Kalman Filter Enhancement for UAV Navigation

Size: px
Start display at page:

Download "Kalman Filter Enhancement for UAV Navigation"

Transcription

1 Kalman Filter Enhancement for UAV Navigation Roger Johnson* Jerzy Sasiade** Janusz Zalewsi* *University of Central Florida Orlando, FL , USA **Carleton University Ottawa, Ont. KS 5B6, Canada Keywords Kalman filter, UAV navigation, fuzzy logic, parallel computations, parameter estimation. Abstract his paper proposes two methods to enhance traditional extended Kalman filter for UAV navigation. One is based on using fuzzy rules to choose parameters of an adaptive Kalman filter. he other uses inherent parallelism to speed up iterations in Kalman filter computations. Both methods are described briefly and simulation results are presented. INRODUCION Unmanned Aerial Vehicles (UAV), such as spacecraft, aircraft, helicopters, free-flying robots or mobile robots are increasingly applied in various domains, particularly in the military, scientific research, and in certain industries. herefore it becomes crucial to optimize trajectories, motion, fuel consumption and other performance related aspects of UAVs. In navigation of a UAV, three mutually dependent issues need to be considered: plan the path dependence on the nown information, determine the position and velocity of the vehicle, and avoid the unexpected obstacles. In general, obstacles may not be fully nown when we plan the path for the UAVs. In this case, the vehicle has to handle an event such as unexpectedly encountering some moving or static obstacles on its way and an original plan may no longer be executable in the new situation. his is especially important when the vehicle operates in the space environment for long periods of time, without frequent communications with the ground station. From this point of view, as well as because of the need of fault-tolerant operation, a new set of requirements emerges calling for autonomous operation of UAVs for long unattended periods of time. For this purpose, our group is currently developing an Autonomous ealth onitoring and Control System (ACS), based on the new concept of a igh-fidelity Dynamic odel-based Simulation (FDS). It relies on the use of highly accurate dynamic models to replicate the behavior of the actual system [4]. Desired Objective Conventional Real-ime Controller actuator Real-time Nonlinear Estimation Robust and Dynamic Fault Detection odule Optimal Filter Disturbances and Uncertainties odeling Based Reasonning Nonlinear Robust Control Real-time Nonlinear Estimation Robust and Dynamic Fault Detection odule Optimal Filter lant Figure. Basic architecture of the control system. he basic architecture of the entire system is presented in Figure. Out of several layers of the control hierarchy, in this paper we consider only the lowest, monitoring layer. he essential function of the control system at this layer is to monitor both the state of the vehicle itself and the state of the actuators. When the vehicle has to change its original path, and revise its motion to achieve the collision-free path during navigation, the environment uncertainty and complexity is a ey issue. he position and velocity of the vehicle can be determined, when navigating and guiding an autonomous vehicle, with the Global ositioning System (GS). It is nown, however, that several errors are associated with the GS measurement [6]. It has superior long-term error performance, but poor short-term accuracy. For many vehicle navigation systems, GS is insufficient as a standalone position system.

2 o ensure high accuracy and fidelity of monitoring, which in principle means detecting any unexpected behavioral changes, in real time, we use Kalman filtering [2]. Kalman filtering is a form of optimal estimation characterized by recursive evaluation, and an internal model of the dynamics of the system being estimated. he dynamic weighting of incoming evidence with ongoing expectation produces estimates of the state of the observed system. We propose to enhance an extended Kalman filter in two ways. First, we apply fuzzy rules to the weighted Kalman filter to increase accuracy. Secondly, we apply parallelization to the extended Kalman filter to achieve high computational speed. In the next sections, we present the principles of both approaches and discuss the simulations. FUZZY ADAIVE KALAN FILER o ensure high accuracy and fidelity of monitoring, we use data fusion to combine measurements from GS and Inertial Navigation System (INS). he integration of GS and INS is ideal for vehicle navigation. In general, the shortterm accuracy of INS is good and the long-term accuracy is poor. he disadvantages of GS/INS are ideally cancelled. If the signal of GS is interrupted, the INS enables the navigation system to coast along until GS signal is reestablished []. he requirements for accuracy, availability and robustness are therefore achieved. In this paper, a fuzzy logic adaptive system (FLAS) is used to adjust the exponential weighting of a weighted EKF and prevent the Kalman filter from divergence. he fuzzy logic adaptive controller (FLAC) will continually adjust the noise strengths in the filter s internal model, and tune the filter as well as possible. he FLAC performance is evaluated by simulation of the fuzzy adaptive extended Kalman filtering scheme of Fig.2. he models and basic implementation equations for the weighted Kalman filter are shown below, for the nonlinear dynamic model and the nonlinear measurement model: x = f ( x, ) + w + z = h( x, ) + v where w ~ N (0,Q) and v ~ N (0, R). We assume model covariance matrices equal to: where, α, and Q and R are constant matrices.. For α>, as time increases, the R and Q decrease, so that the most recent measurement is given higher weighting [5]. If α=, it is a regular EKF. R = Rα Q = Qα 2 ( + ) 2 ( + ) () (2) (3) (4) INS Estimated INS errors seudo-range Corrected position, velocity,etc Residuals GS FLAS redicted measurements Figure 2. Fuzzy adaptive extended Kalman filter. a EKF Computation of the Kalman gain and covariance matrices has been described in [6]. ere we concentrate only on the fuzzy rules simulations. A good way of verifying whether the Kalman filter is performing well is to monitor the residuals (innovations). hey can be used to adapt the filter. he covariance of the residuals and mean values of residuals are used to decide the degree of divergence. he value of covariance relates to R. If the residual has zero mean, covariance is as follows: = + R z he purpose of a fuzzy logic adaptive controller is to detect the bias in the measurements and prevent divergence of the extended Kalman filter. It is usually assumed that the process noise w is white, but sometimes the process noise could be correlated with itself, non-white, which causes convergence problems. By selecting right α, the fuzzy controller optimally adapts the Kalman filter and tries to eep the innovation sequence act as zero-mean white noise. FLAS SIULAION RESULS he membership functions for fuzzy control are shown in Figures 3-5, for covariances, mean value and α. he FLAC uses nine rules shown in able, for example: If the covariance of residuals is large and the mean values are zero hen a is large. If the covariance of residuals is zero and the mean values are large hen a is zero.

3 zero small large 0 (4) 2.(4) 2 z /R [m 2 ] Figure 3. Covariance membership functions. zero small large ean [m] logic adaptive EKF almost agrees with the theoretical error covariance. ultiples of Q and R in the table (5Q, 2R) mean that the real-time parameters are 5 and 2 times as large as the designed Q and R. able 2. Comparison of theoretical and actual error covariance for X-axis. Q R heory Actual 5Q R Q 2R Q 2R Q 4R Figure 4. ean value membership functions. zero small medium large a Figure 5. a membership functions. able. Rules for the FLAS (L large, medium, S small, Z zero). a ean Value Z S L Z S Z Z S Z L L L Z he state variables used in simulation are: position and velocity errors of the INS East, North, Altitude, GS range bias and range drift. he designed standard deviation of GS measurement R is 5 [m]. he designed standard deviations of Q for INS are [m], [m], and [m] for the East (x), North (y), and Altitude (z) respectively. Results of the simulations are presented in able 2 and Figure 6, for X axis only, to save space. hey show that after the filter stabilizes, the actual error covariance of fuzzy Variance x ime (s) Figure 6. Actual (solid line) and theoretical (dashed line) covariances (X axis) for 5Q and 2R. ARALLELIZAION OF KALAN FILER Convergence problems, which occur in discrete Kalman filter computations discussed in previous sections, may be eliminated if a more accurate, continuous Kalman filter representation is used. In this case, however, the Kalman filter algorithm is very computationally intensive, therefore conventional real-time implementation using a single processor system is often not satisfying. We have experimented with parallel processing of both the regular Kalman filter and the extended Kalman filter. he exact mathematical model representing the motion of the vehicle s center of mass is described by the equations presented in [4]. Below we only discuss its parallelization. For any spacecraft vehicle, there are two types of parameters that are involved in the controller design for a navigation system design: position and attitude. Nonlinearities exist in both cases, however, a linear model is good enough for the attitude controller design. Below we discuss parallelization strategies for both the linear attitude model and the non-linear navigation model.

4 he Kalman filter equation can be split into two parallel groups, state and covariance, connected by Kalman gain K and the measurement matrix. herefore, the computation tas for Kalman filter can be split into two sets: state and error covariance equations. his is a quite straightforward parallelization method, by taing two processors, one doing state update and the other doing error covariance update. owever, the computations of the covariance equation are approximately three times more computationally demanding than state equations. herefore, one should loo for a parallel implementation of an algorithm that significantly reduces the processing time for the covariance equations. In our case study [3], the covariance matrix (6 6) and the measurement matrix (3 6) can be partitioned into (3 3) submatrices, which allows partitioning of the Kalman gain matrix into (3 3) submatrices, each of which can be calculated independently. Based on the above partitioning method, we can map the computation of the submatrices into multiple tass and let them executed in parallel. Due to the symmetry of matrices and, both of them have 3 submatrices to be computed. ence, 3 processors (tass) can be applied to carry out this computation. owever, in computing the matrix all of the 3 submatrices of are needed, which increase the inter-tas communication time. he partitioning of the Kalman gain gives us a hint that we can tae 2 processors, one to computes K and the other to computes K 2. Based on this idea and the study of partitioned equation, we can distribute the computation as follows: as: Compute K, and and compute the state estimation and prediction. as2: Compute K 2, 2, 22 and 2, 22. For extended Kalman filter (EKF), the same partition method as above can be used. owever, in this point-topoint navigation application, we are taing the continuous time model and in time-update phase the error covariance is computed. o perform the integration for, the system state at every integration point should be nown. his prevents the possibility of executing the state and the covariance (in time update phase) separately on two processors. But we can still apply the partition strategy described above. Since we are measuring 2 state variables, the measurement Jacobian matrix is 2 6 and can be factorized into three 2 2 submatrices. [ 0 ] = 0, Defining the predicted covariance as and filtered covariance as, and dropping all the time indices and bracets which indicate functions for simplification, hen the matrices are partitioned into 2 2 as follows: = = = = hen in the Kalman gain equation, the matrix product becomes ence the Kalman gain equation becomes ( = ( 2 3( We see that the Kalman gain K is split into 3 submatrices, each of them can execute independently. So this partitioning method can be mapped onto 3 processors. Based on this idea and the study of equation, the computation is distributed as follows, with as as master tas and the remaining two as slave tass: as: Compute K, compute, compute estimated state X e, by, compute predicted state X - e,+, and the predicted error covariance. as2: Compute K 2 and compute 2, 22. as3: Compute K 3, compute 3,, 33 and compute predicted covariance = 2 3 = = [ ] K = ( + R ) R R R ) ) ) = K = K 2 K ( + R )

5 ARALLEL SIULAION RESULS he parallel simulations have been implemented in ANSI C, on a VEbus multiprocessor computing system under the real-time operating system VxWors with multiple general purpose processor boards, VE67 (Fig. 7). Figure 7. ultiprocessor VE-based system. Unix Server Unix Station he spacecraft we consider is a gravity gradient stabilized spacecraft with a circular orbit. he altitude r, inclination angle i, physical parameter and initial conditions are given in able 3. Since we were doing real-time simulation, the sensors were actually not available. We integrated the first order system equation and obtained the state variable value at each sampling period and superimposed a random number with certain standard deviation. Figures 8 illustrates the simulation results for the pitch angle. he timing comparisons for sequential and parallel versions are shown in able 4. Ethernet roces sor 0 roces sor roces sor 2 Shared Local Local VEbus he boards support shared memory through the VEbus. Each of them contains a C68040 processor and an Ethernet interface that supports C/I. We conducted simulation of extended Kalman filter on a single processor, regular Kalman filter on a single processor, extended and regular Kalman filter on multiple processors and square-root Kalman filter on single processor. able 3. hysical parameters and initial conditions. Figure 8. Estimated and measured pitch angle. able 4. Computation time (in microseconds) for sequential and parallel implementations. Filter type Sequential timimg arallel timing Regular 6,360 6,000 Extended 3,560 8,338 oment of inertia Initial angle Orbital parameter I x =20Kgm 2 I y =20Kgm 2 Iz=.2Kgm 2 θ=0. rad φ=0. rad ψ=0. rad r=352km i=28.5 ω 0 =0.004 rad Square root 9,650 N/A CONCLUSION he fuzzy adaptive Kalman filtering has been proposed for guidance and navigation of mobile robots, especially for 3-D environment. he regular extended Kalman filter requires high number of states for accurate navigation and

6 positioning and is unable to monitor the changing parameters. A fuzzy logic adaptive system (FLAS) is used to adjust the exponential weighting of a weighted EKF and prevent the Kalman filter from divergence. he fuzzy logic adaptive controller (FLAC) will continuously adjust the noise strengths in the filter s internal model, and tune the filter as well as possible. he FLAC performance has been evaluated by simulation of the fuzzy adaptive extended Kalman filtering scheme. he FLAC requires smaller number of states for the same accuracy and therefore it would need less computational effort. Alternatively, the same number of states (as in regular filter) would allow for more accurate navigation. owever, what is often the case in UAVs, if loss of accuracy due to discretization cannot be tolerated, continuous state equations have to be used. In such case, extended Kalman filter calculations can tae advantage of the relative independence of state and covariance matrix updates, which leads to parallelization of computations. he test results show that by adopting the partition method described in this paper, a time reduction in the standard Kalman filter is gained. For the extended Kalman filter, however, the parallel execution is slower than the sequential version. his occurs because the numerical integration of the state projection phase increases substantially the necessary computations, hence increases significantly intertas communication and synchronization. Future wor will involve investigation of more effective parallelization methods and combination of both approaches discussed in this paper. REFERENCES [] Brown R.G.;.Y.C. wang Introduction to Random Signals and Applied Kalman Filtering. John Wiley and Sons, New Yor. [2] Gelb A. (Ed.) Applied Optimal Estimation. he I ress, Cambridge, ass. [3] Johnson R.; S. Jayaram; L. Sun; J. Zalewsi Distributed rocessing Kalman Filter for Automated Vehicle arameter Estimation: A Case Study, roc. IASED Int l Conf. on Applied Simulation and odeling, pp [4] Johnson R.; Z. Qu; S. Jayaram; Y. Jin Autonomous Spacecraft Vehicle ealth onitoring and Control System Based on Real-ime odel-based Simlation, submitted for publication. [5] Lewis F.L Optimal Estimation with Introduction to Stochastic Control heory. John Wiley and Sons, New Yor. [6] Sasiade J.Z.; Q. Wang Sensor Fusion Based on Fuzzy Kalman Filtering for Autonomous Robot Vehicle, roc. 999 IEEE Int l Conf. on Robotics and Automation, pp

Fuzzy Adaptive Kalman Filtering for INS/GPS Data Fusion

Fuzzy Adaptive Kalman Filtering for INS/GPS Data Fusion A99936769 AMA-99-4307 Fuzzy Adaptive Kalman Filtering for INS/GPS Data Fusion J.Z. Sasiadek* and Q. Wang** Dept. of Mechanical & Aerospace Engineering Carleton University 1125 Colonel By Drive, Ottawa,

More information

with Application to Autonomous Vehicles

with Application to Autonomous Vehicles Nonlinear with Application to Autonomous Vehicles (Ph.D. Candidate) C. Silvestre (Supervisor) P. Oliveira (Co-supervisor) Institute for s and Robotics Instituto Superior Técnico Portugal January 2010 Presentation

More information

Evaluation of different wind estimation methods in flight tests with a fixed-wing UAV

Evaluation of different wind estimation methods in flight tests with a fixed-wing UAV Evaluation of different wind estimation methods in flight tests with a fixed-wing UAV Julian Sören Lorenz February 5, 2018 Contents 1 Glossary 2 2 Introduction 3 3 Tested algorithms 3 3.1 Unfiltered Method

More information

Design of Adaptive Filtering Algorithm for Relative Navigation

Design of Adaptive Filtering Algorithm for Relative Navigation Design of Adaptive Filtering Algorithm for Relative Navigation Je Young Lee, Hee Sung Kim, Kwang Ho Choi, Joonhoo Lim, Sung Jin Kang, Sebum Chun, and Hyung Keun Lee Abstract Recently, relative navigation

More information

Simultaneous Localization and Map Building Using Natural features in Outdoor Environments

Simultaneous Localization and Map Building Using Natural features in Outdoor Environments Simultaneous Localization and Map Building Using Natural features in Outdoor Environments Jose Guivant, Eduardo Nebot, Hugh Durrant Whyte Australian Centre for Field Robotics Department of Mechanical and

More information

Automated Tuning of the Nonlinear Complementary Filter for an Attitude Heading Reference Observer

Automated Tuning of the Nonlinear Complementary Filter for an Attitude Heading Reference Observer Automated Tuning of the Nonlinear Complementary Filter for an Attitude Heading Reference Observer Oscar De Silva, George K.I. Mann and Raymond G. Gosine Faculty of Engineering and Applied Sciences, Memorial

More information

Adaptive Unscented Kalman Filter with Multiple Fading Factors for Pico Satellite Attitude Estimation

Adaptive Unscented Kalman Filter with Multiple Fading Factors for Pico Satellite Attitude Estimation Adaptive Unscented Kalman Filter with Multiple Fading Factors for Pico Satellite Attitude Estimation Halil Ersin Söken and Chingiz Hajiyev Aeronautics and Astronautics Faculty Istanbul Technical University

More information

Kalman Filters with Uncompensated Biases

Kalman Filters with Uncompensated Biases Kalman Filters with Uncompensated Biases Renato Zanetti he Charles Stark Draper Laboratory, Houston, exas, 77058 Robert H. Bishop Marquette University, Milwaukee, WI 53201 I. INRODUCION An underlying assumption

More information

TTK4190 Guidance and Control Exam Suggested Solution Spring 2011

TTK4190 Guidance and Control Exam Suggested Solution Spring 2011 TTK4190 Guidance and Control Exam Suggested Solution Spring 011 Problem 1 A) The weight and buoyancy of the vehicle can be found as follows: W = mg = 15 9.81 = 16.3 N (1) B = 106 4 ( ) 0.6 3 3 π 9.81 =

More information

A SELF-TUNING KALMAN FILTER FOR AUTONOMOUS SPACECRAFT NAVIGATION

A SELF-TUNING KALMAN FILTER FOR AUTONOMOUS SPACECRAFT NAVIGATION A SELF-TUNING KALMAN FILTER FOR AUTONOMOUS SPACECRAFT NAVIGATION Son H. Truong National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) Greenbelt, Maryland, USA 2771 E-mail:

More information

A technique for simultaneous parameter identification and measurement calibration for overhead transmission lines

A technique for simultaneous parameter identification and measurement calibration for overhead transmission lines A technique for simultaneous parameter identification and measurement calibration for overhead transmission lines PAVEL HERING University of West Bohemia Department of cybernetics Univerzitni 8, 36 4 Pilsen

More information

An Adaptive Filter for a Small Attitude and Heading Reference System Using Low Cost Sensors

An Adaptive Filter for a Small Attitude and Heading Reference System Using Low Cost Sensors An Adaptive Filter for a Small Attitude and eading Reference System Using Low Cost Sensors Tongyue Gao *, Chuntao Shen, Zhenbang Gong, Jinjun Rao, and Jun Luo Department of Precision Mechanical Engineering

More information

FAULT DETECTION for SPACECRAFT ATTITUDE CONTROL SYSTEM. M. Amin Vahid D. Mechanical Engineering Department Concordia University December 19 th, 2010

FAULT DETECTION for SPACECRAFT ATTITUDE CONTROL SYSTEM. M. Amin Vahid D. Mechanical Engineering Department Concordia University December 19 th, 2010 FAULT DETECTION for SPACECRAFT ATTITUDE CONTROL SYSTEM M. Amin Vahid D. Mechanical Engineering Department Concordia University December 19 th, 2010 Attitude control : the exercise of control over the orientation

More information

Comparision of Probabilistic Navigation methods for a Swimming Robot

Comparision of Probabilistic Navigation methods for a Swimming Robot Comparision of Probabilistic Navigation methods for a Swimming Robot Anwar Ahmad Quraishi Semester Project, Autumn 2013 Supervisor: Yannic Morel BioRobotics Laboratory Headed by Prof. Aue Jan Ijspeert

More information

Multi-layer Flight Control Synthesis and Analysis of a Small-scale UAV Helicopter

Multi-layer Flight Control Synthesis and Analysis of a Small-scale UAV Helicopter Multi-layer Flight Control Synthesis and Analysis of a Small-scale UAV Helicopter Ali Karimoddini, Guowei Cai, Ben M. Chen, Hai Lin and Tong H. Lee Graduate School for Integrative Sciences and Engineering,

More information

UAV Navigation: Airborne Inertial SLAM

UAV Navigation: Airborne Inertial SLAM Introduction UAV Navigation: Airborne Inertial SLAM Jonghyuk Kim Faculty of Engineering and Information Technology Australian National University, Australia Salah Sukkarieh ARC Centre of Excellence in

More information

VEHICLE WHEEL-GROUND CONTACT ANGLE ESTIMATION: WITH APPLICATION TO MOBILE ROBOT TRACTION CONTROL

VEHICLE WHEEL-GROUND CONTACT ANGLE ESTIMATION: WITH APPLICATION TO MOBILE ROBOT TRACTION CONTROL 1/10 IAGNEMMA AND DUBOWSKY VEHICLE WHEEL-GROUND CONTACT ANGLE ESTIMATION: WITH APPLICATION TO MOBILE ROBOT TRACTION CONTROL K. IAGNEMMA S. DUBOWSKY Massachusetts Institute of Technology, Cambridge, MA

More information

FIBER OPTIC GYRO-BASED ATTITUDE DETERMINATION FOR HIGH- PERFORMANCE TARGET TRACKING

FIBER OPTIC GYRO-BASED ATTITUDE DETERMINATION FOR HIGH- PERFORMANCE TARGET TRACKING FIBER OPTIC GYRO-BASED ATTITUDE DETERMINATION FOR HIGH- PERFORMANCE TARGET TRACKING Elias F. Solorzano University of Toronto (Space Flight Laboratory) Toronto, ON (Canada) August 10 th, 2016 30 th AIAA/USU

More information

A FUZZY LOGIC BASED MULTI-SENSOR NAVIGATION SYSTEM FOR AN UNMANNED SURFACE VEHICLE. T Xu, J Chudley and R Sutton

A FUZZY LOGIC BASED MULTI-SENSOR NAVIGATION SYSTEM FOR AN UNMANNED SURFACE VEHICLE. T Xu, J Chudley and R Sutton A FUZZY LOGIC BASED MULTI-SENSOR NAVIGATION SYSTEM FOR AN UNMANNED SURFACE VEHICLE T Xu, J Chudley and R Sutton Marine and Industrial Dynamic Analysis Research Group School of Engineering The University

More information

Integrated Navigation System Using Sigma-Point Kalman Filter and Particle Filter

Integrated Navigation System Using Sigma-Point Kalman Filter and Particle Filter Integrated Navigation System Using Sigma-Point Kalman Filter and Particle Filter Dr. Milos Sota and Dr. Milan Sopata and Dr. Stefan Berezny Academy of Armed Forces, Demanova 393, 311 Liptovsy Miulas, Slova

More information

Measurement Observers for Pose Estimation on SE(3)

Measurement Observers for Pose Estimation on SE(3) Measurement Observers for Pose Estimation on SE(3) By Geoffrey Stacey u4308250 Supervised by Prof. Robert Mahony 24 September 2010 A thesis submitted in part fulfilment of the degree of Bachelor of Engineering

More information

Research on Fusion Algorithm Based on Butterworth Filter and Kalmar Filter

Research on Fusion Algorithm Based on Butterworth Filter and Kalmar Filter 2017 2 nd International Conference on Artificial Intelligence and Engineering Applications (AIEA 2017) ISBN: 978-1-60595-485-1 Research on Fusion Algorithm Based on Butterworth Filter and Kalmar Filter

More information

Fuzzy Logic Based Nonlinear Kalman Filter Applied to Mobile Robots Modelling

Fuzzy Logic Based Nonlinear Kalman Filter Applied to Mobile Robots Modelling Fuzzy Logic Based Nonlinear Kalman Filter Applied to Mobile Robots Modelling Rodrigo Carrasco Sch. Department of Electrical Engineering Pontificia Universidad Católica de Chile, CHILE E-mail: rax@ing.puc.cl

More information

Simplified Filtering Estimator for Spacecraft Attitude Determination from Phase Information of GPS Signals

Simplified Filtering Estimator for Spacecraft Attitude Determination from Phase Information of GPS Signals WCE 7, July - 4, 7, London, U.K. Simplified Filtering Estimator for Spacecraft Attitude Determination from Phase Information of GPS Signals S. Purivigraipong, Y. Hashida, and M. Unwin Abstract his paper

More information

A Centralized Control Algorithm for Target Tracking with UAVs

A Centralized Control Algorithm for Target Tracking with UAVs A Centralized Control Algorithm for Tracing with UAVs Pengcheng Zhan, David W. Casbeer, A. Lee Swindlehurst Dept. of Elec. & Comp. Engineering, Brigham Young University, Provo, UT, USA, 8462 Telephone:

More information

A NOVEL OPTIMAL PROBABILITY DENSITY FUNCTION TRACKING FILTER DESIGN 1

A NOVEL OPTIMAL PROBABILITY DENSITY FUNCTION TRACKING FILTER DESIGN 1 A NOVEL OPTIMAL PROBABILITY DENSITY FUNCTION TRACKING FILTER DESIGN 1 Jinglin Zhou Hong Wang, Donghua Zhou Department of Automation, Tsinghua University, Beijing 100084, P. R. China Control Systems Centre,

More information

Problem 1: Ship Path-Following Control System (35%)

Problem 1: Ship Path-Following Control System (35%) Problem 1: Ship Path-Following Control System (35%) Consider the kinematic equations: Figure 1: NTNU s research vessel, R/V Gunnerus, and Nomoto model: T ṙ + r = Kδ (1) with T = 22.0 s and K = 0.1 s 1.

More information

ESTIMATOR STABILITY ANALYSIS IN SLAM. Teresa Vidal-Calleja, Juan Andrade-Cetto, Alberto Sanfeliu

ESTIMATOR STABILITY ANALYSIS IN SLAM. Teresa Vidal-Calleja, Juan Andrade-Cetto, Alberto Sanfeliu ESTIMATOR STABILITY ANALYSIS IN SLAM Teresa Vidal-Calleja, Juan Andrade-Cetto, Alberto Sanfeliu Institut de Robtica i Informtica Industrial, UPC-CSIC Llorens Artigas 4-6, Barcelona, 88 Spain {tvidal, cetto,

More information

Dynamic-Fuzzy-Neural-Networks-Based Control of an Unmanned Aerial Vehicle

Dynamic-Fuzzy-Neural-Networks-Based Control of an Unmanned Aerial Vehicle Proceedings of the 7th World Congress The International Federation of Automatic Control Seoul, Korea, July 6-, 8 Dynamic-Fuzzy-Neural-Networks-Based Control of an Unmanned Aerial Vehicle Zhe Tang*, Meng

More information

Distributed Data Fusion with Kalman Filters. Simon Julier Computer Science Department University College London

Distributed Data Fusion with Kalman Filters. Simon Julier Computer Science Department University College London Distributed Data Fusion with Kalman Filters Simon Julier Computer Science Department University College London S.Julier@cs.ucl.ac.uk Structure of Talk Motivation Kalman Filters Double Counting Optimal

More information

Autonomous Navigation, Guidance and Control of Small 4-wheel Electric Vehicle

Autonomous Navigation, Guidance and Control of Small 4-wheel Electric Vehicle Journal of Asian Electric Vehicles, Volume 10, Number 1, June 01 Autonomous Navigation, Guidance and Control of Small 4-wheel Electric Vehicle Satoshi Suzuki International Young Researchers Empowerment

More information

A NONLINEARITY MEASURE FOR ESTIMATION SYSTEMS

A NONLINEARITY MEASURE FOR ESTIMATION SYSTEMS AAS 6-135 A NONLINEARITY MEASURE FOR ESTIMATION SYSTEMS Andrew J. Sinclair,JohnE.Hurtado, and John L. Junkins The concept of nonlinearity measures for dynamical systems is extended to estimation systems,

More information

Probability Map Building of Uncertain Dynamic Environments with Indistinguishable Obstacles

Probability Map Building of Uncertain Dynamic Environments with Indistinguishable Obstacles Probability Map Building of Uncertain Dynamic Environments with Indistinguishable Obstacles Myungsoo Jun and Raffaello D Andrea Sibley School of Mechanical and Aerospace Engineering Cornell University

More information

Design of Advanced Control Techniques for an Underwater Vehicle

Design of Advanced Control Techniques for an Underwater Vehicle Design of Advanced Control Techniques for an Underwater Vehicle Divine Maalouf Advisors: Vincent Creuze Ahmed Chemori René Zapata 5 juillet 2012 OUTLINE I. Introduction: Problems/Challenges II. Modeling

More information

An Introduction to the Kalman Filter

An Introduction to the Kalman Filter An Introduction to the Kalman Filter by Greg Welch 1 and Gary Bishop 2 Department of Computer Science University of North Carolina at Chapel Hill Chapel Hill, NC 275993175 Abstract In 1960, R.E. Kalman

More information

Multi-Objective Autonomous Spacecraft Motion Planning around Near-Earth Asteroids using Machine Learning

Multi-Objective Autonomous Spacecraft Motion Planning around Near-Earth Asteroids using Machine Learning Multi-Objective Autonomous Spacecraft Motion Planning around Near-Earth Asteroids using Machine Learning CS 229 Final Project - Fall 2018 Category: Physical Sciences Tommaso Guffanti SUNetID: tommaso@stanford.edu

More information

Tuning of Extended Kalman Filter for nonlinear State Estimation

Tuning of Extended Kalman Filter for nonlinear State Estimation OSR Journal of Computer Engineering (OSR-JCE) e-ssn: 78-0661,p-SSN: 78-877, Volume 18, ssue 5, Ver. V (Sep. - Oct. 016), PP 14-19 www.iosrjournals.org Tuning of Extended Kalman Filter for nonlinear State

More information

Adaptive Two-Stage EKF for INS-GPS Loosely Coupled System with Unknown Fault Bias

Adaptive Two-Stage EKF for INS-GPS Loosely Coupled System with Unknown Fault Bias Journal of Gloal Positioning Systems (26 Vol. 5 No. -2:62-69 Adaptive wo-stage EKF for INS-GPS Loosely Coupled System with Unnown Fault Bias Kwang Hoon Kim Jang Gyu Lee School of Electrical Engineering

More information

1 Kalman Filter Introduction

1 Kalman Filter Introduction 1 Kalman Filter Introduction You should first read Chapter 1 of Stochastic models, estimation, and control: Volume 1 by Peter S. Maybec (available here). 1.1 Explanation of Equations (1-3) and (1-4) Equation

More information

Chapter 4 State Estimation

Chapter 4 State Estimation Chapter 4 State Estimation Navigation of an unmanned vehicle, always depends on a good estimation of the vehicle states. Especially if no external sensors or marers are available, more or less complex

More information

Nonlinear Landing Control for Quadrotor UAVs

Nonlinear Landing Control for Quadrotor UAVs Nonlinear Landing Control for Quadrotor UAVs Holger Voos University of Applied Sciences Ravensburg-Weingarten, Mobile Robotics Lab, D-88241 Weingarten Abstract. Quadrotor UAVs are one of the most preferred

More information

Cramér-Rao Bounds for Estimation of Linear System Noise Covariances

Cramér-Rao Bounds for Estimation of Linear System Noise Covariances Journal of Mechanical Engineering and Automation (): 6- DOI: 593/jjmea Cramér-Rao Bounds for Estimation of Linear System oise Covariances Peter Matiso * Vladimír Havlena Czech echnical University in Prague

More information

Multi-Sensor Fusion with Interaction Multiple Model and Chi-Square Test Tolerant Filter

Multi-Sensor Fusion with Interaction Multiple Model and Chi-Square Test Tolerant Filter Article Multi-Sensor Fusion with Interaction Multiple Model and Chi-Square Test Tolerant Filter Chun Yang,, Arash Mohammadi 2, *,, and Qing-Wei Chen College of Automation, Nanjing University of Science

More information

Space Surveillance with Star Trackers. Part II: Orbit Estimation

Space Surveillance with Star Trackers. Part II: Orbit Estimation AAS -3 Space Surveillance with Star Trackers. Part II: Orbit Estimation Ossama Abdelkhalik, Daniele Mortari, and John L. Junkins Texas A&M University, College Station, Texas 7783-3 Abstract The problem

More information

An artificial neural networks (ANNs) model is a functional abstraction of the

An artificial neural networks (ANNs) model is a functional abstraction of the CHAPER 3 3. Introduction An artificial neural networs (ANNs) model is a functional abstraction of the biological neural structures of the central nervous system. hey are composed of many simple and highly

More information

A New Nonlinear Filtering Method for Ballistic Target Tracking

A New Nonlinear Filtering Method for Ballistic Target Tracking th International Conference on Information Fusion Seattle, WA, USA, July 6-9, 9 A New Nonlinear Filtering Method for Ballistic arget racing Chunling Wu Institute of Electronic & Information Engineering

More information

Recursive Least Squares for an Entropy Regularized MSE Cost Function

Recursive Least Squares for an Entropy Regularized MSE Cost Function Recursive Least Squares for an Entropy Regularized MSE Cost Function Deniz Erdogmus, Yadunandana N. Rao, Jose C. Principe Oscar Fontenla-Romero, Amparo Alonso-Betanzos Electrical Eng. Dept., University

More information

Integration of a strapdown gravimeter system in an Autonomous Underwater Vehicle

Integration of a strapdown gravimeter system in an Autonomous Underwater Vehicle Integration of a strapdown gravimeter system in an Autonomous Underwater Vehicle Clément ROUSSEL PhD - Student (L2G - Le Mans - FRANCE) April 17, 2015 Clément ROUSSEL ISPRS / CIPA Workshop April 17, 2015

More information

Quaternion based Extended Kalman Filter

Quaternion based Extended Kalman Filter Quaternion based Extended Kalman Filter, Sergio Montenegro About this lecture General introduction to rotations and quaternions. Introduction to Kalman Filter for Attitude Estimation How to implement and

More information

Extension of Farrenkopf Steady-State Solutions with Estimated Angular Rate

Extension of Farrenkopf Steady-State Solutions with Estimated Angular Rate Extension of Farrenopf Steady-State Solutions with Estimated Angular Rate Andrew D. Dianetti and John L. Crassidis University at Buffalo, State University of New Yor, Amherst, NY 46-44 Steady-state solutions

More information

Towards Reduced-Order Models for Online Motion Planning and Control of UAVs in the Presence of Wind

Towards Reduced-Order Models for Online Motion Planning and Control of UAVs in the Presence of Wind Towards Reduced-Order Models for Online Motion Planning and Control of UAVs in the Presence of Wind Ashray A. Doshi, Surya P. Singh and Adam J. Postula The University of Queensland, Australia {a.doshi,

More information

Miscellaneous. Regarding reading materials. Again, ask questions (if you have) and ask them earlier

Miscellaneous. Regarding reading materials. Again, ask questions (if you have) and ask them earlier Miscellaneous Regarding reading materials Reading materials will be provided as needed If no assigned reading, it means I think the material from class is sufficient Should be enough for you to do your

More information

Improved Kalman Filter Initialisation using Neurofuzzy Estimation

Improved Kalman Filter Initialisation using Neurofuzzy Estimation Improved Kalman Filter Initialisation using Neurofuzzy Estimation J. M. Roberts, D. J. Mills, D. Charnley and C. J. Harris Introduction It is traditional to initialise Kalman filters and extended Kalman

More information

Design and modelling of an airship station holding controller for low cost satellite operations

Design and modelling of an airship station holding controller for low cost satellite operations AIAA Guidance, Navigation, and Control Conference and Exhibit 15-18 August 25, San Francisco, California AIAA 25-62 Design and modelling of an airship station holding controller for low cost satellite

More information

Kalman Filter. Predict: Update: x k k 1 = F k x k 1 k 1 + B k u k P k k 1 = F k P k 1 k 1 F T k + Q

Kalman Filter. Predict: Update: x k k 1 = F k x k 1 k 1 + B k u k P k k 1 = F k P k 1 k 1 F T k + Q Kalman Filter Kalman Filter Predict: x k k 1 = F k x k 1 k 1 + B k u k P k k 1 = F k P k 1 k 1 F T k + Q Update: K = P k k 1 Hk T (H k P k k 1 Hk T + R) 1 x k k = x k k 1 + K(z k H k x k k 1 ) P k k =(I

More information

Analysis and Design of Hybrid AI/Control Systems

Analysis and Design of Hybrid AI/Control Systems Analysis and Design of Hybrid AI/Control Systems Glen Henshaw, PhD (formerly) Space Systems Laboratory University of Maryland,College Park 13 May 2011 Dynamically Complex Vehicles Increased deployment

More information

We are IntechOpen, the first native scientific publisher of Open Access books. International authors and editors. Our authors are among the TOP 1%

We are IntechOpen, the first native scientific publisher of Open Access books. International authors and editors. Our authors are among the TOP 1% We are IntechOpen, the first native scientific publisher of Open Access boos 3,350 108,000 1.7 M Open access boos available International authors and editors Downloads Our authors are among the 151 Countries

More information

State Estimation for Autopilot Control of Small Unmanned Aerial Vehicles in Windy Conditions

State Estimation for Autopilot Control of Small Unmanned Aerial Vehicles in Windy Conditions University of Colorado, Boulder CU Scholar Aerospace Engineering Sciences Graduate Theses & Dissertations Aerospace Engineering Sciences Summer 7-23-2014 State Estimation for Autopilot Control of Small

More information

SATELLITE ORBIT ESTIMATION USING EARTH MAGNETIC FIELD MEASUREMENTS

SATELLITE ORBIT ESTIMATION USING EARTH MAGNETIC FIELD MEASUREMENTS International Journal of Engineering and echnology, Vol. 3, No., 6, pp. 63-71 63 SAELLIE ORBI ESIMAION USING EARH MAGNEIC FIELD MEASUREMENS Mohammad Nizam Filipsi, Renuganth Varatharajoo Department of

More information

Introduction p. 1 Fundamental Problems p. 2 Core of Fundamental Theory and General Mathematical Ideas p. 3 Classical Statistical Decision p.

Introduction p. 1 Fundamental Problems p. 2 Core of Fundamental Theory and General Mathematical Ideas p. 3 Classical Statistical Decision p. Preface p. xiii Acknowledgment p. xix Introduction p. 1 Fundamental Problems p. 2 Core of Fundamental Theory and General Mathematical Ideas p. 3 Classical Statistical Decision p. 4 Bayes Decision p. 5

More information

On the Representation and Estimation of Spatial Uncertainty

On the Representation and Estimation of Spatial Uncertainty Randall C. Smith* SRI International Medo Park, California 94025 Peter Cheeseman NASA Ames Moffett Field, California 94025 On the Representation and Estimation of Spatial Uncertainty Abstract This paper

More information

2D Image Processing. Bayes filter implementation: Kalman filter

2D Image Processing. Bayes filter implementation: Kalman filter 2D Image Processing Bayes filter implementation: Kalman filter Prof. Didier Stricker Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche Intelligenz http://av.dfki.de

More information

Baro-INS Integration with Kalman Filter

Baro-INS Integration with Kalman Filter Baro-INS Integration with Kalman Filter Vivek Dadu c,b.venugopal Reddy a, Brajnish Sitara a, R.S.Chandrasekhar a & G.Satheesh Reddy a c Hindustan Aeronautics Ltd, Korwa, India. a Research Centre Imarat,

More information

ROBOTICS 01PEEQW. Basilio Bona DAUIN Politecnico di Torino

ROBOTICS 01PEEQW. Basilio Bona DAUIN Politecnico di Torino ROBOTICS 01PEEQW Basilio Bona DAUIN Politecnico di Torino Probabilistic Fundamentals in Robotics Gaussian Filters Course Outline Basic mathematical framework Probabilistic models of mobile robots Mobile

More information

Simulation of Backstepping-based Nonlinear Control for Quadrotor Helicopter

Simulation of Backstepping-based Nonlinear Control for Quadrotor Helicopter APPLICATIONS OF MODELLING AND SIMULATION http://amsjournal.ams-mss.org eissn 2680-8084 VOL 2, NO. 1, 2018, 34-40 Simulation of Backstepping-based Nonlinear Control for Quadrotor Helicopter M.A.M. Basri*,

More information

2D Image Processing. Bayes filter implementation: Kalman filter

2D Image Processing. Bayes filter implementation: Kalman filter 2D Image Processing Bayes filter implementation: Kalman filter Prof. Didier Stricker Dr. Gabriele Bleser Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche

More information

Two dimensional rate gyro bias estimation for precise pitch and roll attitude determination utilizing a dual arc accelerometer array

Two dimensional rate gyro bias estimation for precise pitch and roll attitude determination utilizing a dual arc accelerometer array Rochester Institute of Technology RIT Scholar Works Theses Thesis/Dissertation Collections -- Two dimensional rate gyro bias estimation for precise pitch and roll attitude determination utilizing a dual

More information

Target tracking and classification for missile using interacting multiple model (IMM)

Target tracking and classification for missile using interacting multiple model (IMM) Target tracking and classification for missile using interacting multiple model (IMM Kyungwoo Yoo and Joohwan Chun KAIST School of Electrical Engineering Yuseong-gu, Daejeon, Republic of Korea Email: babooovv@kaist.ac.kr

More information

COMBINED ADAPTIVE CONTROLLER FOR UAV GUIDANCE

COMBINED ADAPTIVE CONTROLLER FOR UAV GUIDANCE COMBINED ADAPTIVE CONTROLLER FOR UAV GUIDANCE B.R. Andrievsky, A.L. Fradkov Institute for Problems of Mechanical Engineering of Russian Academy of Sciences 61, Bolshoy av., V.O., 199178 Saint Petersburg,

More information

A Complementary Filter for Attitude Estimation of a Fixed-Wing UAV

A Complementary Filter for Attitude Estimation of a Fixed-Wing UAV A Complementary Filter for Attitude Estimation of a Fixed-Wing UAV Mark Euston, Paul Coote, Robert Mahony, Jonghyuk Kim and Tarek Hamel Abstract This paper considers the question of using a nonlinear complementary

More information

Influence Analysis of Star Sensors Sampling Frequency on Attitude Determination Accuracy

Influence Analysis of Star Sensors Sampling Frequency on Attitude Determination Accuracy Sensors & ransducers Vol. Special Issue June pp. -8 Sensors & ransducers by IFSA http://www.sensorsportal.com Influence Analysis of Star Sensors Sampling Frequency on Attitude Determination Accuracy Yuanyuan

More information

Feedback Control of Spacecraft Rendezvous Maneuvers using Differential Drag

Feedback Control of Spacecraft Rendezvous Maneuvers using Differential Drag Feedback Control of Spacecraft Rendezvous Maneuvers using Differential Drag D. Pérez 1 and R. Bevilacqua Rensselaer Polytechnic Institute, Troy, New York, 1180 This work presents a feedback control strategy

More information

CS491/691: Introduction to Aerial Robotics

CS491/691: Introduction to Aerial Robotics CS491/691: Introduction to Aerial Robotics Topic: State Estimation Dr. Kostas Alexis (CSE) World state (or system state) Belief state: Our belief/estimate of the world state World state: Real state of

More information

v are uncorrelated, zero-mean, white

v are uncorrelated, zero-mean, white 6.0 EXENDED KALMAN FILER 6.1 Introduction One of the underlying assumptions of the Kalman filter is that it is designed to estimate the states of a linear system based on measurements that are a linear

More information

Autonomous Navigation for Flying Robots

Autonomous Navigation for Flying Robots Computer Vision Group Prof. Daniel Cremers Autonomous Navigation for Flying Robots Lecture 6.2: Kalman Filter Jürgen Sturm Technische Universität München Motivation Bayes filter is a useful tool for state

More information

Using the Kalman Filter to Estimate the State of a Maneuvering Aircraft

Using the Kalman Filter to Estimate the State of a Maneuvering Aircraft 1 Using the Kalman Filter to Estimate the State of a Maneuvering Aircraft K. Meier and A. Desai Abstract Using sensors that only measure the bearing angle and range of an aircraft, a Kalman filter is implemented

More information

Thrust acceleration estimation using an on-line non-linear recursive least squares algorithm

Thrust acceleration estimation using an on-line non-linear recursive least squares algorithm 7 Thrust acceleration estimation using an on-line non-linear recursive least squares algorithm N Ghahramani, A Naghash 2, and F Towhidkhah 2 Department of Aerospace Engineering, Amirkabir University of

More information

Delayed Fusion of Relative State Measurements by Extending Stochastic Cloning via Direct Kalman Filtering

Delayed Fusion of Relative State Measurements by Extending Stochastic Cloning via Direct Kalman Filtering Delayed Fusion of Relative State Measurements by Extending Stochastic Cloning via Direct Kalman Filtering Ehsan Asadi and Carlo L Bottasso Department of Aerospace Science and echnology Politecnico di Milano,

More information

On Underweighting Nonlinear Measurements

On Underweighting Nonlinear Measurements On Underweighting Nonlinear Measurements Renato Zanetti The Charles Stark Draper Laboratory, Houston, Texas 7758 Kyle J. DeMars and Robert H. Bishop The University of Texas at Austin, Austin, Texas 78712

More information

Distributed estimation in sensor networks

Distributed estimation in sensor networks in sensor networks A. Benavoli Dpt. di Sistemi e Informatica Università di Firenze, Italy. e-mail: benavoli@dsi.unifi.it Outline 1 An introduction to 2 3 An introduction to An introduction to In recent

More information

Information Exchange in Multi-rover SLAM

Information Exchange in Multi-rover SLAM nformation Exchange in Multi-rover SLAM Brandon M Jones and Lang Tong School of Electrical and Computer Engineering Cornell University, thaca, NY 53 {bmj3,lt35}@cornelledu Abstract We investigate simultaneous

More information

Pointing Control for Low Altitude Triple Cubesat Space Darts

Pointing Control for Low Altitude Triple Cubesat Space Darts Pointing Control for Low Altitude Triple Cubesat Space Darts August 12 th, 2009 U.S. Naval Research Laboratory Washington, D.C. Code 8231-Attitude Control System James Armstrong, Craig Casey, Glenn Creamer,

More information

Automatic Self-Calibration of a Vision System during Robot Motion

Automatic Self-Calibration of a Vision System during Robot Motion Proceedings of the 2006 IEEE International Conference on Robotics and Automation Orlando, Florida - May 2006 Automatic Self-Calibration of a Vision System during Robot Motion Agostino Martinelli, avide

More information

Chapter 1. Introduction. 1.1 System Architecture

Chapter 1. Introduction. 1.1 System Architecture Chapter 1 Introduction 1.1 System Architecture The objective of this book is to prepare the reader to do research in the exciting and rapidly developing field of autonomous navigation, guidance, and control

More information

Mini-Course 07 Kalman Particle Filters. Henrique Massard da Fonseca Cesar Cunha Pacheco Wellington Bettencurte Julio Dutra

Mini-Course 07 Kalman Particle Filters. Henrique Massard da Fonseca Cesar Cunha Pacheco Wellington Bettencurte Julio Dutra Mini-Course 07 Kalman Particle Filters Henrique Massard da Fonseca Cesar Cunha Pacheco Wellington Bettencurte Julio Dutra Agenda State Estimation Problems & Kalman Filter Henrique Massard Steady State

More information

RECURSIVE OUTLIER-ROBUST FILTERING AND SMOOTHING FOR NONLINEAR SYSTEMS USING THE MULTIVARIATE STUDENT-T DISTRIBUTION

RECURSIVE OUTLIER-ROBUST FILTERING AND SMOOTHING FOR NONLINEAR SYSTEMS USING THE MULTIVARIATE STUDENT-T DISTRIBUTION 1 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, SEPT. 3 6, 1, SANTANDER, SPAIN RECURSIVE OUTLIER-ROBUST FILTERING AND SMOOTHING FOR NONLINEAR SYSTEMS USING THE MULTIVARIATE STUDENT-T

More information

Sigma-Point Kalman Filters for Nonlinear Estimation and Sensor-Fusion - Applications to Integrated Navigation - Rudolph van der Merwe and Eric A.

Sigma-Point Kalman Filters for Nonlinear Estimation and Sensor-Fusion - Applications to Integrated Navigation - Rudolph van der Merwe and Eric A. Sigma-Point Kalman Filters for Nonlinear Estimation and Sensor-Fusion - Applications to Integrated Navigation - Rudolph van der Merwe and Eric A. Wan OGI School of Science & Engineering, Oregon Health

More information

A nonlinear filtering tool for analysis of hot-loop test campaings

A nonlinear filtering tool for analysis of hot-loop test campaings A nonlinear filtering tool for analysis of hot-loop test campaings Enso Ikonen* Jenő Kovács*, ** * Systems Engineering Laboratory, Department of Process and Environmental Engineering, University of Oulu,

More information

Estimating the trajectory of a space vehicle passing by the Moon using Kalman Filter

Estimating the trajectory of a space vehicle passing by the Moon using Kalman Filter Journal of Physics: Conference Series PAPER OPEN ACCESS Estimating the trajectory of a space vehicle passing by the Moon using Kalman Filter To cite this article: A F S Ferreira et al 2015 J. Phys.: Conf.

More information

FERMENTATION BATCH PROCESS MONITORING BY STEP-BY-STEP ADAPTIVE MPCA. Ning He, Lei Xie, Shu-qing Wang, Jian-ming Zhang

FERMENTATION BATCH PROCESS MONITORING BY STEP-BY-STEP ADAPTIVE MPCA. Ning He, Lei Xie, Shu-qing Wang, Jian-ming Zhang FERMENTATION BATCH PROCESS MONITORING BY STEP-BY-STEP ADAPTIVE MPCA Ning He Lei Xie Shu-qing Wang ian-ming Zhang National ey Laboratory of Industrial Control Technology Zhejiang University Hangzhou 3007

More information

ESMF Based Multiple UAVs Active Cooperative Observation Method in Relative Velocity Coordinates

ESMF Based Multiple UAVs Active Cooperative Observation Method in Relative Velocity Coordinates Joint 48th IEEE Conference on Decision and Control and 8th Chinese Control Conference Shanghai, P.R. China, December 6-8, 009 WeCIn5.4 ESMF Based Multiple UAVs Active Cooperative Observation Method in

More information

Consensus Algorithms are Input-to-State Stable

Consensus Algorithms are Input-to-State Stable 05 American Control Conference June 8-10, 05. Portland, OR, USA WeC16.3 Consensus Algorithms are Input-to-State Stable Derek B. Kingston Wei Ren Randal W. Beard Department of Electrical and Computer Engineering

More information

An Evaluation of UAV Path Following Algorithms

An Evaluation of UAV Path Following Algorithms 213 European Control Conference (ECC) July 17-19, 213, Zürich, Switzerland. An Evaluation of UAV Following Algorithms P.B. Sujit, Srikanth Saripalli, J.B. Sousa Abstract following is the simplest desired

More information

A Study of Covariances within Basic and Extended Kalman Filters

A Study of Covariances within Basic and Extended Kalman Filters A Study of Covariances within Basic and Extended Kalman Filters David Wheeler Kyle Ingersoll December 2, 2013 Abstract This paper explores the role of covariance in the context of Kalman filters. The underlying

More information

DESIGN AND IMPLEMENTATION OF SENSORLESS SPEED CONTROL FOR INDUCTION MOTOR DRIVE USING AN OPTIMIZED EXTENDED KALMAN FILTER

DESIGN AND IMPLEMENTATION OF SENSORLESS SPEED CONTROL FOR INDUCTION MOTOR DRIVE USING AN OPTIMIZED EXTENDED KALMAN FILTER INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATION ENGINEERING & TECHNOLOGY (IJECET) International Journal of Electronics and Communication Engineering & Technology (IJECET), ISSN 0976 ISSN 0976 6464(Print)

More information

Research Article Robust Adaptive Filter for Small Satellite Attitude Estimation Based on Magnetometer and Gyro

Research Article Robust Adaptive Filter for Small Satellite Attitude Estimation Based on Magnetometer and Gyro Abstract and Applied Analysis Volume 214, Article ID 159149, 7 pages http://dx.doi.org/1.1155/214/159149 Research Article Robust Adaptive Filter for Small Satellite Attitude Estimation Based on Magnetometer

More information

A Model-Free Control System Based on the Sliding Mode Control Method with Applications to Multi-Input-Multi-Output Systems

A Model-Free Control System Based on the Sliding Mode Control Method with Applications to Multi-Input-Multi-Output Systems Proceedings of the 4 th International Conference of Control, Dynamic Systems, and Robotics (CDSR'17) Toronto, Canada August 21 23, 2017 Paper No. 119 DOI: 10.11159/cdsr17.119 A Model-Free Control System

More information

ANALYSIS OF AUTOPILOT SYSTEM BASED ON BANK ANGLE OF SMALL UAV

ANALYSIS OF AUTOPILOT SYSTEM BASED ON BANK ANGLE OF SMALL UAV ANALYSIS OF AUTOPILOT SYSTEM BASED ON BANK ANGLE OF SMALL UAV MAY SAN HLAING, ZAW MIN NAING, 3 MAUNG MAUNG LATT, 4 HLA MYO TUN,4 Department of Electronic Engineering, Mandalay Technological University,

More information

Recursive On-orbit Calibration of Star Sensors

Recursive On-orbit Calibration of Star Sensors Recursive On-orbit Calibration of Star Sensors D. odd Griffith 1 John L. Junins 2 Abstract Estimation of calibration parameters for a star tracer is investigated. Conventional estimation schemes are evaluated

More information

Algorithm for Multiple Model Adaptive Control Based on Input-Output Plant Model

Algorithm for Multiple Model Adaptive Control Based on Input-Output Plant Model BULGARIAN ACADEMY OF SCIENCES CYBERNEICS AND INFORMAION ECHNOLOGIES Volume No Sofia Algorithm for Multiple Model Adaptive Control Based on Input-Output Plant Model sonyo Slavov Department of Automatics

More information