A COMPACT MODEL FOR SPHERICAL ROUGH CONTACTS

Size: px
Start display at page:

Download "A COMPACT MODEL FOR SPHERICAL ROUGH CONTACTS"

Transcription

1 A COMPACT MODEL FOR SPHERICAL ROUGH CONTACTS Majid Bahrami M. M. Yovanovich J. R. Culham Microelectronics Heat Transfer Laboratory Department of Mechanical Engineering University of Waterloo Ontario, Canada

2 OVERVIEW Introduction Objectives Present Model General Pressure Distribution Dimensional Analysis Comparison with Experimental Data Conclusions

3 INTRODUCTION Contact of Spheres elastic, smooth Hertz (1881) theory of elastic contact of spheres elastic, rough spheres, elastic microcontacts Greenwood and Tripp (1967) plastic, rough surfaces, plastic microcontacts Mikic and Roca (1974) roughness parameter Greenwood et al. (1984) P Hz r/a Hz P,Hz 1 r/a Hz 3

4 OBJECTIVES develop model to predict the parameters of spherical contact: pressure distribution, elastic deformation, compliance, number of microcontacts, size of the contact area derive simple correlations for determining contact parameters that can be used in other analyses such as thermal contact models 4

5 COOPER MIKIC YOVANOVICH (CMY) (1969) conforming rough contacts Plastic Model Gaussian surfaces σ σ 1 1 m ω z1 m z mean plane 1 Y σ mean plane ω smooth flat m Y z plane plastically deformed hemispherical asperities a) section through two contacting surfaces equivalent rough b) corresponding section through equivalent rough - smooth flat cross-level theory A r A a 1 erfc Y/ a s 8 m exp erfc n s 1 16 m exp erfc A a 5

6 MICROHARDNESS Hegazy (1985) 4 Vickers micro-hardness macro-hardness microhardness may not be constant throughout the material as a result of machining process microhardness decreases with increasing depth of indentation until bulk hardness level Hardness H (GPa) t d V d V /t=7 SS 34 Ni Zr-.5% wt Nb Zr Indentation depth t (µm) H v c 1 d v c d v d v /d 6

7 PRESENT MODEL: ASSUMPTIONS spherical surfaces F Gaussian asperity distribution plastic microcontacts elastic macrocontact flat mean plane dr ρ Y(r) Y(r) dr u O rigid smooth sphere r ω (r) b elastic half-space E' 7

8 ASSUMPTIONS deformation of each asperity is independent of its neighbors no friction first loading cycle flat mean plane equivalent P(r) distribution rigid sphere fi E' F fi fi fi r elastic half-space discrete point forces plastic zone static contact 8

9 RELATIONSHIPS FOR MECHANICAL MODEL dimensionless local separation ( σ ) λ() r = Y()/ r effective pressure distribution Pr ( ) = 1 Hmic( r) erfc( λ( r)) elastic deformation of half-space due to applied P(r) force balance local microcontact radius local microhardness Psds () r E = r 4 s ωb() r = sp() s K ds r s π Er > r 4 r PsK () ds r s < π E s r F = π P( r) rdr 8 σ as( r) = exp λ ( r) erfc λ( r) π m ( π s ) H ( r) = c 1 a ( r) mic ( ) ( ) c E = ν E + ν 1 E 9

10 NUMERICAL ALGORITHM MAIN LOOP Guess u,1 ( cal ) Using P() r calculatef = F F F 1,1 / Start E, ρ, υ, σ 1, 1, 1, m, c, c, F 1, 1 Guess u, Inside Loop Using () calculate F = F F F P r ( cal ), / u, new = Fu Fu 1, 1, F1 F Yes Inside Loop Using P() r calculate F = F F F new ( cal new ), / Acceptable u F = u = new F new u 1 F = u new = F 1 new F new = F F F new : TOL. End F F < new 1 No not acceptable 1

11 NUMERICAL ALGORITHM INSIDE LOOP From Main Loop u Calculate P(r) Calculate ω bnew, ( r) Pr ( ) = Pnew( r) ω ( r) = ω ( r) b b, new Calculate P ( new r ) Not Acceptable Pnew( r) P( r) : TOL. P ( new) new P() r Acceptable 11

12 SUCCESSIVE ITERATION F F 1 F F Line passing through points 1, F F = F Calculated Point Calculated Point 1 u,new u,1 u, u 1

13 OUTPUT PARAMETERS OF MODEL Radius of curvature ρ = 5( mm) Roughness σ = 1.414( µm) Force F = 5( N) Surface slope m =.17 Young s modulus E1 = E = 4( GPa) Poisson s ν1 = ν =.3 Microhardness c1 = 6.7( GPa) Microhardness c =.15 Sample dia. bl = 5( mm) P/P,Hz Non-Dimensional Pressure Distribution a) Hertz Model a s Microcontacts Radius (µm) b). a L 1 3 r/a Hz 1 3 r/a Hz 45 Microcontacts Density (m - ) d) Microhardness (GPa) e) η s H mic r/a Hz 1 3 r/a Hz 13

14 GENERAL PRESSURE DISTRIBUTION P/P,H σ =.3 σ =.14 σ =.71 σ =1.41µm σ =5.66 Hertz P(ξ)/P Hertz ( P ' =1) ' P =.95 ' P =.815 ' P =.7 ' P =.41 ' P =.57 ' P =.14 σ = P r/a H ( ξ ) = P ( 1 ξ ) P γ = 1.5 P P =, H a a F πa ( 1+ γ ) L L H γ Hertzian limit ξ =r/a L ( ) ( r / a ) = P 1 ( r / a ) P γ P H H, H H =.5 1.5F = πa H, H H γ 14

15 DIMENSIONAL ANALYSIS effective microhardness, H mic = Const. surface slope m is assumed to be a function of surface roughness, Lambert (1995) m.76.5 maximum contact pressure is a function of P P,, E, F, H mic three non-dimensional parameters Parameter Effective elastic modulus, E Force, F Microhardness, H mic Radius of curvature, Roughness, Max. contact pressure, P α = τ = σ ω ρ a H σρ a, H H Dimension ML 1 T MLT ML 1 T M M ML 1 T E E H mic 15

16 EFFECT OF MICROHARDNESS PARAMETER effect of microhardness parameter on the maximum contact pressure is small and therefore ignored. 1 α =.9 α =.86 1 α =.8 α =.4 P /P,H 1-1 α =4.33 α =8.66 P /P,H 1-1 α =3. α = 16.1 α =17.33 α = τ = E ' /H mic 1-1 τ = E ' /H mic 16

17 CORRELATIONS a L /a H τ =84.5 τ =47 τ =1149 τ =5333 τ =67467 σ µm τ = α τ = P /P,H τ =84.5 σ µm τ = 84.5 τ = 47 τ = 1149 τ = 5333 τ = α τ = P ' = a L ' = P P a a, H L H 1 = α / τ / P ' = P '.1 P ' P ' 1 17

18 COMPARISON WITH GT MODEL Greenwood and Tripp (1967) disadvantages: 1. complex, requires computer programming and numerically intensive solutions b and h s cannot be measured directly, sensitive to the surface measurements constant summit radius b is unrealistic P /P,H GT, µ =4 present model, τ =1 GT, µ =17 present model, τ = α 18

19 ELASTIC DEFORMATION OF HALF-SPACE using general pressure distribution, relationships are derived for: elastic deformation of half-space compact correlation is derived for compliance ω' b = π E' ω b /4P a L ω b () / ω b (a L ) ω' b () ω' (a L ) P' =P /P,H ω b () / ω b (a L ) 19

20 EXPERIMENTAL DATA τ = ρ /a H Kagami, Yamada, and Hatazawa (KYH) τ ρ = 3.15 mm,.8 σ 1.45 µm,.19 F 88 N carbon steel spheres carbon steel and copper flats Greenwood, Johnson, and Matsubara (GJM) τ 17.8 ρ = 1.7 mm,.19 σ. µm, 4.8 F 779 N hard steel balls hard steel flats Tsukada and Anno (TA) τ 47.6 ρ = 1.5, 5, 1 mm,.11 σ.1 µm, 3.5 F 1375 N SUJ spheres SK 3 flats α = σρ/a H

21 COMPARISON WITH DATA: CONTACT RADIUS a' L =a L /a H 7 Tsukada and Anno 1979, specimens: SUJ spheres and SK 3 flats KYH1 test TA1 TA TA3 TA4 TA5 TA6 TA7 TA8 KYH- Hz σ µm KYH ρ mm KYH3 6 KYH4 TA1 test TA9 TA1 TA11 TA1 TA13 TA14 TA15 TA16 TA σ µm TA3 5 ρ mm TA4 Kagami, Yamada, and Hatazawa 198 TA5 test KYH1 KYH KYH3 KYH4 TA6 MODEL ± 15% TA7 4 σ µm TA8 specimens: steel spheres of radius 3.18 mm TA9 KYH 1&: carbon steel (.3% C) flats TA1 KYH 3&4: pure copper (99.9% pure) flats TA11 3 TA1 TA13 MODEL more than 16 points TA14 TA15 TA16 1 Greenwood, Johnson, and Matsubara 1984 TA- Hz test GJM1 GJM GJM3 GJM4 GJM1 σ µm GJM specimens: hard steel balls of radius 1.7 mm GJM3 andhardsteelflats GJM4 RMS difference 6.%. +15% 15% P' =P /P,H MODEL 1

22 COMPARISON WITH DATA: COMPLIANCE κ' =κ / κ H more than 4 points Kagami, Yamada, and Hatazawa 198 test KYH5 KYH6 KYH7 KYH8 σ (µm) specimens: steel spheres of radius 3.18 mm. KYH 5&6: carbon steel (.3% C) flats KYH 7&8: pure copper (99.9% pure) flats KYH5 KYH6 KYH7 KYH8 MODEL RMS difference 7.7% P' =P /P,H

23 SUMMARY AND CONCLUSIONS a general pressure distribution that encompasses all spherical rough contacts including Hertzian limit is proposed compact correlations for contact radius and compliance are proposed and validated with experimental data It is shown that the non-dimensional maximum contact pressure is the main parameter that controls the solution of spherical rough contacts 3

24 ACKNOWLEDGMENTS Natural Sciences and Engineering Research Council of Canada (NSERC) The Center for Microelectronics Assembly and Packaging (CMAP) 4

A COMPACT MODEL FOR SPHERICAL ROUGH CONTACTS

A COMPACT MODEL FOR SPHERICAL ROUGH CONTACTS Proceedings of IJTC 2 ASME/STLE International Joint Tribology Conference October 2-27, 2, Long Beach, California, USA DRAFT TRIB2-65 A COMPACT MODEL FOR SPHERICAL ROUGH CONTACTS M. Bahrami,M.M.Yovanovich

More information

Review of Thermal Joint Resistance Models for Non-Conforming Rough Surfaces in a Vacuum

Review of Thermal Joint Resistance Models for Non-Conforming Rough Surfaces in a Vacuum Review of Thermal Joint Resistance Models for Non-Conforming Rough Surfaces in a Vacuum M. Bahrami J. R. Culham M. M. Yovanovich G. E. Schneider Department of Mechanical Engineering Microelectronics Heat

More information

Thermal Contact Resistance of Nonconforming Rough Surfaces, Part 1: Contact Mechanics Model

Thermal Contact Resistance of Nonconforming Rough Surfaces, Part 1: Contact Mechanics Model JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER Vol. 18, No. 2, April June 24 Thermal Contact Resistance of Nonconforming Rough Surfaces, Part 1: Contact Mechanics Model M. Bahrami, J. R. Culham, M. M. Yovanovich,

More information

Thermal Contact Resistance of Non-Conforming Rough Surfaces Part 2: Thermal Model

Thermal Contact Resistance of Non-Conforming Rough Surfaces Part 2: Thermal Model Thermal Contact Reitance of Non-Conforming Rough Surface Part 2: Thermal Model M. Bahrami J. R. Culham M. M. Yovanovich G. E. Schneider Department of Mechanical Engineering Microelectronic Heat Tranfer

More information

A SCALE ANALYSIS APPROACH TO THERMAL CONTACT RESISTANCE

A SCALE ANALYSIS APPROACH TO THERMAL CONTACT RESISTANCE Proceedings of IMECE 03 2003 ASME International Mechanical Engineering Congress Washington, D.C., November 15 21, 2003 IMECE2003-55283 A SCALE ANALYSIS APPROACH TO THERMAL CONTACT RESISTANCE M. Bahrami

More information

MODELING OF THERMAL JOINT RESISTANCE OF POLYMER METAL ROUGH INTERFACES

MODELING OF THERMAL JOINT RESISTANCE OF POLYMER METAL ROUGH INTERFACES MODELING OF THEMAL JOINT ESISTANCE OF POLYME METAL OUGH INTEFACES Majid Bahrami M. M. Yovanovich E. E. Marotta Department of Mechanical Engineering University of Waterloo Ontario, Canada Department of

More information

Modeling of Thermal Joint Resistance for. Rough Sphere-Flat Contact in a Vacuum

Modeling of Thermal Joint Resistance for. Rough Sphere-Flat Contact in a Vacuum Modeling of Thermal Joint Resistance for Rough Sphere-Flat Contact in a Vacuum by Majid Bahrami A research proposal Presented to University of Waterloo Department of Mechanical Engineering In fulfillment

More information

Review of Thermal Joint Resistance Models for Nonconforming Rough Surfaces

Review of Thermal Joint Resistance Models for Nonconforming Rough Surfaces M. Bahrami Post-doctoral Fellow Mem. ASME J. R. Culham Associate Professor, Director Mem. ASME M. M. Yananovich Distinguished Professor Emeritus Fellow ASME G. E. Schneider Professor Microelectronics Heat

More information

Review of Elastic and Plastic Contact Conductance Models: Comparison with Experiment

Review of Elastic and Plastic Contact Conductance Models: Comparison with Experiment JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER Vol. 8, No. 4, 0ct.Dec. 1994 Review of Elastic and Plastic Contact Conductance Models: Comparison with Experiment M. R. Sridhar* and M. M. Yovanovicht University

More information

Contact Modeling of Rough Surfaces. Robert L. Jackson Mechanical Engineering Department Auburn University

Contact Modeling of Rough Surfaces. Robert L. Jackson Mechanical Engineering Department Auburn University Contact Modeling of Rough Surfaces Robert L. Jackson Mechanical Engineering Department Auburn University Background The modeling of surface asperities on the micro-scale is of great interest to those interested

More information

Thermal Resistances of Gaseous Gap for Conforming Rough Contacts

Thermal Resistances of Gaseous Gap for Conforming Rough Contacts AIAA 2004-0821 Thermal Resistances of Gaseous Gap for Conforming Rough Contacts M. Bahrami, J. R. Culham and M. M. Yovanovich Microelectronics Heat Transfer Laboratory Department of Mechanical Engineering,

More information

Normal contact and friction of rubber with model randomly rough surfaces

Normal contact and friction of rubber with model randomly rough surfaces Normal contact and friction of rubber with model randomly rough surfaces S. Yashima 1-2, C. Fretigny 1 and A. Chateauminois 1 1. Soft Matter Science and Engineering Laboratory - SIMM Ecole Supérieure de

More information

Modeling Contact between Rigid Sphere and Elastic Layer Bonded to Rigid Substrate

Modeling Contact between Rigid Sphere and Elastic Layer Bonded to Rigid Substrate IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES, VOL. 24, NO. 2, JUNE 2001 207 Modeling Contact between Rigid Sphere and Elastic Layer Bonded to Rigid Substrate Mirko Stevanović, M. Michael

More information

ME 383S Bryant February 17, 2006 CONTACT. Mechanical interaction of bodies via surfaces

ME 383S Bryant February 17, 2006 CONTACT. Mechanical interaction of bodies via surfaces ME 383S Bryant February 17, 2006 CONTACT 1 Mechanical interaction of bodies via surfaces Surfaces must touch Forces press bodies together Size (area) of contact dependent on forces, materials, geometry,

More information

CONTACT MODEL FOR A ROUGH SURFACE

CONTACT MODEL FOR A ROUGH SURFACE 23 Paper presented at Bucharest, Romania CONTACT MODEL FOR A ROUGH SURFACE Sorin CĂNĂNĂU Polytechnic University of Bucharest, Dep. of Machine Elements & Tribology, ROMANIA s_cananau@yahoo.com ABSTRACT

More information

Thermal Contact Conductance at Low Contact Pressures

Thermal Contact Conductance at Low Contact Pressures JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER Vol. 18, No. 1, January March 004 Thermal Contact Conductance at Low Contact Pressures Fernando H. Milanez Federal University of Santa Catarina, 88040-900 Florianopolis,

More information

Figure 43. Some common mechanical systems involving contact.

Figure 43. Some common mechanical systems involving contact. 33 Demonstration: experimental surface measurement ADE PhaseShift Whitelight Interferometer Surface measurement Surface characterization - Probability density function - Statistical analyses - Autocorrelation

More information

A FINITE ELEMENT STUDY OF ELASTIC-PLASTIC HEMISPHERICAL CONTACT BEHAVIOR AGAINST A RIGID FLAT UNDER VARYING MODULUS OF ELASTICITY AND SPHERE RADIUS

A FINITE ELEMENT STUDY OF ELASTIC-PLASTIC HEMISPHERICAL CONTACT BEHAVIOR AGAINST A RIGID FLAT UNDER VARYING MODULUS OF ELASTICITY AND SPHERE RADIUS Proceedings of the International Conference on Mechanical Engineering 2009 (ICME2009) 26-28 December 2009, Dhaka, Bangladesh ICME09- A FINITE ELEMENT STUDY OF ELASTIC-PLASTIC HEMISPHERICAL CONTACT BEHAVIOR

More information

A CONTACT-MECHANICS BASED MODEL FOR DISHING AND EROSION IN

A CONTACT-MECHANICS BASED MODEL FOR DISHING AND EROSION IN Mat. Res. Soc. Symp. Proc. Vol. 671 001 Materials Research Society A CONTACT-MECHANICS BASED MODEL FOR DISHING AND EROSION IN CHEMICAL-MECHANICAL POLISHING Joost J. Vlassak Division of Engineering and

More information

A Finite Element Study of Elastic-Plastic Hemispherical Contact Behavior against a Rigid Flat under Varying Modulus of Elasticity and Sphere Radius

A Finite Element Study of Elastic-Plastic Hemispherical Contact Behavior against a Rigid Flat under Varying Modulus of Elasticity and Sphere Radius Engineering, 2010, 2, 205-211 doi:10.4236/eng.2010.24030 Published Online April 2010 (http://www. SciRP.org/journal/eng) 205 A Finite Element Study of Elastic-Plastic Hemispherical Contact Behavior against

More information

Deterministic repeated contact of rough surfaces

Deterministic repeated contact of rough surfaces Available online at www.sciencedirect.com Wear 264 (2008) 349 358 Deterministic repeated contact of rough surfaces J. Jamari, D.J. Schipper Laboratory for Surface Technology and Tribology, Faculty of Engineering

More information

UNLOADING OF AN ELASTIC-PLASTIC LOADED SPHERICAL CONTACT

UNLOADING OF AN ELASTIC-PLASTIC LOADED SPHERICAL CONTACT 2004 AIMETA International Tribology Conference, September 14-17, 2004, Rome, Italy UNLOADING OF AN ELASTIC-PLASTIC LOADED SPHERICAL CONTACT Yuri KLIGERMAN( ), Yuri Kadin( ), Izhak ETSION( ) Faculty of

More information

Thermal Contact Conductance of Non-Flat, Rough, Metallic Coated Metals

Thermal Contact Conductance of Non-Flat, Rough, Metallic Coated Metals M. A. Lambert Mem. ASME, Assistant Professor Department of Mechanical Engineering, San Diego State University, San Diego, CA 92182-1323 L. S. Fletcher Fellow ASME Thomas A. Dietz Professor Department of

More information

Experimental Investigation of Fully Plastic Contact of a Sphere Against a Hard Flat

Experimental Investigation of Fully Plastic Contact of a Sphere Against a Hard Flat J. Jamari e-mail: j.jamari@ctw.utwente.nl D. J. Schipper University of Twente, Surface Technology and Tribology, Faculty of Engineering Technology, Drienerloolaan 5, Postbus 17, 7500 AE, Enschede, The

More information

Final Project: Indentation Simulation Mohak Patel ENGN-2340 Fall 13

Final Project: Indentation Simulation Mohak Patel ENGN-2340 Fall 13 Final Project: Indentation Simulation Mohak Patel ENGN-2340 Fall 13 Aim The project requires a simulation of rigid spherical indenter indenting into a flat block of viscoelastic material. The results from

More information

EFFECT OF STRAIN HARDENING ON ELASTIC-PLASTIC CONTACT BEHAVIOUR OF A SPHERE AGAINST A RIGID FLAT A FINITE ELEMENT STUDY

EFFECT OF STRAIN HARDENING ON ELASTIC-PLASTIC CONTACT BEHAVIOUR OF A SPHERE AGAINST A RIGID FLAT A FINITE ELEMENT STUDY Proceedings of the International Conference on Mechanical Engineering 2009 (ICME2009) 26-28 December 2009, Dhaka, Bangladesh ICME09- EFFECT OF STRAIN HARDENING ON ELASTIC-PLASTIC CONTACT BEHAVIOUR OF A

More information

Extending the Limits of Air Cooling for Microelectronic Systems

Extending the Limits of Air Cooling for Microelectronic Systems Extending the Limits of Air Cooling for Microelectronic Systems CMAP Year 1 Project Review J. Richard Culham,, Pete Teertstra Rakib Hossain, Ashim Banik Microelectronics Heat Transfer Laboratory Department

More information

Chapter 2 A Simple, Clean-Metal Contact Resistance Model

Chapter 2 A Simple, Clean-Metal Contact Resistance Model Chapter A Simple, Clean-Metal Contact Resistance Model A contact resistance model is presented in this chapter. The model assumes that the contact surfaces are clean, that is, there are no insulating films

More information

EFFECT OF SURFACE ASPERITY TRUNCATION ON THERMAL CONTACT CONDUCTANCE

EFFECT OF SURFACE ASPERITY TRUNCATION ON THERMAL CONTACT CONDUCTANCE EFFECT OF SURFACE ASPERITY TRUNCATION ON THERMAL CONTACT CONDUCTANCE Fernando H. Milanez *, M. M. Yovanovich, J. R. Culha Microelectronics Heat Transfer Laboratory Departent of Mechanical Engineering University

More information

Analysis of contact deformation between a coated flat plate and a sphere and its practical application

Analysis of contact deformation between a coated flat plate and a sphere and its practical application Computer Methods and Experimental Measurements for Surface Effects and Contact Mechanics VII 307 Analysis of contact deformation between a coated flat plate and a sphere and its practical application T.

More information

Effect of Strain Hardening on Unloading of a Deformable Sphere Loaded against a Rigid Flat A Finite Element Study

Effect of Strain Hardening on Unloading of a Deformable Sphere Loaded against a Rigid Flat A Finite Element Study Effect of Strain Hardening on Unloading of a Deformable Sphere Loaded against a Rigid Flat A Finite Element Study Biplab Chatterjee, Prasanta Sahoo 1 Department of Mechanical Engineering, Jadavpur University

More information

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 4, No 1, 2013

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 4, No 1, 2013 INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 4, No 1, 2013 Copyright by the authors - Licensee IPA- Under Creative Commons license 3.0 Research article ISSN 0976 4399 Nanoindentation

More information

An Analysis of Elastic Rough Contact Models. Yang Xu

An Analysis of Elastic Rough Contact Models. Yang Xu An Analysis of Elastic Rough Contact Models by Yang Xu A thesis submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Master of Science Auburn,

More information

Unloading of an elastic plastic loaded spherical contact

Unloading of an elastic plastic loaded spherical contact International Journal of Solids and Structures 42 (2005) 3716 3729 www.elsevier.com/locate/ijsolstr Unloading of an elastic plastic loaded spherical contact I. Etsion *, Y. Kligerman, Y. Kadin Department

More information

Supplementary Material

Supplementary Material Mangili et al. Supplementary Material 2 A. Evaluation of substrate Young modulus from AFM measurements 3 4 5 6 7 8 Using the experimental correlations between force and deformation from AFM measurements,

More information

Abstract. 1 Introduction

Abstract. 1 Introduction Elasto-plastic contact of rough surfaces K. Willner Institute A of Mechanics, University of Stuttgart, D-70550 Stuttgart, Germany E-mail: willner@mecha. uni-stuttgart. de Abstract If two rough surfaces

More information

Notes on Rubber Friction

Notes on Rubber Friction Notes on Rubber Friction 2011 A G Plint Laws of Friction: In dry sliding between a given pair of materials under steady conditions, the coefficient of friction may be almost constant. This is the basis

More information

Temperature investigation in contact pantograph - AC contact line

Temperature investigation in contact pantograph - AC contact line Temperature investigation in contact pantograph - AC contact line Constantin-Florin OCOLEANU, Ioan POPA, Gheorghe MANOLEA, Alin-Iulian DOLAN, Serghie VLASE Abstract In this paper we performed a thermal

More information

A statistical model of elasto-plastic asperity contact between rough surfaces

A statistical model of elasto-plastic asperity contact between rough surfaces Tribology International 39 (2006) 906 914 www.elsevier.com/locate/triboint A statistical model of elasto-plastic asperity contact between rough surfaces Robert L. Jackson a,, Itzhak Green b a Department

More information

The Effect of Asperity Flattening During Cyclic Normal Loading of a Rough Spherical Contact

The Effect of Asperity Flattening During Cyclic Normal Loading of a Rough Spherical Contact Tribol Lett (21) 4:347 3 DOI 1.17/s11249-1-9672-7 ORIGINAL PAPER The Effect of Asperity Flattening During Cyclic Normal Loading of a Rough Spherical Contact Longqiu Li Andrey Ovcharenko Izhak Etsion Frank

More information

Advanced Friction Modeling in Sheet Metal Forming

Advanced Friction Modeling in Sheet Metal Forming Advanced Friction Modeling in Sheet Metal Forming J.Hol 1,a, M.V. Cid Alfaro 2, T. Meinders 3, J. Huétink 3 1 Materials innovation institute (M2i), P.O. box 58, 26 GA Delft, The Netherlands 2 Tata Steel

More information

A Study of Elastic Plastic Deformation of Heavily Deformed Spherical Surfaces. Saurabh Sunil Wadwalkar

A Study of Elastic Plastic Deformation of Heavily Deformed Spherical Surfaces. Saurabh Sunil Wadwalkar A Study of Elastic Plastic Deformation of Heavily Deformed Spherical Surfaces by Saurabh Sunil Wadwalkar A thesis submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements

More information

STANDARD SAMPLE. Reduced section " Diameter. Diameter. 2" Gauge length. Radius

STANDARD SAMPLE. Reduced section  Diameter. Diameter. 2 Gauge length. Radius MATERIAL PROPERTIES TENSILE MEASUREMENT F l l 0 A 0 F STANDARD SAMPLE Reduced section 2 " 1 4 0.505" Diameter 3 4 " Diameter 2" Gauge length 3 8 " Radius TYPICAL APPARATUS Load cell Extensometer Specimen

More information

Elastic-plastic Contact of a Deformable Sphere Against a Rigid Flat for Varying Material Properties Under Full Stick Contact Condition

Elastic-plastic Contact of a Deformable Sphere Against a Rigid Flat for Varying Material Properties Under Full Stick Contact Condition B. CHATTERJEE, P. SAHOO Elastic-plastic Contact of a Deformable Sphere Against a Rigid Flat for Varying Material Properties Under Full Stick Contact Condition RESEARCH The present study considers finite

More information

Arbitrary Normal and Tangential Loading Sequences for Circular Hertzian Contact

Arbitrary Normal and Tangential Loading Sequences for Circular Hertzian Contact Arbitrary Normal and Tangential Loading Sequences for Circular Hertzian Contact Philip P. Garland 1 and Robert J. Rogers 2 1 School of Biomedical Engineering, Dalhousie University, Canada 2 Department

More information

ON THE EFFECT OF SPECTRAL CHARACTERISTICS OF ROUGHNESS ON CONTACT PRESSURE DISTIRBUTION

ON THE EFFECT OF SPECTRAL CHARACTERISTICS OF ROUGHNESS ON CONTACT PRESSURE DISTIRBUTION 7 Paper present at International Conference on Diagnosis and Prediction in Mechanical Engineering Systems (DIPRE 09) 22-23 October 2009, Galati, Romania ON THE EFFECT OF SPECTRAL CHARACTERISTICS OF ROUGHNESS

More information

1.033/1.57 Q#2: Elasticity Bounds Conical Indentation Test

1.033/1.57 Q#2: Elasticity Bounds Conical Indentation Test 1.033/1.57 Q#: Elasticity Bounds Conical Indentation Test November 14, 003 MIT 1.033/1.57 Fall 003 Instructor: Franz-Josef UM Instrumented nano-indentation is a new technique in materials science and engineering

More information

Characterisation Programme Polymer Multi-scale Properties Industrial Advisory Group 22 nd April 2008

Characterisation Programme Polymer Multi-scale Properties Industrial Advisory Group 22 nd April 2008 Characterisation Programme 6-9 Polymer Multi-scale Properties Industrial Advisory Group nd April 8 SE: Improved Design and Manufacture of Polymeric Coatings Through the Provision of Dynamic Nano-indentation

More information

FINITE ELEMENT ANALYSIS OF SLIDING CONTACT BETWEEN A CIRCULAR ASPERITY AND AN ELASTIC URFACE IN PLANE STRAIN CONDITION

FINITE ELEMENT ANALYSIS OF SLIDING CONTACT BETWEEN A CIRCULAR ASPERITY AND AN ELASTIC URFACE IN PLANE STRAIN CONDITION 7 th International LS-DYNA Users Conference Simulation Technology (1) FINITE ELEMENT ANALYSIS OF SLIDING CONTACT BETWEEN A CIRCULAR ASPERITY AND AN ELASTIC URFACE IN PLANE STRAIN CONDITION S. Subutay Akarca,

More information

A Finite Element Study of the Residual Stress and Deformation in Hemispherical Contacts

A Finite Element Study of the Residual Stress and Deformation in Hemispherical Contacts obert Jackson 1 Mem. ASME e-mail: robert.jackson@eng.auburn.edu Itti Chusoipin Itzhak Green Fellow, ASME George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA

More information

6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa ( psi) and

6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa ( psi) and 6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa (15.5 10 6 psi) and an original diameter of 3.8 mm (0.15 in.) will experience only elastic deformation when a tensile

More information

1002. Dynamic characteristics of joint surface considering friction and vibration factors based on fractal theory

1002. Dynamic characteristics of joint surface considering friction and vibration factors based on fractal theory 12. Dynamic characteristics of joint surface considering friction and vibration factors based on fractal theory Xiaopeng Li, Yamin Liang, Guanghui Zhao, Xing Ju, Haotian Yang Xiaopeng Li 1, Yamin Liang

More information

Measurement and modelling of contact stiffness

Measurement and modelling of contact stiffness Measurement and modelling of contact stiffness D. Nowell, University of Oxford, UK Joints workshop, Chicago, 16/8/12 Difficulties in modelling contacts In general, the normal and tangential stiffnesses

More information

Numerical and Experimental Study of the Roughness Effects on Mechanical Properties of AISI316L by Nanoindentation

Numerical and Experimental Study of the Roughness Effects on Mechanical Properties of AISI316L by Nanoindentation Modeling and Numerical Simulation of Material Science, 2014, 4, 153-162 Published Online October 2014 in SciRes. http://www.scirp.org/journal/mnsms http://dx.doi.org/10.4236/mnsms.2014.44017 Numerical

More information

Nonlinear Finite Element Modeling of Nano- Indentation Group Members: Shuaifang Zhang, Kangning Su. ME 563: Nonlinear Finite Element Analysis.

Nonlinear Finite Element Modeling of Nano- Indentation Group Members: Shuaifang Zhang, Kangning Su. ME 563: Nonlinear Finite Element Analysis. ME 563: Nonlinear Finite Element Analysis Spring 2016 Nonlinear Finite Element Modeling of Nano- Indentation Group Members: Shuaifang Zhang, Kangning Su Department of Mechanical and Nuclear Engineering,

More information

The Effect of Coefficient of Restitution for Two Collision Models

The Effect of Coefficient of Restitution for Two Collision Models The Effect of Coefficient of Restitution for Two Collision Models ALACI STELIAN 1, FILOTE CONSTANTIN 2, CIORNEI FLORINA-CARMEN 1 1 Mechanics and Technologies Department 2 The Computers, Electronics and

More information

Analytical solution for polish-rate decay in chemical mechanical polishing

Analytical solution for polish-rate decay in chemical mechanical polishing J Eng Math DOI 10.1007/s10665-010-9369-9 LETTER TO THE EDITOR Analytical solution for polish-rate decay in chemical mechanical polishing Hong Shi Terry A. Ring Received: 17 August 2009 / Accepted: 15 March

More information

transition from boundary lubrication to hydrodynamic lubrication

transition from boundary lubrication to hydrodynamic lubrication IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER J. Phys.: Condens. Matter 21 2009) 185002 22pp) doi:10.1088/0953-8984/21/18/185002 On the transition from boundary lubrication to hydrodynamic lubrication

More information

Stiffness and deformation of asperities in a rough contact

Stiffness and deformation of asperities in a rough contact Stiffness and deformation of asperities in a rough contact A. Haiahem ^\ L. Flamand ^ Institut de mecanique universite de Annaba, BP 12 Annaba 23000 Algerie Laboratoire de mecanique des contacts INS A

More information

Influential Factors on Adhesion between Wheel and Rail under Wet Conditions

Influential Factors on Adhesion between Wheel and Rail under Wet Conditions Influential Factors on Adhesion between Wheel and Rail under Wet Conditions H. Chen, M. Ishida, 2 T. Nakahara Railway Technical Research Institute, Tokyo, Japan ; Tokyo Institute of Technology, Tokyo,

More information

Determining the Elastic Modulus and Hardness of an Ultrathin Film on a Substrate Using Nanoindentation

Determining the Elastic Modulus and Hardness of an Ultrathin Film on a Substrate Using Nanoindentation Determining the Elastic Modulus and Hardness of an Ultrathin Film on a Substrate Using Nanoindentation The Harvard community has made this article openly available. Please share how this access benefits

More information

AME COMPUTATIONAL MULTIBODY DYNAMICS. Friction and Contact-Impact

AME COMPUTATIONAL MULTIBODY DYNAMICS. Friction and Contact-Impact 1 Friction AME553 -- COMPUTATIONAL MULTIBODY DYNAMICS Friction and Contact-Impact Friction force may be imposed between contacting bodies to oppose their relative motion. Friction force can be a function

More information

Sound Radiation Of Cast Iron

Sound Radiation Of Cast Iron Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 2002 Sound Radiation Of Cast Iron N. I. Dreiman Tecumseh Products Company Follow this and

More information

N = Shear stress / Shear strain

N = Shear stress / Shear strain UNIT - I 1. What is meant by factor of safety? [A/M-15] It is the ratio between ultimate stress to the working stress. Factor of safety = Ultimate stress Permissible stress 2. Define Resilience. [A/M-15]

More information

Nano-Scale Effect in Adhesive Friction of Sliding Rough Surfaces

Nano-Scale Effect in Adhesive Friction of Sliding Rough Surfaces Journal of Nanoscience and Nanoengineering Vol. 1, No. 4, 015, pp. 06-13 http://www.aiscience.org/journal/jnn Nano-Scale Effect in Adhesive Friction of Sliding Rough Surfaces Prasanta Sahoo * Department

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS Third E CHAPTER 2 Stress MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Texas Tech University and Strain Axial Loading Contents Stress & Strain:

More information

TECHNISCHE UNIVERSITEIT EINDHOVEN Department of Biomedical Engineering, section Cardiovascular Biomechanics

TECHNISCHE UNIVERSITEIT EINDHOVEN Department of Biomedical Engineering, section Cardiovascular Biomechanics TECHNISCHE UNIVERSITEIT EINDHOVEN Department of Biomedical Engineering, section Cardiovascular Biomechanics Exam Cardiovascular Fluid Mechanics (8W9) page 1/4 Monday March 1, 8, 14-17 hour Maximum score

More information

An analysis of elasto-plastic sliding spherical asperity interaction

An analysis of elasto-plastic sliding spherical asperity interaction Wear 262 (2007) 210 219 An analysis of elasto-plastic sliding spherical asperity interaction Robert L. Jackson, Ravi S. Duvvuru, Hasnain Meghani, Manoj Mahajan Department of Mechanical Engineering, Auburn

More information

ANALYTICAL MODEL FOR FRICTION FORCE BETWEEN A STEEL ROLLER AND A PLANE POLYMER SAMPLE IN SLIDING MOTION

ANALYTICAL MODEL FOR FRICTION FORCE BETWEEN A STEEL ROLLER AND A PLANE POLYMER SAMPLE IN SLIDING MOTION 6 th International Conference Computational Mechanics and Virtual Engineering COMEC 015 15-16 October 015, Braşov, Romania ANALYTICAL MODEL FOR FRICTION FORCE BETWEEN A STEEL ROLLER AND A PLANE POLYMER

More information

IMPROVED METHOD TO DETERMINE THE HARDNESS AND ELASTIC MODULI USING NANO-INDENTATION

IMPROVED METHOD TO DETERMINE THE HARDNESS AND ELASTIC MODULI USING NANO-INDENTATION KMITL Sci. J. Vol. 5 No. Jan-Jun 005 IMPROVED METHOD TO DETERMINE THE HARDNESS AND ELASTIC MODULI USING NANO-INDENTATION Nurot Panich*, Sun Yong School of Materials Engineering, Nanyang Technological University,

More information

SURFACE SEPARATION AND CONTACT RESISTANCE CONSIDERING SINUSOIDAL ELASTIC-PLASTIC MULTISCALE ROUGH SURFACE CONTACT

SURFACE SEPARATION AND CONTACT RESISTANCE CONSIDERING SINUSOIDAL ELASTIC-PLASTIC MULTISCALE ROUGH SURFACE CONTACT SURFACE SEPARATION AND CONTACT RESISTANCE CONSIDERING SINUSOIDAL ELASTIC-PLASTIC MULTISCALE ROUGH SURFACE CONTACT Except where reference is made to the work of others, the work described in this thesis

More information

3-D Finite Element Analysis of Instrumented Indentation of Transversely Isotropic Materials

3-D Finite Element Analysis of Instrumented Indentation of Transversely Isotropic Materials 3-D Finite Element Analysis of Instrumented Indentation of Transversely Isotropic Materials Abstract: Talapady S. Bhat and T. A. Venkatesh Department of Material Science and Engineering Stony Brook University,

More information

Discrete Element Modelling of a Reinforced Concrete Structure

Discrete Element Modelling of a Reinforced Concrete Structure Discrete Element Modelling of a Reinforced Concrete Structure S. Hentz, L. Daudeville, F.-V. Donzé Laboratoire Sols, Solides, Structures, Domaine Universitaire, BP 38041 Grenoble Cedex 9 France sebastian.hentz@inpg.fr

More information

Back Calculation of Rock Mass Modulus using Finite Element Code (COMSOL)

Back Calculation of Rock Mass Modulus using Finite Element Code (COMSOL) Back Calculation of Rock Mass Modulus using Finite Element Code (COMSOL) Amirreza Ghasemi 1. Introduction Deformability is recognized as one of the most important parameters governing the behavior of rock

More information

The University of Melbourne Engineering Mechanics

The University of Melbourne Engineering Mechanics The University of Melbourne 436-291 Engineering Mechanics Tutorial Four Poisson s Ratio and Axial Loading Part A (Introductory) 1. (Problem 9-22 from Hibbeler - Statics and Mechanics of Materials) A short

More information

A General Equation for Fitting Contact Area and Friction vs Load Measurements

A General Equation for Fitting Contact Area and Friction vs Load Measurements Journal of Colloid and Interface Science 211, 395 400 (1999) Article ID jcis.1998.6027, available online at http://www.idealibrary.com on A General Equation for Fitting Contact Area and Friction vs Load

More information

Contact Mechanics and Elements of Tribology

Contact Mechanics and Elements of Tribology Contact Mechanics and Elements of Tribology Lectures 2-3. Mechanical Contact Vladislav A. Yastrebov MINES ParisTech, PSL Research University, Centre des Matériaux, CNRS UMR 7633, Evry, France @ Centre

More information

Srivatsan Hulikal, Nadia Lapusta, and Kaushik Bhattacharya

Srivatsan Hulikal, Nadia Lapusta, and Kaushik Bhattacharya Static and sliding contact of rough surfaces: effect of asperity-scale properties and long-range elastic interactions arxiv:8.38v [cond-mat.soft] 9 Nov 8 Srivatsan Hulikal, Nadia Lapusta, and Kaushik Bhattacharya

More information

Chapter 3 Contact Resistance Model with Adhesion between Contact

Chapter 3 Contact Resistance Model with Adhesion between Contact Chapter 3 Contact Resistance Model with Adhesion between Contact Surfaces In this chapter, I develop a contact resistance model that includes adhesion between contact surfaces. This chapter is organized

More information

Samantha Ramirez, MSE. Stress. The intensity of the internal force acting on a specific plane (area) passing through a point. F 2

Samantha Ramirez, MSE. Stress. The intensity of the internal force acting on a specific plane (area) passing through a point. F 2 Samantha Ramirez, MSE Stress The intensity of the internal force acting on a specific plane (area) passing through a point. Δ ΔA Δ z Δ 1 2 ΔA Δ x Δ y ΔA is an infinitesimal size area with a uniform force

More information

Elastodynamic contact in plate-like bodies

Elastodynamic contact in plate-like bodies Structures Under Shock and Impact IX 65 Elastodynamic contact in plate-like bodies R. Sburlati Department of Structural and Geotechnical Engineering, Genoa University, Italy Abstract In this paper the

More information

Strain Gages. Approximate Elastic Constants (from University Physics, Sears Zemansky, and Young, Reading, MA, Shear Modulus, (S) N/m 2

Strain Gages. Approximate Elastic Constants (from University Physics, Sears Zemansky, and Young, Reading, MA, Shear Modulus, (S) N/m 2 When you bend a piece of metal, the Strain Gages Approximate Elastic Constants (from University Physics, Sears Zemansky, and Young, Reading, MA, 1979 Material Young's Modulus, (E) 10 11 N/m 2 Shear Modulus,

More information

when viewed from the top, the objects should move as if interacting gravitationally

when viewed from the top, the objects should move as if interacting gravitationally 2 Elastic Space 2 Elastic Space The dynamics and apparent interactions of massive balls rolling on a stretched horizontal membrane are often used to illustrate gravitation. Investigate the system further.

More information

Stress-Strain Behavior

Stress-Strain Behavior Stress-Strain Behavior 6.3 A specimen of aluminum having a rectangular cross section 10 mm 1.7 mm (0.4 in. 0.5 in.) is pulled in tension with 35,500 N (8000 lb f ) force, producing only elastic deformation.

More information

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown.

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown. D : SOLID MECHANICS Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown. Q.2 Consider the forces of magnitude F acting on the sides of the regular hexagon having

More information

Mechanical Properties of Materials

Mechanical Properties of Materials Mechanical Properties of Materials Strains Material Model Stresses Learning objectives Understand the qualitative and quantitative description of mechanical properties of materials. Learn the logic of

More information

Modeling Planarization in Chemical-Mechanical Polishing

Modeling Planarization in Chemical-Mechanical Polishing Modeling Planarization in Chemical-Mechanical Polishing Leonard Borucki, Dilek Alagoz, Stephanie Hoogendoorn, Satyanarayana Kakollu, Maria Reznikoff, Richard Schugart, and Michael Sostarecz June 24, 22

More information

Using the Timoshenko Beam Bond Model: Example Problem

Using the Timoshenko Beam Bond Model: Example Problem Using the Timoshenko Beam Bond Model: Example Problem Authors: Nick J. BROWN John P. MORRISSEY Jin Y. OOI School of Engineering, University of Edinburgh Jian-Fei CHEN School of Planning, Architecture and

More information

CHAPTER 7 FINITE ELEMENT ANALYSIS OF DEEP GROOVE BALL BEARING

CHAPTER 7 FINITE ELEMENT ANALYSIS OF DEEP GROOVE BALL BEARING 113 CHAPTER 7 FINITE ELEMENT ANALYSIS OF DEEP GROOVE BALL BEARING 7. 1 INTRODUCTION Finite element computational methodology for rolling contact analysis of the bearing was proposed and it has several

More information

The Full-System Approach for Elastohydrodynamic Lubrication

The Full-System Approach for Elastohydrodynamic Lubrication Excerpt from the Proceedings of the COMSOL Conference 009 Milan The Full-System Approach for Elastohydrodynamic Lubrication Nicolas Fillot 1*, Thomas Doki-Thonon 1, Wassim Habchi 1 Université de Lyon,

More information

Analytical Prediction of Particle Detachment from a Flat Surface by Turbulent Air Flows

Analytical Prediction of Particle Detachment from a Flat Surface by Turbulent Air Flows Chiang Mai J. Sci. 2011; 38(3) 503 Chiang Mai J. Sci. 2011; 38(3) : 503-507 http://it.science.cmu.ac.th/ejournal/ Short Communication Analytical Prediction of Particle Detachment from a Flat Surface by

More information

Local friction of rough contact interfaces with rubbers using contact imaging approaches mm

Local friction of rough contact interfaces with rubbers using contact imaging approaches mm mm 2.5 2.0 1.5 - - -1.5-2.0-2.5 Local friction of rough contact interfaces with rubbers using contact imaging approaches mm -2.5-2.0-1.5 - - 1.5 2.0 2.5 0.30 0 0 0 MPa (c) D.T. Nguyen, M.C. Audry, M. Trejo,

More information

8. Contact Mechanics DE2-EA 2.1: M4DE. Dr Connor Myant 2017/2018

8. Contact Mechanics DE2-EA 2.1: M4DE. Dr Connor Myant 2017/2018 DE2-EA 2.1: M4DE Dr Connor Myant 2017/2018 8. Contact Mechanics Comments and corrections to connor.myant@imperial.ac.uk Lecture resources may be found on Blackboard and at http://connormyant.com Contents

More information

Volumetric Contact Dynamics Models and Validation

Volumetric Contact Dynamics Models and Validation Volumetric Contact Dynamics s and Validation Mike Boos and John McPhee Department of Systems Design Engineering University of Waterloo Canada May 26, 2010 Mike Boos and John McPhee Volumetric Contact Dynamics

More information

Microelectronics Heat Transfer Laboratory

Microelectronics Heat Transfer Laboratory Microelectronics Heat Transfer Laboratory Department of Mechanical Engineering University of Waterloo Waterloo, Ontario, Canada http://www.mhtl.uwaterloo.ca Outline Personnel Capabilities Facilities Research

More information

STUDIES ON NANO-INDENTATION OF POLYMERIC THIN FILMS USING FINITE ELEMENT METHODS

STUDIES ON NANO-INDENTATION OF POLYMERIC THIN FILMS USING FINITE ELEMENT METHODS STUDIES ON NANO-INDENTATION OF POLYMERIC THIN FILMS USING FINITE ELEMENT METHODS Shen Xiaojun, Yi Sung, Lallit Anand Singapore-MIT Alliance E4-04-0, 4 Engineering Drive 3, Singapore 7576 Zeng Kaiyang Institute

More information

Rutgers University Department of Physics & Astronomy. 01:750:271 Honors Physics I Fall Lecture 19. Home Page. Title Page. Page 1 of 36.

Rutgers University Department of Physics & Astronomy. 01:750:271 Honors Physics I Fall Lecture 19. Home Page. Title Page. Page 1 of 36. Rutgers University Department of Physics & Astronomy 01:750:271 Honors Physics I Fall 2015 Lecture 19 Page 1 of 36 12. Equilibrium and Elasticity How do objects behave under applied external forces? Under

More information

Examination in Damage Mechanics and Life Analysis (TMHL61) LiTH Part 1

Examination in Damage Mechanics and Life Analysis (TMHL61) LiTH Part 1 Part 1 1. (1p) Define the Kronecker delta and explain its use. The Kronecker delta δ ij is defined as δ ij = 0 if i j 1 if i = j and it is used in tensor equations to include (δ ij = 1) or "sort out" (δ

More information

ME 243. Mechanics of Solids

ME 243. Mechanics of Solids ME 243 Mechanics of Solids Lecture 2: Stress and Strain Ahmad Shahedi Shakil Lecturer, Dept. of Mechanical Engg, BUET E-mail: sshakil@me.buet.ac.bd, shakil6791@gmail.com Website: teacher.buet.ac.bd/sshakil

More information

Numerical modeling of sliding contact

Numerical modeling of sliding contact Numerical modeling of sliding contact J.F. Molinari 1) Atomistic modeling of sliding contact; P. Spijker, G. Anciaux 2) Continuum modeling; D. Kammer, V. Yastrebov, P. Spijker pj ICTP/FANAS Conference

More information