arxiv: v1 [nucl-th] 8 Nov 2013

Size: px
Start display at page:

Download "arxiv: v1 [nucl-th] 8 Nov 2013"

Transcription

1 arxiv:11.8v1 [nucl-th] 8 Nov 0 Lattice effective field theory for nuclei from A = to A = 8, a Evgeny Epelbaum, b Hermann Krebs, b Dean Lee, c Ulf-G. Meißner, ade and Gautam Rupak f a Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics, Forschungszentrum Jülich, D Jülich, Germany b Institut für Theoretische Physik II, Ruhr-Universität Bochum, D 80 Bochum, Germany c Department of Physics, North Carolina State University, Raleigh, NC 6, USA d Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universität Bonn, D 11 Bonn, Germany e JARA High Performance Computing, Forschungszentrum Jülich, D Jülich, Germany f Department of Physics and Astronomy, Mississippi State University, Mississippi State, MS 6, USA t.laehde@fz-juelich.de, evgeny.epelbaum@rub.de, hermann.krebs@rub.de, dean_lee@ncsu.edu, u.meissner@fz-juelich.de, grupak@u.washington.edu We present an overview of the extension of Nuclear Lattice Effective Field Theory simulations to the regime of medium-mass nuclei. We focus on the determination of the ground-state energies of the alpha nuclei O, 0 Ne, Mg and 8 Si by means of Euclidean time projection. PACS: 1.10.Dr, 1.0.-x, 0.De 1st International Symposium on Lattice Field Theory LATTICE 0 July August, 0 Mainz, Germany Speaker. c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence.

2 1. Introduction Nuclear Lattice Effective Field Theory (NLEFT) is a first-principles approach, in which Chiral EFT for nucleons is combined with numerical Auxiliary-Field Quantum Monte Carlo (AFQMC) lattice simulations. NLEFT differs from other ab initio methods [1 6] in that it is an unconstrained Monte Carlo calculation, which does not rely on truncated basis expansions or many-body perturbation theory, nor on prior information about the structure of the nuclear wave function.. Nuclear Lattice EFT at NNLO As in Chiral EFT, our calculations are organized in powers of a generic soft scale Q associated with factors of momenta and the pion mass []. We denote O(Q 0 ) as leading order (LO), O(Q ) as next-to-leading order (NLO), and O(Q ) as next-to-next-to-leading order (NNLO) contributions. The present calculations are performed up to NNLO. We define H LO as the LO lattice Hamiltonian, and H SU() as the equivalent Hamiltonian with the pion-nucleon coupling g A = 0 and contact interactions that respect Wigner s SU() symmetry. In our NLEFT calculations (see Ref. [8] for a review), H LO is treated non-perturbatively. The NLO contribution to the two-nucleon force (NF), the electromagnetic and strong isospin-breaking contributions (EMIB), and the three-nucleon force (NF) which first enters at NNLO, are all treated as perturbations. It should be noted that our LO calculations use smeared short-range interactions that capture much of the corrections usually treated at NLO []. The NF at NNLO over-binds nuclei with A > due to a clustering instability which involves four nucleons on the same lattice site. The long-term objective of NLEFT is to remedy this problem by decreasing the lattice spacing and including the NLO corrections in Chiral EFT. In the mean time, the over-binding problem has been rectified by means of a N contact interaction, tuned to the empirical binding energy of either He or 8 Be [10]. While this provides a good description of the alpha nuclei up to A = 1 including the Hoyle state [10 1], the over-binding is found to increase more rapidly for A. Therefore, in Ref. [] a non-local N interaction which accounts for all possible configurations of four nucleons on adjacent lattice sites was introduced, and adjusted to the empirical binding energy of Mg. A detailed study of the spectrum of O will be reported separately [].. Euclidean time projection The NLEFT calculations reported here (see also Ref. []) are performed with a (spatial) lattice spacing of a=1. fm in a periodic cube of length L=1 fm. Our trial wave function Ψ init A is a Slater-determinant state composed of delocalized standing waves, with A nucleons and the desired spin and isospin. First, we project Ψ init A for a time t using the Euclidean-time evolution operator of the SU() Hamiltonian, giving the trial state Ψ A (t ) exp( H SU() t ) Ψ init A. Second, we use the full Hamiltonian H LO to construct the Euclidean-time projection amplitude Z A (t) Ψ A (t ) exp( H LO t) Ψ A (t ), E A (t)= [lnz A (t)]/ t, (.1) and the transient energy E A (t). If we denote by Ψ A,0 the lowest (normalizable) eigenstate of H LO which has a non-vanishing overlap with the trial state Ψ A (t ), we obtain the corresponding energy E A,0 as the t limit of E A (t).

3 0... E (LO) [MeV] 0 0 E (NLO) [MeV]. E (EMIB) [MeV] 1. E (NF) [MeV] E / C 0 [l.u.] E / C Q E / C S E / C S I E / C (QS) (QS) E / C S S E ( x π ) [MeV] E / D (OPE) [l.u.] E / D (TPEq) [l.u.] E / D (TPEm) [l.u.] E / D (TPExx) [l.u.] E / D (contact) [l.u.].... E / D (contact) [l.u.] Figure 1: NLEFT results for O. The LO energy is E LO =.() MeV, and the result at NNLO including N interactions is E NNLO+N = 1.() MeV. The empirical binding energy is 1.6 MeV. The NLO and NNLO contributions are evaluated in perturbation theory. We compute operator expectation values using Z O A(t) Ψ A (t ) exp( H LO t/)o exp( H LO t/) Ψ A (t ), (.) for any operator O. Given the ratio XA O(t)=ZO A (t)/z A (t), the expectation value of O for the desired state Ψ A,0 is obtained as XA,0 O Ψ A,0 O Ψ A,0 =lim t XA O(t). Sign oscillations make it difficult to reach sufficiently large values of the projection time t. It is helpful to note that the closer the trial state Ψ A (t ) is to Ψ A,0, the less the necessary projection time t. Ψ A (t ) can be optimized by adjusting both the SU() projection time t and the strength of the coupling C SU() of H SU(). The accuracy of the extrapolation t can be further improved by simultaneously incorporating data from trial states that differ in C SU().

4 E 0 (LO) [MeV] E 0 (NLO) [MeV] 1. E 0 (EMIB) [MeV]. E 0 (NF) [MeV] E 0 / C 0 [l.u.] E 0 / C I E 0 / C Q E 0 / C I E 0 / C S E 0 / C S I E 0 / C (QS) E 0 / C I (QS) E 0 / C S E 0 / C I S E 0 ( x π ) [MeV] E 0 / D (OPE) [l.u.] E 0 / D (TPEq) [l.u.] E 0 / D (TPEm) [l.u.] E 0 / D (TPExx) [l.u.] E 0 / D (contact) [l.u.] E 0 / D (contact) [l.u.] Figure : NLEFT results for 0 Ne. The LO energy is E LO = 1.() MeV, and the result at NNLO including N interactions is E NNLO+N =.() MeV. The empirical binding energy is 0.6 MeV. The large-time behavior of Z A (t) and ZA O(t) is controlled by the low-energy spectrum of H LO. Let E label the eigenstates of H LO with energy E, and let ρ A (E) denote the density of states for a system of A nucleons. We then express Z A (t) and ZA O (t) in terms of their spectral representations, Z A (t)= de ρ A (E) E Ψ A (t ) exp( Et), (.) ZA O (t)= de de ρ A (E)ρ A (E ) Ψ A (t ) E E O E E Ψ A (t ) exp( (E+ E )t/), (.) from which we construct the spectral representations of E A (t) and XA O (t). We can approximate these to arbitrary accuracy over any finite range of t by taking ρ A (E) to be a sum of energy delta functions, ρ A (E) i max i=0 δ(e E A,i ), where we take i max = for the He ground state, and i max = for A 8. Using data obtained for different values of C SU(), we perform a correlated fit of E A (t)

5 E (LO) [MeV] E (NLO) [MeV] 1 0. E (EMIB) [MeV].. E (NF) [MeV] E / C 0 [l.u.] E / C I..... E / C Q E / C I E / C S.... E / C S I E / C (QS) E / C I (QS)..... E / C S E / C I S..... E ( x π ) [MeV] E / D (OPE) [l.u.] E / D (TPEq) [l.u.] E / D (TPEm) [l.u.] E / D (TPExx) [l.u.] E / D (contact) [l.u.] E / D (contact) [l.u.] Figure : NLEFT results for Mg. The LO energy is E LO = () MeV, and the result at NNLO including N interactions is E NNLO+N = () MeV. The empirical binding energy is.6 MeV. and XA O (t) for all operators O that contribute to the NLO and NNLO energy corrections. We find that the use of 6 trial states allows for a much more precise determination of E A,0 and XA,0 O than hitherto possible. In particular, we may triangulate XA,0 O using trial states that correspond to functions XA O(t) which converge both from above and below, thereby bracketing XO A,0.. Results The NLEFT results for O are given in Fig. 1, for 0 Ne in Fig., for Mg in Fig., and for 8 Si in Fig.. The curves show a correlated fit for all trial states, using the same spectral density ρ A (E). The upper row in each figure shows the LO energy, the total isospin-symmetric NF correction (NLO), the electromagnetic and isospin-breaking corrections (EMIB) and the total

6 E 8 (LO) [MeV] E 8 (NLO) [MeV]. E 8 (EMIB) [MeV].8.6. E 8 (NF) [MeV] E 8 / C 0 [l.u.] E 8 / C I.... E 8 / C Q E 8 / C I E 8 / C S E 8 / C S I E 8 / C (QS) E 8 / C I (QS) E 8 / C S E 8 / C I S E 8 ( x π ) [MeV] E 8 / D (OPE) [l.u.] E 8 / D (TPEq) [l.u.] E 8 / D (TPEm) [l.u.] E 8 / D (TPExx) [l.u.] E 8 / D (contact) [l.u.] E 8 / D (contact) [l.u.] Figure : NLEFT results for 8 Si. The LO energy is E LO = 0() MeV, and the result at NNLO including N interactions is E NNLO+N = () MeV. The empirical binding energy is 6. MeV. NF correction. The remaining panels show the matrix elements XA O (t) that form part of the NLO and NF terms. The operators E A / C i give the contributions of the NLO contact interactions, and E A ( x π ) denotes the energy shift due the O(a )-improved pion-nucleon coupling. The operators E A / D i give the individual contributions to the total NF correction. To summarize, we have reported on the extension of NLEFT to the regime of medium-mass nuclei. While the NNLO results are good up to A = 1, an increasing over-binding (associated with the momentum-cutoff scale and neglected higher-order contributions) manifests itself for A. While the long-term objectives of NLEFT are to decrease the lattice spacing and include higher orders in the EFT expansion, we also find that the missing physics can be approximated by an effective N interaction. The current exploratory results represent an important step towards more comprehensive NLEFT simulations of medium-mass nuclei in the future. 6

7 Acknowledgments We are grateful for the help in automated data collection by Thomas Luu. Partial financial support from the Deutsche Forschungsgemeinschaft (Sino-German CRC 110), the Helmholtz Association (Contract No. VH-VI-1), BMBF (Grant No. 06BN006), and the U.S. Department of Energy (DE-FG0-0ER0) is acknowledged. This work was further supported by the EU HadronPhysics project, and funds provided by the ERC Project No. NUCLEAREFT. The computational resources were provided by the Jülich Supercomputing Centre at the Forschungszentrum Jülich and by RWTH Aachen. References [1] G. Hagen, M. Hjorth-Jensen, G. R. Jansen, R. Machleidt, and T. Papenbrock, Evolution of shell structure in neutron-rich calcium isotopes, Phys. Rev. Lett. 10, 00 (01). [] E. D. Jurgenson et al., P-shell nuclei using Similarity Renormalization Group evolved three-nucleon interactions, Phys. Rev. C 8, 01 (0). [] R. Roth, J. Langhammer, A. Calci, S. Binder, and P. Navratil, Similarity-Transformed Chiral NN+N Interactions for the Ab Initio Description of 1-C and -O, Phys. Rev. Lett. 10, 001 (011). [] H. Hergert et al., In-Medium Similarity Renormalization Group with Chiral Two- Plus Three-Nucleon Interactions, Phys. Rev. C 8, 00 (0). [] A. Lovato et al., Charge form factor and sum rules of electromagnetic response functions in Carbon, Phys. Rev. Lett. 111, 001 (0). [6] V. Somà, C. Barbieri, and T. Duguet, Ab initio Gorkov-Green s function calculations of open-shell nuclei, Phys. Rev. C 8, 010(R) (0). [] E. Epelbaum, H.-W. Hammer, and Ulf-G. Meißner, Modern Theory of Nuclear Forces, Rev. Mod. Phys. 81, 1 (00). [8] D. Lee, Lattice simulations for few- and many-body systems, Prog. Part. Nucl. Phys. 6, 11 (00). [] B. Borasoy, E. Epelbaum, H. Krebs, D. Lee, and Ulf-G. Meißner, Lattice Simulations for Light Nuclei: Chiral Effective Field Theory at Leading Order, Eur. Phys. J. A 1, 10 (00). [10] E. Epelbaum, H. Krebs, D. Lee, and Ulf-G. Meißner, Lattice effective field theory calculations for A =,,6,1 nuclei, Phys. Rev. Lett. 10, 01 (010); ibid., Lattice calculations for A =,, 6, 1 nuclei using chiral effective field theory, Eur. Phys. J. A, (010). [11] E. Epelbaum, H. Krebs, D. Lee, and Ulf.-G. Meißner, Ab initio calculation of the Hoyle state, Phys. Rev. Lett. 106, 101 (011). [1] E. Epelbaum, H. Krebs, T. A. Lähde, D. Lee, and Ulf-G. Meißner, Structure and rotations of the Hoyle state, Phys. Rev. Lett. 10, 01 (01); ibid., Viability of carbon-based life as a function of the light quark mass, Phys. Rev. Lett. 110, 110 (0); ibid., Dependence of the triple-alpha process on the fundamental constants of nature, Eur. Phys. J. A, 8 (0). [] T. A. Lähde, E. Epelbaum, H. Krebs, D. Lee, Ulf-G. Meißner, and G. Rupak, Lattice Effective Field Theory for Medium-Mass Nuclei [arxiv:11.0 [nucl-th]]. [] E. Epelbaum, H. Krebs, T. A. Lähde, D. Lee, Ulf-G. Meißner, and G. Rupak, in preparation.

The Hoyle state in nuclear lattice effective field theory

The Hoyle state in nuclear lattice effective field theory PRAMANA c Indian Academy of Sciences Vol. 83, No. 5 journal of November 2014 physics pp. 651 659 The Hoyle state in nuclear lattice effective field theory TIMO A LÄHDE 1,, EVGENY EPELBAUM 2, HERMANN KREBS

More information

Carbon-12 in Nuclear Lattice EFT

Carbon-12 in Nuclear Lattice EFT Carbon-12 in Nuclear Lattice EFT Nuclear Lattice EFT Collaboration Evgeny Epelbaum (Bochum) Hermann Krebs (Bochum) Timo A. Lähde (Jülich) Dean Lee (NC State) Thomas Luu (Jülich) Ulf-G. Meißner (Bonn/Jülich)

More information

Ab initio nuclear structure from lattice effective field theory

Ab initio nuclear structure from lattice effective field theory Ab initio nuclear structure from lattice effective field theory Nuclear Lattice EFT Collaboration Evgeny Epelbaum (Bochum) Hermann Krebs (Bochum) Timo Lähde (Jülich) Thomas Luu (Jülich) Dean Lee (NC State)

More information

Chiral effective field theory on the lattice: Ab initio calculations of nuclei

Chiral effective field theory on the lattice: Ab initio calculations of nuclei Chiral effective field theory on the lattice: Ab initio calculations of nuclei Nuclear Lattice EFT Collaboration Evgeny Epelbaum (Bochum) Hermann Krebs (Bochum) Timo Lähde (Jülich) Dean Lee (NC State)

More information

Ab initio lattice EFT from light to medium mass nuclei Nuclear Lattice EFT Collaboration

Ab initio lattice EFT from light to medium mass nuclei Nuclear Lattice EFT Collaboration Ab initio lattice EFT from light to medium mass nuclei Nuclear Lattice EFT Collaboration Evgeny Epelbaum (Bochum) Hermann Krebs (Bochum) Timo Lähde (Jülich) Dean Lee (NC State) Thomas Luu (Jülich/Bonn)

More information

Recent results in lattice EFT for nuclei

Recent results in lattice EFT for nuclei Recent results in lattice EFT for nuclei Dean Lee (NC State) Nuclear Lattice EFT Collaboration Centro de Ciencias de Benasque Pedro Pascua Bound states and resonances in EFT and Lattice QCD calculations

More information

Ab initio alpha-alpha scattering using adiabatic projection method

Ab initio alpha-alpha scattering using adiabatic projection method Ab initio alpha-alpha scattering using adiabatic projection method Serdar Elhatisari Advances in Diagrammatic Monte Carlo Methods for QFT Calculations in Nuclear-, Particle-, and Condensed Matter Physics

More information

PoS(CD15)117. Scattering cluster wave functions on the lattice using the adiabatic projection method

PoS(CD15)117. Scattering cluster wave functions on the lattice using the adiabatic projection method Scattering cluster wave functions on the lattice using the adiabatic projection method a, Michelle Pine b, Serdar Elhatisari cb, Dean Lee b, Evgeny Epelbaum a and Hermann Krebs a a Institut für Theoretische

More information

Nuclear Structure and Reactions using Lattice Effective Field Theory

Nuclear Structure and Reactions using Lattice Effective Field Theory Nuclear Structure and Reactions using Lattice Effective Field Theory Dean Lee North Carolina State University Nuclear Lattice EFT Collaboration Frontiers of Nuclear Physics Kavli Institute for Theoretical

More information

Coupled-cluster theory for nuclei

Coupled-cluster theory for nuclei Coupled-cluster theory for nuclei Thomas Papenbrock and G. Hagen D. J. Dean M. Hjorth-Jensen B. Velamur Asokan INT workshop Weakly-bound systems in atomic and nuclear physics Seattle, March 8-12, 2010

More information

PoS(Confinement8)147. Universality in QCD and Halo Nuclei

PoS(Confinement8)147. Universality in QCD and Halo Nuclei Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, University of Bonn, Germany E-mail: hammer@itkp.uni-bonn.de Effective Field Theory (EFT) provides a powerful

More information

Nuclear Physics from Lattice Effective Field Theory

Nuclear Physics from Lattice Effective Field Theory Nuclear Physics from Lattice Effective Field Theory Dean Lee (NCSU/Bonn) work done in collaboration with Evgeny Epelbaum (Bochum) Hermann Krebs (Bochum) Ulf-G. Meißner (Bonn/Jülich) Buḡra Borasoy (now

More information

Lattice Simulations with Chiral Nuclear Forces

Lattice Simulations with Chiral Nuclear Forces Lattice Simulations with Chiral Nuclear Forces Hermann Krebs FZ Jülich & Universität Bonn July 23, 2008, XQCD 2008, NCSU In collaboration with B. Borasoy, E. Epelbaum, D. Lee, U. Meißner Outline EFT and

More information

Towards an Understanding of Clustering in Nuclei from First Principles

Towards an Understanding of Clustering in Nuclei from First Principles 1 Towards an Understanding of Clustering in Nuclei from First Principles Ulf-G. Meißner, Univ. Bonn & FZ Jülich Supported by DFG, SFB/TR-16 and by DFG, SFB/TR-11 and by CAS, PIFI by HGF VIQCD VH-VI-417

More information

arxiv: v2 [nucl-th] 18 Jul 2016

arxiv: v2 [nucl-th] 18 Jul 2016 Precise determination of lattice phase shifts and mixing angles Bing-Nan Lu a,, Timo A. Lähde a, Dean Lee b, Ulf-G. Meißner c,a,d a Institute for Advanced Simulation, Institut für Kernphysik, and Jülich

More information

Review of lattice EFT methods and connections to lattice QCD

Review of lattice EFT methods and connections to lattice QCD Review of lattice EFT methods and connections to lattice QCD Dean Lee Michigan State University uclear Lattice EFT Collaboration Multi-Hadron Systems from Lattice QCD Institute for uclear Theory Feburary

More information

Frontiers in Ab Initio Nuclear Structure Theory. Robert Roth

Frontiers in Ab Initio Nuclear Structure Theory. Robert Roth Frontiers in Ab Initio Nuclear Structure Theory Robert Roth New Era of Nuclear Structure Theory QCD at low energies improved understanding through effective field theories & lattice simulations New Era

More information

Isospin-breaking corrections to the pion nucleon scattering lengths

Isospin-breaking corrections to the pion nucleon scattering lengths Isospin-breaking corrections to the pion nucleon scattering lengths Helmholtz Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn, Germany

More information

arxiv: v2 [nucl-th] 23 Jul 2016

arxiv: v2 [nucl-th] 23 Jul 2016 Nuclear binding near a quantum phase transition arxiv:16.4539v [nucl-th] 3 Jul 16 Serdar Elhatisari, 1 Ning Li, Alexander Rokash, 3 Jose Manuel Alarcón, 1 Dechuan Du, Nico Klein, 1 Bing-nan Lu, Ulf-G.

More information

Pion production in nucleon-nucleon collisions near threshold: complete NNLO calculation in chiral EFT

Pion production in nucleon-nucleon collisions near threshold: complete NNLO calculation in chiral EFT Pion production in nucleon-nucleon collisions near threshold: complete NNLO calculation in chiral EFT a, V. Baru ab, E. Epelbaum a, C. Hanhart c, H. Krebs a, and F. Myhrer d a Institut für Theoretische

More information

Wilsonian Renormalization Group and the Lippmann-Schwinger Equation with a Multitude of Cutoff Parameters

Wilsonian Renormalization Group and the Lippmann-Schwinger Equation with a Multitude of Cutoff Parameters Commun. Theor. Phys. 69 (208) 303 307 Vol. 69, No. 3, March, 208 Wilsonian Renormalization Group and the Lippmann-Schwinger Equation with a Multitude of Cutoff Parameters E. Epelbaum, J. Gegelia, 2,3 and

More information

New Horizons in Ab Initio Nuclear Structure Theory. Robert Roth

New Horizons in Ab Initio Nuclear Structure Theory. Robert Roth New Horizons in Ab Initio Nuclear Structure Theory Robert Roth New Era of Nuclear Structure Theory QCD at low energies improved understanding through effective field theories & lattice simulations quantum

More information

Heavy-quark spin-symmetry partners of hadronic molecules

Heavy-quark spin-symmetry partners of hadronic molecules Heavy-quark spin-symmetry partners of hadronic molecules Institut für Theoretische Physik II, Ruhr-Universität Bochum, D-44780 Bochum, Germany and Institute for Theoretical and Experimental Physics, B.

More information

Role of Spin in NN NNπ

Role of Spin in NN NNπ Spin Physics (SPIN2014) International Journal of Modern Physics: Conference Series Vol. 40 (2016) 1660061 (6 pages) c The Author(s) DOI: 10.1142/S2010194516600612 Role of Spin in NN NNπ Vadim Baru Institut

More information

Towards New Horizons in Ab Initio Nuclear Structure Theory

Towards New Horizons in Ab Initio Nuclear Structure Theory EPJ Web of Conferences will be set by the publisher DOI: will be set by the publisher Owned by the authors, published by EDP Sciences, 13 Towards New Horizons in Ab Initio Nuclear Structure Theory Robert

More information

Coupled-cluster theory for medium-mass nuclei

Coupled-cluster theory for medium-mass nuclei Coupled-cluster theory for medium-mass nuclei Thomas Papenbrock and G. Hagen (ORNL) D. J. Dean (ORNL) M. Hjorth-Jensen (Oslo) A. Nogga (Juelich) A. Schwenk (TRIUMF) P. Piecuch (MSU) M. Wloch (MSU) Seattle,

More information

arxiv: v1 [nucl-th] 5 Jan 2019

arxiv: v1 [nucl-th] 5 Jan 2019 What is wrong with our current nuclear forces? R. Machleidt Department of Physics, University of Idaho, Moscow, Idaho 83844, USA Abstract arxiv:1901.01473v1 [nucl-th] 5 Jan 2019 I discuss ab initio predictions

More information

Evgeny Epelbaum. Forschungszentrum Jülich & Universität Bonn

Evgeny Epelbaum. Forschungszentrum Jülich & Universität Bonn Evgeny Epelbaum KHuK Jahrestagung, GSI, 25.10.2007 Evgeny Epelbaum Forschungszentrum Jülich & Universität Bonn Outline Motivation & Introduction Few nucleons in chiral EFT: where do we stand Work in progress:

More information

Chiral EFT for nuclear forces with Delta isobar degrees of freedom

Chiral EFT for nuclear forces with Delta isobar degrees of freedom with Delta isobar degrees of freedom Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Universität Bonn, Nußallee 4-6, D-535 Bonn, Germany E-mail: hkrebs@itkp.uni-bonn.de

More information

Modern Theory of Nuclear Forces

Modern Theory of Nuclear Forces Evgeny Epelbaum, FZ Jülich & University Bonn Lacanau, 29.09.2009 Modern Theory of Nuclear Forces Lecture 1: Lecture 2: Lecture 3: Introduction & first look into ChPT EFTs for two nucleons Nuclear forces

More information

Current status and challenges of ab-initio computations of nuclei

Current status and challenges of ab-initio computations of nuclei Current status and challenges of ab-initio computations of nuclei Gaute Hagen Oak Ridge National Laboratory INT workshop on Nuclear Physics from Lattice QCD INT, May 5th, 2016 Computing real nuclei from

More information

Ab Initio Nuclear Structure Theory

Ab Initio Nuclear Structure Theory Ab Initio Nuclear Structure Theory Lecture 3: Light Nuclei Robert Roth Overview Lecture 1: Hamiltonian Prelude Many-ody Quantum Mechanics Nuclear Hamiltonian Matrix Elements Lecture 2: orrelations Two-ody

More information

Modern Theory of Nuclear Forces

Modern Theory of Nuclear Forces Evgeny Epelbaum, FZ Jülich & University Bonn Lacanau, 28.09.2009 Modern Theory of Nuclear Forces Lecture 1: Lecture 2: Introduction & first look into ChPT EFTs for two nucleons Chiral Perturbation Theory

More information

The Hoyle state and the fate of carbon-based life

The Hoyle state and the fate of carbon-based life 1 The Hoyle state and the fate of carbon-based life Ulf-G. Meißner, Univ. Bonn & FZ Jülich NLEFT Supported by DFG, SFB/TR-16 and by DFG, SFB/TR-110 and by EU, I3HP EPOS and by BMBF 05P12PDFTE and by HGF

More information

Gedenk-Kolloquium für Dr. Klaus Erkelenz und zur Gründung der Dr. Klaus Erkelenz Stiftung

Gedenk-Kolloquium für Dr. Klaus Erkelenz und zur Gründung der Dr. Klaus Erkelenz Stiftung 1 Die Mathematisch-Naturwissenschaftliche Fakultät und das Helmholtz-Institut für Strahlen-und Kernphysik, Abteilung Theorie laden ein zum Gedenk-Kolloquium für Dr. Klaus Erkelenz und zur Gründung der

More information

Nuclear Reactions in Lattice EFT

Nuclear Reactions in Lattice EFT Nuclear Reactions in Lattice EFT Gautam Rupak Mississippi State University Nuclear Lattice EFT Collaboration Evgeny Epelbaum (Bochum) Hermann Krebs (Bochum) Timo Lähde (Jülich) Dean Lee (NCSU) Thomas Luu

More information

From EFTs to Nuclei. Thomas Papenbrock. and. CANHP 2015 Research partly funded by the US Department of Energy

From EFTs to Nuclei. Thomas Papenbrock. and. CANHP 2015 Research partly funded by the US Department of Energy From EFTs to Nuclei Thomas Papenbrock and CANHP 2015 Research partly funded by the US Department of Energy Collaborators @ ORNL / UTK: T. Coello, A. Ekström, G. Hagen, G. R. Jansen, K. Wendt @ ORNL/MSU:

More information

NEUTRON-NEUTRON SCATTERING LENGTH FROM THE REACTION γd π + nn

NEUTRON-NEUTRON SCATTERING LENGTH FROM THE REACTION γd π + nn MENU 2007 11th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon September10-14, 2007 IKP, Forschungzentrum Jülich, Germany NEUTRON-NEUTRON SCATTERING LENGTH FROM THE REACTION

More information

PoS(CD09)065. Hadronic atoms

PoS(CD09)065. Hadronic atoms Vadim Baru Forschungszentrum Jülich, Institut für Kernphysik (Theorie), and Jülich Center for Hadron Physics, 52425 Jülich, Germany, and Institute for Theoretical and Experimental Physics, B. Cheremushkinskaya

More information

Electromagnetic currents from chiral EFT

Electromagnetic currents from chiral EFT ab a Forschungszentrum Jülich, Institut für Kernphysik (IKP-3) and Jülich Center for Hadron Physics, D-545 Jülich, Germany b Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for

More information

RG & EFT for nuclear forces

RG & EFT for nuclear forces RG & EFT for nuclear forces Andreas Nogga, Forschungszentrum Jülich ECT* school, Feb/March 2006 Low momentum interactions: Using the RG to simplify the nuclear force for many-body calculations. Application

More information

Advances in Ab Initio Nuclear Structure Theory. Robert Roth

Advances in Ab Initio Nuclear Structure Theory. Robert Roth Advances in Ab Initio Nuclear Structure Theory Robert Roth Ab Initio Nuclear Structure Theory solve nuclear many-body problem based on realistic interactions using controlled and improvable truncations

More information

Local chiral NN potentials and the structure of light nuclei

Local chiral NN potentials and the structure of light nuclei Local chiral NN potentials and the structure of light nuclei Maria Piarulli @ELBA XIV WORKSHOP June 7-July 1 16, Marciana Marina, Isola d Elba PHYSICAL REVIEW C 91, 43(15) Minimally nonlocal nucleon-nucleon

More information

Effective Nuclear Hamiltonians for ab initio Nuclear Structure Calculations

Effective Nuclear Hamiltonians for ab initio Nuclear Structure Calculations Effective Nuclear Hamiltonians for ab initio Nuclear Structure Calculations Angelo Calci Hirschegg 2015 Nuclear Structure and Reactions: Weak, Strange and Exotic Introduction Hamilton Matrix pre-diagonalization(srg)

More information

Nucleon-nucleon interaction in covariant chiral effective field theory

Nucleon-nucleon interaction in covariant chiral effective field theory Guilin, China The Seventh Asia-Pacific Conference on Few-Body Problems in Physics Nucleon-nucleon interaction in covariant chiral effective field theory Xiu-Lei Ren School of Physics, Peking University

More information

Quantum Monte Carlo calculations of medium mass nuclei

Quantum Monte Carlo calculations of medium mass nuclei Quantum Monte Carlo calculations of medium mass nuclei Diego Lonardoni FRIB Theory Fellow In collaboration with: J. Carlson, LANL S. Gandolfi, LANL X. Wang, Huzhou University, China A. Lovato, ANL & UniTN

More information

Isospin breaking in pion deuteron scattering and the pion nucleon scattering lengths

Isospin breaking in pion deuteron scattering and the pion nucleon scattering lengths Isospin breaking in pion deuteron scattering and the pion nucleon scattering lengths source: https://doi.org/10.789/boris.4584 downloaded: 13.3.017, ab Vadim Baru, cd Christoph Hanhart, e Bastian Kubis,

More information

Correlations derived from modern nucleon-nucleon potentials

Correlations derived from modern nucleon-nucleon potentials Correlations derived from modern nucleon-nucleon potentials H. Müther Institut für Theoretische Physik, Universität Tübingen, D-72076 Tübingen, Germany A. Polls Departament d Estructura i Costituents de

More information

Neutron matter from chiral effective field theory interactions

Neutron matter from chiral effective field theory interactions Neutron matter from chiral effective field theory interactions Ingo Tews, In collaboration with K. Hebeler, T. Krüger, A. Schwenk, JINA Neutron Stars, May 26, 2016, Athens, OH Chiral effective field theory

More information

Renormalization group methods in nuclear few- and many-body problems

Renormalization group methods in nuclear few- and many-body problems Renormalization group methods in nuclear few- and many-body problems Lecture 2 S.K. Bogner (NSCL/MSU) 2011 National Nuclear Physics Summer School University of North Carolina at Chapel Hill Lecture 2 outline

More information

Progress in ab-initio calculations. The nuclear A-body problem

Progress in ab-initio calculations. The nuclear A-body problem 60 50 Progress in ab-initio calculations The nuclear A-body problem A 40 30 20 10 G. Hagen et al., Nature Physics 12, 186 (2016) 0 1980 1990 2000 2010 2020 Year In the early decades, the progress was approximately

More information

Nuclear few- and many-body systems in a discrete variable representation basis

Nuclear few- and many-body systems in a discrete variable representation basis Nuclear few- and many-body systems in a discrete variable representation basis Jeremy W. Holt* Department of Physics University of Washington *with A. Bulgac, M. M. Forbes L. Coraggio, N. Itaco, R. Machleidt,

More information

Ab Initio Nuclear Structure Theory with Chiral NN+3N Interactions. Robert Roth

Ab Initio Nuclear Structure Theory with Chiral NN+3N Interactions. Robert Roth Ab Initio Nuclear Structure Theory with Chiral NN+3N Interactions Robert Roth From QCD to Nuclear Structure Nuclear Structure Low-Energy QCD From QCD to Nuclear Structure Nuclear Structure NN+3N Interaction

More information

Time dependent coupled-cluster method

Time dependent coupled-cluster method Time dependent coupled-cluster method Thomas Papenbrock and G. Hagen & H. A. Nam (ORNL), David Pigg (Vanderbilt) 7 th ANL/INT/JINA/MSU annual FRIB workshop August 8-12, 2011 Interfaces Between Nuclear

More information

Modern Theory of Nuclear Forces

Modern Theory of Nuclear Forces Evgeny Epelbaum PAX Meeting, Stockholm, 15.06.2010 Modern Theory of Nuclear Forces Evgeny Epelbaum, Ruhr-Universität Bochum Outline Chiral EFT for nuclear forces Some hot topics (work in progress) Deuteron

More information

Quantum Monte Carlo calculations of two neutrons in finite volume

Quantum Monte Carlo calculations of two neutrons in finite volume Quantum Monte Carlo calculations of two neutrons in finite volume Philipp Klos with J. E. Lynn, I. Tews, S. Gandolfi, A. Gezerlis, H.-W. Hammer, M. Hoferichter, and A. Schwenk Nuclear Physics from Lattice

More information

arxiv: v1 [nucl-th] 31 Oct 2013

arxiv: v1 [nucl-th] 31 Oct 2013 Renormalization Group Invariance in the Subtractive Renormalization Approach to the NN Interactions S. Szpigel and V. S. Timóteo arxiv:1311.61v1 [nucl-th] 31 Oct 13 Faculdade de Computação e Informática,

More information

Ab initio calculations of the isotopic dependence of nuclear clustering

Ab initio calculations of the isotopic dependence of nuclear clustering Ab initio calculations of the isotopic dependence of nuclear clustering Let ρ(n) be the total nucleon density operator on lattice site n. We will use short-distance three- and four-nucleon operators as

More information

arxiv:nucl-th/ v1 22 Sep 2000

arxiv:nucl-th/ v1 22 Sep 2000 1 arxiv:nucl-th/967v1 22 Sep 2 Chiral Dynamics in Few Nucleon Systems E. Epelbaum a, H. Kamada a,b, A. Nogga b, H. Wita la c, W. Glöckle b, and Ulf-G. Meißner a a Forschungszentrum Jülich, Institut für

More information

Shell evolution in neutron rich nuclei

Shell evolution in neutron rich nuclei Shell evolution in neutron rich nuclei Gustav R. Jansen 1,2 gustav.jansen@utk.edu 1 University of Tennessee, Knoxville 2 Oak Ridge National Laboratory March 18. 2013 Collaborators and acknowledgements

More information

The Nuclear Many-Body Problem. Lecture 2

The Nuclear Many-Body Problem. Lecture 2 The Nuclear Many-Body Problem Lecture 2 How do we describe nuclei? Shell structure in nuclei and the phenomenological shell model approach to nuclear structure. Ab-initio approach to nuclear structure.

More information

PION DEUTERON SCATTERING LENGTH IN CHIRAL PERTURBATION THEORY UP TO ORDER χ 3/2

PION DEUTERON SCATTERING LENGTH IN CHIRAL PERTURBATION THEORY UP TO ORDER χ 3/2 MENU 2007 11th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon September10-14, 2007 IKP, Forschungzentrum Jülich, Germany PION DEUTERON SCATTERING LENGTH IN CHIRAL PERTURBATION

More information

PoS(LATTICE2014)169. The Nγ transition form factors on the lattice. Akaki Rusetsky. Andria Agadjanov. Véronique Bernard

PoS(LATTICE2014)169. The Nγ transition form factors on the lattice. Akaki Rusetsky. Andria Agadjanov. Véronique Bernard Helmholtz-Institut für Strahlen- und Kernphysik (Theorie), Bethe Center for Theoretical Physics, Universität Bonn, D-535 Bonn, Germany E-mail: rusetsky@itkp.uni-bonn.de Andria Agadjanov Helmholtz-Institut

More information

Coupled-cluster computations of weak decays in nuclei

Coupled-cluster computations of weak decays in nuclei Coupled-cluster computations of weak decays in nuclei Gaute Hagen Oak Ridge National Laboratory Nuclear ab initio Theories and Neutrino Physics INT, March 6th, 2018 Trend in realistic ab-initio calculations

More information

arxiv: v1 [nucl-th] 23 Feb 2016

arxiv: v1 [nucl-th] 23 Feb 2016 September 12, 2018 Threshold pion production in proton-proton collisions at NNLO in chiral EFT arxiv:1602.07333v1 [nucl-th] 23 Feb 2016 V. Baru, 1, 2 E. Epelbaum, 1 A. A. Filin, 1 C. Hanhart, 3 H. Krebs,

More information

Three-nucleon potentials in nuclear matter. Alessandro Lovato

Three-nucleon potentials in nuclear matter. Alessandro Lovato Three-nucleon potentials in nuclear matter Alessandro Lovato PRC 83, 054003 (2011) arxiv:1109.5489 Outline Ab initio many body method Nuclear Hamiltonian: 2- and 3- body potentials Density dependent potential

More information

Hartree-Fock Many-Body Perturbation Theory for Nuclear Ground-States

Hartree-Fock Many-Body Perturbation Theory for Nuclear Ground-States Hartree-Fock Many-Body Perturbation Theory for Nuclear Ground-States Alexander Tichai, 1, Joachim Langhammer, 1 Sven Binder, 2, 3 and Robert Roth 1, 1 Institut für Kernphysik, Technische Universität Darmstadt,

More information

RG & EFT for nuclear forces

RG & EFT for nuclear forces RG & EFT for nuclear forces Andreas Nogga, Forschungszentrum Jülich ECT* school, Feb/March 2006 Low momentum interactions: Using the RG to simplify the nuclear force for many-body calculations. Application

More information

Chiral interac,ons in nucleonic ma1er and nuclei

Chiral interac,ons in nucleonic ma1er and nuclei Chiral interac,ons in nucleonic ma1er and nuclei Thomas Papenbrock and G. Baardsen, A. Ekström, C. Forssen, G. Hagen, M. Hjorth Jensen, G. R. Jansen, R. Machleidt, W. Nazarewicz, J. Sarich, S. M. Wild

More information

arxiv: v4 [cond-mat.quant-gas] 1 Oct 2015

arxiv: v4 [cond-mat.quant-gas] 1 Oct 2015 Ab initio lattice results for Fermi polarons in two dimensions arxiv:141.8175v4 [cond-mat.quant-gas] 1 Oct 015 Shahin Bour, 1 Dean Lee, H.-W. Hammer, 3,4 and Ulf-G. Meißner 1,5 1 Helmholtz-Institut für

More information

The theory of nuclear forces: Is the never-ending ending story coming to an end? R. Machleidt University of Idaho

The theory of nuclear forces: Is the never-ending ending story coming to an end? R. Machleidt University of Idaho The theory of nuclear forces: Is the never-ending ending story coming to an end? University of Idaho What s left to say? Put the recent progress into a wider perspective. Fill in some missing details.

More information

Modeling the Atomic Nucleus. Theoretical bag of tricks

Modeling the Atomic Nucleus. Theoretical bag of tricks Modeling the Atomic Nucleus Theoretical bag of tricks The nuclear many-body problem The Nuclear Many-Body Problem H ˆ = T ˆ + V ˆ ˆ T = A 2 p ˆ " i, V ˆ = 2m i i=1 one-body H ˆ " = E" " V ˆ 2b (i, j) +

More information

Muon Capture With Improved Chiral Forces

Muon Capture With Improved Chiral Forces , Jacek Golak, Kacper Topolnicki, Henryk Witała M. Smoluchowski Institute of Physics, Jagiellonian University, PL-30059 Kraków, Poland E-mail: roman.skibinski@uj.edu.pl Muon capture on the 2 H, 3 H and

More information

arxiv: v1 [hep-lat] 4 Nov 2014

arxiv: v1 [hep-lat] 4 Nov 2014 Meson Mass Decomposition,2, Ying Chen, Terrence Draper 2, Ming Gong,2, Keh-Fei Liu 2, Zhaofeng Liu, and Jian-Ping Ma 3,4 arxiv:4.927v [hep-lat] 4 Nov 24 (χqcd Collaboration) Institute of High Energy Physics,

More information

Hybrid Ab Initio Methods. Robert Roth

Hybrid Ab Initio Methods. Robert Roth Hybrid Ab Initio Methods Robert Roth Ab Initio Methods No-Core Shell Model In-Medium Similarity Renormalization Group solution of matrix eigenvalue problem in truncated many-body model space flexibility:

More information

New Frontiers in Nuclear Structure Theory

New Frontiers in Nuclear Structure Theory New Frontiers in Nuclear Structure Theory From Realistic Interactions to the Nuclear Chart Robert Roth Institut für Kernphysik Technical University Darmstadt Overview Motivation Nucleon-Nucleon Interactions

More information

Ab Initio Nuclear Structure Theory

Ab Initio Nuclear Structure Theory Ab Initio Nuclear Structure Theory Lecture 1: Hamiltonian Robert Roth Overview Lecture 1: Hamiltonian Prelude Many-Body Quantum Mechanics Nuclear Hamiltonian Matrix Elements Lecture 2: Correlations Two-Body

More information

The Nuclear Many Body Problem Lecture 3

The Nuclear Many Body Problem Lecture 3 The Nuclear Many Body Problem Lecture 3 Shell structure in nuclei and the phenomenological shell model approach to nuclear structure Ab initio approach to nuclear structure. Green's function Monte Carlo

More information

Alex Gezerlis. New Ideas in Constraining Nuclear Forces ECT*, Trento, Italy June 5, 2018

Alex Gezerlis. New Ideas in Constraining Nuclear Forces ECT*, Trento, Italy June 5, 2018 Quantum Monte Carlo interactions with From microscopic to effective Chiral Effective Field Theory Interactions using Quantum Monte Carlo Alex Gezerlis New Ideas in Constraining Nuclear Forces ECT*, Trento,

More information

Nuclei as Bound States

Nuclei as Bound States Nuclei as Bound States Lecture 1: Hamiltonian Robert Roth Overview Lecture 1: Hamiltonian Prelude Nuclear Hamiltonian Matrix Elements Two-Body Problem Correlations & Unitary Transformations Lecture 2:

More information

Few- and many-nucleon systems with semilocal coordinate-space regularized chiral nucleon-nucleon forces

Few- and many-nucleon systems with semilocal coordinate-space regularized chiral nucleon-nucleon forces Few- and many-nucleon systems with semilocal coordinate-space regularized chiral nucleon-nucleon forces S. Binder,, 2 A. Calci, 3 E. Epelbaum, 4 R.J. Furnstahl, 5 J. Golak, 6 K. Hebeler, 7 T. Hüther, 7

More information

The oxygen anomaly F O

The oxygen anomaly F O The oxygen anomaly O F The oxygen anomaly - not reproduced without 3N forces O F without 3N forces, NN interactions too attractive many-body theory based on two-nucleon forces: drip-line incorrect at 28

More information

Similarity Renormalization Groups (SRG) for nuclear forces Nuclear structure and nuclear astrophysics

Similarity Renormalization Groups (SRG) for nuclear forces Nuclear structure and nuclear astrophysics Similarity Renormalization Groups (SRG) for nuclear forces Nuclear structure and nuclear astrophysics Philipp Dijkstal 12.05.2016 1 Introduction The talk on Similarity Renormalization Groups (SRG) from

More information

New Horizons in Ab Initio Nuclear Structure Theory. Robert Roth

New Horizons in Ab Initio Nuclear Structure Theory. Robert Roth New Horizons in Ab Initio Nuclear Structure Theory Robert Roth New Era of Low-Energy Nuclear Physics Experiment new facilities and experiments to produce nuclei far-off stability and study a range of observables

More information

LORENTZ BOOSTED NUCLEON-NUCLEON T-MATRIX AND THE TRITON BINDING ENERGY

LORENTZ BOOSTED NUCLEON-NUCLEON T-MATRIX AND THE TRITON BINDING ENERGY October 7, 28 22:52 WSPC/INSTRUCTION FILE Modern Physics Letters A c World Scientific Publishing Company LORENTZ BOOSTED NUCLEON-NUCLEON T-MATRIX AND THE TRITON BINDING ENERGY H. KAMADA Department of Physics,

More information

arxiv: v2 [hep-lat] 23 Dec 2008

arxiv: v2 [hep-lat] 23 Dec 2008 arxiv:8.964v2 [hep-lat] 23 Dec 28, F. Farchioni, A. Ferling, G. Münster, J. Wuilloud University of Münster, Institute for Theoretical Physics Wilhelm-Klemm-Strasse 9, D-4849 Münster, Germany E-mail: k_demm@uni-muenster.de

More information

Three-nucleon forces and shell structure of neutron-rich Ca isotopes

Three-nucleon forces and shell structure of neutron-rich Ca isotopes Three-nucleon forces and shell structure of neutron-rich Ca isotopes Javier Menéndez Institut für Kernphysik (TU Darmstadt) and ExtreMe Matter Institute (EMMI) NUSTAR Week 3, Helsinki, 9 October 13 Outline

More information

arxiv: v1 [hep-lat] 30 Oct 2018

arxiv: v1 [hep-lat] 30 Oct 2018 E-mail: genwang27@uky.edu arxiv:1810.12824v1 [hep-lat] 30 Oct 2018 Jian Liang E-mail: jian.liang@uky.edu Terrence Draper E-mail: draper@pa.uky.edu Keh-Fei Liu E-mail: liu@pa.uky.edu Yi-Bo Yang Institute

More information

Few Body Methods in Nuclear Physics - Lecture I

Few Body Methods in Nuclear Physics - Lecture I Few Body Methods in Nuclear Physics - Lecture I Nir Barnea The Hebrew University, Jerusalem, Israel Sept. 2010 Course Outline 1 Introduction - Few-Body Nuclear Physics 2 Gaussian Expansion - The Stochastic

More information

Faddeev equations: a view of baryon properties

Faddeev equations: a view of baryon properties E-mail: diana.nicmorus@uni-graz.at G. Eichmann E-mail: ge.eichmann@uni-graz.at A. Krassnigg E-mail: andreas.krassnigg@uni-graz.at R. Alkofer E-mail: reinhard.alkofer@uni-graz.at We present a calculation

More information

Nuclear matter calculations with chiral interactions

Nuclear matter calculations with chiral interactions INFN, Sezione di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy E-mail: domenico.logoteta@pi.infn.it Ignazio Bombaci Dipartimento di Fisica, Universitá di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa,

More information

arxiv: v3 [nucl-th] 18 Oct 2018

arxiv: v3 [nucl-th] 18 Oct 2018 Neutron-proton scattering with lattice chiral effective field theory at next-to-next-to-next-to-leading order Ning Li,, Serdar Elhatisari,, Evgeny Epelbaum, Dean Lee,, Bing-Nan Lu,,, 7 and Ulf-G. Meißner

More information

Molecular partners of the X(3872) from heavy-quark spin symmetry:

Molecular partners of the X(3872) from heavy-quark spin symmetry: Molecular partners of the X(387) from heavy-quark spin symmetry: a fresh look V. Baru 1,,a, E. Epelbaum 1, A. A. Filin 1, C. Hanhart 3, and A.V. Nefediev,4,5 1 Institut für Theoretische Physik II, Ruhr-Universität

More information

Three-Nucleon Forces and Masses of Neutron-Rich Nuclei Jason D. Holt

Three-Nucleon Forces and Masses of Neutron-Rich Nuclei Jason D. Holt Three-Nucleon Forces and Masses of Neutron-Rich Nuclei Jason D. Holt Drip Lines and Magic Numbers: The Evolving Nuclear Landscape 3N forces important in light nuclei, nuclear matter What are the limits

More information

Renormalization group methods in nuclear few- and many-body problems

Renormalization group methods in nuclear few- and many-body problems Renormalization group methods in nuclear few- and many-body problems Lecture 3 S.K. Bogner (NSCL/MSU) 2011 National Nuclear Physics Summer School University of North Carolina at Chapel Hill Lecture 2 outline

More information

Shell evolution and pairing in calcium isotopes with two- and three-body forces

Shell evolution and pairing in calcium isotopes with two- and three-body forces Shell evolution and pairing in calcium isotopes with two- and three-body forces Javier Menéndez Institut für Kernphysik, TU Darmstadt ExtreMe Matter Institute (EMMI) with Jason D. Holt, Achim Schwenk and

More information

arxiv: v1 [hep-lat] 31 Oct 2014

arxiv: v1 [hep-lat] 31 Oct 2014 arxiv:4.88v [hep-lat] 3 Oct 24 Zoltán Fodor University of Wuppertal, Department of Physics, Wuppertal D-4297, Germany Jülich Supercomputing Center, Forschungszentrum Jülich, Jülich D-52425, Germany Eötvös

More information

Quantum Monte Carlo with

Quantum Monte Carlo with Quantum Monte Carlo with QuantumField Monte Carlo Interactions with Chiral Effective Theory Chiral Effective Field Theory Interactions From matter to nuclei Alexandros Gezerlis ECT*-EMMI Workshop Neutron-Rich

More information

Tritium β decay in pionless EFT

Tritium β decay in pionless EFT Ohio University June 0, 207 Recipe for EFT(/π) For momenta p < m π pions can be integrated out as degrees of freedom and only nucleons and external currents are left. Write down all possible terms of nucleons

More information

Evolution of shell structure in neutron-rich calcium isotopes

Evolution of shell structure in neutron-rich calcium isotopes Evolution of shell structure in neutron-rich calcium isotopes G. Hagen,, M. Hjorth-Jensen,, G. R. Jansen, R. Machleidt, 5 and T. Papenbrock, Physics Division, Oak Ridge National Laboratory, Oak Ridge,

More information