A CONTACT-MECHANICS BASED MODEL FOR DISHING AND EROSION IN

Size: px
Start display at page:

Download "A CONTACT-MECHANICS BASED MODEL FOR DISHING AND EROSION IN"

Transcription

1 Mat. Res. Soc. Symp. Proc. Vol Materials Research Society A CONTACT-MECHANICS BASED MODEL FOR DISHING AND EROSION IN CHEMICAL-MECHANICAL POLISHING Joost J. Vlassak Division of Engineering and Applied Sciences, Harvard University 311 Pierce Hall, 9 Oxford Street, Cambridge MA 0138 ABSTRACT We present a new model for dishing and erosion during chemical-mechanical planarization. According to this model, dishing and erosion is controlled by the local pressure distribution between features on the wafer and the polishing pad. The model uses a contact mechanics analysis based on the work by Greenwood to evaluate the pressure distribution taking into account the compliance of the pad as well as its roughness. Using the model, the effects of pattern density, line width, applied down-force, selectivity, pad properties, etc. on both dishing and erosion can be readily evaluated. The model may be applied to CMP used for oxide planarization, metal damascene or shallow trench isolation. The model is implemented as an algorithm that quickly calculates the evolution of the profile of a set of features on the wafer during the polishing process. With proper calibration of the process parameters, it can be used as a tool in optimizing the CMP process and implementing CMP design rules. INTRODUCTION With the advent of shallow trench isolation (STI) and copper interconnects, chemicalmechanical polishing (CMP) has emerged as one of the most important operations in the fabrication of integrated circuits. Even so, the CMP process is still fairly poorly understood. This is so because, in spite of its apparent simplicity, CMP is a complicated process in which both mechanical and chemical factors play an important role. Chemical-mechanical polishing is very sensitive to pattern geometry effects and may results in dishing of metal lines and erosion of dielectrics. Since the surface topography of a wafer after a CMP process step has a significant impact on wafer yield, numerous attempts have been made to predict the evolution of the wafer surface during the polishing process. One of the first models that allowed quantitative predictions of wafer topography was a phenomenological model proposed by Warnock 1. While useful in practice for predicting dishing and erosion, this type of model does not provide much insight in the actual CMP process. More recent models are mechanics based and can be classified in several groups. One group focuses on slurry hydrodynamics to determine the pressure distribution between the wafer and polishing pad. These models can be either wafer-scale, 3 or feature-scale 4 models. Another group of models is based on a contact-mechanics analysis of the CMP process. According to these models, elastic deformation of the polishing pad determines M4.6.1

2 the pressure distribution between wafer and pad and thus plays an important role in determining the wafer surface profile after polishing 5, 6. Yet another model takes into account the roughness of the polishing pad and describes CMP in terms of asperity contacts between wafer and pad 7. In this paper, we present a contact-mechanics based model for the evolution of the surface profile of a wafer during the CMP process that takes into account both the roughness and elastic deformation of the polishing pad. This model is then used to study dielectric erosion and metal dishing as a function of CMP process parameters and wafer pattern geometry. DESCRIPTION OF THE MODEL We model the CMP process as the contact of a compliant polishing pad with the surface of a rigid wafer (See Fig. 1). The surface of the pad is assumed to be rough and to contain asperities with a given height distribution. The surface of the wafer is assumed to be patterned. The wafer pattern is quite general and can be any pattern found in copper CMP, oxide planarization or STI. When the wafer is pressed against the pad, some of the pad asperities contact the wafer directly, transferring the force from the wafer to the pad and elastically deforming the polishing pad. The contact pressure between pad and wafer can then be calculated using contact mechanics following the approach first formulated by Greenwood et al. 8. Once the contact pressure is known, the local removal rate is determined using Preston s equation. The heights of the pad asperities are assumed to follow an exponential distribution: 1 z Pz ()= exp, (1) σ σ where z is the height of the asperity above or below the pad surface. The variable σ is a characteristic roughness parameter that represents the width of the asperity height distribution and that can be measured for a given pad. We assume that the tops of the asperities are spherical, all with the same radius, and that they deform elastically according to the laws governing Hertzian contact. Let T(x, t) be a function describing the surface profile of the wafer at a given time t. The pattern in the wafer is assumed to be two-dimensional and periodic with period L, but otherwise perfectly general. By using a periodic function, a wide range of surface profiles can be simulated from an isolated line in a field ( L ) to periodic arrays of dense lines. Pad d(x, t) z Metal Wafer Fig. 1. Schematic representation of the contact model. w(x, t) T(x, t) x M4.6.

3 When the wafer is pressed against the polishing pad, asperities with heights greater than the gap between wafer and pad will be compressed and transfer load from the wafer to the pad, which in turn will deform elastically. If w(x, t) represents the shape of the deformed pad surface at time t, then the gap between pad surface and wafer is dxt (, )= wxt (, ) Txt (, ). ( ) The force transmitted by an individual asperity of height z is then given by the Hertz formula 3 4 E F = ( z d( x, t) ), (3) 3 κ 1 ν where E and ν are Young s modulus and Poisson s ratio of the pad, respectively, and κ is the curvature of the top of the asperity. The pressure between wafer and pad due to all pad asperities in contact with the wafer is then: E pxt, z z d x, 3 4η 1 ( )= ( ( t) ) exp dz, (4) 3 κ 1 ν d( x) σ σ where η is the asperity density. After a change of variables, the integral can be readily calculated leading to the following expression for the pressure distribution: 3 πσ η E w x, t T x, t pxt (, )= exp for w T 0. (5) κ 1 ν σ If the deformation of the pad w(x, t) is known, the pressure distribution between wafer and pad can be calculated directly from Eq. (5). We now derive an expression for the pad deformation w(x, t) as a result of the pressure distribution p(x, t). The plane-strain deformation, w(x, t), of a half space under a periodic pressure distribution is given by the following expression 9, 10 : L/ ( ) ( ) ( ) dw 1 ( ν ) π x s = pst (, ) cot ds. (6) dx LE L/ L After integrating Eq. (7), we find the following expression for w(x, t): L/ ( ) 1 ( ν ) π x s wxt (, ) Ct ( ) = pst (, ) ln sin ds. (7) πe L/ L Equations (5) and (7) form a set of two equations that describe the pressure distribution between polishing pad and wafer, and the ensuing pad deformation. It should be noted that Eq. (7) gives the deformation of the pad at a given time t only to within a constant C(t), which is typical for plane-strain contact problems. The value of C can be determined from the requirement that the pressure distribution integrated over one period be equal to the applied load. Once the pressure distribution is known, the local removal or wear rate, R, can be calculated using Preston s equation: Txt R= k x v x p x = (, ) ( ) ( ) ( ), (8) t M4.6.3

4 where k(x) is the wear coefficient and v(x) is the velocity of the wafer relative to the pad. If the wafer surface consists of different materials, the wear coefficient is a function of position. Integration of Preston s equation over time taking into account the initial surface topography yields the evolution of the surface profile T(x, t) as a function of time. Note that Preston s law assumes that the removal rate increases linearly with pressure, but any wear law in which the removal rate increases monotonously with pressure can be used instead. Qualitatively, the results should remain the same. It is interesting to consider the behavior of this model for limiting values of the parameter σ. If the pad is very rough compared to the relief on the wafer, i.e., σ is much larger than w T, then the pressure profile is nearly constant and the removal rate only depends on the local value of the wear coefficient k(x) in Preston s law. If, on the other hand, the pad surface is very smooth, σ approaches zero. In that case, Eq. (5) shows that the pressure is finite when there is no gap between wafer and polishing pad, and zero otherwise. Any changes in surface relief of the wafer can then be attributed to compression of the pad in addition to wear coefficient variations, as proposed in the model by Chekina 6. Equations (5) and (7) have to be solved numerically for the pressure distribution and the corresponding pad deflection. This can be done iteratively by assuming an initial pressure distribution and using Eq. (5) to calculate the corresponding pad deflection. Equation (7) is then used to calculate an updated pressure distribution. This procedure is repeated until convergence is obtained. The integral in Eq. (7) has to be evaluated numerically and special care needs to be taken in the neighborhood of singular values of the integrand. Given the contact pressure distribution, the surface profile is determined through integration of Eq. (8) using the forward Euler method. RESULTS AND DISCUSSION Selected numerical results are shown in Figs. through 7. Figures and 3 depict the evolution of the surface profile and contact pressure for a metal line embedded in a dielectric matrix as a function of polish time. The nominal polish rate was taken to be 3000 /min with a selectivity for the dielectric of 30%. Figure clearly shows that the recess or dishing of the metal line increases with increasing polish time. At the same time, the corners of the dielectric get more rounded. This is a direct result of the contact pressure distributions shown in Fig. 3. The pressure profile starts out constant at 15 kpa, but quickly changes to form maxima near the edges of the dielectric. These pressure peaks cause the dielectric to be eroded more quickly and rounded corners are formed. Eventually a steady state is approached in which the removal rates of the metal line and the surrounding dielectric are the same. At this point, the pressure distribution within individual metal and dielectric areas is constant and the ratio of the pressure over the metal to that over the dielectric is given by the selectivity. Figure 4 shows the effect of the plane-strain elastic modulus of the pad on the surface profile of the wafer. A more compliant pad clearly results in more dishing since the pad deflects more easily into recessed areas on the M4.6.4

5 Profile (µm ) t = 1. s t = 3.6 s t = 6.0 s t = 9.6 s P Normalized distance (x/l) Pressure (kpa) t = 1. s t = 3.6 s t = 9.6 s t = 4 s Sigma: µm 5 Line width: 0 µm Line spacing: 80 µm Pad stiffness: 45 MPa Normalized distance (x/l) Surface profile (µm ) Fig.. Evolution of wafer surface E p = 0 MPa E p = 45 MPa Sigma: 0.01 µm Line width: 0 µm Line spacing: 80 µm Normalized distance (x/l) Fig. 4. Effect of pad stiffness on surface profile. Fig. 3. Evolution of pressure distribution. Dishing (µm ) Line width: 0 µm Line spacing: 80 µm Pad stiffness: 45 MPa Sigma (µm ) t = 60 s t = 36 s t = 1 s Fig. 5. Effect of σ on dishing for different over-polish times. Dishing (µm ) Pattern density: 0% Sigma: 0.01 µm Pad stiffness: 45 MPa t = 60 s t = 36 s t = 1 s Erosion (µm ) Line width: 50 µm Sigma: 0.01 µm Pad stiffness: 45 kpa 10 s 60 s s s Line width (µm ) Fig. 6. Effect of line width on dishing for different over-polish times Pattern Density Fig. 7. Effect of pattern density on erosion for different over-polish times. M4.6.5

6 wafer. Figure 5 shows that dishing of metal lines also increases with increasing values of the roughness parameter σ. One can easily show from Eqs. (5) and (8) that the amount of dishing in the steady state increases linearly with σ. The curves in Fig. (5) indeed tend to a straight line with increasing polish time, but the steady state is clearly not yet attained for larger values of σ. Other roughness parameters such as asperity density and curvature do not have any impact on wafer surface topography. The effect of line width on dishing is shown in Fig. 6. According to the model, dishing of metal lines increases linearly with line width in agreement with experimental results 11. It should be noted, however, that the model is valid only for features wide enough that pad asperities can enter the recessed areas. This explains the finite amount of dishing in the limit of zero line width. Figure 7 shows the amount of dielectric erosion as a function of pattern density. Erosion is clearly very sensitive to pattern density and increases with increasing polish time, which is also observed experimentally 11. CONCLUSIONS A new, contact-mechanics based model for chemical-mechanical polishing has been presented. The model takes into account the compliance of the polishing pad as well as its roughness. It allows for easy calculation of the evolution of the wafer surface topography during the polishing process. The trends for dielectric erosion and metal dishing predicted by the model agree well with experimental observations reported in the literature, but more detailed experimental verification will need to be performed by means of well-controlled experiments. REFERENCES 1 J. Warnock, J. Electrochem. Soc. 138, , S. Sundararajan, et al., J. Electrochem. Soc. 146, , D. G. Thakurta, et al., Thin Solid Films 366, , S. R. Runnels, J. Electrochem. Soc. 141, , D. Boning, et al., in "Chemical-Mechanical Polishing-Fundamentals and Challenges", Proc. Mat. Res. Soc. 566, San Francisco, , O. G. Chekina, et al., J. Electrochem. Soc. 145, , T.-K. Yu, et al., Proc. of the 1993 International Electron Devices Meeting, , J. A. Greenwood and J. H. Tripp, J. Appl. Mech. 34, , K. L. Johnson, Contact mechanics, Cambridge: Cambridge University Press, I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Series, and Products, New York and London: Academic Press, J. M. Steigerwald, S. P. Murarka, and R. J. Gutmann, Chemical Mechanical Planarization of Microelectronic Materials, New York: John Wiley & Sons, Inc, 1997 M4.6.6

Analytical solution for polish-rate decay in chemical mechanical polishing

Analytical solution for polish-rate decay in chemical mechanical polishing J Eng Math DOI 10.1007/s10665-010-9369-9 LETTER TO THE EDITOR Analytical solution for polish-rate decay in chemical mechanical polishing Hong Shi Terry A. Ring Received: 17 August 2009 / Accepted: 15 March

More information

Chemical Mechanical Planarization

Chemical Mechanical Planarization Mechanics of Contact and Lubrication, MTM G230 Department of Mechanical & Industrial Enineering Northeastern University Spring 2006 Chemical Mechanical Planarization George Calota Northeastern University

More information

A Mechanical Model for Erosion in Copper Chemical-Mechanical Polishing

A Mechanical Model for Erosion in Copper Chemical-Mechanical Polishing A Mechanical Model for Erosion in Copper Chemical-Mechanical Polishing Kyungyoon Noh, Nannaji Saka and Jung-Hoon Chun Laboratory for Manufacturing and Productivity Massachusetts Institute of Technology

More information

Modeling Planarization in Chemical-Mechanical Polishing

Modeling Planarization in Chemical-Mechanical Polishing Modeling Planarization in Chemical-Mechanical Polishing Leonard Borucki, Dilek Alagoz, Stephanie Hoogendoorn, Satyanarayana Kakollu, Maria Reznikoff, Richard Schugart, and Michael Sostarecz June 24, 22

More information

A COMPACT MODEL FOR SPHERICAL ROUGH CONTACTS

A COMPACT MODEL FOR SPHERICAL ROUGH CONTACTS A COMPACT MODEL FOR SPHERICAL ROUGH CONTACTS Majid Bahrami M. M. Yovanovich J. R. Culham Microelectronics Heat Transfer Laboratory Department of Mechanical Engineering University of Waterloo Ontario, Canada

More information

Contact Modeling of Rough Surfaces. Robert L. Jackson Mechanical Engineering Department Auburn University

Contact Modeling of Rough Surfaces. Robert L. Jackson Mechanical Engineering Department Auburn University Contact Modeling of Rough Surfaces Robert L. Jackson Mechanical Engineering Department Auburn University Background The modeling of surface asperities on the micro-scale is of great interest to those interested

More information

Figure 43. Some common mechanical systems involving contact.

Figure 43. Some common mechanical systems involving contact. 33 Demonstration: experimental surface measurement ADE PhaseShift Whitelight Interferometer Surface measurement Surface characterization - Probability density function - Statistical analyses - Autocorrelation

More information

A FINITE ELEMENT STUDY OF ELASTIC-PLASTIC HEMISPHERICAL CONTACT BEHAVIOR AGAINST A RIGID FLAT UNDER VARYING MODULUS OF ELASTICITY AND SPHERE RADIUS

A FINITE ELEMENT STUDY OF ELASTIC-PLASTIC HEMISPHERICAL CONTACT BEHAVIOR AGAINST A RIGID FLAT UNDER VARYING MODULUS OF ELASTICITY AND SPHERE RADIUS Proceedings of the International Conference on Mechanical Engineering 2009 (ICME2009) 26-28 December 2009, Dhaka, Bangladesh ICME09- A FINITE ELEMENT STUDY OF ELASTIC-PLASTIC HEMISPHERICAL CONTACT BEHAVIOR

More information

VIBRATION MODELING IN CMP. M Brij Bhushan IIT Madras

VIBRATION MODELING IN CMP. M Brij Bhushan IIT Madras 1 VIBRATION MODELING IN CMP Jul-14-2010 M Brij Bhushan IIT Madras Outline 2 Introduction Model description Implementation details Experimentation details Verification of simulation output with experimental

More information

Modeling and control of material removal and defectivity in chemical mechanical planarization

Modeling and control of material removal and defectivity in chemical mechanical planarization Graduate Theses and Dissertations Graduate College 2009 Modeling and control of material removal and defectivity in chemical mechanical planarization Pavan Kumar Karra Iowa State University Follow this

More information

CONTACT MODEL FOR A ROUGH SURFACE

CONTACT MODEL FOR A ROUGH SURFACE 23 Paper presented at Bucharest, Romania CONTACT MODEL FOR A ROUGH SURFACE Sorin CĂNĂNĂU Polytechnic University of Bucharest, Dep. of Machine Elements & Tribology, ROMANIA s_cananau@yahoo.com ABSTRACT

More information

EFFECT OF STRAIN HARDENING ON ELASTIC-PLASTIC CONTACT BEHAVIOUR OF A SPHERE AGAINST A RIGID FLAT A FINITE ELEMENT STUDY

EFFECT OF STRAIN HARDENING ON ELASTIC-PLASTIC CONTACT BEHAVIOUR OF A SPHERE AGAINST A RIGID FLAT A FINITE ELEMENT STUDY Proceedings of the International Conference on Mechanical Engineering 2009 (ICME2009) 26-28 December 2009, Dhaka, Bangladesh ICME09- EFFECT OF STRAIN HARDENING ON ELASTIC-PLASTIC CONTACT BEHAVIOUR OF A

More information

Experimental Investigation of Fully Plastic Contact of a Sphere Against a Hard Flat

Experimental Investigation of Fully Plastic Contact of a Sphere Against a Hard Flat J. Jamari e-mail: j.jamari@ctw.utwente.nl D. J. Schipper University of Twente, Surface Technology and Tribology, Faculty of Engineering Technology, Drienerloolaan 5, Postbus 17, 7500 AE, Enschede, The

More information

A General Equation for Fitting Contact Area and Friction vs Load Measurements

A General Equation for Fitting Contact Area and Friction vs Load Measurements Journal of Colloid and Interface Science 211, 395 400 (1999) Article ID jcis.1998.6027, available online at http://www.idealibrary.com on A General Equation for Fitting Contact Area and Friction vs Load

More information

Sinan Müftü Associate Professor Department of Mechanical Engineering Northeastern University, 334 SN Boston, MA

Sinan Müftü Associate Professor Department of Mechanical Engineering Northeastern University, 334 SN Boston, MA TAPE MECHANICS OVER A FLAT RECORDING HEAD UNDER UNIFORM PULL-DOWN PRESSURE Sinan Müftü Associate Professor Department of Mechanical Engineering Northeastern University, 334 SN Boston, MA 115-5 Submitted

More information

Pad porosity, compressibility and slurry delivery effects in chemicalmechanical planarization: modeling and experiments

Pad porosity, compressibility and slurry delivery effects in chemicalmechanical planarization: modeling and experiments Thin Solid Films 366 (2000) 181±190 www.elsevier.com/locate/tsf Pad porosity, compressibility and slurry delivery effects in chemicalmechanical planarization: modeling and experiments Dipto G. Thakurta

More information

A Finite Element Study of Elastic-Plastic Hemispherical Contact Behavior against a Rigid Flat under Varying Modulus of Elasticity and Sphere Radius

A Finite Element Study of Elastic-Plastic Hemispherical Contact Behavior against a Rigid Flat under Varying Modulus of Elasticity and Sphere Radius Engineering, 2010, 2, 205-211 doi:10.4236/eng.2010.24030 Published Online April 2010 (http://www. SciRP.org/journal/eng) 205 A Finite Element Study of Elastic-Plastic Hemispherical Contact Behavior against

More information

THREE-DIMENSIONAL SIMULATION OF THERMAL OXIDATION AND THE INFLUENCE OF STRESS

THREE-DIMENSIONAL SIMULATION OF THERMAL OXIDATION AND THE INFLUENCE OF STRESS THREE-DIMENSIONAL SIMULATION OF THERMAL OXIDATION AND THE INFLUENCE OF STRESS Christian Hollauer, Hajdin Ceric, and Siegfried Selberherr Institute for Microelectronics, Technical University Vienna Gußhausstraße

More information

The Effect of Pad-asperity Curvature on Material Removal Rate in Chemical-mechanical Polishing

The Effect of Pad-asperity Curvature on Material Removal Rate in Chemical-mechanical Polishing The Effect of Pad-asperity Curvature on Material Removal Rate in Chemical-mechanical Polishing The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story

More information

Supplementary Material

Supplementary Material Mangili et al. Supplementary Material 2 A. Evaluation of substrate Young modulus from AFM measurements 3 4 5 6 7 8 Using the experimental correlations between force and deformation from AFM measurements,

More information

Design of a fastener based on negative Poisson's ratio foam adapted from

Design of a fastener based on negative Poisson's ratio foam adapted from 1 Design of a fastener based on negative Poisson's ratio foam adapted from Choi, J. B. and Lakes, R. S., "Design of a fastener based on negative Poisson's ratio foam", Cellular Polymers, 10, 205-212 (1991).

More information

Determining the Elastic Modulus and Hardness of an Ultrathin Film on a Substrate Using Nanoindentation

Determining the Elastic Modulus and Hardness of an Ultrathin Film on a Substrate Using Nanoindentation Determining the Elastic Modulus and Hardness of an Ultrathin Film on a Substrate Using Nanoindentation The Harvard community has made this article openly available. Please share how this access benefits

More information

Measurement and modelling of contact stiffness

Measurement and modelling of contact stiffness Measurement and modelling of contact stiffness D. Nowell, University of Oxford, UK Joints workshop, Chicago, 16/8/12 Difficulties in modelling contacts In general, the normal and tangential stiffnesses

More information

The Mechanics of CMP and Post-CMP Cleaning

The Mechanics of CMP and Post-CMP Cleaning The Mechanics of CMP and Post-CMP Cleaning Sinan Müftü Ahmed Busnaina George Adams Department of Mechanical, Industrial and Manuf. Engineering Northeastern University Boston, MA 02115 Introduction Objective

More information

21 th Annual Workshop on Mathematical Problems in Industry Worcester Polytechnic Institute, June 13 17, 2005

21 th Annual Workshop on Mathematical Problems in Industry Worcester Polytechnic Institute, June 13 17, 2005 1 Introduction 21 th Annual Workshop on Mathematical Problems in Industry Worcester Polytechnic Institute, June 13 17, 25 Analysis of Chemical-Mechanical Polishing via Elastohydrodynamic Lubrication Problem

More information

ME 383S Bryant February 17, 2006 CONTACT. Mechanical interaction of bodies via surfaces

ME 383S Bryant February 17, 2006 CONTACT. Mechanical interaction of bodies via surfaces ME 383S Bryant February 17, 2006 CONTACT 1 Mechanical interaction of bodies via surfaces Surfaces must touch Forces press bodies together Size (area) of contact dependent on forces, materials, geometry,

More information

Three-Dimensional Chemical Mechanical Planarization Slurry Flow Model Based on Lubrication Theory

Three-Dimensional Chemical Mechanical Planarization Slurry Flow Model Based on Lubrication Theory Journal of The Electrochemical Society, 148 4 G207-G214 2001 0013-4651/2001/1484/G207/8/$7.00 The Electrochemical Society, Inc. Three-Dimensional Chemical Mechanical Planarization Slurry Flow Model Based

More information

Computationally efficient modelling of pattern dependencies in the micro-embossing of thermoplastic polymers

Computationally efficient modelling of pattern dependencies in the micro-embossing of thermoplastic polymers Computationally efficient modelling of pattern dependencies in the micro-embossing of thermoplastic polymers Hayden Taylor and Duane Boning Microsystems Technology Laboratories Massachusetts Institute

More information

Abstract. 1 Introduction

Abstract. 1 Introduction Elasto-plastic contact of rough surfaces K. Willner Institute A of Mechanics, University of Stuttgart, D-70550 Stuttgart, Germany E-mail: willner@mecha. uni-stuttgart. de Abstract If two rough surfaces

More information

UNLOADING OF AN ELASTIC-PLASTIC LOADED SPHERICAL CONTACT

UNLOADING OF AN ELASTIC-PLASTIC LOADED SPHERICAL CONTACT 2004 AIMETA International Tribology Conference, September 14-17, 2004, Rome, Italy UNLOADING OF AN ELASTIC-PLASTIC LOADED SPHERICAL CONTACT Yuri KLIGERMAN( ), Yuri Kadin( ), Izhak ETSION( ) Faculty of

More information

Supplementary Figure 1 shows overall fabrication process and detailed illustrations are given

Supplementary Figure 1 shows overall fabrication process and detailed illustrations are given Supplementary Figure 1. Pressure sensor fabrication schematics. Supplementary Figure 1 shows overall fabrication process and detailed illustrations are given in Methods section. (a) Firstly, the sacrificial

More information

New Representation of Bearings in LS-DYNA

New Representation of Bearings in LS-DYNA 13 th International LS-DYNA Users Conference Session: Aerospace New Representation of Bearings in LS-DYNA Kelly S. Carney Samuel A. Howard NASA Glenn Research Center, Cleveland, OH 44135 Brad A. Miller

More information

Influential Factors on Adhesion between Wheel and Rail under Wet Conditions

Influential Factors on Adhesion between Wheel and Rail under Wet Conditions Influential Factors on Adhesion between Wheel and Rail under Wet Conditions H. Chen, M. Ishida, 2 T. Nakahara Railway Technical Research Institute, Tokyo, Japan ; Tokyo Institute of Technology, Tokyo,

More information

Christopher L. Borst Texas Instruments, Inc. Dallas, TX. William N. Gill Rensselaer Polytechnic Institute Troy, NY

Christopher L. Borst Texas Instruments, Inc. Dallas, TX. William N. Gill Rensselaer Polytechnic Institute Troy, NY CHEMICAL-MECHANICAL POLISHING OF LOW DIELECTRIC CONSTANT POLYMERS AND ORGANOSILICATE GLASSES Fundamental Mechanisms and Application to 1С Interconnect Technology by Christopher L. Borst Texas Instruments,

More information

A Note on Suhir s Solution of Thermal Stresses for a Die-Substrate Assembly

A Note on Suhir s Solution of Thermal Stresses for a Die-Substrate Assembly M. Y. Tsai e-mail: mytsai@mail.cgu.edu.tw C. H. Hsu C. N. Han Department of Mechanical Engineering, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan 333, ROC A Note on Suhir s Solution of Thermal Stresses

More information

Normal contact and friction of rubber with model randomly rough surfaces

Normal contact and friction of rubber with model randomly rough surfaces Normal contact and friction of rubber with model randomly rough surfaces S. Yashima 1-2, C. Fretigny 1 and A. Chateauminois 1 1. Soft Matter Science and Engineering Laboratory - SIMM Ecole Supérieure de

More information

Nanometer Ceria Slurries for Front-End CMP Applications, Extendable to 65nm Technology Node and Beyond

Nanometer Ceria Slurries for Front-End CMP Applications, Extendable to 65nm Technology Node and Beyond Nanometer Ceria Slurries for Front-End CMP Applications, Extendable to 65nm Technology Node and Beyond Cass Shang, Robert Small and Raymond Jin* DuPont Electronic Technologies, 2520 Barrington Ct., Hayward,

More information

Stress in Flip-Chip Solder Bumps due to Package Warpage -- Matt Pharr

Stress in Flip-Chip Solder Bumps due to Package Warpage -- Matt Pharr Stress in Flip-Chip Bumps due to Package Warpage -- Matt Pharr Introduction As the size of microelectronic devices continues to decrease, interconnects in the devices are scaling down correspondingly.

More information

21 th Annual Workshop on Mathematical Problems in Industry Worcester Polytechnic Institute, June 13 17, 2005

21 th Annual Workshop on Mathematical Problems in Industry Worcester Polytechnic Institute, June 13 17, 2005 1 Introduction 21 th Annual Workshop on Mathematical Problems in Industry Worcester Polytechnic Institute, June 13 17, 25 Analysis of Chemical-Mechanical Polishing via Elastohydrodynamic Lubrication Problem

More information

Effect of Slurry Flow Rate on Tribological, Thermal, and Removal Rate Attributes of Copper CMP

Effect of Slurry Flow Rate on Tribological, Thermal, and Removal Rate Attributes of Copper CMP G482 Journal of The Electrochemical Society, 151 7 G482-G487 2004 0013-4651/2004/151 7 /G482/6/$7.00 The Electrochemical Society, Inc. Effect of Slurry Flow Rate on Tribological, Thermal, and Removal Rate

More information

Hydrodynamics of Slurry Flow in Chemical Mechanical Polishing

Hydrodynamics of Slurry Flow in Chemical Mechanical Polishing Journal of The Electrochemical Society, 153 6 K15-K22 2006 0013-4651/2006/153 6 /K15/8/$20.00 The Electrochemical Society Hydrodynamics of Slurry Flow in Chemical Mechanical Polishing A Review Elon J.

More information

Chapter 2 A Simple, Clean-Metal Contact Resistance Model

Chapter 2 A Simple, Clean-Metal Contact Resistance Model Chapter A Simple, Clean-Metal Contact Resistance Model A contact resistance model is presented in this chapter. The model assumes that the contact surfaces are clean, that is, there are no insulating films

More information

Minimizing Thermally Induced Interfacial Shearing Stress in a Thermoelectric Module

Minimizing Thermally Induced Interfacial Shearing Stress in a Thermoelectric Module Purdue University Purdue e-pubs Birck and NCN Publications Birck Nanotechnology Center 9-25-212 Minimizing Thermally Induced Interfacial Shearing Stress in a Thermoelectric Module Amirkoushyar Ziabari

More information

Design of a hydrostatic symmetric-pad bearing with the membrane-type restrictor

Design of a hydrostatic symmetric-pad bearing with the membrane-type restrictor Design of a hydrostatic symmetric-pad bearing with the membrane-type restrictor Professor: Shih-Chieh Lin Manufacturing and Production System Lab Dept. of Power Mechanical Engineering, National Tsing Hua

More information

A new model for surface roughness evolution in the Chemical Mechanical Polishing (CMP) process

A new model for surface roughness evolution in the Chemical Mechanical Polishing (CMP) process A new model for surface roughness evolution in the Chemical Mechanical Polishing (CMP) process G. Savio, R. Meneghello, G. Concheri DAUR - Laboratory of Design Methods and Tools in Industrial Engineering

More information

Mat. Res. Soc. Symp. Proc. Vol Materials Research Society

Mat. Res. Soc. Symp. Proc. Vol Materials Research Society Mat. Res. Soc. Symp. Proc. Vol. 738 2003 Materials Research Society G7.26.1 Determination of the Plastic Behavior of Low Thermal Expansion Glass at the Nanometer Scale Richard Tejeda, 1 Roxann Engelstad,

More information

An analysis of elasto-plastic sliding spherical asperity interaction

An analysis of elasto-plastic sliding spherical asperity interaction Wear 262 (2007) 210 219 An analysis of elasto-plastic sliding spherical asperity interaction Robert L. Jackson, Ravi S. Duvvuru, Hasnain Meghani, Manoj Mahajan Department of Mechanical Engineering, Auburn

More information

! Importance of Particle Adhesion! History of Particle Adhesion! Method of measurement of Adhesion! Adhesion Induced Deformation

! Importance of Particle Adhesion! History of Particle Adhesion! Method of measurement of Adhesion! Adhesion Induced Deformation ! Importance of Particle Adhesion! History of Particle Adhesion! Method of measurement of Adhesion! Adhesion Induced Deformation! JKR and non-jkr Theory! Role of Electrostatic Forces! Conclusions Books:

More information

1 INTRODUCTION 2 SAMPLE PREPARATIONS

1 INTRODUCTION 2 SAMPLE PREPARATIONS Chikage NORITAKE This study seeks to analyze the reliability of three-dimensional (3D) chip stacked packages under cyclic thermal loading. The critical areas of 3D chip stacked packages are defined using

More information

EE C245 ME C218 Introduction to MEMS Design

EE C245 ME C218 Introduction to MEMS Design EE C245 ME C218 Introduction to MEMS Design Fall 2007 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 Lecture 16: Energy

More information

Bacillus spores as building blocks for stimuliresponsive materials and nanogenerators

Bacillus spores as building blocks for stimuliresponsive materials and nanogenerators Bacillus spores as building blocks for stimuliresponsive materials and nanogenerators Xi Chen, L Mahadevan, Adam Driks & Ozgur Sahin 1- Estimation of energy densities from the AFM based measurements Supplementary

More information

Review of Thermal Joint Resistance Models for Non-Conforming Rough Surfaces in a Vacuum

Review of Thermal Joint Resistance Models for Non-Conforming Rough Surfaces in a Vacuum Review of Thermal Joint Resistance Models for Non-Conforming Rough Surfaces in a Vacuum M. Bahrami J. R. Culham M. M. Yovanovich G. E. Schneider Department of Mechanical Engineering Microelectronics Heat

More information

ADHESION OF AN AXISYMMETRIC ELASTIC BODY: RANGES OF VALIDITY OF MONOMIAL APPROXIMATIONS AND A TRANSITION MODEL

ADHESION OF AN AXISYMMETRIC ELASTIC BODY: RANGES OF VALIDITY OF MONOMIAL APPROXIMATIONS AND A TRANSITION MODEL ADHESION OF AN AXISYMMETRIC ELASTIC BODY: RANGES OF VALIDITY OF MONOMIAL APPROXIMATIONS AND A TRANSITION MODEL A Thesis Presented By Fouad Oweiss to The Department of Mechanical and Industrial Engineering

More information

Expansion of circular tubes by rigid tubes as impact energy absorbers: experimental and theoretical investigation

Expansion of circular tubes by rigid tubes as impact energy absorbers: experimental and theoretical investigation Expansion of circular tubes by rigid tubes as impact energy absorbers: experimental and theoretical investigation M Shakeri, S Salehghaffari and R. Mirzaeifar Department of Mechanical Engineering, Amirkabir

More information

Module 7: Micromechanics Lecture 34: Self Consistent, Mori -Tanaka and Halpin -Tsai Models. Introduction. The Lecture Contains. Self Consistent Method

Module 7: Micromechanics Lecture 34: Self Consistent, Mori -Tanaka and Halpin -Tsai Models. Introduction. The Lecture Contains. Self Consistent Method Introduction In this lecture we will introduce some more micromechanical methods to predict the effective properties of the composite. Here we will introduce expressions for the effective properties without

More information

Thermal Contact Resistance of Nonconforming Rough Surfaces, Part 1: Contact Mechanics Model

Thermal Contact Resistance of Nonconforming Rough Surfaces, Part 1: Contact Mechanics Model JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER Vol. 18, No. 2, April June 24 Thermal Contact Resistance of Nonconforming Rough Surfaces, Part 1: Contact Mechanics Model M. Bahrami, J. R. Culham, M. M. Yovanovich,

More information

Bending of Simply Supported Isotropic and Composite Laminate Plates

Bending of Simply Supported Isotropic and Composite Laminate Plates Bending of Simply Supported Isotropic and Composite Laminate Plates Ernesto Gutierrez-Miravete 1 Isotropic Plates Consider simply a supported rectangular plate of isotropic material (length a, width b,

More information

DEVELOPMENT OF MEASURING SYSTEM FOR STRESS BY MEANS OF IMAGE PLATE FOR LABORATORY X-RAY EXPERIMENT

DEVELOPMENT OF MEASURING SYSTEM FOR STRESS BY MEANS OF IMAGE PLATE FOR LABORATORY X-RAY EXPERIMENT Copyright JCPDS - International Centre for Diffraction Data 003, Advances in X-ray Analysis, Volume 46. 6 DEVELOPMENT OF MEASURING SYSTEM FOR STRESS BY MEANS OF IMAGE PLATE FOR LABORATORY X-RAY EXPERIMENT

More information

Design and Analysis of Various Microcantilever Shapes for MEMS Based Sensing

Design and Analysis of Various Microcantilever Shapes for MEMS Based Sensing ScieTech 014 Journal of Physics: Conference Series 495 (014) 01045 doi:10.1088/174-6596/495/1/01045 Design and Analysis of Various Microcantilever Shapes for MEMS Based Sensing H. F. Hawari, Y. Wahab,

More information

Mechanics of Materials II. Chapter III. A review of the fundamental formulation of stress, strain, and deflection

Mechanics of Materials II. Chapter III. A review of the fundamental formulation of stress, strain, and deflection Mechanics of Materials II Chapter III A review of the fundamental formulation of stress, strain, and deflection Outline Introduction Assumtions and limitations Axial loading Torsion of circular shafts

More information

Analysis of contact deformation between a coated flat plate and a sphere and its practical application

Analysis of contact deformation between a coated flat plate and a sphere and its practical application Computer Methods and Experimental Measurements for Surface Effects and Contact Mechanics VII 307 Analysis of contact deformation between a coated flat plate and a sphere and its practical application T.

More information

A scratch intersection model of material removal during Chemical Mechanical Planarization (CMP)

A scratch intersection model of material removal during Chemical Mechanical Planarization (CMP) Aerospace Engineering Publications Aerospace Engineering 8-005 A scratch intersection model of material removal during Chemical Mechanical Planarization (CMP) Wei Che Iowa State University Yongjin Guo

More information

Effect of Strain Hardening on Unloading of a Deformable Sphere Loaded against a Rigid Flat A Finite Element Study

Effect of Strain Hardening on Unloading of a Deformable Sphere Loaded against a Rigid Flat A Finite Element Study Effect of Strain Hardening on Unloading of a Deformable Sphere Loaded against a Rigid Flat A Finite Element Study Biplab Chatterjee, Prasanta Sahoo 1 Department of Mechanical Engineering, Jadavpur University

More information

Mechanics of wafer bonding: Effect of clamping

Mechanics of wafer bonding: Effect of clamping JOURNAL OF APPLIED PHYSICS VOLUME 95, NUMBER 1 1 JANUARY 2004 Mechanics of wafer bonding: Effect of clamping K. T. Turner a) Massachusetts Institute of Technology, Cambridge, Massachusetts 0219 M. D. Thouless

More information

Fundamental Tribological and Removal Rate Studies of Inter-Layer Dielectric Chemical Mechanical Planarization

Fundamental Tribological and Removal Rate Studies of Inter-Layer Dielectric Chemical Mechanical Planarization Jpn. J. Appl. Phys. Vol. 42 (2003) pp. 637 6379 Part, No. 0, October 2003 #2003 The Japan Society of Applied Physics Fundamental Tribological and Removal Rate Studies of Inter-Layer Dielectric Chemical

More information

CHEMICAL MECHANICAL PLANARISATION OF DAMASCENE ARCHITECTURE SUBSTRATES

CHEMICAL MECHANICAL PLANARISATION OF DAMASCENE ARCHITECTURE SUBSTRATES CHEMICAL MECHANICAL PLANARISATION OF DAMASCENE ARCHITECTURE SUBSTRATES P. Timoney, E. Ahearne, G. Byrne Advanced Manufacturing Science (AMS) Research Centre, Mechanical Engineering, University College

More information

Stiffness and deformation of asperities in a rough contact

Stiffness and deformation of asperities in a rough contact Stiffness and deformation of asperities in a rough contact A. Haiahem ^\ L. Flamand ^ Institut de mecanique universite de Annaba, BP 12 Annaba 23000 Algerie Laboratoire de mecanique des contacts INS A

More information

ON THE EFFECT OF SPECTRAL CHARACTERISTICS OF ROUGHNESS ON CONTACT PRESSURE DISTIRBUTION

ON THE EFFECT OF SPECTRAL CHARACTERISTICS OF ROUGHNESS ON CONTACT PRESSURE DISTIRBUTION 7 Paper present at International Conference on Diagnosis and Prediction in Mechanical Engineering Systems (DIPRE 09) 22-23 October 2009, Galati, Romania ON THE EFFECT OF SPECTRAL CHARACTERISTICS OF ROUGHNESS

More information

EE C247B / ME C218 INTRODUCTION TO MEMS DESIGN SPRING 2016 C. NGUYEN PROBLEM SET #4

EE C247B / ME C218 INTRODUCTION TO MEMS DESIGN SPRING 2016 C. NGUYEN PROBLEM SET #4 Issued: Wednesday, March 4, 2016 PROBLEM SET #4 Due: Monday, March 14, 2016, 8:00 a.m. in the EE C247B homework box near 125 Cory. 1. This problem considers bending of a simple cantilever and several methods

More information

A COMPACT MODEL FOR SPHERICAL ROUGH CONTACTS

A COMPACT MODEL FOR SPHERICAL ROUGH CONTACTS Proceedings of IJTC 2 ASME/STLE International Joint Tribology Conference October 2-27, 2, Long Beach, California, USA DRAFT TRIB2-65 A COMPACT MODEL FOR SPHERICAL ROUGH CONTACTS M. Bahrami,M.M.Yovanovich

More information

1 Introduction IPICSE-2016

1 Introduction IPICSE-2016 (06) DOI: 0.05/ matecconf/06860006 IPICSE-06 Numerical algorithm for solving of nonlinear problems of structural mechanics based on the continuation method in combination with the dynamic relaxation method

More information

SUPPLEMENTARY FIGURES

SUPPLEMENTARY FIGURES SUPPLEMENTARY FIGURES a b c Supplementary Figure 1 Fabrication of the near-field radiative heat transfer device. a, Main fabrication steps for the bottom Si substrate. b, Main fabrication steps for the

More information

Arbitrary Normal and Tangential Loading Sequences for Circular Hertzian Contact

Arbitrary Normal and Tangential Loading Sequences for Circular Hertzian Contact Arbitrary Normal and Tangential Loading Sequences for Circular Hertzian Contact Philip P. Garland 1 and Robert J. Rogers 2 1 School of Biomedical Engineering, Dalhousie University, Canada 2 Department

More information

Modeling of Contact Interfaces in Built-up Structures by Zero-thickness Elements

Modeling of Contact Interfaces in Built-up Structures by Zero-thickness Elements Modeling of Contact Interfaces in Built-up Structures by Zero-thickness Elements Professor Lothar Gaul 1, Dr. Michael Mayer 2 1 University of Stuttgart, Institute of Applied and Experimental Mechanics,

More information

STUDIES ON NANO-INDENTATION OF POLYMERIC THIN FILMS USING FINITE ELEMENT METHODS

STUDIES ON NANO-INDENTATION OF POLYMERIC THIN FILMS USING FINITE ELEMENT METHODS STUDIES ON NANO-INDENTATION OF POLYMERIC THIN FILMS USING FINITE ELEMENT METHODS Shen Xiaojun, Yi Sung, Lallit Anand Singapore-MIT Alliance E4-04-0, 4 Engineering Drive 3, Singapore 7576 Zeng Kaiyang Institute

More information

Modeling of MEMS Fabrication Processes

Modeling of MEMS Fabrication Processes Modeling of MEMS Fabrication Processes Prof. Duane Boning Microsystems Technology Laboratories Electrical Engineering and Computer Science Massachusetts Institute of Technology September 28, 2007 Spatial

More information

Fundamentals of Fluid Dynamics: Ideal Flow Theory & Basic Aerodynamics

Fundamentals of Fluid Dynamics: Ideal Flow Theory & Basic Aerodynamics Fundamentals of Fluid Dynamics: Ideal Flow Theory & Basic Aerodynamics Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI (after: D.J. ACHESON s Elementary Fluid Dynamics ) bluebox.ippt.pan.pl/

More information

Mapping the mechanical stiffness of live cells with the scanning ion conductance microscope

Mapping the mechanical stiffness of live cells with the scanning ion conductance microscope SUPPLEMENTARY INFORMATION Mapping the mechanical stiffness of live cells with the scanning ion conductance microscope Johannes Rheinlaender and Tilman E. Schäffer Supplementary Figure S1 Supplementary

More information

ECE520 VLSI Design. Lecture 8: Interconnect Manufacturing and Modeling. Payman Zarkesh-Ha

ECE520 VLSI Design. Lecture 8: Interconnect Manufacturing and Modeling. Payman Zarkesh-Ha ECE520 VLSI Design Lecture 8: Interconnect Manufacturing and Modeling Payman Zarkesh-Ha Office: ECE Bldg. 230B Office hours: Wednesday 2:00-3:00PM or by appointment E-mail: pzarkesh@unm.edu Slide: 1 Review

More information

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 4, No 1, 2013

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 4, No 1, 2013 INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 4, No 1, 2013 Copyright by the authors - Licensee IPA- Under Creative Commons license 3.0 Research article ISSN 0976 4399 Nanoindentation

More information

Relaxation of a Strained Elastic Film on a Viscous Layer

Relaxation of a Strained Elastic Film on a Viscous Layer Mat. Res. Soc. Symp. Proc. Vol. 695 Materials Research Society Relaxation of a Strained Elastic Film on a Viscous Layer R. Huang 1, H. Yin, J. Liang 3, K. D. Hobart 4, J. C. Sturm, and Z. Suo 3 1 Department

More information

Available online at ScienceDirect. Procedia IUTAM 13 (2015 ) 82 89

Available online at   ScienceDirect. Procedia IUTAM 13 (2015 ) 82 89 Available online at www.sciencedirect.com ScienceDirect Procedia IUTAM 13 (215 ) 82 89 IUTAM Symposium on Dynamical Analysis of Multibody Systems with Design Uncertainties The importance of imperfections

More information

Surface shape and contact pressure evolution in two component surfaces: application to copper chemical mechanical polishing

Surface shape and contact pressure evolution in two component surfaces: application to copper chemical mechanical polishing Triology Letters, Vol. 17, No. 2, August 2004 (Ó 2004) 139 Surface shape and contact pressure evolution in two component surfaces: application to copper chemical mechanical polishing W.G. Sawyer* Department

More information

transition from boundary lubrication to hydrodynamic lubrication

transition from boundary lubrication to hydrodynamic lubrication IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER J. Phys.: Condens. Matter 21 2009) 185002 22pp) doi:10.1088/0953-8984/21/18/185002 On the transition from boundary lubrication to hydrodynamic lubrication

More information

Topology Optimization of Low Frequency Structure with Application to Vibration Energy Harvester

Topology Optimization of Low Frequency Structure with Application to Vibration Energy Harvester Topology Optimization of Low Frequency Structure with Application to Vibration Energy Harvester Surendra Singh, A. Narayana Reddy, Deepak Sharma Department of Mechanical Engineering, Indian Institute of

More information

Finite Element Analysis of Elastohydrodynamic Cylindrical Journal Bearing

Finite Element Analysis of Elastohydrodynamic Cylindrical Journal Bearing Copyright 1 Tech Science Press FDMP, vol., no., pp.19-9, 1 Finite Element Analysis of Elastohydrodynamic Cylindrical Journal Bearing L. Dammak and E. Hadj-Taïeb Abstract: This paper presents a short and

More information

MECHANICS, MECHANISMS, AND MODELING OF THE CHEMICAL MECHANICAL POLISHING PROCESS

MECHANICS, MECHANISMS, AND MODELING OF THE CHEMICAL MECHANICAL POLISHING PROCESS MECHANICS, MECHANISMS, AND MODELING OF THE CHEMICAL MECHANICAL POLISHING PROCESS by Jiun-Yu Lai B.S., Naval Architecture and Ocean Engineering National Taiwan University, 1993 S.M., Mechanical Engineering

More information

SUPPLEMENTARY NOTES Supplementary Note 1: Fabrication of Scanning Thermal Microscopy Probes

SUPPLEMENTARY NOTES Supplementary Note 1: Fabrication of Scanning Thermal Microscopy Probes SUPPLEMENTARY NOTES Supplementary Note 1: Fabrication of Scanning Thermal Microscopy Probes Fabrication of the scanning thermal microscopy (SThM) probes is summarized in Supplementary Fig. 1 and proceeds

More information

Shear stresses around circular cylindrical openings

Shear stresses around circular cylindrical openings Shear stresses around circular cylindrical openings P.C.J. Hoogenboom 1, C. van Weelden 1, C.B.M. Blom 1, 1 Delft University of Technology, the Netherlands Gemeentewerken Rotterdam, the Netherlands In

More information

Mechanics of Irregular Honeycomb Structures

Mechanics of Irregular Honeycomb Structures Mechanics of Irregular Honeycomb Structures S. Adhikari 1, T. Mukhopadhyay 1 Chair of Aerospace Engineering, College of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP, UK Sixth International

More information

ULTRASONIC INVESTIGATION OF THE STIFFNESS OF GRAPHITE-

ULTRASONIC INVESTIGATION OF THE STIFFNESS OF GRAPHITE- ULTRASONIC INVESTIGATION OF THE STIFFNESS OF GRAPHITE- GRAPHITE INTERFACES A. M. Robinson, B. W. Drinkwater Department of Mechanical Engineering, Queen's Building, University Walk, University of Bristol,

More information

Abrasive-free Copper Chemical Mechanical Polishing in an Orbital Polisher

Abrasive-free Copper Chemical Mechanical Polishing in an Orbital Polisher Abrasive-free Copper Chemical Mechanical Polishing in an Orbital Polisher Qingjun Qin Advisor: Professor R. Shankar Subramanian Center for Advanced Materials Processing (CAMP) Department of Chemical &

More information

Notes on Rubber Friction

Notes on Rubber Friction Notes on Rubber Friction 2011 A G Plint Laws of Friction: In dry sliding between a given pair of materials under steady conditions, the coefficient of friction may be almost constant. This is the basis

More information

NONLINEAR WAVE EQUATIONS ARISING IN MODELING OF SOME STRAIN-HARDENING STRUCTURES

NONLINEAR WAVE EQUATIONS ARISING IN MODELING OF SOME STRAIN-HARDENING STRUCTURES NONLINEAR WAE EQUATIONS ARISING IN MODELING OF SOME STRAIN-HARDENING STRUCTURES DONGMING WEI Department of Mathematics, University of New Orleans, 2 Lakeshore Dr., New Orleans, LA 7148,USA E-mail: dwei@uno.edu

More information

Regular, low density cellular structures - rapid prototyping, numerical simulation, mechanical testing

Regular, low density cellular structures - rapid prototyping, numerical simulation, mechanical testing Mat. Res. Soc. Symp. Proc. Vol. 823 2004 Materials Research Society W8.8.1 Regular, low density cellular structures - rapid prototyping, numerical simulation, mechanical testing J. Stampfl 1, M.M. Seyr

More information

Modeling of Photoinduced Deformation in Silicon Microcantilevers

Modeling of Photoinduced Deformation in Silicon Microcantilevers Sensors 007, 7, 73-79 sensors ISSN 44-80 007 by DPI www.mdpi.org/sensors Full Paper odeling of Photoinduced Deformation in Silicon icrocantilevers Yu-Lin Guo, Jia Zhou *, Yiping uang and in ang Bao ASIC

More information

INDENTATION RESISTANCE OF AN ALUMINIUM FOAM

INDENTATION RESISTANCE OF AN ALUMINIUM FOAM Scripta mater. 43 (2000) 983 989 www.elsevier.com/locate/scriptamat INDENTATION RESISTANCE OF AN ALUMINIUM FOAM O.B. Olurin, N.A. Fleck and M.F. Ashby Cambridge University Engineering Department, Cambridge,

More information

Computational Analysis of Foil Air Journal Bearings Using a Runtime-Efficient Segmented Foil Model

Computational Analysis of Foil Air Journal Bearings Using a Runtime-Efficient Segmented Foil Model Computational Analysis of Foil Air Journal Bearings Using a Runtime-Efficient Segmented Foil Model Tim Leister 1, Christoph Baum 1, Wolfgang Seemann 1 {tim.leister, christoph.baum, wolfgang.seemann}@kit.edu

More information

Deterministic repeated contact of rough surfaces

Deterministic repeated contact of rough surfaces Available online at www.sciencedirect.com Wear 264 (2008) 349 358 Deterministic repeated contact of rough surfaces J. Jamari, D.J. Schipper Laboratory for Surface Technology and Tribology, Faculty of Engineering

More information

Unit 18 Other Issues In Buckling/Structural Instability

Unit 18 Other Issues In Buckling/Structural Instability Unit 18 Other Issues In Buckling/Structural Instability Readings: Rivello Timoshenko Jones 14.3, 14.5, 14.6, 14.7 (read these at least, others at your leisure ) Ch. 15, Ch. 16 Theory of Elastic Stability

More information