GROWTH IN LENGTH: a model for the growth of an individual

Size: px
Start display at page:

Download "GROWTH IN LENGTH: a model for the growth of an individual"

Transcription

1 GROWTH IN LENGTH: a model for the growth of an individual Consider the following differential equation: L' L What are the dimensions for parameters and? As was the case with the differential equation relating N' with N, once again there is a linear relationship between L' and L. In this new differential equation is the intercept of the line and is the slope. The Differential Equation. Solution to the Differential Equation. L / 0 0 t The graph on the left defines the slope for each point of the curve on the right. Analytical Solution to / - L As was the case for the differential equation N' ( t) M N( t), we can use an algebraic approach to drive an analytical solution for the differential equation for growth-in-length. L L is the dependent variable, t is the independent variable. L Separate the variables by putting L on one side and t on the other. FW431/531 Copyright 2008 by David B. Sampson Growth - Page 11

2 1 L Integrate both sides to "undo" the differentiation. Remember the Rule F( x) x f( u) du <> a d dx F( x) f( x) If we differentiate F(x), the function that the integral is equal to, we should recover the function f(x) that is under the integral sign. Start with the right hand side: t + C The derivative of [- t + C] is -. Then do the left hand side: 1 L dx /(X + a) ln(x + a) + constant ln L + C' The derivative of [ln(x+a) + C'] is dx/(x+a) + C'. The handout "Review of Some Mathematics" has tables of integrals that you can use. Wikipedia has extensive lists. Finding integrals can be hard. Now combine the two sides: ln L t + C'' C'' combines the earlier arbitraty constants, C'' C - C' L( t) C''' exp + ( t) Exponentiate both sides to get the general solution, C''' exp(c''). Define a new parameter L inf /. and substitute it for /. L( t) L inf + C''' exp( t) Specify the initial conditions, L0 at tt 0, and solve for the arbitrary constant C'''. L( t 0 ) 0 L inf + C''' exp t 0 > L inf C''' exp t 0 L inf C''' exp( t 0 ) > C''' L inf exp t 0 The particular solution is L( t) L inf L inf exp t 0 exp( t) L( t) L inf 1 exp FW431/531 Copyright 2008 by David B. Sampson Growth - Page 12

3 This equation in fisheries science is usually known as the von Bertalanffy growth equation and it is widely used as a model for the growth in length of individual fish. However, see night (1968) and Roff (1980) on the Supplemental Reading list for dissenting opinions about the utility of the von Bertalanffy equation. Ricker (1979) on the Recommended Reading list provides a comprehensive review of the numerous other growth models that have been proposed. Note that the parameter t 0 is a mathematical artifact that arises from the arbitrary constant in the differential equation. It does not represent the age at conception, although some authors have tried to use it as such. Explore the effects of Linf,, and t 0 using the Excel demonstration. Alternative Derivation of the von Bertalanffy Model The von Bertalanffy growth model can also be formulated as a difference equation, which is similar to a differential equation but involves differences ( X) rather than differentials (dx). The difference equation form of the model provides a different view of what it means for a fish to grow according to the von Bertalanffy equation. We can derive the difference equation model from the solution, L(t). L inf L inf exp L t + t ( t t + t 0 ) Length at time t + t. L( t) L inf L inf exp t + t 0 Length at time t L t L t + t Do the same derivation for L(t) - L(t t). ( 1) L inf exp t + t 0 exp t The change in length. L( t) L inf L inf exp t + t 0 Length at time t. L( t t) L inf L inf exp( t + t + t 0 ) Length at time t - t L( t) L t t Now take the ratio of the two differences. L( t) L( t t) L t + t L t L inf exp t + t 0 1 exp t The change in length. 1 exp t exp t The last term is just a 1 exp( t) exp( t) multiplication by one. 1 exp( t) ( 1 exp( t) ) exp( t) 1 exp t exp t We can rearrange this result to derive the difference equation L t L t + t exp t L t ( L( t) L( t t) ) L t+ t exp t The subscripts indicate that the L values are from different time periods. Change in length ( L) is the same as growth. So, we can express the equation as FW431/531 Copyright 2008 by David B. Sampson Growth - Page 13

4 Growth t Growth exp t t+ t Note that 0 < exp(- t) < 1 for 0 < and 0 < t. In words this equation states that the growth increment during each time-step is a constant fraction of the growth increment during the previous time-step. Here is a graph that illustrates the idea. If ( t) is near zero, then growth is almost linear because exp(0)1 so that L t+1 L t. L 2 L inf If ( t) is large, then there is rapid decline in L because the exponential term will be close to zero; L(t) will rapidly approach L inf. Length L 0 t L 1 t For alternative forms for the von Bertalanffy equation and their statistical properties see Ratkowsky (1986) on the Supplemental Reading list. If you are trying to fit a given non-linear model to data using non-linear least-squares regression, some forms of the model may produce "better" results than others in that the parameter estimates will be more closely distributed as normal random variates rather than being highly skewed. Weight of an Individual Fish We can build a model for the weight of a fish using the following ideas. Mass Density Volume The units are [ M ] [ M / L 3 ] [ L 3 ]. If an animal when it grows does so without changing either its shape or its density, then this animal is said to be growing isometrically. If the animal does not change its shape as it grows, then its volume is proportional to any linear measure of its size. Isometric Growth Volume a Linear_Measure 3 The coefficient a is a constant of proportionality. Weight a' Length 3 a' is just the density. FW431/531 Copyright 2008 by David B. Sampson Growth - Page 14

5 Now combine this with the von Bertalanffy growth equation for length. W a' L 3 and L( t) L inf 1 exp 3 W( t) a' L inf 1 exp W( t) W inf 1 exp 3 3 where W inf a' L inf What are the dimensions for W inf,, and t 0? Explore the effects of W inf,, and t 0 using the Excel demonstration. Condition Factors Sometimes researchers use condition factors to compare different samples of fish. Condition_Factor W L 3 Provided growth is isometric, the condition factor accounts for differences in weight that are due to differences in length. Heavier fish will have larger condition factors. It is probably not appropriate to use condition factors to compare individuals from different species because they may have fundamentally different growth processes. Allometric Growth What do we do if the fish do not grow isometrically? Suppose we have the following relationship between weight and length. W a L b and b 3 Fish may change shape or density as they grow, in which case their growth is not isometric. For most fish species the length-weight parameter b is approximately equal to 3. Individual Growth in Weight If we apply the allometric growth to the von Bertalanffy equation for growth in length we get a general equation for growth in weight. b W( t) W inf 1 exp Biomass of a Cohort A cohort is an identifiable group of fish. Usually the term refers to all those fish in a stock that were born during the same year and are therefore the same age. The term stock refers to a self-sustaining reproductive population. Cushing (1968), on the Supplemental Reading list, discusses some of the issues with defining a unit stock. Given that most populations have some mixing with other populations, it is problematic to come up with a precise definition. Later in the course we will explore a model of a fishery operating on a mix of stocks. Most of the models we will consider, however, assume that the population is a single stock whose individuals do not mix with FW431/531 Copyright 2008 by David B. Sampson Growth - Page 15

6 others. When spawning occurs throughout the year, defining age is problematic. For example, fish ages are often assigned on a calendar year basis, but the fish born on an. 1st of a given year are not one year younger than the fish born on Dec. 31st of the previous year. We will ignore this problem in the models we will develop. Suppose we have a cohort of identical fish, all born simultaneously; e.g., a stocked fish pond. We will take the model for survival and the model for growth in weight and build a simple model showing how biomass changes. Numbers at Age: N( t) N( 0) exp( M t) If we define a cohort based on age, then age and time measure the same thing. Weight at Age (isometric growth): Cohort Biomass: 3 W( t) W inf 1 exp B( t) N( t) W( t) Here is a numerical example. N W inf 4.0 M { 70% survival per time step } 0.5 { 60.7% growth increment per time step} t N( t) N0 exp( M t) W( t) W inf 1 exp B( t) N( t) W( t) t N( t) W( t) B( t) On the next page are the graphs of N(t), W(t), and B(t). FW431/531 Copyright 2008 by David B. Sampson Growth - Page 16

7 N(t) 4 W(t) B(t) The biomass graph clearly has a maximum value. If you wait too long to harvest, you lose biomass to mortality. If you do not wait long enough, you lose potential growth One might well ask at what age is the biomass a maximum? From calculus you may recall that the maximum (or minimum) occurs at that value of t for which the slope B'(t) is zero. B( t) N( t) W( t) One of the basic rules for taking derivatives: d[ X Y ] d[x] Y + X d[y] db N dw + W dn 0 > N dw W dn Depending on the equations for N and W, we may not be able to solve this equation analytically, but we can always solve for t numerically. However, it is even simpler to just read the value off the graph. If you are raising fish to make money, then the age at which you should harvest the fish will probably not be the age at which their biomass is a maximum. For example, suppose you pay someone to feed and care for the fish, and you want to maximize your profits ( Revenues - Costs ). FW431/531 Copyright 2008 by David B. Sampson Growth - Page 17

8 Profits here are defined as Π ( t) Price B( t) Wages t Wages t Maximum (or minimum) profits occur when Price B( t) dπ Price db 0 Wages $$ t The maximum profits occur where the revenue and costs curves have the same slopes. But notice that there are two points where this is true. At the other point (with the smaller t) the profits are at a minimum (and losses are at a maximum). FW431/531 Copyright 2008 by David B. Sampson Growth - Page 18

TOTAL EQUILIBRIUM YIELD

TOTAL EQUILIBRIUM YIELD TOTAL EQUILIBIUM YIELD ecall that the yield-per-recruit model enabled us to examine the problem of growth overfishing but, because we assumed that recruitment was constant, the model did not tell us whether

More information

Characteristics of Fish Populations. Unexploited Populations. Exploited Populations. Recruitment - Birth Mortality (natural) Growth

Characteristics of Fish Populations. Unexploited Populations. Exploited Populations. Recruitment - Birth Mortality (natural) Growth Characteristics of Fish Populations Unexploited Populations Recruitment - Birth Mortality (natural) Growth Exploited Populations Recruitment and Yield Fishing and Natural Mortality Compensatory Growth

More information

Math Review ECON 300: Spring 2014 Benjamin A. Jones MATH/CALCULUS REVIEW

Math Review ECON 300: Spring 2014 Benjamin A. Jones MATH/CALCULUS REVIEW MATH/CALCULUS REVIEW SLOPE, INTERCEPT, and GRAPHS REVIEW (adapted from Paul s Online Math Notes) Let s start with some basic review material to make sure everybody is on the same page. The slope of a line

More information

3 Single species models. Reading: Otto & Day (2007) section 4.2.1

3 Single species models. Reading: Otto & Day (2007) section 4.2.1 3 Single species models 3.1 Exponential growth Reading: Otto & Day (2007) section 4.2.1 We can solve equation 17 to find the population at time t given a starting population N(0) = N 0 as follows. N(t)

More information

6x 2 8x + 5 ) = 12x 8

6x 2 8x + 5 ) = 12x 8 Example. If f(x) = x 3 4x + 5x + 1, then f (x) = 6x 8x + 5 Observation: f (x) is also a differentiable function... d dx ( f (x) ) = d dx ( 6x 8x + 5 ) = 1x 8 The derivative of f (x) is called the second

More information

Age and growth. Assessing the status of fish stock for management: the collection and use of basic fisheries data and statistics

Age and growth. Assessing the status of fish stock for management: the collection and use of basic fisheries data and statistics C O M M O N W E A LT H SECREARIAT Age and growth Assessing the status of fish stock for management: the collection and use of basic fisheries data and statistics 27 November -8 December 2006, University

More information

3.1 Derivative Formulas for Powers and Polynomials

3.1 Derivative Formulas for Powers and Polynomials 3.1 Derivative Formulas for Powers and Polynomials First, recall that a derivative is a function. We worked very hard in 2.2 to interpret the derivative of a function visually. We made the link, in Ex.

More information

(e) Use Newton s method to find the x coordinate that satisfies this equation, and your graph in part (b) to show that this is an inflection point.

(e) Use Newton s method to find the x coordinate that satisfies this equation, and your graph in part (b) to show that this is an inflection point. Chapter 6 Review problems 6.1 A strange function Consider the function (x 2 ) x. (a) Show that this function can be expressed as f(x) = e x ln(x2). (b) Use the spreadsheet, and a fine subdivision of the

More information

Section 2.1: The Derivative and the Tangent Line Problem Goals for this Section:

Section 2.1: The Derivative and the Tangent Line Problem Goals for this Section: Section 2.1: The Derivative and the Tangent Line Problem Goals for this Section: Find the slope of the tangent line to a curve at a point. Day 1 Use the limit definition to find the derivative of a function.

More information

Calculus Review Session. Brian Prest Duke University Nicholas School of the Environment August 18, 2017

Calculus Review Session. Brian Prest Duke University Nicholas School of the Environment August 18, 2017 Calculus Review Session Brian Prest Duke University Nicholas School of the Environment August 18, 2017 Topics to be covered 1. Functions and Continuity 2. Solving Systems of Equations 3. Derivatives (one

More information

MA 137 Calculus 1 with Life Science Application A First Look at Differential Equations (Section 4.1.2)

MA 137 Calculus 1 with Life Science Application A First Look at Differential Equations (Section 4.1.2) MA 137 Calculus 1 with Life Science Application A First Look at Differential Equations (Section 4.1.2) Alberto Corso alberto.corso@uky.edu Department of Mathematics University of Kentucky October 12, 2015

More information

Section 11.3 Rates of Change:

Section 11.3 Rates of Change: Section 11.3 Rates of Change: 1. Consider the following table, which describes a driver making a 168-mile trip from Cleveland to Columbus, Ohio in 3 hours. t Time (in hours) 0 0.5 1 1.5 2 2.5 3 f(t) Distance

More information

2.6 Logarithmic Functions. Inverse Functions. Question: What is the relationship between f(x) = x 2 and g(x) = x?

2.6 Logarithmic Functions. Inverse Functions. Question: What is the relationship between f(x) = x 2 and g(x) = x? Inverse Functions Question: What is the relationship between f(x) = x 3 and g(x) = 3 x? Question: What is the relationship between f(x) = x 2 and g(x) = x? Definition (One-to-One Function) A function f

More information

ECONOMICS 207 SPRING 2008 PROBLEM SET 13

ECONOMICS 207 SPRING 2008 PROBLEM SET 13 ECONOMICS 207 SPRING 2008 PROBLEM SET 13 Problem 1. The cost function for a firm is a rule or mapping that tells the minimum total cost of production of any output level produced by the firm for a fixed

More information

Linear Equations. Find the domain and the range of the following set. {(4,5), (7,8), (-1,3), (3,3), (2,-3)}

Linear Equations. Find the domain and the range of the following set. {(4,5), (7,8), (-1,3), (3,3), (2,-3)} Linear Equations Domain and Range Domain refers to the set of possible values of the x-component of a point in the form (x,y). Range refers to the set of possible values of the y-component of a point in

More information

Math Practice Final - solutions

Math Practice Final - solutions Math 151 - Practice Final - solutions 2 1-2 -1 0 1 2 3 Problem 1 Indicate the following from looking at the graph of f(x) above. All answers are small integers, ±, or DNE for does not exist. a) lim x 1

More information

Fall 2009 Math 113 Final Exam Solutions. f(x) = 1 + ex 1 e x?

Fall 2009 Math 113 Final Exam Solutions. f(x) = 1 + ex 1 e x? . What are the domain and range of the function Fall 9 Math 3 Final Exam Solutions f(x) = + ex e x? Answer: The function is well-defined everywhere except when the denominator is zero, which happens when

More information

f'(x) = x 4 (2)(x - 6)(1) + (x - 6) 2 (4x 3 ) f'(x) = (x - 2) -1/3 = x 2 ; domain of f: (-, ) f'(x) = (x2 + 1)4x! 2x 2 (2x) 4x f'(x) =

f'(x) = x 4 (2)(x - 6)(1) + (x - 6) 2 (4x 3 ) f'(x) = (x - 2) -1/3 = x 2 ; domain of f: (-, ) f'(x) = (x2 + 1)4x! 2x 2 (2x) 4x f'(x) = 85. f() = 4 ( - 6) 2 f'() = 4 (2)( - 6)(1) + ( - 6) 2 (4 3 ) = 2 3 ( - 6)[ + 2( - 6)] = 2 3 ( - 6)(3-12) = 6 3 ( - 4)( - 6) Thus, the critical values are = 0, = 4, and = 6. Now we construct the sign chart

More information

(x! 4) (x! 4)10 + C + C. 2 e2x dx = 1 2 (1 + e 2x ) 3 2e 2x dx. # 8 '(4)(1 + e 2x ) 3 e 2x (2) = e 2x (1 + e 2x ) 3 & dx = 1

(x! 4) (x! 4)10 + C + C. 2 e2x dx = 1 2 (1 + e 2x ) 3 2e 2x dx. # 8 '(4)(1 + e 2x ) 3 e 2x (2) = e 2x (1 + e 2x ) 3 & dx = 1 33. x(x - 4) 9 Let u = x - 4, then du = and x = u + 4. x(x - 4) 9 = (u + 4)u 9 du = (u 0 + 4u 9 )du = u + 4u0 0 = (x! 4) + 2 5 (x! 4)0 (x " 4) + 2 5 (x " 4)0 ( '( = ()(x - 4)0 () + 2 5 (0)(x - 4)9 () =

More information

36-309/749 Math Review 2014

36-309/749 Math Review 2014 36-309/749 Math Review 2014 The math content of 36-309 is not high. We will use algebra, including logs. We will not use calculus or matrix algebra. This optional handout is intended to help those students

More information

NO CALCULATORS. NO BOOKS. NO NOTES. TURN OFF YOUR CELL PHONES AND PUT THEM AWAY.

NO CALCULATORS. NO BOOKS. NO NOTES. TURN OFF YOUR CELL PHONES AND PUT THEM AWAY. FINAL EXAM-MATH 3 FALL TERM, R. Blute & A. Novruzi Name(Print LEGIBLY) I.D. Number Instructions- This final examination consists of multiple choice questions worth 3 points each. Your answers to the multiple

More information

Review Assignment II

Review Assignment II MATH 11012 Intuitive Calculus KSU Name:. Review Assignment II 1. Let C(x) be the cost, in dollars, of manufacturing x widgets. Fill in the table with a mathematical expression and appropriate units corresponding

More information

EconS 301. Math Review. Math Concepts

EconS 301. Math Review. Math Concepts EconS 301 Math Review Math Concepts Functions: Functions describe the relationship between input variables and outputs y f x where x is some input and y is some output. Example: x could number of Bananas

More information

Final Exam Review Packet

Final Exam Review Packet 1 Exam 1 Material Sections A.1, A.2 and A.6 were review material. There will not be specific questions focused on this material but you should know how to: Simplify functions with exponents. Factor quadratics

More information

Final Exam Review Packet

Final Exam Review Packet 1 Exam 1 Material Sections A.1, A.2 and A.6 were review material. There will not be specific questions focused on this material but you should know how to: Simplify functions with exponents. Factor quadratics

More information

Lecture 5 - Logarithms, Slope of a Function, Derivatives

Lecture 5 - Logarithms, Slope of a Function, Derivatives Lecture 5 - Logarithms, Slope of a Function, Derivatives 5. Logarithms Note the graph of e x This graph passes the horizontal line test, so f(x) = e x is one-to-one and therefore has an inverse function.

More information

( ) + ( ) ( x) ax. = f x g x. = ax. Then find the derivative. 5 x. y = 6. values at x = 1: Recitation Worksheet 5A

( ) + ( ) ( x) ax. = f x g x. = ax. Then find the derivative. 5 x. y = 6. values at x = 1: Recitation Worksheet 5A Recitation Worksheet 5A I First rewrite the function in the form y n = a Then find the derivative II 5 1 y = y 1 5 = 4 y = y = 6 10 Rewrite if necessary until you have the sum of a few terms, each of the

More information

Direction fields of differential equations...with SAGE

Direction fields of differential equations...with SAGE Direction fields of differential equations...with SAGE Many differential equations cannot be solved conveniently by analytical methods, so it is important to consider what qualitative information can be

More information

Mathematics 2 for Business Schools Topic 7: Application of Integration to Economics. Building Competence. Crossing Borders.

Mathematics 2 for Business Schools Topic 7: Application of Integration to Economics. Building Competence. Crossing Borders. Mathematics 2 for Business Schools Topic 7: Application of Integration to Economics Building Competence. Crossing Borders. Spring Semester 2017 Learning objectives After finishing this section you should

More information

Target 6.1 The student will be able to use l Hôpital s Rule to evaluate indeterminate limits. lim. lim. 0, then

Target 6.1 The student will be able to use l Hôpital s Rule to evaluate indeterminate limits. lim. lim. 0, then Target 6.1 The student will be able to use l Hôpital s Rule to evaluate indeterminate limits. Recall from Section 2.1 Indeterminate form is when lim. xa g( Previously, we tried to reduce and then re-evaluate

More information

Section 4.2 Logarithmic Functions & Applications

Section 4.2 Logarithmic Functions & Applications 34 Section 4.2 Logarithmic Functions & Applications Recall that exponential functions are one-to-one since every horizontal line passes through at most one point on the graph of y = b x. So, an exponential

More information

Solutions to Second Midterm(pineapple)

Solutions to Second Midterm(pineapple) Math 125 Solutions to Second Midterm(pineapple) 1. Compute each of the derivatives below as indicated. 4 points (a) f(x) = 3x 8 5x 4 + 4x e 3. Solution: f (x) = 24x 7 20x + 4. Don t forget that e 3 is

More information

3. Find the slope of the tangent line to the curve given by 3x y e x+y = 1 + ln x at (1, 1).

3. Find the slope of the tangent line to the curve given by 3x y e x+y = 1 + ln x at (1, 1). 1. Find the derivative of each of the following: (a) f(x) = 3 2x 1 (b) f(x) = log 4 (x 2 x) 2. Find the slope of the tangent line to f(x) = ln 2 ln x at x = e. 3. Find the slope of the tangent line to

More information

MAC 2233, Survey of Calculus, Exam 3 Review This exam covers lectures 21 29,

MAC 2233, Survey of Calculus, Exam 3 Review This exam covers lectures 21 29, MAC 2233, Survey of Calculus, Exam 3 Review This exam covers lectures 21 29, This review includes typical exam problems. It is not designed to be comprehensive, but to be representative of topics covered

More information

Aim: How do we prepare for AP Problems on limits, continuity and differentiability? f (x)

Aim: How do we prepare for AP Problems on limits, continuity and differentiability? f (x) Name AP Calculus Date Supplemental Review 1 Aim: How do we prepare for AP Problems on limits, continuity and differentiability? Do Now: Use the graph of f(x) to evaluate each of the following: 1. lim x

More information

Section 2.3: Logarithmic Functions Lecture 3 MTH 124

Section 2.3: Logarithmic Functions Lecture 3 MTH 124 Procedural Skills Learning Objectives 1. Build an exponential function using the correct compounding identifiers (annually, monthly, continuously etc...) 2. Manipulate exponents algebraically. e.g. Solving

More information

2015 Math Camp Calculus Exam Solution

2015 Math Camp Calculus Exam Solution 015 Math Camp Calculus Exam Solution Problem 1: x = x x +5 4+5 = 9 = 3 1. lim We also accepted ±3, even though it is not according to the prevailing convention 1. x x 4 x+4 =. lim 4 4+4 = 4 0 = 4 0 = We

More information

Characteristics of Fish Populations

Characteristics of Fish Populations Characteristics of Fish Populations Unexploited Populations Recruitment Mortality (natural) Growth Exploited Populations Recruitment and Yield Fishing and Natural Mortality Compensatory Growth Recruitment

More information

Semester Project Part 1: Due March 1, 2019

Semester Project Part 1: Due March 1, 2019 Semester Project Part : Due March, 209 Instructions. Please prepare your own report on 8x paper, handwritten. Work alone or in groups. Help is available by telephone, office visit or email. All problems

More information

Chapter 5: Integrals

Chapter 5: Integrals Chapter 5: Integrals Section 5.3 The Fundamental Theorem of Calculus Sec. 5.3: The Fundamental Theorem of Calculus Fundamental Theorem of Calculus: Sec. 5.3: The Fundamental Theorem of Calculus Fundamental

More information

Composition of Functions

Composition of Functions Math 120 Intermediate Algebra Sec 9.1: Composite and Inverse Functions Composition of Functions The composite function f g, the composition of f and g, is defined as (f g)(x) = f(g(x)). Recall that a function

More information

Lecture 26: Section 5.3 Higher Derivatives and Concavity

Lecture 26: Section 5.3 Higher Derivatives and Concavity L26-1 Lecture 26: Section 5.3 Higher Derivatives and Concavity ex. Let f(x) = ln(e 2x + 1) 1) Find f (x). 2) Find d dx [f (x)]. L26-2 We define f (x) = Higher Order Derivatives For y = f(x), we can write

More information

10 Exponential and Logarithmic Functions

10 Exponential and Logarithmic Functions 10 Exponential and Logarithmic Functions Concepts: Rules of Exponents Exponential Functions Power Functions vs. Exponential Functions The Definition of an Exponential Function Graphing Exponential Functions

More information

For logistic growth, we have

For logistic growth, we have Dr. Lozada Econ. 5250 For logistic growth, we have. Harvest H depends on effort E and on X. With harvesting, Ẋ = F (X) H. Suppose that for a fixed level of effort E, H depends linearly on X: If E increases,

More information

Population Changes at a Constant Percentage Rate r Each Time Period

Population Changes at a Constant Percentage Rate r Each Time Period Concepts: population models, constructing exponential population growth models from data, instantaneous exponential growth rate models, logistic growth rate models. Population can mean anything from bacteria

More information

MATH 236 ELAC FALL 2017 CA 9 NAME: SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

MATH 236 ELAC FALL 2017 CA 9 NAME: SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. MATH 236 ELAC FALL 207 CA 9 NAME: SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. ) 27 p 3 27 p 3 ) 2) If 9 t 3 4t 9-2t = 3, find t. 2) Solve the equation.

More information

MATH 1113 Exam 2 Review. Spring 2018

MATH 1113 Exam 2 Review. Spring 2018 MATH 1113 Exam 2 Review Spring 2018 Section 3.1: Inverse Functions Topics Covered Section 3.2: Exponential Functions Section 3.3: Logarithmic Functions Section 3.4: Properties of Logarithms Section 3.5:

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Exponential and Logarithmic Functions Learning Targets 1. I can evaluate, analyze, and graph exponential functions. 2. I can solve problems involving exponential growth & decay. 3. I can evaluate expressions

More information

Algebra II. Slide 1 / 261. Slide 2 / 261. Slide 3 / 261. Linear, Exponential and Logarithmic Functions. Table of Contents

Algebra II. Slide 1 / 261. Slide 2 / 261. Slide 3 / 261. Linear, Exponential and Logarithmic Functions. Table of Contents Slide 1 / 261 Algebra II Slide 2 / 261 Linear, Exponential and 2015-04-21 www.njctl.org Table of Contents click on the topic to go to that section Slide 3 / 261 Linear Functions Exponential Functions Properties

More information

DISCUSS DISCOVER PROVE WRITE. (a) log a x y b log x log y (b) log 2 1x y2 log 2 x log 2 y. (c) log 5 a a b 2 b log 5 a 2 log 5 b

DISCUSS DISCOVER PROVE WRITE. (a) log a x y b log x log y (b) log 2 1x y2 log 2 x log 2 y. (c) log 5 a a b 2 b log 5 a 2 log 5 b 360 CHAPTER 4 Exponential and Logarithmic Functions 74. Biodiversity Some biologists model the number of species S in a fixed area A (such as an island) by the species-area relationship log S log c k log

More information

6x 2 8x + 5 ) = 12x 8. f (x) ) = d (12x 8) = 12

6x 2 8x + 5 ) = 12x 8. f (x) ) = d (12x 8) = 12 AMS/ECON 11A Class Notes 11/6/17 UCSC *) Higher order derivatives Example. If f = x 3 x + 5x + 1, then f = 6x 8x + 5 Observation: f is also a differentiable function... d f ) = d 6x 8x + 5 ) = 1x 8 dx

More information

CLASS NOTES: BUSINESS CALCULUS

CLASS NOTES: BUSINESS CALCULUS CLASS NOTES: BUSINESS CALCULUS These notes can be thought of as the logical skeleton of my lectures, although they will generally contain a fuller exposition of concepts but fewer examples than my lectures.

More information

Midterm Study Guide and Practice Problems

Midterm Study Guide and Practice Problems Midterm Study Guide and Practice Problems Coverage of the midterm: Sections 10.1-10.7, 11.2-11.6 Sections or topics NOT on the midterm: Section 11.1 (The constant e and continuous compound interest, Section

More information

School of the Art Institute of Chicago. Calculus. Frank Timmes. flash.uchicago.edu/~fxt/class_pages/class_calc.

School of the Art Institute of Chicago. Calculus. Frank Timmes. flash.uchicago.edu/~fxt/class_pages/class_calc. School of the Art Institute of Chicago Calculus Frank Timmes ftimmes@artic.edu flash.uchicago.edu/~fxt/class_pages/class_calc.shtml Syllabus 1 Aug 29 Pre-calculus 2 Sept 05 Rates and areas 3 Sept 12 Trapezoids

More information

Chapter 4. Section Derivatives of Exponential and Logarithmic Functions

Chapter 4. Section Derivatives of Exponential and Logarithmic Functions Chapter 4 Section 4.2 - Derivatives of Exponential and Logarithmic Functions Objectives: The student will be able to calculate the derivative of e x and of lnx. The student will be able to compute the

More information

Section 11.7 The Chain Rule

Section 11.7 The Chain Rule Section.7 The Chain Rule Composition of Functions There is another way of combining two functions to obtain a new function. For example, suppose that y = fu) = u and u = gx) = x 2 +. Since y is a function

More information

Sample Mathematics 106 Questions

Sample Mathematics 106 Questions Sample Mathematics 106 Questions x 2 + 8x 65 (1) Calculate lim x 5. x 5 (2) Consider an object moving in a straight line for which the distance s (measured in feet) it s travelled from its starting point

More information

Final Exam Review (and Quiz #12)

Final Exam Review (and Quiz #12) Final Exam Review (and Quiz #1) Applied Calculus Math 13.3 Fall 11 Your final exam is scheduled for Saturday, December 17, at 9: a.m. in our usual room. You may bring an 1 11 inch, one-sided, sheet of

More information

Math 142 (Summer 2018) Business Calculus 6.1 Notes

Math 142 (Summer 2018) Business Calculus 6.1 Notes Math 142 (Summer 2018) Business Calculus 6.1 Notes Antiderivatives Why? So far in the course we have studied derivatives. Differentiation is the process of going from a function f to its derivative f.

More information

Final Exam Study Guide

Final Exam Study Guide Final Exam Study Guide Final Exam Coverage: Sections 10.1-10.2, 10.4-10.5, 10.7, 11.2-11.4, 12.1-12.6, 13.1-13.2, 13.4-13.5, and 14.1 Sections/topics NOT on the exam: Sections 10.3 (Continuity, it definition

More information

Applied Calculus I. Lecture 29

Applied Calculus I. Lecture 29 Applied Calculus I Lecture 29 Integrals of trigonometric functions We shall continue learning substitutions by considering integrals involving trigonometric functions. Integrals of trigonometric functions

More information

Example. Determine the inverse of the given function (if it exists). f(x) = 3

Example. Determine the inverse of the given function (if it exists). f(x) = 3 Example. Determine the inverse of the given function (if it exists). f(x) = g(x) = p x + x We know want to look at two di erent types of functions, called logarithmic functions and exponential functions.

More information

Lecture : The Indefinite Integral MTH 124

Lecture : The Indefinite Integral MTH 124 Up to this point we have investigated the definite integral of a function over an interval. In particular we have done the following. Approximated integrals using left and right Riemann sums. Defined the

More information

CC2 Exponential v.s. Log Functions

CC2 Exponential v.s. Log Functions CC2 Exponential v.s. Log Functions CC1 Mastery Check Error Analysis tomorrow Retake? TBA (most likely end of this week) *In order to earn the chance for re-assessment, you must complete: Error Analysis

More information

1 Functions, Graphs and Limits

1 Functions, Graphs and Limits 1 Functions, Graphs and Limits 1.1 The Cartesian Plane In this course we will be dealing a lot with the Cartesian plane (also called the xy-plane), so this section should serve as a review of it and its

More information

4.1 Solutions to Exercises

4.1 Solutions to Exercises 4.1 Solutions to Exercises 1. Linear, because the average rate of change between any pair of points is constant. 3. Exponential, because the difference of consecutive inputs is constant and the ratio of

More information

UNIT 2 DERIVATIVES 2.1 EXPONENTIAL AND LOGARITHMIC FUNCTION APPLICATIONS. Pre-Class:

UNIT 2 DERIVATIVES 2.1 EXPONENTIAL AND LOGARITHMIC FUNCTION APPLICATIONS. Pre-Class: 1830 UNIT 2 DERIVATIVES 2.1 EXPONENTIAL AND LOGARITHMIC FUNCTION APPLICATIONS Pre-Class: Take notes on the videos and readings (use the space below). Work and check problem #1 in the 2.1 NOTES section.

More information

Chapter 4 Differentiation

Chapter 4 Differentiation Chapter 4 Differentiation 08 Section 4. The derivative of a function Practice Problems (a) (b) (c) 3 8 3 ( ) 4 3 5 4 ( ) 5 3 3 0 0 49 ( ) 50 Using a calculator, the values of the cube function, correct

More information

2. a b c d e 13. a b c d e. 3. a b c d e 14. a b c d e. 4. a b c d e 15. a b c d e. 5. a b c d e 16. a b c d e. 6. a b c d e 17.

2. a b c d e 13. a b c d e. 3. a b c d e 14. a b c d e. 4. a b c d e 15. a b c d e. 5. a b c d e 16. a b c d e. 6. a b c d e 17. MA109 College Algebra Fall 2017 Final Exam 2017-12-13 Name: Sec.: Do not remove this answer page you will turn in the entire exam. You have two hours to do this exam. No books or notes may be used. You

More information

DESCRIPTION AND ANALYSIS OF THE GAMBIA SOLE STOCK ASSESSMENT 2012

DESCRIPTION AND ANALYSIS OF THE GAMBIA SOLE STOCK ASSESSMENT 2012 DESCRIPTION AND ANALYSIS OF THE GAMBIA SOLE STOCK ASSESSMENT 2012 FEBRUARY 2013 The work herein was supported by the USAID funded Gambia-Senegal Sustainable Fisheries Project (BaNafaa). The BaNafaa project

More information

2.12: Derivatives of Exp/Log (cont d) and 2.15: Antiderivatives and Initial Value Problems

2.12: Derivatives of Exp/Log (cont d) and 2.15: Antiderivatives and Initial Value Problems 2.12: Derivatives of Exp/Log (cont d) and 2.15: Antiderivatives and Initial Value Problems Mathematics 3 Lecture 14 Dartmouth College February 03, 2010 Derivatives of the Exponential and Logarithmic Functions

More information

(MATH 1203, 1204, 1204R)

(MATH 1203, 1204, 1204R) College Algebra (MATH 1203, 1204, 1204R) Departmental Review Problems For all questions that ask for an approximate answer, round to two decimal places (unless otherwise specified). The most closely related

More information

8 + 6) x 2 ) y = h(x)

8 + 6) x 2 ) y = h(x) . a. Horizontal shift 6 left and vertical shift up. Notice B' is ( 6, ) and B is (0, 0). b. h(x) = 0.5(x + 6) + (Enter in a grapher to check.) c. Use the graph. Notice A' to see h(x) crosses the x-axis

More information

5. Find the slope intercept equation of the line parallel to y = 3x + 1 through the point (4, 5).

5. Find the slope intercept equation of the line parallel to y = 3x + 1 through the point (4, 5). Rewrite using rational eponents. 2 1. 2. 5 5. 8 4 4. 4 5. Find the slope intercept equation of the line parallel to y = + 1 through the point (4, 5). 6. Use the limit definition to find the derivative

More information

REVIEW OF MATHEMATICAL CONCEPTS

REVIEW OF MATHEMATICAL CONCEPTS REVIEW OF MATHEMATICAL CONCEPTS Variables, functions and slopes: A Variable is any entity that can take different values such as: price, output, revenue, cost, etc. In economics we try to 1. Identify the

More information

Section 5.1: Logistic Functions

Section 5.1: Logistic Functions Section 5.1: Logistic Functions We can assume in many situations that growth is exponential. For population growth, an exponential model is a consequence of the assumption that percentage change (birth

More information

tom.h.wilson Dept. Geology and Geography West Virginia University

tom.h.wilson Dept. Geology and Geography West Virginia University tom.h.wilson tom.wilson@mail.wvu.edu Dept. Geology and Geography West Virginia University Objectives for the day 8.13 and 8.14 due next time In-class digital approach to differentiation including simple

More information

Chapter 2 Describing Change: Rates

Chapter 2 Describing Change: Rates Chapter Describing Change: Rates Section.1 Change, Percentage Change, and Average Rates of Change 1. 3. $.30 $0.46 per day 5 days = The stock price rose an average of 46 cents per day during the 5-day

More information

CDS M Phil Econometrics

CDS M Phil Econometrics CDS M Phil Econometrics an Pillai N 21/10/2009 1 CDS M Phil Econometrics Functional Forms and Growth Rates 2 CDS M Phil Econometrics 1 Beta Coefficients standardized coefficient or beta coefficient Idea

More information

Economics 203: Intermediate Microeconomics. Calculus Review. A function f, is a rule assigning a value y for each value x.

Economics 203: Intermediate Microeconomics. Calculus Review. A function f, is a rule assigning a value y for each value x. Economics 203: Intermediate Microeconomics Calculus Review Functions, Graphs and Coordinates Econ 203 Calculus Review p. 1 Functions: A function f, is a rule assigning a value y for each value x. The following

More information

9-3 CC6 Exponential Growth and and Decay

9-3 CC6 Exponential Growth and and Decay 9-3 CC6 Exponential Growth and and Decay Application Graphs (transformation) Exponential v.s. Log Algebra 1 Warm Up Simplify each expression. 1. (4 + 0.05) 2 16.4025 2. 25(1 + 0.02) 3 26.5302 3. 1.0075

More information

MAX-MIN PROBLEMS. This guideline is found on pp of our textbook.

MAX-MIN PROBLEMS. This guideline is found on pp of our textbook. MA123, Chapter 7: Word Problems (pp. 125-153, Gootman) Chapter Goals: In this Chapter we learn a general strategy on how to approach the two main types of word problems that one usually encounters in a

More information

1 Functions and Graphs

1 Functions and Graphs 1 Functions and Graphs 1.1 Functions Cartesian Coordinate System A Cartesian or rectangular coordinate system is formed by the intersection of a horizontal real number line, usually called the x axis,

More information

AP CALCULUS BC SUMMER PREVIEW

AP CALCULUS BC SUMMER PREVIEW AP CALCULUS BC SUMMER PREVIEW Name: Your summer homework assignment is to write complete solutions for all of the problems listed in this packet. It is important that you have mastered the concepts covered

More information

DESCRIPTION AND ANALYSIS OF THE GAMBIA SOLE STOCK ASSESSMENT 2013

DESCRIPTION AND ANALYSIS OF THE GAMBIA SOLE STOCK ASSESSMENT 2013 DESCRIPTION AND ANALYSIS OF THE GAMBIA SOLE STOCK ASSESSMENT 2013 December 2013 The work herein was supported by the USAID funded Gambia-Senegal Sustainable Fisheries Project (BaNafaa). The BaNafaa project

More information

Final Exam Study Guide Mathematical Thinking, Fall 2003

Final Exam Study Guide Mathematical Thinking, Fall 2003 Final Exam Study Guide Mathematical Thinking, Fall 2003 Chapter R Chapter R contains a lot of basic definitions and notations that are used throughout the rest of the book. Most of you are probably comfortable

More information

Systems of Linear ODEs

Systems of Linear ODEs P a g e 1 Systems of Linear ODEs Systems of ordinary differential equations can be solved in much the same way as discrete dynamical systems if the differential equations are linear. We will focus here

More information

UNIT 5: DERIVATIVES OF EXPONENTIAL AND TRIGONOMETRIC FUNCTIONS. Qu: What do you remember about exponential and logarithmic functions?

UNIT 5: DERIVATIVES OF EXPONENTIAL AND TRIGONOMETRIC FUNCTIONS. Qu: What do you remember about exponential and logarithmic functions? UNIT 5: DERIVATIVES OF EXPONENTIAL AND TRIGONOMETRIC FUNCTIONS 5.1 DERIVATIVES OF EXPONENTIAL FUNCTIONS, y = e X Qu: What do you remember about exponential and logarithmic functions? e, called Euler s

More information

INTERNET MAT 117. Solution for the Review Problems. (1) Let us consider the circle with equation. x 2 + 2x + y 2 + 3y = 3 4. (x + 1) 2 + (y + 3 2

INTERNET MAT 117. Solution for the Review Problems. (1) Let us consider the circle with equation. x 2 + 2x + y 2 + 3y = 3 4. (x + 1) 2 + (y + 3 2 INTERNET MAT 117 Solution for the Review Problems (1) Let us consider the circle with equation x 2 + y 2 + 2x + 3y + 3 4 = 0. (a) Find the standard form of the equation of the circle given above. (i) Group

More information

JMESTN Journal of Multidisciplinary Engineering Science and Technology (JMEST) ISSN: Vol. 2 Issue 4, April

JMESTN Journal of Multidisciplinary Engineering Science and Technology (JMEST) ISSN: Vol. 2 Issue 4, April Population Dynamics of Harvesting Fishery and Predator Kinfe Hailemariam Hntsa School of Mathematical and Statistical Sciences, Hawassa University, P. O. Box 5, Hawassa, ETHIOPIA Email: kinfhail@gmail.com

More information

Optimal control of single species biological population

Optimal control of single species biological population Optimal control of single species biological population B. S. Goh Research Institute, Curtin University Sarawak Malaysia Biologists divide species into two groups. K-selected:- like humans, monkeys, whales,

More information

(2) Let f(x) = 5x. (3) Say f (x) and f (x) have the following graphs. Sketch a graph of f(x). The graph of f (x) is: 3x 5

(2) Let f(x) = 5x. (3) Say f (x) and f (x) have the following graphs. Sketch a graph of f(x). The graph of f (x) is: 3x 5 The following review sheet is intended to help you study. It does not contain every type of problem you may see. It does not reflect the distribution of problems on the actual midterm. It probably has

More information

WeBWorK, Problems 2 and 3

WeBWorK, Problems 2 and 3 WeBWorK, Problems 2 and 3 7 dx 2. Evaluate x ln(6x) This can be done using integration by parts or substitution. (Most can not). However, it is much more easily done using substitution. This can be written

More information

MATH 1113 Exam 2 Review

MATH 1113 Exam 2 Review MATH 1113 Exam 2 Review Section 3.1: Inverse Functions Topics Covered Section 3.2: Exponential Functions Section 3.3: Logarithmic Functions Section 3.4: Properties of Logarithms Section 3.5: Exponential

More information

Population Changes at a Constant Percentage Rate r Each Time Period

Population Changes at a Constant Percentage Rate r Each Time Period Concepts: population models, constructing exponential population growth models from data, instantaneous exponential growth rate models. Population can mean anything from bacteria in a petri dish, amount

More information

Math Boot Camp Functions and Algebra

Math Boot Camp Functions and Algebra Fall 017 Math Boot Camp Functions and Algebra FUNCTIONS Much of mathematics relies on functions, the pairing (relation) of one object (typically a real number) with another object (typically a real number).

More information

Chapter 11 Logarithms

Chapter 11 Logarithms Chapter 11 Logarithms Lesson 1: Introduction to Logs Lesson 2: Graphs of Logs Lesson 3: The Natural Log Lesson 4: Log Laws Lesson 5: Equations of Logs using Log Laws Lesson 6: Exponential Equations using

More information

Integration by Substitution

Integration by Substitution Integration by Substitution Dr. Philippe B. Laval Kennesaw State University Abstract This handout contains material on a very important integration method called integration by substitution. Substitution

More information

May 2015 Timezone 2 IB Maths Standard Exam Worked Solutions

May 2015 Timezone 2 IB Maths Standard Exam Worked Solutions May 015 Timezone IB Maths Standard Exam Worked Solutions 015, Steve Muench steve.muench@gmail.com @stevemuench Please feel free to share the link to these solutions http://bit.ly/ib-sl-maths-may-015-tz

More information