LECTURE 11: GENERALIZED LEAST SQUARES (GLS) In this lecture, we will consider the model y = Xβ + ε retaining the assumption Ey = Xβ.

Size: px
Start display at page:

Download "LECTURE 11: GENERALIZED LEAST SQUARES (GLS) In this lecture, we will consider the model y = Xβ + ε retaining the assumption Ey = Xβ."

Transcription

1 LECTURE 11: GEERALIZED LEAST SQUARES (GLS) In this lecture, we will consider the model y = Xβ + ε retaining the assumption Ey = Xβ. However, we no longer have the assumption V(y) = V(ε) = σ 2 I. Instead we add the assumption V(y) = V where V is positive definite. Sometimes we take V = σ 2 Ω with tr Ω = As we know, $β = (X X) -1 X y. What is E $β? ote that V( $β ) = (X X) -1 X VX(X X) -1 in this case. Is $β BLUE? Does $β minimize e e?.m. Kiefer, Cornell University, Econ 620, Lecture 11 1

2 The basic idea behind GLS is to transform the observation matrix [y X] so that the variance in the transformed model is I (or σ2i). Since V is positive definite, V -1 is positive definite too. Therefore, there exists a nonsingular matrix P such that V -1 = P P. Transforming the model y = Xβ + ε by P yields Py = PXβ + Pε. ote that EPε = PEε = 0 and V(Pε) = PEεε P = PVP = P(P P) -1 P = I. (We could have done this with V = σ 2 Ω and imposed tr Ω = if useful.) That is, the transformed model Py = PXβ + Pε satisfies the conditions under which we developed our Least Squares estimators..m. Kiefer, Cornell University, Econ 620, Lecture 11 2

3 Thus, the LS estimator is BLUE in the transformed model. The LS estimator for β in the model Py = PXβ + Pε is referred to as the GLS estimator for β in the model y = Xβ + ε. Proposition: The GLS estimator for β is $β = (X V -1 X) -1 X V -1 G y. Proof: Apply LS to the transformed model. Thus, $β = (X P PX) -1 X P Py = (X V -1 X) -1 X V -1 G y Proposition: V( $β ) = (X V -1 X) -1 G Proof: ote that $β - β = (X V -1 X) -1 X V -1 G ε. Thus, V( $β ) = E (X V -1 X) -1 X V -1 εε V -1 X(X V -1 X) -1 G = (X V -1 X) -1 X V -1 VV -1 X(X V -1 X) -1 = (X V -1 X) -1.M. Kiefer, Cornell University, Econ 620, Lecture 11 3

4 Aitken's Theorem: The GLS estimator is BLUE. (This really follows from the Gauss-Markov Theorem, but let's give a direct proof.) Proof: Let b be an alternative linear unbiased estimator such that b = [(X V -1 X) -1 X V -1 + A]y. Unbiasedness implies that AX = 0. V(b) = [(X V -1 X) -1 X V -1 + A] V [(X V -1 X) -1 X V -1 + A] = (X V -1 X) -1 + AVA + (X V -1 X) -1 X A + AX(X V -1 X) -1 The last two terms are zero. (why?) The second term is positive semi-definite, so A = 0 is best. What does GLS minimize?.m. Kiefer, Cornell University, Econ 620, Lecture 11 4

5 Recall that (y - Xb) (y - Xb) is minimized by b = $β (i.e. (y - Xb) is minimized in length by b = $β ). Consider P(y - Xb). The length of this vector is (y - Xb) P P(y - Xb) = (y - Xb) V -1 (y - Xb). Thus, GLS minimizes P(y - Xb) in length. Let ~ e = (y X β $ G ). ote that satisfies X V -1 (y X β $ ) = X V -1 G ~ e = 0. (why?) Then (y - Xb) V -1 (y - Xb) = (y X $β ) V -1 G (y X β $ ) + (b - ) X V -1 G $β X(b - $β G G ). ote that X ~ e 0 in general..m. Kiefer, Cornell University, Econ 620, Lecture 11 5

6 Estimation of σ 2 : Let V(y) = σ 2 Ω where tr Ω =. Choose P so P P = Ω -1. Then the variance in the transformed model Py = PXβ + Pε is σ 2 I. Our standard formula gives s 2 = ~~ ee /( - K) which is the unbiased estimator for σ 2. ow we add the assumption of normality: y ~ (Xβ, σ 2 Ω). Consider the log likelihood: 2 2 l( βσ ) = c - ln σ - 1 ln 2 2 Ω - 1 σ ( y Xβ) Ω ( y Xβ) Proposition: The GLS estimator is the ML estimator for β. (why?).m. Kiefer, Cornell University, Econ 620, Lecture 11 6

7 2 Proposition: = ~ e ~ e / (as expected). Proposition: $β and ~ G e are independent. (How would you prove this?) Testing: σ ML Testing procedures are as in the ordinary model. Results we have developed under the standard set-up will be applied to the transformed model..m. Kiefer, Cornell University, Econ 620, Lecture 11 7

8 When does $β G = $β? 1. $β = holds trivially when σ 2 G βˆ I = V. 2. $β = (X X) -1 X y and β $ = (X V -1 X) -1 X V -1 G y $β G = $β (X X) -1 X = (X V -1 X) -1 X V -1 VX = X(X V -1 X) -1 X X = XR (What are the dimensions of these matrices?) Interpretation: In the case where K = 1, X is an eigenvector of V. In general, if the columns of X are each linear combinations of the same K eigenvectors of V, then $β G = $β. This is hard to check and would usually be a bad assumption..m. Kiefer, Cornell University, Econ 620, Lecture 11 8

9 Example: Equicorrelated case: V(y) = V = I + α11 where 1 is an -vector of ones. The LS estimator is the same as the GLS estimator if X has a column of ones Case of unknown Ω: ote that there is no hope of estimating Ω since there are ( + 1)/2 parameters and only observations. Thus, we usually make some parametric restriction as Ω = Ω(θ) with θ a fixed parameter. Then we can hope to estimate θ consistently using squares and cross products of LS residuals or we could use ML. ote that it doesn't make sense to try to consistently estimate Ω since it grows with sample size..m. Kiefer, Cornell University, Econ 620, Lecture 11 9

10 Thus, "consistency" refers to the estimate of θ. Definition: $Ω = Ω( $θ ) is a consistent estimator of Ω if and only if $θ is a consistent estimator of θ. Feasible GLS (FGLS) is the estimation method used when Ω is unknown. FGLS is the same as GLS except that it uses an estimated Ω, say $Ω = Ω( $θ ), instead of Ω. Proposition: $β = (X -1 X) -1 X -1 FG $Ω $Ω y ote that = β + (X -1 X) -1 X -1 $β FG $Ω $Ω ε. The following proposition follows easily from this decomposition of. $β FG.M. Kiefer, Cornell University, Econ 620, Lecture 11 10

11 Proposition: The sufficient conditions for be consistent are $β FG to plim X $Ω 1 X = Q where Q is positive definite and finite, and plim X $Ω 1 ε = 0. It takes a little more to get a distribution theory. From our discussion of $β G, it easily follows that ( β $ β) G 0, σ 2 X Ω X 1 1.M. Kiefer, Cornell University, Econ 620, Lecture 11 11

12 $β FG What about the distribution of when Ω is unknown? Proposition: Sufficient conditions for $β FG and $β G to have the same asymptotic distribution are that plim X ( $ 1 1 Ω Ω ) X = 0 plim Proof: ote that X ( Ω $ 1 Ω 1 ) ε = 0. and ( β $ β) G = X Ω X X Ω ε ( β $ β) FG = 1 X Ω$ X X Ω$ -1-1 ε..m. Kiefer, Cornell University, Econ 620, Lecture 11 12

13 Thus plim ( β $ β $ ) = 0 G FG if and plim X $Ω 1 X = plim Ω 1 X X plim X $Ω 1 ε X Ω = plim 1 ε. We are done. (Recall that plim(x y) = 0 the random variables x and y have the same asymptotic distribution.).m. Kiefer, Cornell University, Econ 620, Lecture 11 13

14 Summing up: Consistency of $θ implies consistency of the FGLS estimator. A little more is required for the FGLS estimator to have the same asymptotic distribution as the GLS estimator. These conditions are usually met..m. Kiefer, Cornell University, Econ 620, Lecture 11 14

15 Small-sample properties of FGLS estimators: Proposition: Suppose $θ is an even function of ε (i.e. (ε) = (-ε)). (This holds if $θ depends on squares and cross products of residuals.) Suppose ε has a symmetric distribution. Then E $β FG = β if the mean exists. Proof: The sampling error - β = (X $Ω ( $θ ) -1 X) -1 X $Ω ( $θ ) -1 ε $β FG has a symmetric distribution around zero since ε and -ε give the same value of $Ω. If the mean exists, it is zero. ote that this property is weak. It is easily obtained but it is not very useful..m. Kiefer, Cornell University, Econ 620, Lecture 11 15

16 General advice: -Do not use too many parameters in estimating the variance-covariance matrix or the increase in sampling variances will outweigh the decrease in asymptotic variance. -Always calculate LS as well as GLS estimators. What are the data telling you if these differ a lot?.m. Kiefer, Cornell University, Econ 620, Lecture 11 16

Topic 6: Non-Spherical Disturbances

Topic 6: Non-Spherical Disturbances Topic 6: Non-Spherical Disturbances Our basic linear regression model is y = Xβ + ε ; ε ~ N[0, σ 2 I n ] Now we ll generalize the specification of the error term in the model: E[ε] = 0 ; E[εε ] = Σ = σ

More information

Economics 620, Lecture 9: Asymptotics III: Maximum Likelihood Estimation

Economics 620, Lecture 9: Asymptotics III: Maximum Likelihood Estimation Economics 620, Lecture 9: Asymptotics III: Maximum Likelihood Estimation Nicholas M. Kiefer Cornell University Professor N. M. Kiefer (Cornell University) Lecture 9: Asymptotics III(MLE) 1 / 20 Jensen

More information

Linear Model Under General Variance

Linear Model Under General Variance Linear Model Under General Variance We have a sample of T random variables y 1, y 2,, y T, satisfying the linear model Y = X β + e, where Y = (y 1,, y T )' is a (T 1) vector of random variables, X = (T

More information

7. GENERALIZED LEAST SQUARES (GLS)

7. GENERALIZED LEAST SQUARES (GLS) 7. GENERALIZED LEAST SQUARES (GLS) [1] ASSUMPTIONS: Assume SIC except that Cov(ε) = E(εε ) = σ Ω where Ω I T. Assume that E(ε) = 0 T 1, and that X Ω -1 X and X ΩX are all positive definite. Examples: Autocorrelation:

More information

Economics 620, Lecture 4: The K-Varable Linear Model I

Economics 620, Lecture 4: The K-Varable Linear Model I Economics 620, Lecture 4: The K-Varable Linear Model I Nicholas M. Kiefer Cornell University Professor N. M. Kiefer (Cornell University) Lecture 4: The K-Varable Linear Model I 1 / 20 Consider the system

More information

Graduate Econometrics Lecture 4: Heteroskedasticity

Graduate Econometrics Lecture 4: Heteroskedasticity Graduate Econometrics Lecture 4: Heteroskedasticity Department of Economics University of Gothenburg November 30, 2014 1/43 and Autocorrelation Consequences for OLS Estimator Begin from the linear model

More information

Basic Distributional Assumptions of the Linear Model: 1. The errors are unbiased: E[ε] = The errors are uncorrelated with common variance:

Basic Distributional Assumptions of the Linear Model: 1. The errors are unbiased: E[ε] = The errors are uncorrelated with common variance: 8. PROPERTIES OF LEAST SQUARES ESTIMATES 1 Basic Distributional Assumptions of the Linear Model: 1. The errors are unbiased: E[ε] = 0. 2. The errors are uncorrelated with common variance: These assumptions

More information

Ma 3/103: Lecture 24 Linear Regression I: Estimation

Ma 3/103: Lecture 24 Linear Regression I: Estimation Ma 3/103: Lecture 24 Linear Regression I: Estimation March 3, 2017 KC Border Linear Regression I March 3, 2017 1 / 32 Regression analysis Regression analysis Estimate and test E(Y X) = f (X). f is the

More information

Economics 620, Lecture 4: The K-Variable Linear Model I. y 1 = + x 1 + " 1 y 2 = + x 2 + " 2 :::::::: :::::::: y N = + x N + " N

Economics 620, Lecture 4: The K-Variable Linear Model I. y 1 = + x 1 +  1 y 2 = + x 2 +  2 :::::::: :::::::: y N = + x N +  N 1 Economics 620, Lecture 4: The K-Variable Linear Model I Consider the system y 1 = + x 1 + " 1 y 2 = + x 2 + " 2 :::::::: :::::::: y N = + x N + " N or in matrix form y = X + " where y is N 1, X is N

More information

Economics 620, Lecture 7: Still More, But Last, on the K-Varable Linear Model

Economics 620, Lecture 7: Still More, But Last, on the K-Varable Linear Model Economics 620, Lecture 7: Still More, But Last, on the K-Varable Linear Model Nicholas M. Kiefer Cornell University Professor N. M. Kiefer (Cornell University) Lecture 7: the K-Varable Linear Model IV

More information

Summer School in Statistics for Astronomers V June 1 - June 6, Regression. Mosuk Chow Statistics Department Penn State University.

Summer School in Statistics for Astronomers V June 1 - June 6, Regression. Mosuk Chow Statistics Department Penn State University. Summer School in Statistics for Astronomers V June 1 - June 6, 2009 Regression Mosuk Chow Statistics Department Penn State University. Adapted from notes prepared by RL Karandikar Mean and variance Recall

More information

Estimating Estimable Functions of β. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 17

Estimating Estimable Functions of β. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 17 Estimating Estimable Functions of β Copyright c 202 Dan Nettleton (Iowa State University) Statistics 5 / 7 The Response Depends on β Only through Xβ In the Gauss-Markov or Normal Theory Gauss-Markov Linear

More information

Review of Classical Least Squares. James L. Powell Department of Economics University of California, Berkeley

Review of Classical Least Squares. James L. Powell Department of Economics University of California, Berkeley Review of Classical Least Squares James L. Powell Department of Economics University of California, Berkeley The Classical Linear Model The object of least squares regression methods is to model and estimate

More information

Peter Hoff Linear and multilinear models April 3, GLS for multivariate regression 5. 3 Covariance estimation for the GLM 8

Peter Hoff Linear and multilinear models April 3, GLS for multivariate regression 5. 3 Covariance estimation for the GLM 8 Contents 1 Linear model 1 2 GLS for multivariate regression 5 3 Covariance estimation for the GLM 8 4 Testing the GLH 11 A reference for some of this material can be found somewhere. 1 Linear model Recall

More information

Introduction to Econometrics Final Examination Fall 2006 Answer Sheet

Introduction to Econometrics Final Examination Fall 2006 Answer Sheet Introduction to Econometrics Final Examination Fall 2006 Answer Sheet Please answer all of the questions and show your work. If you think a question is ambiguous, clearly state how you interpret it before

More information

Sensitivity of GLS estimators in random effects models

Sensitivity of GLS estimators in random effects models of GLS estimators in random effects models Andrey L. Vasnev (University of Sydney) Tokyo, August 4, 2009 1 / 19 Plan Plan Simulation studies and estimators 2 / 19 Simulation studies Plan Simulation studies

More information

Lecture 6: Linear models and Gauss-Markov theorem

Lecture 6: Linear models and Gauss-Markov theorem Lecture 6: Linear models and Gauss-Markov theorem Linear model setting Results in simple linear regression can be extended to the following general linear model with independently observed response variables

More information

An Introduction to Parameter Estimation

An Introduction to Parameter Estimation Introduction Introduction to Econometrics An Introduction to Parameter Estimation This document combines several important econometric foundations and corresponds to other documents such as the Introduction

More information

Economics 620, Lecture 5: exp

Economics 620, Lecture 5: exp 1 Economics 620, Lecture 5: The K-Variable Linear Model II Third assumption (Normality): y; q(x; 2 I N ) 1 ) p(y) = (2 2 ) exp (N=2) 1 2 2(y X)0 (y X) where N is the sample size. The log likelihood function

More information

Econ 620. Matrix Differentiation. Let a and x are (k 1) vectors and A is an (k k) matrix. ) x. (a x) = a. x = a (x Ax) =(A + A (x Ax) x x =(A + A )

Econ 620. Matrix Differentiation. Let a and x are (k 1) vectors and A is an (k k) matrix. ) x. (a x) = a. x = a (x Ax) =(A + A (x Ax) x x =(A + A ) Econ 60 Matrix Differentiation Let a and x are k vectors and A is an k k matrix. a x a x = a = a x Ax =A + A x Ax x =A + A x Ax = xx A We don t want to prove the claim rigorously. But a x = k a i x i i=

More information

LECTURE 2 LINEAR REGRESSION MODEL AND OLS

LECTURE 2 LINEAR REGRESSION MODEL AND OLS SEPTEMBER 29, 2014 LECTURE 2 LINEAR REGRESSION MODEL AND OLS Definitions A common question in econometrics is to study the effect of one group of variables X i, usually called the regressors, on another

More information

GLS and FGLS. Econ 671. Purdue University. Justin L. Tobias (Purdue) GLS and FGLS 1 / 22

GLS and FGLS. Econ 671. Purdue University. Justin L. Tobias (Purdue) GLS and FGLS 1 / 22 GLS and FGLS Econ 671 Purdue University Justin L. Tobias (Purdue) GLS and FGLS 1 / 22 In this lecture we continue to discuss properties associated with the GLS estimator. In addition we discuss the practical

More information

Zellner s Seemingly Unrelated Regressions Model. James L. Powell Department of Economics University of California, Berkeley

Zellner s Seemingly Unrelated Regressions Model. James L. Powell Department of Economics University of California, Berkeley Zellner s Seemingly Unrelated Regressions Model James L. Powell Department of Economics University of California, Berkeley Overview The seemingly unrelated regressions (SUR) model, proposed by Zellner,

More information

Introduction to Econometrics. Heteroskedasticity

Introduction to Econometrics. Heteroskedasticity Introduction to Econometrics Introduction Heteroskedasticity When the variance of the errors changes across segments of the population, where the segments are determined by different values for the explanatory

More information

Parameter Estimation

Parameter Estimation Parameter Estimation Consider a sample of observations on a random variable Y. his generates random variables: (y 1, y 2,, y ). A random sample is a sample (y 1, y 2,, y ) where the random variables y

More information

Panel Data Models. James L. Powell Department of Economics University of California, Berkeley

Panel Data Models. James L. Powell Department of Economics University of California, Berkeley Panel Data Models James L. Powell Department of Economics University of California, Berkeley Overview Like Zellner s seemingly unrelated regression models, the dependent and explanatory variables for panel

More information

Topic 3: Inference and Prediction

Topic 3: Inference and Prediction Topic 3: Inference and Prediction We ll be concerned here with testing more general hypotheses than those seen to date. Also concerned with constructing interval predictions from our regression model.

More information

Lecture 24: Weighted and Generalized Least Squares

Lecture 24: Weighted and Generalized Least Squares Lecture 24: Weighted and Generalized Least Squares 1 Weighted Least Squares When we use ordinary least squares to estimate linear regression, we minimize the mean squared error: MSE(b) = 1 n (Y i X i β)

More information

MS&E 226: Small Data. Lecture 11: Maximum likelihood (v2) Ramesh Johari

MS&E 226: Small Data. Lecture 11: Maximum likelihood (v2) Ramesh Johari MS&E 226: Small Data Lecture 11: Maximum likelihood (v2) Ramesh Johari ramesh.johari@stanford.edu 1 / 18 The likelihood function 2 / 18 Estimating the parameter This lecture develops the methodology behind

More information

the error term could vary over the observations, in ways that are related

the error term could vary over the observations, in ways that are related Heteroskedasticity We now consider the implications of relaxing the assumption that the conditional variance Var(u i x i ) = σ 2 is common to all observations i = 1,..., n In many applications, we may

More information

Topic 3: Inference and Prediction

Topic 3: Inference and Prediction Topic 3: Inference and Prediction We ll be concerned here with testing more general hypotheses than those seen to date. Also concerned with constructing interval predictions from our regression model.

More information

Introduction to Estimation Methods for Time Series models. Lecture 1

Introduction to Estimation Methods for Time Series models. Lecture 1 Introduction to Estimation Methods for Time Series models Lecture 1 Fulvio Corsi SNS Pisa Fulvio Corsi Introduction to Estimation () Methods for Time Series models Lecture 1 SNS Pisa 1 / 19 Estimation

More information

Heteroskedasticity. We now consider the implications of relaxing the assumption that the conditional

Heteroskedasticity. We now consider the implications of relaxing the assumption that the conditional Heteroskedasticity We now consider the implications of relaxing the assumption that the conditional variance V (u i x i ) = σ 2 is common to all observations i = 1,..., In many applications, we may suspect

More information

Chapter 3: Maximum Likelihood Theory

Chapter 3: Maximum Likelihood Theory Chapter 3: Maximum Likelihood Theory Florian Pelgrin HEC September-December, 2010 Florian Pelgrin (HEC) Maximum Likelihood Theory September-December, 2010 1 / 40 1 Introduction Example 2 Maximum likelihood

More information

Instrumental Variables and Two-Stage Least Squares

Instrumental Variables and Two-Stage Least Squares Instrumental Variables and Two-Stage Least Squares Generalised Least Squares Professor Menelaos Karanasos December 2011 Generalised Least Squares: Assume that the postulated model is y = Xb + e, (1) where

More information

Linear models. Linear models are computationally convenient and remain widely used in. applied econometric research

Linear models. Linear models are computationally convenient and remain widely used in. applied econometric research Linear models Linear models are computationally convenient and remain widely used in applied econometric research Our main focus in these lectures will be on single equation linear models of the form y

More information

STAT 100C: Linear models

STAT 100C: Linear models STAT 100C: Linear models Arash A. Amini June 9, 2018 1 / 56 Table of Contents Multiple linear regression Linear model setup Estimation of β Geometric interpretation Estimation of σ 2 Hat matrix Gram matrix

More information

Regression #4: Properties of OLS Estimator (Part 2)

Regression #4: Properties of OLS Estimator (Part 2) Regression #4: Properties of OLS Estimator (Part 2) Econ 671 Purdue University Justin L. Tobias (Purdue) Regression #4 1 / 24 Introduction In this lecture, we continue investigating properties associated

More information

The Aitken Model. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 41

The Aitken Model. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 41 The Aitken Model Copyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 41 The Aitken Model (AM): Suppose where y = Xβ + ε, E(ε) = 0 and Var(ε) = σ 2 V for some σ 2 > 0 and some known

More information

LECTURE 10: NEYMAN-PEARSON LEMMA AND ASYMPTOTIC TESTING. The last equality is provided so this can look like a more familiar parametric test.

LECTURE 10: NEYMAN-PEARSON LEMMA AND ASYMPTOTIC TESTING. The last equality is provided so this can look like a more familiar parametric test. Economics 52 Econometrics Professor N.M. Kiefer LECTURE 1: NEYMAN-PEARSON LEMMA AND ASYMPTOTIC TESTING NEYMAN-PEARSON LEMMA: Lesson: Good tests are based on the likelihood ratio. The proof is easy in the

More information

ECON The Simple Regression Model

ECON The Simple Regression Model ECON 351 - The Simple Regression Model Maggie Jones 1 / 41 The Simple Regression Model Our starting point will be the simple regression model where we look at the relationship between two variables In

More information

Estimation theory. Parametric estimation. Properties of estimators. Minimum variance estimator. Cramer-Rao bound. Maximum likelihood estimators

Estimation theory. Parametric estimation. Properties of estimators. Minimum variance estimator. Cramer-Rao bound. Maximum likelihood estimators Estimation theory Parametric estimation Properties of estimators Minimum variance estimator Cramer-Rao bound Maximum likelihood estimators Confidence intervals Bayesian estimation 1 Random Variables Let

More information

University of Cambridge Engineering Part IIB Module 3F3: Signal and Pattern Processing Handout 2:. The Multivariate Gaussian & Decision Boundaries

University of Cambridge Engineering Part IIB Module 3F3: Signal and Pattern Processing Handout 2:. The Multivariate Gaussian & Decision Boundaries University of Cambridge Engineering Part IIB Module 3F3: Signal and Pattern Processing Handout :. The Multivariate Gaussian & Decision Boundaries..15.1.5 1 8 6 6 8 1 Mark Gales mjfg@eng.cam.ac.uk Lent

More information

Topic 7: Heteroskedasticity

Topic 7: Heteroskedasticity Topic 7: Heteroskedasticity Advanced Econometrics (I Dong Chen School of Economics, Peking University Introduction If the disturbance variance is not constant across observations, the regression is heteroskedastic

More information

Business Economics BUSINESS ECONOMICS. PAPER No. : 8, FUNDAMENTALS OF ECONOMETRICS MODULE No. : 3, GAUSS MARKOV THEOREM

Business Economics BUSINESS ECONOMICS. PAPER No. : 8, FUNDAMENTALS OF ECONOMETRICS MODULE No. : 3, GAUSS MARKOV THEOREM Subject Business Economics Paper No and Title Module No and Title Module Tag 8, Fundamentals of Econometrics 3, The gauss Markov theorem BSE_P8_M3 1 TABLE OF CONTENTS 1. INTRODUCTION 2. ASSUMPTIONS OF

More information

1 Appendix A: Matrix Algebra

1 Appendix A: Matrix Algebra Appendix A: Matrix Algebra. Definitions Matrix A =[ ]=[A] Symmetric matrix: = for all and Diagonal matrix: 6=0if = but =0if 6= Scalar matrix: the diagonal matrix of = Identity matrix: the scalar matrix

More information

Xβ is a linear combination of the columns of X: Copyright c 2010 Dan Nettleton (Iowa State University) Statistics / 25 X =

Xβ is a linear combination of the columns of X: Copyright c 2010 Dan Nettleton (Iowa State University) Statistics / 25 X = The Gauss-Markov Linear Model y Xβ + ɛ y is an n random vector of responses X is an n p matrix of constants with columns corresponding to explanatory variables X is sometimes referred to as the design

More information

Linear Regression and Its Applications

Linear Regression and Its Applications Linear Regression and Its Applications Predrag Radivojac October 13, 2014 Given a data set D = {(x i, y i )} n the objective is to learn the relationship between features and the target. We usually start

More information

Linear Regression. In this problem sheet, we consider the problem of linear regression with p predictors and one intercept,

Linear Regression. In this problem sheet, we consider the problem of linear regression with p predictors and one intercept, Linear Regression In this problem sheet, we consider the problem of linear regression with p predictors and one intercept, y = Xβ + ɛ, where y t = (y 1,..., y n ) is the column vector of target values,

More information

1. The OLS Estimator. 1.1 Population model and notation

1. The OLS Estimator. 1.1 Population model and notation 1. The OLS Estimator OLS stands for Ordinary Least Squares. There are 6 assumptions ordinarily made, and the method of fitting a line through data is by least-squares. OLS is a common estimation methodology

More information

Applied Econometrics (QEM)

Applied Econometrics (QEM) Applied Econometrics (QEM) The Simple Linear Regression Model based on Prinicples of Econometrics Jakub Mućk Department of Quantitative Economics Jakub Mućk Applied Econometrics (QEM) Meeting #2 The Simple

More information

Recent Advances in the Field of Trade Theory and Policy Analysis Using Micro-Level Data

Recent Advances in the Field of Trade Theory and Policy Analysis Using Micro-Level Data Recent Advances in the Field of Trade Theory and Policy Analysis Using Micro-Level Data July 2012 Bangkok, Thailand Cosimo Beverelli (World Trade Organization) 1 Content a) Classical regression model b)

More information

Economics 620, Lecture 13: Time Series I

Economics 620, Lecture 13: Time Series I Economics 620, Lecture 13: Time Series I Nicholas M. Kiefer Cornell University Professor N. M. Kiefer (Cornell University) Lecture 13: Time Series I 1 / 19 AUTOCORRELATION Consider y = X + u where y is

More information

STA 302f16 Assignment Five 1

STA 302f16 Assignment Five 1 STA 30f16 Assignment Five 1 Except for Problem??, these problems are preparation for the quiz in tutorial on Thursday October 0th, and are not to be handed in As usual, at times you may be asked to prove

More information

Linear Model Under General Variance Structure: Autocorrelation

Linear Model Under General Variance Structure: Autocorrelation Linear Model Under General Variance Structure: Autocorrelation A Definition of Autocorrelation In this section, we consider another special case of the model Y = X β + e, or y t = x t β + e t, t = 1,..,.

More information

Introductory Econometrics

Introductory Econometrics Based on the textbook by Wooldridge: : A Modern Approach Robert M. Kunst robert.kunst@univie.ac.at University of Vienna and Institute for Advanced Studies Vienna December 11, 2012 Outline Heteroskedasticity

More information

Heteroskedasticity ECONOMETRICS (ECON 360) BEN VAN KAMMEN, PHD

Heteroskedasticity ECONOMETRICS (ECON 360) BEN VAN KAMMEN, PHD Heteroskedasticity ECONOMETRICS (ECON 360) BEN VAN KAMMEN, PHD Introduction For pedagogical reasons, OLS is presented initially under strong simplifying assumptions. One of these is homoskedastic errors,

More information

Chapter 3 Best Linear Unbiased Estimation

Chapter 3 Best Linear Unbiased Estimation Chapter 3 Best Linear Unbiased Estimation C R Henderson 1984 - Guelph In Chapter 2 we discussed linear unbiased estimation of k β, having determined that it is estimable Let the estimate be a y, and if

More information

Asymptotic Theory. L. Magee revised January 21, 2013

Asymptotic Theory. L. Magee revised January 21, 2013 Asymptotic Theory L. Magee revised January 21, 2013 1 Convergence 1.1 Definitions Let a n to refer to a random variable that is a function of n random variables. Convergence in Probability The scalar a

More information

Variable Selection and Model Building

Variable Selection and Model Building LINEAR REGRESSION ANALYSIS MODULE XIII Lecture - 37 Variable Selection and Model Building Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur The complete regression

More information

Lecture 9 SLR in Matrix Form

Lecture 9 SLR in Matrix Form Lecture 9 SLR in Matrix Form STAT 51 Spring 011 Background Reading KNNL: Chapter 5 9-1 Topic Overview Matrix Equations for SLR Don t focus so much on the matrix arithmetic as on the form of the equations.

More information

Economics 620, Lecture 2: Regression Mechanics (Simple Regression)

Economics 620, Lecture 2: Regression Mechanics (Simple Regression) 1 Economics 620, Lecture 2: Regression Mechanics (Simple Regression) Observed variables: y i ; x i i = 1; :::; n Hypothesized (model): Ey i = + x i or y i = + x i + (y i Ey i ) ; renaming we get: y i =

More information

Advanced Econometrics I

Advanced Econometrics I Lecture Notes Autumn 2010 Dr. Getinet Haile, University of Mannheim 1. Introduction Introduction & CLRM, Autumn Term 2010 1 What is econometrics? Econometrics = economic statistics economic theory mathematics

More information

Questions and Answers on Heteroskedasticity, Autocorrelation and Generalized Least Squares

Questions and Answers on Heteroskedasticity, Autocorrelation and Generalized Least Squares Questions and Answers on Heteroskedasticity, Autocorrelation and Generalized Least Squares L Magee Fall, 2008 1 Consider a regression model y = Xβ +ɛ, where it is assumed that E(ɛ X) = 0 and E(ɛɛ X) =

More information

Quick Review on Linear Multiple Regression

Quick Review on Linear Multiple Regression Quick Review on Linear Multiple Regression Mei-Yuan Chen Department of Finance National Chung Hsing University March 6, 2007 Introduction for Conditional Mean Modeling Suppose random variables Y, X 1,

More information

Estimation of the Response Mean. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 27

Estimation of the Response Mean. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 27 Estimation of the Response Mean Copyright c 202 Dan Nettleton (Iowa State University) Statistics 5 / 27 The Gauss-Markov Linear Model y = Xβ + ɛ y is an n random vector of responses. X is an n p matrix

More information

Instrumental Variables, Simultaneous and Systems of Equations

Instrumental Variables, Simultaneous and Systems of Equations Chapter 6 Instrumental Variables, Simultaneous and Systems of Equations 61 Instrumental variables In the linear regression model y i = x iβ + ε i (61) we have been assuming that bf x i and ε i are uncorrelated

More information

LECTURE 18: NONLINEAR MODELS

LECTURE 18: NONLINEAR MODELS LECTURE 18: NONLINEAR MODELS The basic point is that smooth nonlinear models look like linear models locally. Models linear in parameters are no problem even if they are nonlinear in variables. For example:

More information

System Identification, Lecture 4

System Identification, Lecture 4 System Identification, Lecture 4 Kristiaan Pelckmans (IT/UU, 2338) Course code: 1RT880, Report code: 61800 - Spring 2016 F, FRI Uppsala University, Information Technology 13 April 2016 SI-2016 K. Pelckmans

More information

Econometrics - 30C00200

Econometrics - 30C00200 Econometrics - 30C00200 Lecture 11: Heteroskedasticity Antti Saastamoinen VATT Institute for Economic Research Fall 2015 30C00200 Lecture 11: Heteroskedasticity 12.10.2015 Aalto University School of Business

More information

plim W 0 " 1 N = 0 Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 16.

plim W 0  1 N = 0 Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 16. 1 Lecture 16: Estimation of Simultaneous Equations Models Consider y 1 = Y 2 + X 1 + " 1 which is an equation from a system. We can rewrite this at y 1 = Z +" 1 where Z = [Y 2 X 1 ] and = [ 0 0 ] 0. Note

More information

Non-Spherical Errors

Non-Spherical Errors Non-Spherical Errors Krishna Pendakur February 15, 2016 1 Efficient OLS 1. Consider the model Y = Xβ + ε E [X ε = 0 K E [εε = Ω = σ 2 I N. 2. Consider the estimated OLS parameter vector ˆβ OLS = (X X)

More information

Intermediate Econometrics

Intermediate Econometrics Intermediate Econometrics Heteroskedasticity Text: Wooldridge, 8 July 17, 2011 Heteroskedasticity Assumption of homoskedasticity, Var(u i x i1,..., x ik ) = E(u 2 i x i1,..., x ik ) = σ 2. That is, the

More information

Economics 582 Random Effects Estimation

Economics 582 Random Effects Estimation Economics 582 Random Effects Estimation Eric Zivot May 29, 2013 Random Effects Model Hence, the model can be re-written as = x 0 β + + [x ] = 0 (no endogeneity) [ x ] = = + x 0 β + + [x ] = 0 [ x ] = 0

More information

Next is material on matrix rank. Please see the handout

Next is material on matrix rank. Please see the handout B90.330 / C.005 NOTES for Wednesday 0.APR.7 Suppose that the model is β + ε, but ε does not have the desired variance matrix. Say that ε is normal, but Var(ε) σ W. The form of W is W w 0 0 0 0 0 0 w 0

More information

STAT5044: Regression and Anova. Inyoung Kim

STAT5044: Regression and Anova. Inyoung Kim STAT5044: Regression and Anova Inyoung Kim 2 / 51 Outline 1 Matrix Expression 2 Linear and quadratic forms 3 Properties of quadratic form 4 Properties of estimates 5 Distributional properties 3 / 51 Matrix

More information

Restricted Maximum Likelihood in Linear Regression and Linear Mixed-Effects Model

Restricted Maximum Likelihood in Linear Regression and Linear Mixed-Effects Model Restricted Maximum Likelihood in Linear Regression and Linear Mixed-Effects Model Xiuming Zhang zhangxiuming@u.nus.edu A*STAR-NUS Clinical Imaging Research Center October, 015 Summary This report derives

More information

Economics 620, Lecture 14: Lags and Dynamics

Economics 620, Lecture 14: Lags and Dynamics Economics 620, Lecture 14: Lags and Dynamics Nicholas M. Kiefer Cornell University Professor N. M. Kiefer (Cornell University) Lecture 14: Lags and Dynamics 1 / 15 Modern time-series analysis does not

More information

Regression #3: Properties of OLS Estimator

Regression #3: Properties of OLS Estimator Regression #3: Properties of OLS Estimator Econ 671 Purdue University Justin L. Tobias (Purdue) Regression #3 1 / 20 Introduction In this lecture, we establish some desirable properties associated with

More information

Max. Likelihood Estimation. Outline. Econometrics II. Ricardo Mora. Notes. Notes

Max. Likelihood Estimation. Outline. Econometrics II. Ricardo Mora. Notes. Notes Maximum Likelihood Estimation Econometrics II Department of Economics Universidad Carlos III de Madrid Máster Universitario en Desarrollo y Crecimiento Económico Outline 1 3 4 General Approaches to Parameter

More information

STAT 540: Data Analysis and Regression

STAT 540: Data Analysis and Regression STAT 540: Data Analysis and Regression Wen Zhou http://www.stat.colostate.edu/~riczw/ Email: riczw@stat.colostate.edu Department of Statistics Colorado State University Fall 205 W. Zhou (Colorado State

More information

Multiple Linear Regression

Multiple Linear Regression Multiple Linear Regression Asymptotics Asymptotics Multiple Linear Regression: Assumptions Assumption MLR. (Linearity in parameters) Assumption MLR. (Random Sampling from the population) We have a random

More information

Least Squares Estimation-Finite-Sample Properties

Least Squares Estimation-Finite-Sample Properties Least Squares Estimation-Finite-Sample Properties Ping Yu School of Economics and Finance The University of Hong Kong Ping Yu (HKU) Finite-Sample 1 / 29 Terminology and Assumptions 1 Terminology and Assumptions

More information

ECONOMETRIC THEORY. MODULE XVII Lecture - 43 Simultaneous Equations Models

ECONOMETRIC THEORY. MODULE XVII Lecture - 43 Simultaneous Equations Models ECONOMETRIC THEORY MODULE XVII Lecture - 43 Simultaneous Equations Models Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur 2 Estimation of parameters To estimate

More information

Multivariate Regression

Multivariate Regression Multivariate Regression The so-called supervised learning problem is the following: we want to approximate the random variable Y with an appropriate function of the random variables X 1,..., X p with the

More information

ML and REML Variance Component Estimation. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 58

ML and REML Variance Component Estimation. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 58 ML and REML Variance Component Estimation Copyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 58 Suppose y = Xβ + ε, where ε N(0, Σ) for some positive definite, symmetric matrix Σ.

More information

2 Statistical Estimation: Basic Concepts

2 Statistical Estimation: Basic Concepts Technion Israel Institute of Technology, Department of Electrical Engineering Estimation and Identification in Dynamical Systems (048825) Lecture Notes, Fall 2009, Prof. N. Shimkin 2 Statistical Estimation:

More information

3. For a given dataset and linear model, what do you think is true about least squares estimates? Is Ŷ always unique? Yes. Is ˆβ always unique? No.

3. For a given dataset and linear model, what do you think is true about least squares estimates? Is Ŷ always unique? Yes. Is ˆβ always unique? No. 7. LEAST SQUARES ESTIMATION 1 EXERCISE: Least-Squares Estimation and Uniqueness of Estimates 1. For n real numbers a 1,...,a n, what value of a minimizes the sum of squared distances from a to each of

More information

Spatial Regression. 3. Review - OLS and 2SLS. Luc Anselin. Copyright 2017 by Luc Anselin, All Rights Reserved

Spatial Regression. 3. Review - OLS and 2SLS. Luc Anselin.   Copyright 2017 by Luc Anselin, All Rights Reserved Spatial Regression 3. Review - OLS and 2SLS Luc Anselin http://spatial.uchicago.edu OLS estimation (recap) non-spatial regression diagnostics endogeneity - IV and 2SLS OLS Estimation (recap) Linear Regression

More information

Week 11 Heteroskedasticity and Autocorrelation

Week 11 Heteroskedasticity and Autocorrelation Week 11 Heteroskedasticity and Autocorrelation İnsan TUNALI Econ 511 Econometrics I Koç University 27 November 2018 Lecture outline 1. OLS and assumptions on V(ε) 2. Violations of V(ε) σ 2 I: 1. Heteroskedasticity

More information

Economics 620, Lecture 18: Nonlinear Models

Economics 620, Lecture 18: Nonlinear Models Economics 620, Lecture 18: Nonlinear Models Nicholas M. Kiefer Cornell University Professor N. M. Kiefer (Cornell University) Lecture 18: Nonlinear Models 1 / 18 The basic point is that smooth nonlinear

More information

EC3062 ECONOMETRICS. THE MULTIPLE REGRESSION MODEL Consider T realisations of the regression equation. (1) y = β 0 + β 1 x β k x k + ε,

EC3062 ECONOMETRICS. THE MULTIPLE REGRESSION MODEL Consider T realisations of the regression equation. (1) y = β 0 + β 1 x β k x k + ε, THE MULTIPLE REGRESSION MODEL Consider T realisations of the regression equation (1) y = β 0 + β 1 x 1 + + β k x k + ε, which can be written in the following form: (2) y 1 y 2.. y T = 1 x 11... x 1k 1

More information

Economics 620, Lecture 20: Generalized Method of Moment (GMM)

Economics 620, Lecture 20: Generalized Method of Moment (GMM) Economics 620, Lecture 20: Generalized Method of Moment (GMM) Nicholas M. Kiefer Cornell University Professor N. M. Kiefer (Cornell University) Lecture 20: GMM 1 / 16 Key: Set sample moments equal to theoretical

More information

Properties of the least squares estimates

Properties of the least squares estimates Properties of the least squares estimates 2019-01-18 Warmup Let a and b be scalar constants, and X be a scalar random variable. Fill in the blanks E ax + b) = Var ax + b) = Goal Recall that the least squares

More information

The Linear Regression Model

The Linear Regression Model The Linear Regression Model Carlo Favero Favero () The Linear Regression Model 1 / 67 OLS To illustrate how estimation can be performed to derive conditional expectations, consider the following general

More information

Financial Econometrics

Financial Econometrics Material : solution Class : Teacher(s) : zacharias psaradakis, marian vavra Example 1.1: Consider the linear regression model y Xβ + u, (1) where y is a (n 1) vector of observations on the dependent variable,

More information

Generalized Method of Moments (GMM) Estimation

Generalized Method of Moments (GMM) Estimation Econometrics 2 Fall 2004 Generalized Method of Moments (GMM) Estimation Heino Bohn Nielsen of29 Outline of the Lecture () Introduction. (2) Moment conditions and methods of moments (MM) estimation. Ordinary

More information

Chapter 5 Matrix Approach to Simple Linear Regression

Chapter 5 Matrix Approach to Simple Linear Regression STAT 525 SPRING 2018 Chapter 5 Matrix Approach to Simple Linear Regression Professor Min Zhang Matrix Collection of elements arranged in rows and columns Elements will be numbers or symbols For example:

More information

The Gauss-Markov Model. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 61

The Gauss-Markov Model. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 61 The Gauss-Markov Model Copyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 61 Recall that Cov(u, v) = E((u E(u))(v E(v))) = E(uv) E(u)E(v) Var(u) = Cov(u, u) = E(u E(u)) 2 = E(u 2

More information