals of Probability Husheng Li Min Kao Department of Electrical Engineering and Computer Science University of Tennessee, Knoxville Spring, 2016 1/43 Outline 2/43 1 Syllabus

More information

Eco517 Fall 2004 C. Sims MIDTERM EXAM

Eco517 Fall 2004 C. Sims MIDTERM EXAM Eco517 Fall 2004 C. Sims MIDTERM EXAM Answer all four questions. Each is worth 23 points. Do not devote disproportionate time to any one question unless you have answered all the others. (1) We are considering

More information

arxiv:math/ v2 [math.nt] 3 Dec 2003

arxiv:math/ v2 [math.nt] 3 Dec 2003 arxiv:math/0302091v2 [math.nt] 3 Dec 2003 Every function is the representation function of an additive basis for the integers Melvyn B. Nathanson Department of Mathematics Lehman College (CUNY) Bronx,

More information

Lecture 19 L 2 -Stochastic integration

Lecture 19 L 2 -Stochastic integration Lecture 19: L 2 -Stochastic integration 1 of 12 Course: Theory of Probability II Term: Spring 215 Instructor: Gordan Zitkovic Lecture 19 L 2 -Stochastic integration The stochastic integral for processes

More information

GAUSSIAN PROCESSES; KOLMOGOROV-CHENTSOV THEOREM

GAUSSIAN PROCESSES; KOLMOGOROV-CHENTSOV THEOREM GAUSSIAN PROCESSES; KOLMOGOROV-CHENTSOV THEOREM STEVEN P. LALLEY 1. GAUSSIAN PROCESSES: DEFINITIONS AND EXAMPLES Definition 1.1. A standard (one-dimensional) Wiener process (also called Brownian motion)

More information

Chapter 1 Vector Spaces

Chapter 1 Vector Spaces Chapter 1 Vector Spaces Per-Olof Persson persson@berkeley.edu Department of Mathematics University of California, Berkeley Math 110 Linear Algebra Vector Spaces Definition A vector space V over a field

More information

Useful Probability Theorems

Useful Probability Theorems Useful Probability Theorems Shiu-Tang Li Finished: March 23, 2013 Last updated: November 2, 2013 1 Convergence in distribution Theorem 1.1. TFAE: (i) µ n µ, µ n, µ are probability measures. (ii) F n (x)

More information

Figure 10.1: Recording when the event E occurs

Figure 10.1: Recording when the event E occurs 10 Poisson Processes Let T R be an interval. A family of random variables {X(t) ; t T} is called a continuous time stochastic process. We often consider T = [0, 1] and T = [0, ). As X(t) is a random variable

More information

COMPLETE QTH MOMENT CONVERGENCE OF WEIGHTED SUMS FOR ARRAYS OF ROW-WISE EXTENDED NEGATIVELY DEPENDENT RANDOM VARIABLES

COMPLETE QTH MOMENT CONVERGENCE OF WEIGHTED SUMS FOR ARRAYS OF ROW-WISE EXTENDED NEGATIVELY DEPENDENT RANDOM VARIABLES Hacettepe Journal of Mathematics and Statistics Volume 43 2 204, 245 87 COMPLETE QTH MOMENT CONVERGENCE OF WEIGHTED SUMS FOR ARRAYS OF ROW-WISE EXTENDED NEGATIVELY DEPENDENT RANDOM VARIABLES M. L. Guo

More information

MAT 135B Midterm 1 Solutions

MAT 135B Midterm 1 Solutions MAT 35B Midterm Solutions Last Name (PRINT): First Name (PRINT): Student ID #: Section: Instructions:. Do not open your test until you are told to begin. 2. Use a pen to print your name in the spaces above.

More information

Asymptotic Statistics-III. Changliang Zou

Asymptotic Statistics-III. Changliang Zou Asymptotic Statistics-III Changliang Zou The multivariate central limit theorem Theorem (Multivariate CLT for iid case) Let X i be iid random p-vectors with mean µ and and covariance matrix Σ. Then n (

More information

SMIRNOV TYPE ON SOME QUESTIONS CONNECTED WITH TWO-SAMPLE TESTS OF. sample sizes.

SMIRNOV TYPE ON SOME QUESTIONS CONNECTED WITH TWO-SAMPLE TESTS OF. sample sizes. ON SOME QUESTIONS CONNECTED WITH TWO-SAMPLE TESTS OF SMIRNOV TYPE I. VINCZE MATHEMATICAL INSTITUTE OF THE HUNGARIAN ACADEMY OF SCIENCES 1. Introduction 1.1. In the following we shall consider some questions

More information

Theoretical Statistics. Lecture 1.

Theoretical Statistics. Lecture 1. 1. Organizational issues. 2. Overview. 3. Stochastic convergence. Theoretical Statistics. Lecture 1. eter Bartlett 1 Organizational Issues Lectures: Tue/Thu 11am 12:30pm, 332 Evans. eter Bartlett. bartlett@stat.

More information

Lecture 21: Convergence of transformations and generating a random variable

Lecture 21: Convergence of transformations and generating a random variable Lecture 21: Convergence of transformations and generating a random variable If Z n converges to Z in some sense, we often need to check whether h(z n ) converges to h(z ) in the same sense. Continuous

More information

Asymptotic Statistics-VI. Changliang Zou

Asymptotic Statistics-VI. Changliang Zou Asymptotic Statistics-VI Changliang Zou Kolmogorov-Smirnov distance Example (Kolmogorov-Smirnov confidence intervals) We know given α (0, 1), there is a well-defined d = d α,n such that, for any continuous

More information

ON THE COMPLETE CONVERGENCE FOR WEIGHTED SUMS OF DEPENDENT RANDOM VARIABLES UNDER CONDITION OF WEIGHTED INTEGRABILITY

ON THE COMPLETE CONVERGENCE FOR WEIGHTED SUMS OF DEPENDENT RANDOM VARIABLES UNDER CONDITION OF WEIGHTED INTEGRABILITY J. Korean Math. Soc. 45 (2008), No. 4, pp. 1101 1111 ON THE COMPLETE CONVERGENCE FOR WEIGHTED SUMS OF DEPENDENT RANDOM VARIABLES UNDER CONDITION OF WEIGHTED INTEGRABILITY Jong-Il Baek, Mi-Hwa Ko, and Tae-Sung

More information

March 16, Abstract. We study the problem of portfolio optimization under the \drawdown constraint" that the

March 16, Abstract. We study the problem of portfolio optimization under the \drawdown constraint that the ON PORTFOLIO OPTIMIZATION UNDER \DRAWDOWN" CONSTRAINTS JAKSA CVITANIC IOANNIS KARATZAS y March 6, 994 Abstract We study the problem of portfolio optimization under the \drawdown constraint" that the wealth

More information

ON EMPIRICAL BAYES WITH SEQUENTIAL COMPONENT

ON EMPIRICAL BAYES WITH SEQUENTIAL COMPONENT Ann. Inst. Statist. Math. Vol. 40, No. 1, 187-193 (1988) ON EMPIRICAL BAYES WITH SEQUENTIAL COMPONENT DENNIS C. GILLILAND 1 AND ROHANA KARUNAMUNI 2 1Department of Statistics and Probability, Michigan State

More information

A Chebyshev Polynomial Rate-of-Convergence Theorem for Stieltjes Functions

A Chebyshev Polynomial Rate-of-Convergence Theorem for Stieltjes Functions mathematics of computation volume 39, number 159 july 1982, pages 201-206 A Chebyshev Polynomial Rate-of-Convergence Theorem for Stieltjes Functions By John P. Boyd Abstract. The theorem proved here extends

More information

Learning Methods for Online Prediction Problems. Peter Bartlett Statistics and EECS UC Berkeley

Learning Methods for Online Prediction Problems. Peter Bartlett Statistics and EECS UC Berkeley Learning Methods for Online Prediction Problems Peter Bartlett Statistics and EECS UC Berkeley Course Synopsis A finite comparison class: A = {1,..., m}. Converting online to batch. Online convex optimization.

More information

ADVANCED PROBABILITY: SOLUTIONS TO SHEET 1

ADVANCED PROBABILITY: SOLUTIONS TO SHEET 1 ADVANCED PROBABILITY: SOLUTIONS TO SHEET 1 Last compiled: November 6, 213 1. Conditional expectation Exercise 1.1. To start with, note that P(X Y = P( c R : X > c, Y c or X c, Y > c = P( c Q : X > c, Y

More information

ON THE AVERAGE NUMBER OF REAL ROOTS OF A RANDOM ALGEBRAIC EQUATION

ON THE AVERAGE NUMBER OF REAL ROOTS OF A RANDOM ALGEBRAIC EQUATION ON THE AVERAGE NUMBER OF REAL ROOTS OF A RANDOM ALGEBRAIC EQUATION M. KAC 1. Introduction. Consider the algebraic equation (1) Xo + X x x + X 2 x 2 + + In-i^" 1 = 0, where the X's are independent random

More information