Happy the man who has been able to discern the cause of things

Size: px
Start display at page:

Download "Happy the man who has been able to discern the cause of things"

Transcription

1 Happy the man who has been able to discern the cause of things Theories Models Virgil, Georgica A first rate theory predicts A second rate theory forbids A third rate theory explains after the facts Alexander I. Kitaigorodskii

2 Modeling the Atomic Nucleus Theoretical bag of tricks

3 The Nuclear Many-Body Problem H ˆ = T ˆ + V ˆ ˆ T = A 2 p ˆ " i, V ˆ = 2m i i=1 one-body H ˆ " = E" " V ˆ 2b (i, j) + V ˆ 3b (i, j,k) i<i two-body " i<i<k three-body Kinetic energy Potential energy ( ) " = " r 1, r 2,K, r A ;s 1,s 2,K,s A ;t 1,t 2,K,t A 3A nucleon coordinates in r-space nucleon spins: ±1/2 nucleon isospins (p or n): ±1/2 Eigenstate of angular momentum, parity, and ~isospin # A& 2 A A! N!Z! Bottom line: coupled integro-differential equations in 3A dimensions

4 The nuclear many-body problem

5 Weinberg s Laws of Progress in Theoretical Physics From: Asymptotic Realms of Physics (ed. by Guth, Huang, Jaffe, MIT Press, 1983) First Law: The conservation of Information (You will get nowhere by churning equations) Second Law: Do not trust arguments based on the lowest order of perturbation theory Third Law: You may use any degrees of freedom you like to describe a physical system, but if you use the wrong ones, you ll be sorry!

6 LQCD quark models ab initio CI DFT collective models scale separation Resolution Effective Field Theory How are nuclei made? Origin of elements, isotopes Hot and dense quark-gluon matter Hadron structure Hadron-Nuclear interface Nuclear structure Nuclear reactions New standard model Applications of nuclear science To explain, predict, use

7 Interfaces provide crucial clues number of nuclei < number of processors!

8 Theory of nuclei is demanding rooted in QCD insights from EFT many-body interactions in-medium renormalization microscopic functionals low-energy coupling constants optimized to data crucial insights from exotic nuclei Many-body dynamics Input Forces, operators Open channels 11 Li 100 Sn 240 Pu 298 U many-body techniques o direct ab initio schemes o symmetry breaking and restoration high-performance computing interdisciplinary connections nuclear structure impacted by couplings to reaction and decay channels clustering, alpha decay, and fission still remain major challenges for theory unified picture of structure and reactions

9 Ab initio theory for light nuclei and nuclear matter Ab initio: QMC, NCSM, CCM, (nuclei, neutron droplets, nuclear matter) Ab initio input NN+NNN interac+ons Renormaliza+on Many body method Observables Direct comparison with experiment Pseudo-data to inform theory Input: Excellent forces based on the phase shift analysis and few-body data EFT based nonlocal chiral NN and NNN potentials SRG-softened potentials based on bare NN+NNN interactions

10 Few-nucleon systems A=2: many years ago!! 3 H: 1984 (1% accuracy)!!! 3 He: 1987!!! 4 He: 1987!! 5 He: 1994 (n-α resonance)!!! A=6,7,..12: !

11 Green s Function Monte Carlo (imaginary-time method) ψ 0 ψ τ = lime τ ( ) = e ˆ ( H ˆ E 0 )τ ( H E 0 )τ ψ V ψ V ψ( 0) = ψ V, ψ( ) = ψ 0 τ = nδτ ψ τ ( )* ( ) = e ˆ trial wave function ( H E 0 )Δτ Quantum Monte Carlo (GFMC) 12 C No-Core Shell Model 14 F, 14 C Faddeev-Yakubovsky Lattice EFT 12 C (Hoyle) Coupled-Cluster Techniques 17 F, 56 Ni Fermionic Molecular Dynamics +,- n ψv

12 Nucleon-Nucleon Interaction NN, NNN, NNNN,, forces GFMC calculations tell us that: V π / V ~ 70 80% V π ~ 15MeV/pair V R V 3 ~ 5MeV/pair ~ 1MeV/three short-range three-body T ~ 15MeV/nucleon V C ~ 0.66MeV/pair of protons

13 GFMC: S. Pieper, ANL 1-2% calculations of A = 6 12 nuclear energies are possible excited states with the same quantum numbers computed

14 dinal form factor F(q) C: ground state and Hoyle state exp ρ 1b ρ 1b+2b state-of-the-art computing Wiringa et al. Phys. Rev. C 89, (2014); A. Lovato et al., Phys. Rev. Lett. 112, (2014) ρ ch (r) r (fm) q (fm -1 ) E [MeV] f pt (k) C(G.S.)! 12 C(0 + 2 ) f tr FORM FACTOR 12 C M(E0) AV18+IL7 one-way orthog. - f pt (k) - 9 May k (fm -1 ) The ADLB (Asynchronous Ψ T O + P2 6 Dynamic Load- GFMC O + G2 GFMC 18 + P2 5 make calculations GFMC O + P2of 12 C with a complete Hamiltonian Experiment (two- and three-nucleon 4 of the Argonne BGP. 3 The computed 6 Z f tr (k) / k 2 (fm 2 ) 0 12 C M(E0) AV18+IL7 one-wa binding energy is 93.5(6) MeV compared 2 to the experimental value of MeV and the point rms radius 1 is 2.35 fm vs Pieper et al., 2.33 QMC from experiment Data from M. Chernykh et al., Phys. Rev. Lett. 105, (2010) (1) Right panel [f tr (k)/k 2 ] proportional to M(E0) at k = (3) (3) Large errors at small k due to large Monte Carlo errors Can get better value at k =0by computing R drr 2 r 2 tr (r) Exp 88(2) Balancing) version of GFMC was used to potential AV18+IL7) on 32,000 processors Results with best wave function in good agreement with data 0 + Epelbaum et al., Phys. Rev. Lett. 109, 92(3) (2012). Lattice EFT Th Lahde et al., Phys. Lett. B 732, 110 (2014) (2) k 2 (fm

15 S2n (MeV) The frontier: neutron-rich calcium isotopes probing nuclear forces and shell structure in a neutron-rich medium 52 Ca mass TITAN@TRIUMF Gallant et al, PRL 109, (2012) AME2003 TITAN K Ca Sc Neutron Number N 54 Ca 2 + S 2n (MeV) Ca: 20 protons, 34 neutrons Experiment ISOLTRAP NN+3N (MBPT) CC (Hagen et al.) KB3G GXPF1A ISOLTRAP@CERN Wienholtz et al, Nature (2013) 54 Ca mass Neutron number N CC theory Hagen et al., PRL109, (2012) RIBF@RIKEN Steppenbeck et al Nature (2013)

16 Anomalous Long Lifetime of 14 C Determine the microscopic origin of the suppressed β-decay rate: 3N force 0.29 Maris et al., PRL 106, (2011) GT matrix element N3LO NN only N3LO + 3NF (c D = -0.2) N3LO + 3NF (c D = -2.0) s p sd pf sdg pfh sdgi pfhj sdgik pfhjl configuration space Dimension of matrix solved for 8 lowest states ~ 10 9 Solution took ~ 6 hours on 215,000 cores on Cray XT5 Jaguar at ORNL

17 Anthropic Principle h9p://en.wikipedia.org/wiki/anthropic_principle The anthropic principle (from Greek anthropos, meaning "human") is the philosophical considera+on that observa+ons of the physical Universe must be compa+ble with the conscious life that observes it. Some proponents of the anthropic principle reason that it explains why the universe has the age and the fundamental physical constants necessary to accommodate conscious life. Anthropic considera+ons in nuclear physics: U. Meissner. h9p://arxiv.org/abs/ The nucleosynthesis of carbon- 12 and Hoyle state Non- anthropic scenario Anthropic scenario (fine- tuned Universe)

18 Dean Lee "Viability of Carbon- Based Life as a Func+on of the Light Quark Mass", Phys. Rev. Le (2013) "Dependence of the triple- alpha process on the fundamental constants of nature", Eur. Phys. J. A 49 (2013) 82 "Varying the light quark mass: impact on the nuclear force and Big Bang nucleosynthesis", Phys. Rev. D 87 (2013)

19 Ab ini+o calcula+on of the neutron- proton mass difference Science 347, 1452 (2015) The result of the neutron- proton mass splifng as a func+on of quark- mass difference and electromagne+c coupling. In combina+on with astrophysical and cosmological arguments, this figure can be used to determine how different values of these parameters would change the content of the universe. This in turn provides an indica+on of the extent to which these constants of nature must be fine- tuned to yield a universe that resembles ours.

20 Fusion of Light Nuclei Computational nuclear physics enables us to reach into regimes where experiments and analytic theory are not possible, such as the cores of fission reactors or hot and dense evolving environments such as those found in inertial confinement fusion environment. Ab ini+o theory reduces uncertainty due to conflic+ng data NIF The n- 3 H elastic cross section for 14 MeV neutrons, important for NIF, was not known precisely enough. Delivered evaluated data with required 5% uncertainty and successfully compared to measurements using an Inertial Confinement Facility First measurements of the differential cross sections for the elastic n- 2 H and n- 3 H scattering at 14.1 MeV using an Inertial Confinement Facility, by J.A. Frenje et al., Phys. Rev. Lett. 107, (2011)

21 Configuration interaction techniques light and heavy nuclei detailed spectroscopy quantum correlations (lab-system description) Input: configura+on space + forces NN+NNN interac+ons Matrix elements fi9ed to experiment Renormaliza+on Method Diagonaliza+on Trunca+on+diagonaliza+on Monte Carlo Observables Direct comparison with experiment Pseudo-data to inform reaction theory and DFT

22 Average one-body Hamiltonian 120 Sn Unbound! states! Coulomb! barrier! Discrete! (bound)! states! ε F ε F 0! Surface! region! n p A i=1 Flat! bottom! H ˆ 0 = h i, h i = 2 2M 2 i +V i h i φ k ( i) = ε k φ k i ( )

23 ˆ H = t i i Nuclear shell model v ij = (t i +V i ) i, j i i j + $ & & % ' V ) i ) i ( 1 2 v ij i, j i j One-body Hamiltonian Construct basis states with good (J z, T z ) or (J,T) Compute the Hamiltonian matrix Diagonalize Hamiltonian matrix for lowest eigenstates Number of states increases dramatically with particle number Full fp shell for 60 Zn : J z states 5,053,594 J = 0,T = 0 states 81,804, 784 J = 6,T =1 states Can we get around this problem? Effective interactions in truncated spaces (P-included, finite; Q-excluded, infinite) Residual interaction (G-matrix) depends on the configuration space. Effective charges Breaks down around particle drip lines Residual interactioni P + Q =1

24 Microscopic valence-space Shell Model Hamiltonian Energy (MeV) Coupled Cluster Effective Interaction (valence cluster expansion) CCEI Exp. 22 O USD G.R. Jansen et al., Phys. Rev. Lett. 113, (2014) Energy (MeV) In-medium SRG Effective Interaction O MBPT IM-SRG NN+3N-ind IM-SRG NN+3N-full 4 + (4 + ) (2 + ) (0 + ) Expt. S.K. Bogner et al., Phys. Rev. Lett. 113, (2014)

25 Diagonalization Shell Model (medium-mass nuclei reached;dimensions 10 9!) Honma, Otsuka et al., PRC69, (2004) Martinez-Pinedo ENAM 04

26 26

27 Nuclear Density Functional Theory and Extensions NN+NNN interac+ons Input Density dependent interac+ons Density Matrix Expansion Technology to calculate observables Global properties Spectroscopy DFT Solvers Functional form Functional optimization Estimation of theoretical errors Op+miza+on Energy Density Func+onal Fit- observables experiment pseudo data DFT varia+onal principle HF, HFB (self- consistency) Symmetry breaking Symmetry restora+on Mul+- reference DFT (GCM) two fermi liquids Time dependent DFT (TDHFB) self-bound superfluid (ph and pp channels) self-consistent mean-fields broken-symmetry generalized product states Observables Direct comparison with experiment Pseudo- data for reac+ons and astrophysics

28 Mean-Field Theory Density Functional Theory Degrees of freedom: nucleonic densities Nuclear DFT two fermi liquids self-bound superfluid mean-field one-body densities zero-range local densities finite-range gradient terms particle-hole and pairing channels Has been extremely successful. A broken-symmetry generalized product state does surprisingly good job for nuclei.

29 Nuclear Energy Density Functional isoscalar (T=0) density isovector (T=1) density ( ρ 0 = ρ n + ρ p ) ( ρ 1 = ρ n ρ p ) +isoscalar and isovector densities: spin, current, spin-current tensor, kinetic, and kinetic-spin + pairing densities E = H(r)d 3 r p-h density p-p density (pairing functional) Expansion in densities and their derivatives Constrained by microscopic theory: ab-initio functionals provide quasi-data! Not all terms are equally important. Usually ~12 terms considered Some terms probe specific experimental data Pairing functional poorly determined. Usually 1-2 terms active. Becomes very simple in limiting cases (e.g., unitary limit) Can be extended into multi-reference DFT (GCM) and projected DFT

30 Examples: Nuclear Density Functional Theory Traditional (limited) functionals provide quantitative description BE differences Mass table δm=0.581 MeV Goriely, Chamel, Pearson: HFB-17 Phys. Rev. Lett. 102, (2009) Cwiok et al., Nature, 433, 705 (2005)

31 Description of observables and model-based extrapolation Systematic errors (due to incorrect assumptions/poor modeling) Statistical errors (optimization and numerical errors) S 2n (MeV) S 2p (MeV) proton number FRDM HFB-21 SLy4 UNEDF1 UNEDF0 SV-min exp 4 N= drip line Er experiment neutron number Erler et al., Nature 486, 509 (2012) S 2n (MeV) 2 0 Er neutron number

32 Quantified Nuclear Landscape proton number Z=28 Z=20 stable nuclei known nuclei drip line S 2n = 2 MeV SV-min Z= ~3,000 Z=82 N=82 two-proton drip line N= N=28 N=50 Nuclear Landscape 2012 N=20 neutron number 0 current proton number N=184 neutron number two-neutron drip line How many protons and neutrons can be bound in a nucleus? Erler et al. Nature 486, 509 (2012) from B. Sherrill Literature: 5,000-12,000 Skyrme- DFT: 6,900±500 syst N=258 Asymptotic freedom? FRIB DFT

33 From nuclei to neutron stars (a multiscale problem) Gandolfi et al. PRC85, (2012) J. Erler et al., PRC 87, (2013) M (M solar ) NN NN+NNN 1.97(4) 0.15 fm fm R (km) _ R skin ( 208 Pb)/R skin SV-min C AB =0.82 _ R(1.4 M.)/R The covariance ellipsoid for the neutron skin R skin in 208 Pb and the radius of a 1.4M neutron star. The mean values are: R(1.4M )=12 km and R skin = 0.17 fm. Major uncertainty: density dependence of the symmetry energy. Depends on T=3/2 three-nucleon forces

34 ISNET: Enhancing the interac+on between nuclear experiment and theory through informa+on and sta+s+cs JPG Focus Issue: h9p://iopscience.iop.org/ /page/isnet Around 35 papers (including nuclear structure, reac+ons, nuclear astrophysics, medium energy physics, sta+s+cal methods and fission ) Remember that all models are wrong; the prac+cal ques+on is how wrong do they have to be to not be useful (E.P. Box) Error es+mates of theore+cal models: a guide J. Phys. G (2014)

35 Informa+on Content of New Measurements J. McDonnell et al. Phys. Rev. Le9. 114, (2015) Developed a Bayesian framework to quantify and propagate statistical uncertainties of EDFs. Showed that new precise mass measurements do not impose sufficient constraints to lead to significant changes in the current DFT models (models are not precise enough) Bivariate marginal estimates of the posterior distribution for the 12- dimensional DFT UNEDF 1 parameterization. We can quantify the statement: New data will provide stringent constraints on theory

Progress in ab-initio calculations. The nuclear A-body problem

Progress in ab-initio calculations. The nuclear A-body problem 60 50 Progress in ab-initio calculations The nuclear A-body problem A 40 30 20 10 G. Hagen et al., Nature Physics 12, 186 (2016) 0 1980 1990 2000 2010 2020 Year In the early decades, the progress was approximately

More information

ab-initio alpha-alpha scattering

ab-initio alpha-alpha scattering ab-initio alpha-alpha scattering Elhatisari et al., Nature 528, 111 (215) http://www.nature.com/nature/journal/v528/n758/full/nature1667.html http://www.nature.com/nature/journal/v528/n758/abs/52842a.html

More information

Modeling the Atomic Nucleus. Theoretical bag of tricks

Modeling the Atomic Nucleus. Theoretical bag of tricks Modeling the Atomic Nucleus Theoretical bag of tricks The nuclear many-body problem The Nuclear Many-Body Problem H ˆ = T ˆ + V ˆ ˆ T = A 2 p ˆ " i, V ˆ = 2m i i=1 one-body H ˆ " = E" " V ˆ 2b (i, j) +

More information

Three-nucleon forces and shell structure of neutron-rich Ca isotopes

Three-nucleon forces and shell structure of neutron-rich Ca isotopes Three-nucleon forces and shell structure of neutron-rich Ca isotopes Javier Menéndez Institut für Kernphysik (TU Darmstadt) and ExtreMe Matter Institute (EMMI) NUSTAR Week 3, Helsinki, 9 October 13 Outline

More information

Quantum Monte Carlo calculations of medium mass nuclei

Quantum Monte Carlo calculations of medium mass nuclei Quantum Monte Carlo calculations of medium mass nuclei Diego Lonardoni FRIB Theory Fellow In collaboration with: J. Carlson, LANL S. Gandolfi, LANL X. Wang, Huzhou University, China A. Lovato, ANL & UniTN

More information

Nuclear Energy Density Functional

Nuclear Energy Density Functional UNEDF Project: Towards a Universal Nuclear Energy Density Functional Atomic nucleus Piotr Magierski Warsaw University of Technology/University of Washington Nuclear Landscape 126 superheavy nuclei protons

More information

Shell evolution and pairing in calcium isotopes with two- and three-body forces

Shell evolution and pairing in calcium isotopes with two- and three-body forces Shell evolution and pairing in calcium isotopes with two- and three-body forces Javier Menéndez Institut für Kernphysik, TU Darmstadt ExtreMe Matter Institute (EMMI) with Jason D. Holt, Achim Schwenk and

More information

Coupled-cluster theory for medium-mass nuclei

Coupled-cluster theory for medium-mass nuclei Coupled-cluster theory for medium-mass nuclei Thomas Papenbrock and G. Hagen (ORNL) D. J. Dean (ORNL) M. Hjorth-Jensen (Oslo) A. Nogga (Juelich) A. Schwenk (TRIUMF) P. Piecuch (MSU) M. Wloch (MSU) Seattle,

More information

Microscopically Based Energy Functionals. S.K. Bogner (NSCL/MSU)

Microscopically Based Energy Functionals. S.K. Bogner (NSCL/MSU) Microscopically Based Energy Functionals S.K. Bogner (NSCL/MSU) Dream Scenario: From QCD to Nuclei 2 SciDAC 2 Project Building a Universal Nuclear Energy Density Functional See http://undef.org for details

More information

Coupled-cluster theory for nuclei

Coupled-cluster theory for nuclei Coupled-cluster theory for nuclei Thomas Papenbrock and G. Hagen D. J. Dean M. Hjorth-Jensen B. Velamur Asokan INT workshop Weakly-bound systems in atomic and nuclear physics Seattle, March 8-12, 2010

More information

Nuclear structure I: Introduction and nuclear interactions

Nuclear structure I: Introduction and nuclear interactions Nuclear structure I: Introduction and nuclear interactions Stefano Gandolfi Los Alamos National Laboratory (LANL) National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July

More information

Renormalization group methods in nuclear few- and many-body problems

Renormalization group methods in nuclear few- and many-body problems Renormalization group methods in nuclear few- and many-body problems Lecture 3 S.K. Bogner (NSCL/MSU) 2011 National Nuclear Physics Summer School University of North Carolina at Chapel Hill Lecture 2 outline

More information

Evolution Of Shell Structure, Shapes & Collective Modes. Dario Vretenar

Evolution Of Shell Structure, Shapes & Collective Modes. Dario Vretenar Evolution Of Shell Structure, Shapes & Collective Modes Dario Vretenar vretenar@phy.hr 1. Evolution of shell structure with N and Z A. Modification of the effective single-nucleon potential Relativistic

More information

Theory of neutron-rich nuclei and nuclear radii Witold Nazarewicz (with Paul-Gerhard Reinhard) PREX Workshop, JLab, August 17-19, 2008

Theory of neutron-rich nuclei and nuclear radii Witold Nazarewicz (with Paul-Gerhard Reinhard) PREX Workshop, JLab, August 17-19, 2008 Theory of neutron-rich nuclei and nuclear radii Witold Nazarewicz (with Paul-Gerhard Reinhard) PREX Workshop, JLab, August 17-19, 2008 Introduction to neutron-rich nuclei Radii, skins, and halos From finite

More information

Current status and challenges of ab-initio computations of nuclei

Current status and challenges of ab-initio computations of nuclei Current status and challenges of ab-initio computations of nuclei Gaute Hagen Oak Ridge National Laboratory INT workshop on Nuclear Physics from Lattice QCD INT, May 5th, 2016 Computing real nuclei from

More information

Part III: The Nuclear Many-Body Problem

Part III: The Nuclear Many-Body Problem Part III: The Nuclear Many-Body Problem To understand the properties of complex nuclei from first principles Microscopic Valence- Space Interactions Model spaces Many-body perturbation theory (MBPT) Calculating

More information

From few-body to many-body systems

From few-body to many-body systems From few-body to many-body systems Nasser Kalantar-Nayestanaki, KVI-CART, University of Groningen Few-Body Physics: Advances and Prospects in Theory and Experiment 614. WE-Heraeus-Seminar, Bad Honnef April

More information

Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University!

Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University! Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University! Overview! Introduction! Basic ideas of EFT! Basic Examples of EFT! Algorithm of EFT! Review NN scattering! NN scattering

More information

Nuclear structure III: Nuclear and neutron matter. National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July 18-29, 2016

Nuclear structure III: Nuclear and neutron matter. National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July 18-29, 2016 Nuclear structure III: Nuclear and neutron matter Stefano Gandolfi Los Alamos National Laboratory (LANL) National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July 18-29, 2016

More information

Ab Initio Theory for All Medium-Mass Nuclei

Ab Initio Theory for All Medium-Mass Nuclei Canada s national laboratory for particle and nuclear physics and accelerator-based science Ab Initio Theory for All Medium-Mass Nuclei Jason D. Holt INPC September 12, 2016 Collaborators S. R. Stroberg

More information

Three-nucleon forces and neutron-rich nuclei

Three-nucleon forces and neutron-rich nuclei Three-nucleon forces and neutron-rich nuclei Achim Schwenk Facets of Strong Interaction Physics Hirschegg 40 + Bengt 60, Jan. 18, 2012 Happy Birthday Bengt! Outline Understanding three-nucleon forces Three-body

More information

Chiral effective field theory on the lattice: Ab initio calculations of nuclei

Chiral effective field theory on the lattice: Ab initio calculations of nuclei Chiral effective field theory on the lattice: Ab initio calculations of nuclei Nuclear Lattice EFT Collaboration Evgeny Epelbaum (Bochum) Hermann Krebs (Bochum) Timo Lähde (Jülich) Dean Lee (NC State)

More information

Three-Nucleon Forces and Masses of Neutron-Rich Nuclei Jason D. Holt

Three-Nucleon Forces and Masses of Neutron-Rich Nuclei Jason D. Holt Three-Nucleon Forces and Masses of Neutron-Rich Nuclei Jason D. Holt Drip Lines and Magic Numbers: The Evolving Nuclear Landscape 3N forces important in light nuclei, nuclear matter What are the limits

More information

New Frontiers in Nuclear Structure Theory

New Frontiers in Nuclear Structure Theory New Frontiers in Nuclear Structure Theory From Realistic Interactions to the Nuclear Chart Robert Roth Institut für Kernphysik Technical University Darmstadt Overview Motivation Nucleon-Nucleon Interactions

More information

Computing Atomic Nuclei Witold Nazarewicz (UTK/ORNL) Introduction Territory, Principles Progress report Computing UNEDF Perspectives

Computing Atomic Nuclei Witold Nazarewicz (UTK/ORNL) Introduction Territory, Principles Progress report Computing UNEDF Perspectives Computing Atomic Nuclei Witold Nazarewicz (UTK/ORNL) National Nuclear Physics Summer School, June 29, 2009 Introduction Territory, Principles Progress report Computing UNEDF Perspectives 1 Introduction

More information

The Nuclear Many-Body Problem

The Nuclear Many-Body Problem The Nuclear Many-Body Problem relativistic heavy ions vacuum electron scattering quarks gluons radioactive beams heavy few nuclei body quark-gluon soup QCD nucleon QCD few body systems many body systems

More information

The Nuclear Many-Body Problem. Lecture 2

The Nuclear Many-Body Problem. Lecture 2 The Nuclear Many-Body Problem Lecture 2 How do we describe nuclei? Shell structure in nuclei and the phenomenological shell model approach to nuclear structure. Ab-initio approach to nuclear structure.

More information

Quantum Monte Carlo calculations with chiral Effective Field Theory Interactions

Quantum Monte Carlo calculations with chiral Effective Field Theory Interactions Quantum Monte Carlo calculations with chiral Effective Field Theory Interactions Alexandros Gezerlis East Lansing, MI 3rd International Symposium on Nuclear Symmetry Energy July 25, 2013 Motivation for

More information

Deliverables, Highlights, and Reports. status and plans news and one-pagers annual and exit reports points of emphasis

Deliverables, Highlights, and Reports. status and plans news and one-pagers annual and exit reports points of emphasis Deliverables, Highlights, and Reports status and plans news and one-pagers annual and exit reports points of emphasis Year-5 Deliverables (from Year-4 annual report summary) Ab-initio Deliverables (Monday)

More information

AFDMC Method for Nuclear Physics and Nuclear Astrophysics

AFDMC Method for Nuclear Physics and Nuclear Astrophysics AFDMC Method for Nuclear Physics and Nuclear Astrophysics Thanks to INFN and to F. Pederiva (Trento) Outline Motivations: NN scattering data few body theory. Few-body many body experiments/observations?

More information

The EOS of neutron matter, and the effect of Λ hyperons to neutron star structure

The EOS of neutron matter, and the effect of Λ hyperons to neutron star structure The EOS of neutron matter, and the effect of Λ hyperons to neutron star structure Stefano Gandolfi Los Alamos National Laboratory (LANL) Nuclear Structure and Reactions: Weak, Strange and Exotic International

More information

Nuclear structure Anatoli Afanasjev Mississippi State University

Nuclear structure Anatoli Afanasjev Mississippi State University Nuclear structure Anatoli Afanasjev Mississippi State University 1. Nuclear theory selection of starting point 2. What can be done exactly (ab-initio calculations) and why we cannot do that systematically?

More information

Alex Gezerlis. New Ideas in Constraining Nuclear Forces ECT*, Trento, Italy June 5, 2018

Alex Gezerlis. New Ideas in Constraining Nuclear Forces ECT*, Trento, Italy June 5, 2018 Quantum Monte Carlo interactions with From microscopic to effective Chiral Effective Field Theory Interactions using Quantum Monte Carlo Alex Gezerlis New Ideas in Constraining Nuclear Forces ECT*, Trento,

More information

The oxygen anomaly F O

The oxygen anomaly F O The oxygen anomaly O F The oxygen anomaly - not reproduced without 3N forces O F without 3N forces, NN interactions too attractive many-body theory based on two-nucleon forces: drip-line incorrect at 28

More information

Ultracold atoms and neutron-rich matter in nuclei and astrophysics

Ultracold atoms and neutron-rich matter in nuclei and astrophysics Ultracold atoms and neutron-rich matter in nuclei and astrophysics Achim Schwenk NORDITA program Pushing the boundaries with cold atoms Stockholm, Jan. 23, 2013 Outline Advances in nuclear forces 3N forces

More information

Quantum Monte Carlo calculations of neutron and nuclear matter

Quantum Monte Carlo calculations of neutron and nuclear matter Quantum Monte Carlo calculations of neutron and nuclear matter Stefano Gandolfi Los Alamos National Laboratory (LANL) Advances and perspectives in computational nuclear physics, Hilton Waikoloa Village,

More information

Nuclear forces and their impact on neutron-rich nuclei and neutron-rich matter

Nuclear forces and their impact on neutron-rich nuclei and neutron-rich matter arxiv:158.6893v1 [nucl-th] 27 Aug 215 xxxxxx 215. :1 28 Copyright c 215 by Annual Reviews. All rights reserved Nuclear forces and their impact on neutron-rich nuclei and neutron-rich matter K. Hebeler,

More information

FROM QCD TO NUCLEI: ASPECTS OF NUCLEAR THEORY IN FRANCE

FROM QCD TO NUCLEI: ASPECTS OF NUCLEAR THEORY IN FRANCE FROM QCD TO NUCLEI: ASPECTS OF NUCLEAR THEORY IN FRANCE Ubirajara van Kolck Institut de Physique Nucléaire 1 Outline Hadronic theory in France Nuclear forces from QCD Low-energy nuclear theory in France

More information

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 1

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 1 2358-19 Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation 6-17 August 2012 Introduction to Nuclear Physics - 1 P. Van Isacker GANIL, Grand Accelerateur National d'ions Lourds

More information

Extreme Computing Trilogy: Nuclear Physics. Martin J. Savage University of Washington August 2012, Lattice Summer School

Extreme Computing Trilogy: Nuclear Physics. Martin J. Savage University of Washington August 2012, Lattice Summer School Extreme Computing Trilogy: Nuclear Physics Martin J. Savage University of Washington August 2012, Lattice Summer School Nuclear Physics Research Unraveling the Origin and Nature of the Visible Matter Nuclear

More information

Quantum Monte Carlo with

Quantum Monte Carlo with Quantum Monte Carlo with QuantumField Monte Carlo Interactions with Chiral Effective Theory Chiral Effective Field Theory Interactions From matter to nuclei Alexandros Gezerlis ECT*-EMMI Workshop Neutron-Rich

More information

Hybrid Ab Initio Methods. Robert Roth

Hybrid Ab Initio Methods. Robert Roth Hybrid Ab Initio Methods Robert Roth Ab Initio Methods No-Core Shell Model In-Medium Similarity Renormalization Group solution of matrix eigenvalue problem in truncated many-body model space flexibility:

More information

Neutron-rich matter and neutrino-matter interactions based on chiral effective field theory

Neutron-rich matter and neutrino-matter interactions based on chiral effective field theory Neutron-rich matter and neutrino-matter interactions based on chiral effective field theory Achim Schwenk Astrophysical Transients: Multi-Messenger Probes of Nuclear Physics INT, July 29, 2011 Outline

More information

Frontiers in Ab Initio Nuclear Structure Theory. Robert Roth

Frontiers in Ab Initio Nuclear Structure Theory. Robert Roth Frontiers in Ab Initio Nuclear Structure Theory Robert Roth New Era of Nuclear Structure Theory QCD at low energies improved understanding through effective field theories & lattice simulations New Era

More information

The Nuclear Many Body Problem Lecture 3

The Nuclear Many Body Problem Lecture 3 The Nuclear Many Body Problem Lecture 3 Shell structure in nuclei and the phenomenological shell model approach to nuclear structure Ab initio approach to nuclear structure. Green's function Monte Carlo

More information

Ab initio rotational bands in medium and heavy nuclei

Ab initio rotational bands in medium and heavy nuclei Ab initio rotational bands in medium and heavy nuclei Calvin W. Johnson This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under

More information

Nuclear charge and neutron radii and nuclear matter: correlation analysis

Nuclear charge and neutron radii and nuclear matter: correlation analysis Nuclear charge and neutron radii and nuclear matter: correlation analysis Witold Nazarewicz (FRIB/MSU) INT Program INT-16-2a: Bayesian Methods in Nuclear Physics June 13 - July 8, 2016 Perspective Correlation

More information

Dense Matter and Neutrinos. J. Carlson - LANL

Dense Matter and Neutrinos. J. Carlson - LANL Dense Matter and Neutrinos J. Carlson - LANL Neutron Stars and QCD phase diagram Nuclear Interactions Quantum Monte Carlo Low-Density Equation of State High-Density Equation of State Neutron Star Matter

More information

Time dependent coupled-cluster method

Time dependent coupled-cluster method Time dependent coupled-cluster method Thomas Papenbrock and G. Hagen & H. A. Nam (ORNL), David Pigg (Vanderbilt) 7 th ANL/INT/JINA/MSU annual FRIB workshop August 8-12, 2011 Interfaces Between Nuclear

More information

Neutron Matter: EOS, Spin and Density Response

Neutron Matter: EOS, Spin and Density Response Neutron Matter: EOS, Spin and Density Response LANL : A. Gezerlis, M. Dupuis, S. Reddy, J. Carlson ANL: S. Pieper, R.B. Wiringa How can microscopic theories constrain mean-field theories and properties

More information

Coupled-cluster computations of weak decays in nuclei

Coupled-cluster computations of weak decays in nuclei Coupled-cluster computations of weak decays in nuclei Gaute Hagen Oak Ridge National Laboratory Nuclear ab initio Theories and Neutrino Physics INT, March 6th, 2018 Trend in realistic ab-initio calculations

More information

Carbon-12 in Nuclear Lattice EFT

Carbon-12 in Nuclear Lattice EFT Carbon-12 in Nuclear Lattice EFT Nuclear Lattice EFT Collaboration Evgeny Epelbaum (Bochum) Hermann Krebs (Bochum) Timo A. Lähde (Jülich) Dean Lee (NC State) Thomas Luu (Jülich) Ulf-G. Meißner (Bonn/Jülich)

More information

Linking nuclear reactions and nuclear structure to on the way to the drip lines

Linking nuclear reactions and nuclear structure to on the way to the drip lines Linking nuclear reactions and nuclear structure to on the way to the drip lines DREB18 6/5/2018 Motivation Green s functions/propagator method Wim Dickhoff Bob Charity Lee Sobotka Hossein Mahzoon (Ph.D.2015)

More information

The No Core Shell Model: Its Formulation, Application and Extensions. Bruce R. Barrett University of Arizona,

The No Core Shell Model: Its Formulation, Application and Extensions. Bruce R. Barrett University of Arizona, The No Core Shell Model: Its Formulation, Application and Extensions Bruce R. Barrett University of Arizona, Tucson, INT Spring Program 2011 March 23, 2011 MICROSCOPIC NUCLEAR-STRUCTURE THEORY 1. Start

More information

Renormalization group methods in nuclear few- and many-body problems

Renormalization group methods in nuclear few- and many-body problems Renormalization group methods in nuclear few- and many-body problems Lecture 1 S.K. Bogner (NSCL/MSU) 2011 National Nuclear Physics Summer School University of North Carolina at Chapel Hill Useful readings

More information

Nuclear Physics from Lattice Effective Field Theory

Nuclear Physics from Lattice Effective Field Theory Nuclear Physics from Lattice Effective Field Theory Dean Lee (NCSU/Bonn) work done in collaboration with Evgeny Epelbaum (Bochum) Hermann Krebs (Bochum) Ulf-G. Meißner (Bonn/Jülich) Buḡra Borasoy (now

More information

Some new developments in relativistic point-coupling models

Some new developments in relativistic point-coupling models Some new developments in relativistic point-coupling models T. J. Buervenich 1, D. G. Madland 1, J. A. Maruhn 2, and P.-G. Reinhard 3 1 Los Alamos National Laboratory 2 University of Frankfurt 3 University

More information

Medium polarization effects and pairing interaction in finite nuclei

Medium polarization effects and pairing interaction in finite nuclei Medium polarization effects and pairing interaction in finite nuclei S. Baroni, P.F. Bortignon, R.A. Broglia, G. Colo, E. Vigezzi Milano University and INFN F. Barranco Sevilla University Commonly used

More information

Nucleon Pair Approximation to the nuclear Shell Model

Nucleon Pair Approximation to the nuclear Shell Model Nucleon Pair Approximation to the nuclear Shell Model Yiyuan Cheng Department of Physics and Astronomy, Shanghai Jiao Tong University, China RCNP, Osaka university, Japan Collaborators: Yu-Min Zhao, Akito

More information

Three-cluster dynamics within an ab initio framework

Three-cluster dynamics within an ab initio framework Three-cluster dynamics within an ab initio framework Universality in Few-Body Systems: Theoretical Challenges and New Directions INT 14-1, March 26, 2014 S. Quaglioni Collaborators: C. Romero-Redondo (TRIUMF)

More information

Nuclear physics: a laboratory for many-particle quantum mechanics or From model to theory in nuclear structure physics

Nuclear physics: a laboratory for many-particle quantum mechanics or From model to theory in nuclear structure physics Nuclear physics: a laboratory for many-particle quantum mechanics or From model to theory in nuclear structure physics G.F. Bertsch University of Washington Stockholm University and the Royal Institute

More information

Status report and plans from OSU and MSU

Status report and plans from OSU and MSU Status report and plans from OSU and MSU Validated(Nuclear( Interac/ons( +(MSU,(ORNL,UT,ANL,ORNL( fusion( Stellar(burning( Structure(and(Reac/ons:( Light(and(Medium(Nuclei( Ab-ini/o' RGM' CI' Chiral'EFT'

More information

Applications of Renormalization Group Methods in Nuclear Physics 1

Applications of Renormalization Group Methods in Nuclear Physics 1 Applications of Renormalization Group Methods in Nuclear Physics 1 Dick Furnstahl Department of Physics Ohio State University HUGS 2014 Outline: Lecture 1 Lecture 1: Overview Preview: Running couplings/potentials

More information

Nuclear structure from chiral-perturbation-theory two- plus three-nucleon interactions

Nuclear structure from chiral-perturbation-theory two- plus three-nucleon interactions Nuclear structure from chiral-perturbation-theory two- plus three-nucleon interactions Petr Navratil Lawrence Livermore National Laboratory* Collaborators: W. E. Ormand (LLNL), J. P. Vary (ISU), E. Caurier

More information

RG & EFT for nuclear forces

RG & EFT for nuclear forces RG & EFT for nuclear forces Andreas Nogga, Forschungszentrum Jülich ECT* school, Feb/March 2006 Low momentum interactions: Using the RG to simplify the nuclear force for many-body calculations. Application

More information

Local chiral NN potentials and the structure of light nuclei

Local chiral NN potentials and the structure of light nuclei Local chiral NN potentials and the structure of light nuclei Maria Piarulli @ELBA XIV WORKSHOP June 7-July 1 16, Marciana Marina, Isola d Elba PHYSICAL REVIEW C 91, 43(15) Minimally nonlocal nucleon-nucleon

More information

Electromagnetic reactions from few to many-body systems Giuseppina Orlandini

Electromagnetic reactions from few to many-body systems Giuseppina Orlandini Electromagnetic reactions from few to many-body systems Giuseppina Orlandini ECT* Workshop on Recent advances and challenges in the description of nuclear reactions at the limit of stability, March 5-9,

More information

Nuclear Structure and Reactions using Lattice Effective Field Theory

Nuclear Structure and Reactions using Lattice Effective Field Theory Nuclear Structure and Reactions using Lattice Effective Field Theory Dean Lee North Carolina State University Nuclear Lattice EFT Collaboration Frontiers of Nuclear Physics Kavli Institute for Theoretical

More information

Nuclei as Bound States

Nuclei as Bound States Nuclei as Bound States Lecture 1: Hamiltonian Robert Roth Overview Lecture 1: Hamiltonian Prelude Nuclear Hamiltonian Matrix Elements Two-Body Problem Correlations & Unitary Transformations Lecture 2:

More information

Renormalization group methods in nuclear few- and many-body problems

Renormalization group methods in nuclear few- and many-body problems Renormalization group methods in nuclear few- and many-body problems Lecture 1 S.K. Bogner (NSCL/MSU) 2011 National Nuclear Physics Summer School University of North Carolina at Chapel Hill Useful readings

More information

Probing the Nuclear Symmetry Energy and Neutron Skin from Collective Excitations. N. Paar

Probing the Nuclear Symmetry Energy and Neutron Skin from Collective Excitations. N. Paar Calcium Radius Experiment (CREX) Workshop at Jefferson Lab, March 17-19, 2013 Probing the Nuclear Symmetry Energy and Neutron Skin from Collective Excitations N. Paar Physics Department Faculty of Science

More information

Recent results in lattice EFT for nuclei

Recent results in lattice EFT for nuclei Recent results in lattice EFT for nuclei Dean Lee (NC State) Nuclear Lattice EFT Collaboration Centro de Ciencias de Benasque Pedro Pascua Bound states and resonances in EFT and Lattice QCD calculations

More information

Quantifying Uncertainties in Nuclear Density Functional Theory

Quantifying Uncertainties in Nuclear Density Functional Theory Quantifying Uncertainties in Nuclear Density Functional Theory P(ND)2-2 Second International Workshop on Perspectives on Nuclear Data for the Next Decade October 14 17, 2014 LLNL-PRES-XXXXXX This work

More information

Light Nuclei from chiral EFT interactions

Light Nuclei from chiral EFT interactions Light Nuclei from chiral EFT interactions Petr Navratil Lawrence Livermore National Laboratory* Collaborators: V. G. Gueorguiev (UCM), J. P. Vary (ISU), W. E. Ormand (LLNL), A. Nogga (Julich), S. Quaglioni

More information

Ab Initio Nuclear Structure Theory

Ab Initio Nuclear Structure Theory Ab Initio Nuclear Structure Theory Lecture 1: Hamiltonian Robert Roth Overview Lecture 1: Hamiltonian Prelude Many-Body Quantum Mechanics Nuclear Hamiltonian Matrix Elements Lecture 2: Correlations Two-Body

More information

Shell evolution in neutron rich nuclei

Shell evolution in neutron rich nuclei Shell evolution in neutron rich nuclei Gustav R. Jansen 1,2 gustav.jansen@utk.edu 1 University of Tennessee, Knoxville 2 Oak Ridge National Laboratory March 18. 2013 Collaborators and acknowledgements

More information

PROGRESS IN UNDERSTANDING THE PROPERTIED OF MANY-BODY SYSTEMS BY QUANTUM MONTE CARLO SIMULATIONS

PROGRESS IN UNDERSTANDING THE PROPERTIED OF MANY-BODY SYSTEMS BY QUANTUM MONTE CARLO SIMULATIONS PROGRESS IN UNDERSTANDING THE PROPERTIED OF MANY-BODY SYSTEMS BY QUANTUM MONTE CARLO SIMULATIONS Francesco Pederiva! Physics Department - University of Trento INFN - TIFPA, Trento Institute for Fundamental

More information

Beyond mean-field study on collective vibrations and beta-decay

Beyond mean-field study on collective vibrations and beta-decay Advanced many-body and statistical methods in mesoscopic systems III September 4 th 8 th, 2017, Busteni, Romania Beyond mean-field study on collective vibrations and beta-decay Yifei Niu Collaborators:

More information

Towards first-principle description of electromagnetic reactions in medium-mass nuclei

Towards first-principle description of electromagnetic reactions in medium-mass nuclei Canada s National Laboratory for Particle and Nuclear Physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules Towards first-principle description of

More information

Nuclear Observables at Low Resolution

Nuclear Observables at Low Resolution Nuclear Observables at Low Resolution Eric R. Anderson Department of Physics The Ohio State University September 13, 2011 In Collaboration with: S.K Bogner, R.J. Furnstahl, K. Hebeler, E.D. Jurgenson,

More information

Comparison of Nuclear Configuration Interaction Calculations and Coupled Cluster Calculations

Comparison of Nuclear Configuration Interaction Calculations and Coupled Cluster Calculations Comparison of Nuclear Configuration Interaction Calculations and Coupled Cluster Calculations Mihai Horoi Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA Support

More information

Nuclear and Particle Physics

Nuclear and Particle Physics Nuclear and Particle Physics W. S. С Williams Department of Physics, University of Oxford and St Edmund Hall, Oxford CLARENDON PRESS OXFORD 1991 Contents 1 Introduction 1.1 Historical perspective 1 1.2

More information

Modern nuclear mass models

Modern nuclear mass models Modern nuclear mass models S. Goriely Institut d Astronomie et d Astrophysique Université Libre de Bruxelles in collaboration with N. Chamel, M. Pearson, S. Hilaire, M. Girod, S. Péru, D. Arteaga, A. Skabreux

More information

Probing proton-neutron pairing with Gamow-Teller strengths in twonucleon

Probing proton-neutron pairing with Gamow-Teller strengths in twonucleon Probing proton-neutron pairing with Gamow-Teller strengths in twonucleon configura8ons Yutaka Utsuno Advanced Science Research Center, Japan Atomic Energy Agency Center for Nuclear Study, University of

More information

Atomic Nuclei at Low Resolution

Atomic Nuclei at Low Resolution Atomic Department of Physics Ohio State University November, 29 Collaborators: E. Anderson, S. Bogner, S. Glazek, E. Jurgenson, R. Perry, S. Ramanan, A. Schwenk + UNEDF collaboration Overview DOFs EFT

More information

Ab initio alpha-alpha scattering using adiabatic projection method

Ab initio alpha-alpha scattering using adiabatic projection method Ab initio alpha-alpha scattering using adiabatic projection method Serdar Elhatisari Advances in Diagrammatic Monte Carlo Methods for QFT Calculations in Nuclear-, Particle-, and Condensed Matter Physics

More information

Three-Nucleon Forces and the Structure of Exotic Nuclei Jason D. Holt

Three-Nucleon Forces and the Structure of Exotic Nuclei Jason D. Holt Three-Nucleon Forces and the Structure of Exotic Nuclei Jason D. Holt Based on T. Otsuka, T. Suzuki, JDH, A. Schwenk, Y. Akaishi, PRL (11) JDH, J. Menendez, A. Schwenk, arxiv:118.268 JDH, T. Otsuka, A.

More information

Cluster Models for Light Nuclei

Cluster Models for Light Nuclei Cluster Models for Light Nuclei N. Itagaki, T. Otsuka, University of Tokyo S. Aoyama, Niigata University K. Ikeda, RIKEN S. Okabe, Hokkaido University Purpose of the present study Cluster model explore

More information

Mean-field concept. (Ref: Isotope Science Facility at Michigan State University, MSUCL-1345, p. 41, Nov. 2006) 1/5/16 Volker Oberacker, Vanderbilt 1

Mean-field concept. (Ref: Isotope Science Facility at Michigan State University, MSUCL-1345, p. 41, Nov. 2006) 1/5/16 Volker Oberacker, Vanderbilt 1 Mean-field concept (Ref: Isotope Science Facility at Michigan State University, MSUCL-1345, p. 41, Nov. 2006) 1/5/16 Volker Oberacker, Vanderbilt 1 Static Hartree-Fock (HF) theory Fundamental puzzle: The

More information

The No-Core Shell Model

The No-Core Shell Model The No-Core Shell Model New Perspectives on P-shell Nuclei - The Shell Model and Beyond Erich Ormand Petr Navratil Christian Forssen Vesselin Gueorguiev Lawrence Livermore National Laboratory Collaborators:

More information

Microscopic Fusion Dynamics Based on TDHF

Microscopic Fusion Dynamics Based on TDHF Dynamical Approach Microscopic Fusion Dynamics Based on TDHF FISSION FUSION Calculate PES as a function of nuclear shape Microscopic HF, HFB, RMF + constraints e.g. Q20, Q30, Q40 as H + lql0 Macroscopic-Microscopic

More information

Mean field studies of odd mass nuclei and quasiparticle excitations. Luis M. Robledo Universidad Autónoma de Madrid Spain

Mean field studies of odd mass nuclei and quasiparticle excitations. Luis M. Robledo Universidad Autónoma de Madrid Spain Mean field studies of odd mass nuclei and quasiparticle excitations Luis M. Robledo Universidad Autónoma de Madrid Spain Odd nuclei and multiquasiparticle excitations(motivation) Nuclei with odd number

More information

Toward a unified description of equilibrium and dynamics of neutron star matter

Toward a unified description of equilibrium and dynamics of neutron star matter Toward a unified description of equilibrium and dynamics of neutron star matter Omar Benhar INFN and Department of Physics Sapienza Università di Roma I-00185 Roma, Italy Based on work done in collaboration

More information

arxiv: v1 [nucl-th] 8 Nov 2013

arxiv: v1 [nucl-th] 8 Nov 2013 arxiv:11.8v1 [nucl-th] 8 Nov 0 Lattice effective field theory for nuclei from A = to A = 8, a Evgeny Epelbaum, b Hermann Krebs, b Dean Lee, c Ulf-G. Meißner, ade and Gautam Rupak f a Institute for Advanced

More information

Structure of Atomic Nuclei. Anthony W. Thomas

Structure of Atomic Nuclei. Anthony W. Thomas Structure of Atomic Nuclei Anthony W. Thomas JLab Users Meeting Jefferson Lab : June 2 nd 2015 The Issues What lies at the heart of nuclear structure? Start from a QCD-inspired model of hadron structure

More information

Ab Initio Nuclear Structure Theory

Ab Initio Nuclear Structure Theory Ab Initio Nuclear Structure Theory Lecture 3: Light Nuclei Robert Roth Overview Lecture 1: Hamiltonian Prelude Many-ody Quantum Mechanics Nuclear Hamiltonian Matrix Elements Lecture 2: orrelations Two-ody

More information

Low- and High-Energy Excitations in the Unitary Fermi Gas

Low- and High-Energy Excitations in the Unitary Fermi Gas Low- and High-Energy Excitations in the Unitary Fermi Gas Introduction / Motivation Homogeneous Gas Momentum Distribution Quasi-Particle Spectrum Low Energy Excitations and Static Structure Function Inhomogeneous

More information

Can the shell model be truly ab initio? and other questions

Can the shell model be truly ab initio? and other questions Canada s national laboratory for particle and nuclear physics and accelerator-based science Can the shell model be truly ab initio? and other questions Ragnar Stroberg TRIUMF The tower of effective field

More information

Direct reactions methodologies for use at fragmentation beam energies

Direct reactions methodologies for use at fragmentation beam energies 1 Direct reactions methodologies for use at fragmentation beam energies TU Munich, February 14 th 2008 Jeff Tostevin, Department of Physics Faculty of Engineering and Physical Sciences University of Surrey,

More information

New Horizons in Ab Initio Nuclear Structure Theory. Robert Roth

New Horizons in Ab Initio Nuclear Structure Theory. Robert Roth New Horizons in Ab Initio Nuclear Structure Theory Robert Roth New Era of Nuclear Structure Theory QCD at low energies improved understanding through effective field theories & lattice simulations quantum

More information