Mi-Hwa Ko. t=1 Z t is true. j=0

Size: px
Start display at page:

Download "Mi-Hwa Ko. t=1 Z t is true. j=0"

Transcription

1 Commun. Korean Math. Soc. 21 (2006), No. 4, pp FUNCTIONAL CENTRAL LIMIT THEOREMS FOR MULTIVARIATE LINEAR PROCESSES GENERATED BY DEPENDENT RANDOM VECTORS Mi-Hwa Ko Abstract. Let X t be an m-dimensional linear process defined by X t = A j Z t j, t = 1, 2,..., where {Z t } is a sequence of m-dimensional random vectors with mean 0 : m 1 and positive definite covariance matrix Γ : m m and {A j } is a sequence of coefficient matrices. In this paper we give sufficient conditions so that [ns] t=1 Xt (properly normalized) converges weakly to Wiener measure if the corresponding result for [ns] t=1 Z t is true. 1. Introduction Consider m-dimensional linear process of the form (1.1) X t = A j Z t j, where the innovation {Z t } is a sequence of m-dimensional random vectors with mean 0 : m 1 and positive definite covariance matrix Γ : m m. Throughout we shall assume that (1.2) A j < and A j O m m, where for any m m, m 1, matrix A = (a ij ), i, j = 1,..., m, A = m m a ij and O m m denotes the m m zero matrix. Let W m denote Wiener measure on D m [0, 1], the space of all real valued functions Received July 27, Revised September 18, Mathematics Subject Classification: 60F05, 60G10. Key words and phrases: functional central limit theorem, Linear process, moving average process, negatively associated, martingale difference. This work was supported by the Korea Research Foundation Grant funded by the Korean Government(MOEHRD)(KRF C00007).

2 780 Mi-Hwa Ko on [0,1] that are right continuous and have finite left limits, endowed with the sup norm(see, e.g., [3], [10]). Further, let ( ( ) (1.3) T = A j )Γ A j, S n = n t=1 X t, n 1(S 0 = O) and define for n 1 the stochastic process ξ n by (1.4) ξ n (s) = n 1 2 S[ns] 0 s 1. In this paper we give sufficient conditions so that [ns] t=1 X t (properly normalized) converges weakly to Wiener measure if the corresponding result for [ns] t=1 Z t is true. As applications we also discuss functional central limit theorems for linear processes generated by martingale difference and negatively associated random vectors. 2. Main results Theorem 2.1. Let X t satisfy model (1.1) and be a positive constant sequence satisfying that as n. Assume that {A j } satisfies (1.2) and {Z t } is any random vector sequence satisfying (2.1) sup E max m Z k+j 2 Cd 2 (n) for every n 1 j 1 m n and, as n, (2.2) Then, (2.3) k=1 1 max Z k p 0. n k n k n (s) 1 Z t W m (s) implies t=1 k n (s) 1 t=1 X t BW m (s), where k n (s) = sup{m : d 2 (m) sd 2 (n)} and B = k=0 A k. Theorem 2.1 can be applied to many important cases, such as whether innovation {Z t } is martingale difference or negatively associated sequence. In the following, we will derive corollaries of Theorem 2.1. We note that Corollary 2.3 below is Theorem 1(i) of [6] and Corollary 2.8 is a new result.

3 Functional central limit theorems 781 Definition 2.2. Let {Z k } be a random vector sequence. We say that {Z k } is a martingale difference sequence if E(Z k F k 1 ) = 0, a.s. k = 0, ±1, ±2,..., where F k = σ{z i, i k}. Corollary 2.3. Define X t as in (1.1) and ξ n as in (1.4), respectively. Let {Z t } be a sequence of m-dimensional martingale difference vectors with E(Z t F t 1 ) = 0 a.s. and Γ t denote the conditional covariance matrix of Z t, E(Z t Z t F t 1 ) = Γ t a.s., such that 1 n n t=1 Γ t p Γ, where F t is sub-σ-algebra generated by Z u, u t and the prime denotes transpose and Γ is a positive definite(d.f.) non random matrix. Assume that sup t E Z t 2 < and 1 n n t=1 E(Z tz ti(z t Z t > nɛ) F t 1 ) p 0 as n for every ɛ > 0, where I( ) denotes the indicator function. Then, ξ n W m, where W m is a Wiener measure with covariance matrix T = ( A j)γ( A j). Proof. Define for n 1 the stochastic process η n by [ns] (2.4) η n (s) = n 1 2 Z i, 0 s 1. It follows from the multivariate version of Theorem 1 of [2] or Theorem 2 of [1] that η n (s) converges weakly to Wiener measure with covariance matrix Γ (c.f. Theorem 3.1 of [8]). On the other hand, it follows from Doob s maximal inequality and sup t E Z t 2 < that for every n 1 (2.5) sup E max j and (2.6) 1 m n ( m k=1 Z k+j ) 2 C 1 n sup j 1 max Z k p 0. n n k n sup E Z k+j 2 C 2 n k Hence, corollary 2.3 follows immediately from Theorem 2.1 with = n. Definition 2.4. Let {Z i, 1 i n} be a sequence of m-dimensional random vectors. They are said to be negatively associated(na) for every pair of disjoint subsets A and B of {1,..., n} Cov(f(Z i, i A), g(z j, j B)) 0 whenever f and g are coordinatewise increasing and the covariance exists. An infinite family is negatively associated if every finite subfamily is negatively associated. Lemma 2.5. Let r 2 and let {Z i, 1 i n} be a sequence of m-dimensional negatively associated random vectors with EZ i = 0 and

4 782 Mi-Hwa Ko E Z i r <, where Z i = (Zi Z2 im ) 1 2. Then there exists a constant 0 < A r < such that k n n (2.7) E max Z i r A r m r {( E Z i 2 ) r 2 + E Z i r }. Proof. Note that k (2.8) max Z i m k max Z ij and by the result in [11] we have k n n E max Z ij r A r {( E(Z ij ) 2 ) r 2 + E Z ij r } (2.9) n n A r {( E Z i 2 ) r 2 + E Z i r }. Hence, from (2.8) and (2.9) equation (2.7) follows. Lemma 2.6. Let {Z i, 1 i n} be a sequence of m-dimensional negatively associated random vectors with E(Z i ) = 0 and E Z i 2 <. Then for all x > 0 and a > 0, (2.10) k P ( max Z i mx) 2mP ( max Z k > a) + 4m exp( 8 n E Z i 2 ) n + 4m( E Z i 2 4(xa + n E Z i 2 ) )x/(12a). Proof. From (2.8) and the result of [11], (2.10) follows easily. Theorem 2.7. Let {Z i, i 1} be a strictly stationary sequence of m-dimensional negatively associated random vectors with E(Z 1 ) = 0 and E Z 1 2 <. Define, for t [0, 1], n 1 ξ n (t) = n 1 [nt] 2 Z i. If E Z m i=2 E(Z 1jZ ij ) = σ 2 <, then, as n, ξ n B m, where B m is an m-dimensional Wiener measure with covariance matrix Γ = (σ kj ) and σ kj = E(Z 1k Z 1j ) + i=2 [E(Z 1kZ ij ) + E(Z 1j Z ik )]. Proof. By means of the simple device due to Cramer Wold (see [3], [4]), from the Newman s central limit theorem for negatively associated x 2

5 Functional central limit theorems 783 random variables(see [9]) we obtain n 1 2 n Z i D N(0, Γ), where N(0, Γ) denotes an m-dimensional normal random vector and the symbol D indicates convergence in distribution. Hence, as in the proof of Theorem 2 of [5] on weakly associated random vectors, the limit point of ξ n ( ) is an m-dimensional Wiener measure with covariance matrix Γ = (σ kj ). It remains to verify the tightness of ξ n ( ) (see Theorem 15.1 of [3]). By Theorem 8.4 of [3] we only need to show that for any ɛ > 0, there exist a positive number λ and an integer n such that for every n n 0 k (2.11) P ( max Z i > λn 1 2 ) m 3 ɛλ 2. Applying Lemma 2.6 with λ = mλ, x = λ n 1 2 and a = λ n 1 2 /48 k P ( max Z i > λn 1 2 ) k = P ( max Z i > mλ n 1 2 ) 2mP ( max Z k > λ n 1 2 /48) +4m exp( λ 2 n 8nE Z 1 2 ) + 4m( ne Z 1 2 4(nE Z λ 2 n/48) )4 2m(48) 2 λ 2 E Z 1 2 I{ Z 1 > λ n 1 2 /48} +4m exp( λ 2 8E Z 1 2 ) + 4m(12E Z 1 2 mɛλ 2 = m 3 ɛλ 2 provided that λ is sufficiently large. This proves (2.11), and hence the proof of Theorem 2.7 is complete. Corollary 2.8. Let {Z i, i 1} be a strictly stationary negatively associated sequence of m-dimensional random vectors centered at expectations and E Z 1 2 < and X t be defined as in (1.1). Let the stochastic process ξ n be defined as in (1.4). Assume (1.2) and E Z m i=2 E(Z 1jZ ij ) = σ 2 < hold. Then ξ n W m. Proof. First note that ξ n (s) = n 1 [ns] 2 Z i converses weakly to Wiener measure B m with covariance matrix Γ by Theorem 2.7. On the λ 2 ) 4

6 784 Mi-Hwa Ko other hand, it follows from Lemma 2.5 and the condition E Z 1 2 < that (2.5) and (2.6) hold. Hence, Corollary 2.8 follows immediately from Theorem 2.1 with = n. 3. Proof of Theorem 2.1 For every fixed l 1, put (3.1) X (l) 1j = (3.2) l k=0 A k Z j k and X (l) 2j = k=l+1 A k Z j k. From the idea in [7] (p.320) we obtain that for any m 1, = = m l X (l) 1j = m m A k k=0 l m A k k=0 k=0 Z j + l A k Z j k l Z 1 s s=1 j=s Z j + R(m, l), (say). l l 1 A j + Therefore, it follows that for every fixed l 1, l Z m s A j s=0 j=s+1 (3.3) k n (s) 1 X t = ( t=1 l 1 A k ) k=0 k n (s) + 1 k n(s) X (l) 2j. Z j + 1 R(k n(s), l) By (3.3), Theorem 4.1 given in [3] (p.25) and noting that l k=0 A k B as l, to prove (2.3), it suffices to show that for any δ > 0, (3.4) lim sup P { sup R(k n (t), l) δ} = 0, n 0 t 1 for every fixed l 1 and (3.5) lim lim sup l n k n (t) P { sup 0 t 1 X (l) 2j δ} = 0.

7 Functional central limit theorems 785 By condition (2.2) since k=0 A k <, as n, 1 sup R(k n (s), l) 0 t 1 l 1 max Z j l j n s=0 ( l A j + j=s j=s+1 A u ) P 0 and hence (3.4) holds. Noting that m X(l) 2j = k=l+1 A m k Z j k for any m 1, by applying Hölder inequality and (2.1), we have k n (t) E sup X (l) 2j 2 ( 1 t 1 k=l+1 Cd 2 (n)( A k ) 2 E max m Z j k 2 1 m n k=l+1 A k ) 2. Hence, (3.5) follows immediately from the Markov inequality and k=l+1 A k 0 as l. The proof of Theorem 2.1 is complete. References [1] D. J. Aldous and G. K. Eagleson, On mixing and stability of limit theorems, Ann. Probability. 6 (1978), [2] G. J. Babu and M. Ghosh, A ranldom functional central limit theorem for martingales, Acta. Math. Scie. Hungar. 27 (1976), [3] P. Billingsley, Convergence of Probability Measures, Wiley, New York, [4] P. J. Brockwell and R. A. Davis, Time Series : Theory and Methods 2nd ed., Springer, New York, [5] R. M. Burton, A. R. Darbrowski, and H. Dehling, An invariance principle for weakly associated random vectors, Stoc. Proc. and Appl. 23 (1986), [6] I. Fakhre-Zakeri and S. Lee, On functional central limit theorems for multivariate linear processes with applications to sequential estimation, J. Stat. Plan. Inf. 3 (2000), [7] W. A. Fuller, Introduction to Statistical Time-Series, 2nd Edition. Wiley Inc, New York, [8] T. S. Kim, Y. K. Choi, and M. H. Ko, The random functional central limit theorem for multivariate martingale difference, Taiwanese J. Math. accepted, (2006). [9] C. M. Newman, Asymptotic independence and limit theorems for positively and negatively dependent random variables, in: Tong, Y.L., ed., IMS Lecture Notes- Monograph series. 5 (1984), [10] D. Pollard, Convergence of Stochastic Processes, Wiley, New York, 1984.

8 786 Mi-Hwa Ko [11] Q. M. Shao, A comparison theorem on maximum inequalities between negatively associated and independent random variables, J. Theor. Probab. 13 (2000), Department of Mathematics WonKwang University Jeonbuk , Korea songhack@wonkwang.ac.kr

ON THE COMPLETE CONVERGENCE FOR WEIGHTED SUMS OF DEPENDENT RANDOM VARIABLES UNDER CONDITION OF WEIGHTED INTEGRABILITY

ON THE COMPLETE CONVERGENCE FOR WEIGHTED SUMS OF DEPENDENT RANDOM VARIABLES UNDER CONDITION OF WEIGHTED INTEGRABILITY J. Korean Math. Soc. 45 (2008), No. 4, pp. 1101 1111 ON THE COMPLETE CONVERGENCE FOR WEIGHTED SUMS OF DEPENDENT RANDOM VARIABLES UNDER CONDITION OF WEIGHTED INTEGRABILITY Jong-Il Baek, Mi-Hwa Ko, and Tae-Sung

More information

THE STRONG LAW OF LARGE NUMBERS FOR LINEAR RANDOM FIELDS GENERATED BY NEGATIVELY ASSOCIATED RANDOM VARIABLES ON Z d

THE STRONG LAW OF LARGE NUMBERS FOR LINEAR RANDOM FIELDS GENERATED BY NEGATIVELY ASSOCIATED RANDOM VARIABLES ON Z d ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 43, Number 4, 2013 THE STRONG LAW OF LARGE NUMBERS FOR LINEAR RANDOM FIELDS GENERATED BY NEGATIVELY ASSOCIATED RANDOM VARIABLES ON Z d MI-HWA KO ABSTRACT. We

More information

EXPONENTIAL PROBABILITY INEQUALITY FOR LINEARLY NEGATIVE QUADRANT DEPENDENT RANDOM VARIABLES

EXPONENTIAL PROBABILITY INEQUALITY FOR LINEARLY NEGATIVE QUADRANT DEPENDENT RANDOM VARIABLES Commun. Korean Math. Soc. (007), No. 1, pp. 137 143 EXPONENTIAL PROBABILITY INEQUALITY FOR LINEARLY NEGATIVE QUADRANT DEPENDENT RANDOM VARIABLES Mi-Hwa Ko 1, Yong-Kab Choi, and Yue-Soon Choi Reprinted

More information

The strong law of large numbers for arrays of NA random variables

The strong law of large numbers for arrays of NA random variables International Mathematical Forum,, 2006, no. 2, 83-9 The strong law of large numbers for arrays of NA random variables K. J. Lee, H. Y. Seo, S. Y. Kim Division of Mathematics and Informational Statistics,

More information

MOMENT CONVERGENCE RATES OF LIL FOR NEGATIVELY ASSOCIATED SEQUENCES

MOMENT CONVERGENCE RATES OF LIL FOR NEGATIVELY ASSOCIATED SEQUENCES J. Korean Math. Soc. 47 1, No., pp. 63 75 DOI 1.4134/JKMS.1.47..63 MOMENT CONVERGENCE RATES OF LIL FOR NEGATIVELY ASSOCIATED SEQUENCES Ke-Ang Fu Li-Hua Hu Abstract. Let X n ; n 1 be a strictly stationary

More information

Han-Ying Liang, Dong-Xia Zhang, and Jong-Il Baek

Han-Ying Liang, Dong-Xia Zhang, and Jong-Il Baek J. Korean Math. Soc. 41 (2004), No. 5, pp. 883 894 CONVERGENCE OF WEIGHTED SUMS FOR DEPENDENT RANDOM VARIABLES Han-Ying Liang, Dong-Xia Zhang, and Jong-Il Baek Abstract. We discuss in this paper the strong

More information

Mi Ryeong Lee and Hye Yeong Yun

Mi Ryeong Lee and Hye Yeong Yun Commun. Korean Math. Soc. 28 (213, No. 4, pp. 741 75 http://dx.doi.org/1.4134/ckms.213.28.4.741 ON QUASI-A(n,k CLASS OPERATORS Mi Ryeong Lee and Hye Yeong Yun Abstract. To study the operator inequalities,

More information

Limiting behaviour of moving average processes under ρ-mixing assumption

Limiting behaviour of moving average processes under ρ-mixing assumption Note di Matematica ISSN 1123-2536, e-issn 1590-0932 Note Mat. 30 (2010) no. 1, 17 23. doi:10.1285/i15900932v30n1p17 Limiting behaviour of moving average processes under ρ-mixing assumption Pingyan Chen

More information

A central limit theorem for randomly indexed m-dependent random variables

A central limit theorem for randomly indexed m-dependent random variables Filomat 26:4 (2012), 71 717 DOI 10.2298/FIL120471S ublished by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat A central limit theorem for randomly

More information

SUMMARY OF RESULTS ON PATH SPACES AND CONVERGENCE IN DISTRIBUTION FOR STOCHASTIC PROCESSES

SUMMARY OF RESULTS ON PATH SPACES AND CONVERGENCE IN DISTRIBUTION FOR STOCHASTIC PROCESSES SUMMARY OF RESULTS ON PATH SPACES AND CONVERGENCE IN DISTRIBUTION FOR STOCHASTIC PROCESSES RUTH J. WILLIAMS October 2, 2017 Department of Mathematics, University of California, San Diego, 9500 Gilman Drive,

More information

Limit Theorems for Exchangeable Random Variables via Martingales

Limit Theorems for Exchangeable Random Variables via Martingales Limit Theorems for Exchangeable Random Variables via Martingales Neville Weber, University of Sydney. May 15, 2006 Probabilistic Symmetries and Their Applications A sequence of random variables {X 1, X

More information

Wittmann Type Strong Laws of Large Numbers for Blockwise m-negatively Associated Random Variables

Wittmann Type Strong Laws of Large Numbers for Blockwise m-negatively Associated Random Variables Journal of Mathematical Research with Applications Mar., 206, Vol. 36, No. 2, pp. 239 246 DOI:0.3770/j.issn:2095-265.206.02.03 Http://jmre.dlut.edu.cn Wittmann Type Strong Laws of Large Numbers for Blockwise

More information

Conditional independence, conditional mixing and conditional association

Conditional independence, conditional mixing and conditional association Ann Inst Stat Math (2009) 61:441 460 DOI 10.1007/s10463-007-0152-2 Conditional independence, conditional mixing and conditional association B. L. S. Prakasa Rao Received: 25 July 2006 / Revised: 14 May

More information

Soo Hak Sung and Andrei I. Volodin

Soo Hak Sung and Andrei I. Volodin Bull Korean Math Soc 38 (200), No 4, pp 763 772 ON CONVERGENCE OF SERIES OF INDEENDENT RANDOM VARIABLES Soo Hak Sung and Andrei I Volodin Abstract The rate of convergence for an almost surely convergent

More information

OPTIMAL SOLUTIONS TO STOCHASTIC DIFFERENTIAL INCLUSIONS

OPTIMAL SOLUTIONS TO STOCHASTIC DIFFERENTIAL INCLUSIONS APPLICATIONES MATHEMATICAE 29,4 (22), pp. 387 398 Mariusz Michta (Zielona Góra) OPTIMAL SOLUTIONS TO STOCHASTIC DIFFERENTIAL INCLUSIONS Abstract. A martingale problem approach is used first to analyze

More information

An almost sure central limit theorem for the weight function sequences of NA random variables

An almost sure central limit theorem for the weight function sequences of NA random variables Proc. ndian Acad. Sci. (Math. Sci.) Vol. 2, No. 3, August 20, pp. 369 377. c ndian Academy of Sciences An almost sure central it theorem for the weight function sequences of NA rom variables QUNYNG WU

More information

Shih-sen Chang, Yeol Je Cho, and Haiyun Zhou

Shih-sen Chang, Yeol Je Cho, and Haiyun Zhou J. Korean Math. Soc. 38 (2001), No. 6, pp. 1245 1260 DEMI-CLOSED PRINCIPLE AND WEAK CONVERGENCE PROBLEMS FOR ASYMPTOTICALLY NONEXPANSIVE MAPPINGS Shih-sen Chang, Yeol Je Cho, and Haiyun Zhou Abstract.

More information

FOURIER TRANSFORMS OF STATIONARY PROCESSES 1. k=1

FOURIER TRANSFORMS OF STATIONARY PROCESSES 1. k=1 FOURIER TRANSFORMS OF STATIONARY PROCESSES WEI BIAO WU September 8, 003 Abstract. We consider the asymptotic behavior of Fourier transforms of stationary and ergodic sequences. Under sufficiently mild

More information

A FIXED POINT THEOREM FOR GENERALIZED NONEXPANSIVE MULTIVALUED MAPPINGS

A FIXED POINT THEOREM FOR GENERALIZED NONEXPANSIVE MULTIVALUED MAPPINGS Fixed Point Theory, (0), No., 4-46 http://www.math.ubbcluj.ro/ nodeacj/sfptcj.html A FIXED POINT THEOREM FOR GENERALIZED NONEXPANSIVE MULTIVALUED MAPPINGS A. ABKAR AND M. ESLAMIAN Department of Mathematics,

More information

RESEARCH REPORT. A note on gaps in proofs of central limit theorems. Christophe A.N. Biscio, Arnaud Poinas and Rasmus Waagepetersen

RESEARCH REPORT. A note on gaps in proofs of central limit theorems.   Christophe A.N. Biscio, Arnaud Poinas and Rasmus Waagepetersen CENTRE FOR STOCHASTIC GEOMETRY AND ADVANCED BIOIMAGING 2017 www.csgb.dk RESEARCH REPORT Christophe A.N. Biscio, Arnaud Poinas and Rasmus Waagepetersen A note on gaps in proofs of central limit theorems

More information

The Polynomial Numerical Index of L p (µ)

The Polynomial Numerical Index of L p (µ) KYUNGPOOK Math. J. 53(2013), 117-124 http://dx.doi.org/10.5666/kmj.2013.53.1.117 The Polynomial Numerical Index of L p (µ) Sung Guen Kim Department of Mathematics, Kyungpook National University, Daegu

More information

A Remark on Complete Convergence for Arrays of Rowwise Negatively Associated Random Variables

A Remark on Complete Convergence for Arrays of Rowwise Negatively Associated Random Variables Proceedings of The 3rd Sino-International Symposium October, 2006 on Probability, Statistics, and Quantitative Management ICAQM/CDMS Taipei, Taiwan, ROC June 10, 2006 pp. 9-18 A Remark on Complete Convergence

More information

Complete q-moment Convergence of Moving Average Processes under ϕ-mixing Assumption

Complete q-moment Convergence of Moving Average Processes under ϕ-mixing Assumption Journal of Mathematical Research & Exposition Jul., 211, Vol.31, No.4, pp. 687 697 DOI:1.377/j.issn:1-341X.211.4.14 Http://jmre.dlut.edu.cn Complete q-moment Convergence of Moving Average Processes under

More information

A note on the growth rate in the Fazekas Klesov general law of large numbers and on the weak law of large numbers for tail series

A note on the growth rate in the Fazekas Klesov general law of large numbers and on the weak law of large numbers for tail series Publ. Math. Debrecen 73/1-2 2008), 1 10 A note on the growth rate in the Fazekas Klesov general law of large numbers and on the weak law of large numbers for tail series By SOO HAK SUNG Taejon), TIEN-CHUNG

More information

Jae Gil Choi and Young Seo Park

Jae Gil Choi and Young Seo Park Kangweon-Kyungki Math. Jour. 11 (23), No. 1, pp. 17 3 TRANSLATION THEOREM ON FUNCTION SPACE Jae Gil Choi and Young Seo Park Abstract. In this paper, we use a generalized Brownian motion process to define

More information

Banach Algebras of Matrix Transformations Between Spaces of Strongly Bounded and Summable Sequences

Banach Algebras of Matrix Transformations Between Spaces of Strongly Bounded and Summable Sequences Advances in Dynamical Systems and Applications ISSN 0973-532, Volume 6, Number, pp. 9 09 20 http://campus.mst.edu/adsa Banach Algebras of Matrix Transformations Between Spaces of Strongly Bounded and Summable

More information

A NOTE ON THE COMPLETE MOMENT CONVERGENCE FOR ARRAYS OF B-VALUED RANDOM VARIABLES

A NOTE ON THE COMPLETE MOMENT CONVERGENCE FOR ARRAYS OF B-VALUED RANDOM VARIABLES Bull. Korean Math. Soc. 52 (205), No. 3, pp. 825 836 http://dx.doi.org/0.434/bkms.205.52.3.825 A NOTE ON THE COMPLETE MOMENT CONVERGENCE FOR ARRAYS OF B-VALUED RANDOM VARIABLES Yongfeng Wu and Mingzhu

More information

An almost sure invariance principle for additive functionals of Markov chains

An almost sure invariance principle for additive functionals of Markov chains Statistics and Probability Letters 78 2008 854 860 www.elsevier.com/locate/stapro An almost sure invariance principle for additive functionals of Markov chains F. Rassoul-Agha a, T. Seppäläinen b, a Department

More information

A CLT FOR MULTI-DIMENSIONAL MARTINGALE DIFFERENCES IN A LEXICOGRAPHIC ORDER GUY COHEN. Dedicated to the memory of Mikhail Gordin

A CLT FOR MULTI-DIMENSIONAL MARTINGALE DIFFERENCES IN A LEXICOGRAPHIC ORDER GUY COHEN. Dedicated to the memory of Mikhail Gordin A CLT FOR MULTI-DIMENSIONAL MARTINGALE DIFFERENCES IN A LEXICOGRAPHIC ORDER GUY COHEN Dedicated to the memory of Mikhail Gordin Abstract. We prove a central limit theorem for a square-integrable ergodic

More information

Weak convergence and Brownian Motion. (telegram style notes) P.J.C. Spreij

Weak convergence and Brownian Motion. (telegram style notes) P.J.C. Spreij Weak convergence and Brownian Motion (telegram style notes) P.J.C. Spreij this version: December 8, 2006 1 The space C[0, ) In this section we summarize some facts concerning the space C[0, ) of real

More information

ITERATED FUNCTION SYSTEMS WITH CONTINUOUS PLACE DEPENDENT PROBABILITIES

ITERATED FUNCTION SYSTEMS WITH CONTINUOUS PLACE DEPENDENT PROBABILITIES UNIVERSITATIS IAGELLONICAE ACTA MATHEMATICA, FASCICULUS XL 2002 ITERATED FUNCTION SYSTEMS WITH CONTINUOUS PLACE DEPENDENT PROBABILITIES by Joanna Jaroszewska Abstract. We study the asymptotic behaviour

More information

Complete moment convergence for moving average process generated by ρ -mixing random variables

Complete moment convergence for moving average process generated by ρ -mixing random variables Zhang Journal of Inequalities and Applications (2015) 2015:245 DOI 10.1186/s13660-015-0766-5 RESEARCH Open Access Complete moment convergence for moving average process generated by ρ -mixing random variables

More information

A Present Position-Dependent Conditional Fourier-Feynman Transform and Convolution Product over Continuous Paths

A Present Position-Dependent Conditional Fourier-Feynman Transform and Convolution Product over Continuous Paths International Journal of Mathematical Analysis Vol. 9, 05, no. 48, 387-406 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/0.988/ijma.05.589 A Present Position-Dependent Conditional Fourier-Feynman Transform

More information

Maximal inequalities and a law of the. iterated logarithm for negatively. associated random fields

Maximal inequalities and a law of the. iterated logarithm for negatively. associated random fields Maximal inequalities and a law of the arxiv:math/0610511v1 [math.pr] 17 Oct 2006 iterated logarithm for negatively associated random fields Li-Xin ZHANG Department of Mathematics, Zhejiang University,

More information

ON THE DIFFUSION OPERATOR IN POPULATION GENETICS

ON THE DIFFUSION OPERATOR IN POPULATION GENETICS J. Appl. Math. & Informatics Vol. 30(2012), No. 3-4, pp. 677-683 Website: http://www.kcam.biz ON THE DIFFUSION OPERATOR IN POPULATION GENETICS WON CHOI Abstract. W.Choi([1]) obtains a complete description

More information

Logarithmic scaling of planar random walk s local times

Logarithmic scaling of planar random walk s local times Logarithmic scaling of planar random walk s local times Péter Nándori * and Zeyu Shen ** * Department of Mathematics, University of Maryland ** Courant Institute, New York University October 9, 2015 Abstract

More information

ON THE STRONG LIMIT THEOREMS FOR DOUBLE ARRAYS OF BLOCKWISE M-DEPENDENT RANDOM VARIABLES

ON THE STRONG LIMIT THEOREMS FOR DOUBLE ARRAYS OF BLOCKWISE M-DEPENDENT RANDOM VARIABLES Available at: http://publications.ictp.it IC/28/89 United Nations Educational, Scientific Cultural Organization International Atomic Energy Agency THE ABDUS SALAM INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

More information

Krzysztof Burdzy University of Washington. = X(Y (t)), t 0}

Krzysztof Burdzy University of Washington. = X(Y (t)), t 0} VARIATION OF ITERATED BROWNIAN MOTION Krzysztof Burdzy University of Washington 1. Introduction and main results. Suppose that X 1, X 2 and Y are independent standard Brownian motions starting from 0 and

More information

STAT 331. Martingale Central Limit Theorem and Related Results

STAT 331. Martingale Central Limit Theorem and Related Results STAT 331 Martingale Central Limit Theorem and Related Results In this unit we discuss a version of the martingale central limit theorem, which states that under certain conditions, a sum of orthogonal

More information

ON THE HÖLDER CONTINUITY OF MATRIX FUNCTIONS FOR NORMAL MATRICES

ON THE HÖLDER CONTINUITY OF MATRIX FUNCTIONS FOR NORMAL MATRICES Volume 10 (2009), Issue 4, Article 91, 5 pp. ON THE HÖLDER CONTINUITY O MATRIX UNCTIONS OR NORMAL MATRICES THOMAS P. WIHLER MATHEMATICS INSTITUTE UNIVERSITY O BERN SIDLERSTRASSE 5, CH-3012 BERN SWITZERLAND.

More information

Weak invariance principles for sums of dependent random functions

Weak invariance principles for sums of dependent random functions Available online at www.sciencedirect.com Stochastic Processes and their Applications 13 (013) 385 403 www.elsevier.com/locate/spa Weak invariance principles for sums of dependent random functions István

More information

COMPLETE QTH MOMENT CONVERGENCE OF WEIGHTED SUMS FOR ARRAYS OF ROW-WISE EXTENDED NEGATIVELY DEPENDENT RANDOM VARIABLES

COMPLETE QTH MOMENT CONVERGENCE OF WEIGHTED SUMS FOR ARRAYS OF ROW-WISE EXTENDED NEGATIVELY DEPENDENT RANDOM VARIABLES Hacettepe Journal of Mathematics and Statistics Volume 43 2 204, 245 87 COMPLETE QTH MOMENT CONVERGENCE OF WEIGHTED SUMS FOR ARRAYS OF ROW-WISE EXTENDED NEGATIVELY DEPENDENT RANDOM VARIABLES M. L. Guo

More information

THE SKOROKHOD OBLIQUE REFLECTION PROBLEM IN A CONVEX POLYHEDRON

THE SKOROKHOD OBLIQUE REFLECTION PROBLEM IN A CONVEX POLYHEDRON GEORGIAN MATHEMATICAL JOURNAL: Vol. 3, No. 2, 1996, 153-176 THE SKOROKHOD OBLIQUE REFLECTION PROBLEM IN A CONVEX POLYHEDRON M. SHASHIASHVILI Abstract. The Skorokhod oblique reflection problem is studied

More information

Functional Limit theorems for the quadratic variation of a continuous time random walk and for certain stochastic integrals

Functional Limit theorems for the quadratic variation of a continuous time random walk and for certain stochastic integrals Functional Limit theorems for the quadratic variation of a continuous time random walk and for certain stochastic integrals Noèlia Viles Cuadros BCAM- Basque Center of Applied Mathematics with Prof. Enrico

More information

Almost sure limit theorems for U-statistics

Almost sure limit theorems for U-statistics Almost sure limit theorems for U-statistics Hajo Holzmann, Susanne Koch and Alesey Min 3 Institut für Mathematische Stochasti Georg-August-Universität Göttingen Maschmühlenweg 8 0 37073 Göttingen Germany

More information

The Codimension of the Zeros of a Stable Process in Random Scenery

The Codimension of the Zeros of a Stable Process in Random Scenery The Codimension of the Zeros of a Stable Process in Random Scenery Davar Khoshnevisan The University of Utah, Department of Mathematics Salt Lake City, UT 84105 0090, U.S.A. davar@math.utah.edu http://www.math.utah.edu/~davar

More information

IN AN ALGEBRA OF OPERATORS

IN AN ALGEBRA OF OPERATORS Bull. Korean Math. Soc. 54 (2017), No. 2, pp. 443 454 https://doi.org/10.4134/bkms.b160011 pissn: 1015-8634 / eissn: 2234-3016 q-frequent HYPERCYCLICITY IN AN ALGEBRA OF OPERATORS Jaeseong Heo, Eunsang

More information

PRZEMYSLAW M ATULA (LUBLIN]

PRZEMYSLAW M ATULA (LUBLIN] PROBABILITY ' AND MATHEMATICAL STATEXICS Vol. 16, Fw. 2 (19961, pp. 337-343 CONVERGENCE OF WEIGHTED AVERAGES OF ASSOCIATED RANDOM VARIABLES BY PRZEMYSLAW M ATULA (LUBLIN] Abstract. We study the almost

More information

Lecture 9. d N(0, 1). Now we fix n and think of a SRW on [0,1]. We take the k th step at time k n. and our increments are ± 1

Lecture 9. d N(0, 1). Now we fix n and think of a SRW on [0,1]. We take the k th step at time k n. and our increments are ± 1 Random Walks and Brownian Motion Tel Aviv University Spring 011 Lecture date: May 0, 011 Lecture 9 Instructor: Ron Peled Scribe: Jonathan Hermon In today s lecture we present the Brownian motion (BM).

More information

QED. Queen s Economics Department Working Paper No. 1244

QED. Queen s Economics Department Working Paper No. 1244 QED Queen s Economics Department Working Paper No. 1244 A necessary moment condition for the fractional functional central limit theorem Søren Johansen University of Copenhagen and CREATES Morten Ørregaard

More information

Conditional moment representations for dependent random variables

Conditional moment representations for dependent random variables Conditional moment representations for dependent random variables W lodzimierz Bryc Department of Mathematics University of Cincinnati Cincinnati, OH 45 22-0025 bryc@ucbeh.san.uc.edu November 9, 995 Abstract

More information

Central Limit Theorem for Non-stationary Markov Chains

Central Limit Theorem for Non-stationary Markov Chains Central Limit Theorem for Non-stationary Markov Chains Magda Peligrad University of Cincinnati April 2011 (Institute) April 2011 1 / 30 Plan of talk Markov processes with Nonhomogeneous transition probabilities

More information

Time Series Analysis. Asymptotic Results for Spatial ARMA Models

Time Series Analysis. Asymptotic Results for Spatial ARMA Models Communications in Statistics Theory Methods, 35: 67 688, 2006 Copyright Taylor & Francis Group, LLC ISSN: 036-0926 print/532-45x online DOI: 0.080/036092050049893 Time Series Analysis Asymptotic Results

More information

arxiv: v1 [math.pr] 7 Aug 2009

arxiv: v1 [math.pr] 7 Aug 2009 A CONTINUOUS ANALOGUE OF THE INVARIANCE PRINCIPLE AND ITS ALMOST SURE VERSION By ELENA PERMIAKOVA (Kazan) Chebotarev inst. of Mathematics and Mechanics, Kazan State University Universitetskaya 7, 420008

More information

REVERSALS ON SFT S. 1. Introduction and preliminaries

REVERSALS ON SFT S. 1. Introduction and preliminaries Trends in Mathematics Information Center for Mathematical Sciences Volume 7, Number 2, December, 2004, Pages 119 125 REVERSALS ON SFT S JUNGSEOB LEE Abstract. Reversals of topological dynamical systems

More information

ON RIGHT S-NOETHERIAN RINGS AND S-NOETHERIAN MODULES

ON RIGHT S-NOETHERIAN RINGS AND S-NOETHERIAN MODULES ON RIGHT S-NOETHERIAN RINGS AND S-NOETHERIAN MODULES ZEHRA BİLGİN, MANUEL L. REYES, AND ÜNSAL TEKİR Abstract. In this paper we study right S-Noetherian rings and modules, extending notions introduced by

More information

Consistency of the maximum likelihood estimator for general hidden Markov models

Consistency of the maximum likelihood estimator for general hidden Markov models Consistency of the maximum likelihood estimator for general hidden Markov models Jimmy Olsson Centre for Mathematical Sciences Lund University Nordstat 2012 Umeå, Sweden Collaborators Hidden Markov models

More information

NEW CONSTRUCTION OF THE EAGON-NORTHCOTT COMPLEX. Oh-Jin Kang and Joohyung Kim

NEW CONSTRUCTION OF THE EAGON-NORTHCOTT COMPLEX. Oh-Jin Kang and Joohyung Kim Korean J Math 20 (2012) No 2 pp 161 176 NEW CONSTRUCTION OF THE EAGON-NORTHCOTT COMPLEX Oh-Jin Kang and Joohyung Kim Abstract The authors [6 introduced the concept of a complete matrix of grade g > 3 to

More information

Asymptotically Efficient Nonparametric Estimation of Nonlinear Spectral Functionals

Asymptotically Efficient Nonparametric Estimation of Nonlinear Spectral Functionals Acta Applicandae Mathematicae 78: 145 154, 2003. 2003 Kluwer Academic Publishers. Printed in the Netherlands. 145 Asymptotically Efficient Nonparametric Estimation of Nonlinear Spectral Functionals M.

More information

L n = l n (π n ) = length of a longest increasing subsequence of π n.

L n = l n (π n ) = length of a longest increasing subsequence of π n. Longest increasing subsequences π n : permutation of 1,2,...,n. L n = l n (π n ) = length of a longest increasing subsequence of π n. Example: π n = (π n (1),..., π n (n)) = (7, 2, 8, 1, 3, 4, 10, 6, 9,

More information

1. Stochastic Processes and filtrations

1. Stochastic Processes and filtrations 1. Stochastic Processes and 1. Stoch. pr., A stochastic process (X t ) t T is a collection of random variables on (Ω, F) with values in a measurable space (S, S), i.e., for all t, In our case X t : Ω S

More information

Problem set 1, Real Analysis I, Spring, 2015.

Problem set 1, Real Analysis I, Spring, 2015. Problem set 1, Real Analysis I, Spring, 015. (1) Let f n : D R be a sequence of functions with domain D R n. Recall that f n f uniformly if and only if for all ɛ > 0, there is an N = N(ɛ) so that if n

More information

On the Convergence of Ishikawa Iterates to a Common Fixed Point for a Pair of Nonexpansive Mappings in Banach Spaces

On the Convergence of Ishikawa Iterates to a Common Fixed Point for a Pair of Nonexpansive Mappings in Banach Spaces Mathematica Moravica Vol. 14-1 (2010), 113 119 On the Convergence of Ishikawa Iterates to a Common Fixed Point for a Pair of Nonexpansive Mappings in Banach Spaces Amit Singh and R.C. Dimri Abstract. In

More information

Elements of Probability Theory

Elements of Probability Theory Elements of Probability Theory CHUNG-MING KUAN Department of Finance National Taiwan University December 5, 2009 C.-M. Kuan (National Taiwan Univ.) Elements of Probability Theory December 5, 2009 1 / 58

More information

ALMOST SURE CONVERGENCE OF THE BARTLETT ESTIMATOR

ALMOST SURE CONVERGENCE OF THE BARTLETT ESTIMATOR Periodica Mathematica Hungarica Vol. 51 1, 2005, pp. 11 25 ALMOST SURE CONVERGENCE OF THE BARTLETT ESTIMATOR István Berkes Graz, Budapest, LajosHorváth Salt Lake City, Piotr Kokoszka Logan Qi-man Shao

More information

LINDELÖF sn-networks

LINDELÖF sn-networks Novi Sad J. Math. Vol. 43, No. 2, 2013, 201-209 SPACES WITH σ-locally COUNTABLE LINDELÖF sn-networks Luong Quoc Tuyen 1 Abstract. In this paper, we prove that a space X has a σ-locally countable Lindelöf

More information

A log-scale limit theorem for one-dimensional random walks in random environments

A log-scale limit theorem for one-dimensional random walks in random environments A log-scale limit theorem for one-dimensional random walks in random environments Alexander Roitershtein August 3, 2004; Revised April 1, 2005 Abstract We consider a transient one-dimensional random walk

More information

Multiple points of the Brownian sheet in critical dimensions

Multiple points of the Brownian sheet in critical dimensions Multiple points of the Brownian sheet in critical dimensions Robert C. Dalang Ecole Polytechnique Fédérale de Lausanne Based on joint work with: Carl Mueller Multiple points of the Brownian sheet in critical

More information

Complete moment convergence of weighted sums for processes under asymptotically almost negatively associated assumptions

Complete moment convergence of weighted sums for processes under asymptotically almost negatively associated assumptions Proc. Indian Acad. Sci. Math. Sci.) Vol. 124, No. 2, May 214, pp. 267 279. c Indian Academy of Sciences Complete moment convergence of weighted sums for processes under asymptotically almost negatively

More information

Introduction to Hausdorff Measure and Dimension

Introduction to Hausdorff Measure and Dimension Introduction to Hausdorff Measure and Dimension Dynamics Learning Seminar, Liverpool) Poj Lertchoosakul 28 September 2012 1 Definition of Hausdorff Measure and Dimension Let X, d) be a metric space, let

More information

Brownian Motion. 1 Definition Brownian Motion Wiener measure... 3

Brownian Motion. 1 Definition Brownian Motion Wiener measure... 3 Brownian Motion Contents 1 Definition 2 1.1 Brownian Motion................................. 2 1.2 Wiener measure.................................. 3 2 Construction 4 2.1 Gaussian process.................................

More information

LARGE DEVIATION PROBABILITIES FOR SUMS OF HEAVY-TAILED DEPENDENT RANDOM VECTORS*

LARGE DEVIATION PROBABILITIES FOR SUMS OF HEAVY-TAILED DEPENDENT RANDOM VECTORS* LARGE EVIATION PROBABILITIES FOR SUMS OF HEAVY-TAILE EPENENT RANOM VECTORS* Adam Jakubowski Alexander V. Nagaev Alexander Zaigraev Nicholas Copernicus University Faculty of Mathematics and Computer Science

More information

ON OPERATORS WITH AN ABSOLUTE VALUE CONDITION. In Ho Jeon and B. P. Duggal. 1. Introduction

ON OPERATORS WITH AN ABSOLUTE VALUE CONDITION. In Ho Jeon and B. P. Duggal. 1. Introduction J. Korean Math. Soc. 41 (2004), No. 4, pp. 617 627 ON OPERATORS WITH AN ABSOLUTE VALUE CONDITION In Ho Jeon and B. P. Duggal Abstract. Let A denote the class of bounded linear Hilbert space operators with

More information

Research Article Exponential Inequalities for Positively Associated Random Variables and Applications

Research Article Exponential Inequalities for Positively Associated Random Variables and Applications Hindawi Publishing Corporation Journal of Inequalities and Applications Volume 008, Article ID 38536, 11 pages doi:10.1155/008/38536 Research Article Exponential Inequalities for Positively Associated

More information

A Functional Central Limit Theorem for an ARMA(p, q) Process with Markov Switching

A Functional Central Limit Theorem for an ARMA(p, q) Process with Markov Switching Communications for Statistical Applications and Methods 2013, Vol 20, No 4, 339 345 DOI: http://dxdoiorg/105351/csam2013204339 A Functional Central Limit Theorem for an ARMAp, q) Process with Markov Switching

More information

Weighted Sums of Orthogonal Polynomials Related to Birth-Death Processes with Killing

Weighted Sums of Orthogonal Polynomials Related to Birth-Death Processes with Killing Advances in Dynamical Systems and Applications ISSN 0973-5321, Volume 8, Number 2, pp. 401 412 (2013) http://campus.mst.edu/adsa Weighted Sums of Orthogonal Polynomials Related to Birth-Death Processes

More information

COVARIANCE IDENTITIES AND MIXING OF RANDOM TRANSFORMATIONS ON THE WIENER SPACE

COVARIANCE IDENTITIES AND MIXING OF RANDOM TRANSFORMATIONS ON THE WIENER SPACE Communications on Stochastic Analysis Vol. 4, No. 3 (21) 299-39 Serials Publications www.serialspublications.com COVARIANCE IDENTITIES AND MIXING OF RANDOM TRANSFORMATIONS ON THE WIENER SPACE NICOLAS PRIVAULT

More information

THE BOOLEAN IDEMPOTENT MATRICES. Hong Youl Lee and Se Won Park. 1. Introduction

THE BOOLEAN IDEMPOTENT MATRICES. Hong Youl Lee and Se Won Park. 1. Introduction J. Appl. Math. & Computing Vol. 15(2004), No. 1-2. pp. 475-484 THE BOOLEAN IDEMPOTENT MATRICES Hong Youl Lee and Se Won Park Abstract. In general, a matrix A is idempotent if A 2 = A. The idempotent matrices

More information

A NOTE ON RATIONAL OPERATOR MONOTONE FUNCTIONS. Masaru Nagisa. Received May 19, 2014 ; revised April 10, (Ax, x) 0 for all x C n.

A NOTE ON RATIONAL OPERATOR MONOTONE FUNCTIONS. Masaru Nagisa. Received May 19, 2014 ; revised April 10, (Ax, x) 0 for all x C n. Scientiae Mathematicae Japonicae Online, e-014, 145 15 145 A NOTE ON RATIONAL OPERATOR MONOTONE FUNCTIONS Masaru Nagisa Received May 19, 014 ; revised April 10, 014 Abstract. Let f be oeprator monotone

More information

Supermodular ordering of Poisson arrays

Supermodular ordering of Poisson arrays Supermodular ordering of Poisson arrays Bünyamin Kızıldemir Nicolas Privault Division of Mathematical Sciences School of Physical and Mathematical Sciences Nanyang Technological University 637371 Singapore

More information

On Kesten s counterexample to the Cramér-Wold device for regular variation

On Kesten s counterexample to the Cramér-Wold device for regular variation On Kesten s counterexample to the Cramér-Wold device for regular variation Henrik Hult School of ORIE Cornell University Ithaca NY 4853 USA hult@orie.cornell.edu Filip Lindskog Department of Mathematics

More information

ON THE STABILITY OF THE MONOMIAL FUNCTIONAL EQUATION

ON THE STABILITY OF THE MONOMIAL FUNCTIONAL EQUATION Bull. Korean Math. Soc. 45 (2008), No. 2, pp. 397 403 ON THE STABILITY OF THE MONOMIAL FUNCTIONAL EQUATION Yang-Hi Lee Reprinted from the Bulletin of the Korean Mathematical Society Vol. 45, No. 2, May

More information

ON ALMOST PSEUDO-VALUATION DOMAINS, II. Gyu Whan Chang

ON ALMOST PSEUDO-VALUATION DOMAINS, II. Gyu Whan Chang Korean J. Math. 19 (2011), No. 4, pp. 343 349 ON ALMOST PSEUDO-VALUATION DOMAINS, II Gyu Whan Chang Abstract. Let D be an integral domain, D w be the w-integral closure of D, X be an indeterminate over

More information

Mohsen Pourahmadi. 1. A sampling theorem for multivariate stationary processes. J. of Multivariate Analysis, Vol. 13, No. 1 (1983),

Mohsen Pourahmadi. 1. A sampling theorem for multivariate stationary processes. J. of Multivariate Analysis, Vol. 13, No. 1 (1983), Mohsen Pourahmadi PUBLICATIONS Books and Editorial Activities: 1. Foundations of Time Series Analysis and Prediction Theory, John Wiley, 2001. 2. Computing Science and Statistics, 31, 2000, the Proceedings

More information

ITERATIVE SCHEMES FOR APPROXIMATING SOLUTIONS OF ACCRETIVE OPERATORS IN BANACH SPACES SHOJI KAMIMURA AND WATARU TAKAHASHI. Received December 14, 1999

ITERATIVE SCHEMES FOR APPROXIMATING SOLUTIONS OF ACCRETIVE OPERATORS IN BANACH SPACES SHOJI KAMIMURA AND WATARU TAKAHASHI. Received December 14, 1999 Scientiae Mathematicae Vol. 3, No. 1(2000), 107 115 107 ITERATIVE SCHEMES FOR APPROXIMATING SOLUTIONS OF ACCRETIVE OPERATORS IN BANACH SPACES SHOJI KAMIMURA AND WATARU TAKAHASHI Received December 14, 1999

More information

Spatial Ergodicity of the Harris Flows

Spatial Ergodicity of the Harris Flows Communications on Stochastic Analysis Volume 11 Number 2 Article 6 6-217 Spatial Ergodicity of the Harris Flows E.V. Glinyanaya Institute of Mathematics NAS of Ukraine, glinkate@gmail.com Follow this and

More information

Mean convergence theorems and weak laws of large numbers for weighted sums of random variables under a condition of weighted integrability

Mean convergence theorems and weak laws of large numbers for weighted sums of random variables under a condition of weighted integrability J. Math. Anal. Appl. 305 2005) 644 658 www.elsevier.com/locate/jmaa Mean convergence theorems and weak laws of large numbers for weighted sums of random variables under a condition of weighted integrability

More information

Detecting instants of jumps and estimating intensity of jumps from continuous or discrete data

Detecting instants of jumps and estimating intensity of jumps from continuous or discrete data Detecting instants of jumps and estimating intensity of jumps from continuous or discrete data Denis Bosq 1 Delphine Blanke 2 1 LSTA, Université Pierre et Marie Curie - Paris 6 2 LMA, Université d'avignon

More information

Existence of Optimal Strategies in Markov Games with Incomplete Information

Existence of Optimal Strategies in Markov Games with Incomplete Information Existence of Optimal Strategies in Markov Games with Incomplete Information Abraham Neyman 1 December 29, 2005 1 Institute of Mathematics and Center for the Study of Rationality, Hebrew University, 91904

More information

A regeneration proof of the central limit theorem for uniformly ergodic Markov chains

A regeneration proof of the central limit theorem for uniformly ergodic Markov chains A regeneration proof of the central limit theorem for uniformly ergodic Markov chains By AJAY JASRA Department of Mathematics, Imperial College London, SW7 2AZ, London, UK and CHAO YANG Department of Mathematics,

More information

Convergence of the long memory Markov switching model to Brownian motion

Convergence of the long memory Markov switching model to Brownian motion Convergence of the long memory Marov switching model to Brownian motion Changryong Bae Sungyunwan University Natércia Fortuna CEF.UP, Universidade do Porto Vladas Pipiras University of North Carolina February

More information

Some Properties of NSFDEs

Some Properties of NSFDEs Chenggui Yuan (Swansea University) Some Properties of NSFDEs 1 / 41 Some Properties of NSFDEs Chenggui Yuan Swansea University Chenggui Yuan (Swansea University) Some Properties of NSFDEs 2 / 41 Outline

More information

Goodness-of-Fit Tests for Time Series Models: A Score-Marked Empirical Process Approach

Goodness-of-Fit Tests for Time Series Models: A Score-Marked Empirical Process Approach Goodness-of-Fit Tests for Time Series Models: A Score-Marked Empirical Process Approach By Shiqing Ling Department of Mathematics Hong Kong University of Science and Technology Let {y t : t = 0, ±1, ±2,

More information

MATH 6605: SUMMARY LECTURE NOTES

MATH 6605: SUMMARY LECTURE NOTES MATH 6605: SUMMARY LECTURE NOTES These notes summarize the lectures on weak convergence of stochastic processes. If you see any typos, please let me know. 1. Construction of Stochastic rocesses A stochastic

More information

An Iterative Procedure for Solving the Riccati Equation A 2 R RA 1 = A 3 + RA 4 R. M.THAMBAN NAIR (I.I.T. Madras)

An Iterative Procedure for Solving the Riccati Equation A 2 R RA 1 = A 3 + RA 4 R. M.THAMBAN NAIR (I.I.T. Madras) An Iterative Procedure for Solving the Riccati Equation A 2 R RA 1 = A 3 + RA 4 R M.THAMBAN NAIR (I.I.T. Madras) Abstract Let X 1 and X 2 be complex Banach spaces, and let A 1 BL(X 1 ), A 2 BL(X 2 ), A

More information

for all f satisfying E[ f(x) ] <.

for all f satisfying E[ f(x) ] <. . Let (Ω, F, P ) be a probability space and D be a sub-σ-algebra of F. An (H, H)-valued random variable X is independent of D if and only if P ({X Γ} D) = P {X Γ}P (D) for all Γ H and D D. Prove that if

More information

Markov Chains, Stochastic Processes, and Matrix Decompositions

Markov Chains, Stochastic Processes, and Matrix Decompositions Markov Chains, Stochastic Processes, and Matrix Decompositions 5 May 2014 Outline 1 Markov Chains Outline 1 Markov Chains 2 Introduction Perron-Frobenius Matrix Decompositions and Markov Chains Spectral

More information

NORMS ON SPACE OF MATRICES

NORMS ON SPACE OF MATRICES NORMS ON SPACE OF MATRICES. Operator Norms on Space of linear maps Let A be an n n real matrix and x 0 be a vector in R n. We would like to use the Picard iteration method to solve for the following system

More information

Memoirs on Differential Equations and Mathematical Physics

Memoirs on Differential Equations and Mathematical Physics Memoirs on Differential Equations and Mathematical Physics Volume 51, 010, 93 108 Said Kouachi and Belgacem Rebiai INVARIANT REGIONS AND THE GLOBAL EXISTENCE FOR REACTION-DIFFUSION SYSTEMS WITH A TRIDIAGONAL

More information

Regularity of the density for the stochastic heat equation

Regularity of the density for the stochastic heat equation Regularity of the density for the stochastic heat equation Carl Mueller 1 Department of Mathematics University of Rochester Rochester, NY 15627 USA email: cmlr@math.rochester.edu David Nualart 2 Department

More information