Math Homework 5 Solutions

Size: px
Start display at page:

Download "Math Homework 5 Solutions"

Transcription

1 Math 45 - Homework 5 Solutions. Exercise.3., textbook. The stochastic matrix for the gambler problem has the following form, where the states are ordered as (,, 4, 6, 8, ): P = The corresponding diagram is shown below, with the absorbing states boxed. 4 / 8 / / / / 6 / / / Figure : Digraph for the gambler problem. To find the probability of reaching state before state, we need to solve the following system of equations, where h i is the hitting probability of state starting at i. h = h 4 + h h 4 = h 8 + h h 6 = h + h h 8 = h 6 + h.

2 Using the values h =, h = the system has a unique solution, which is easily found by simple substitution. We obtain h = /5. Now denote by µ i the expected time before reaching either or given that the process starts at state i. Then µ =, µ =, and the following system holds: µ = + µ 4 + µ µ 4 = + µ 8 + µ µ 6 = + µ + µ µ 8 = + µ 6 + µ. This is also easily solved for µ. The result is µ =. The program below can be used for the simulation. (See program in the cat-and-mouse problem of homework 4.) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %I will enumerate the states in the following %order: 6 4 8, and use the program %stop_at_set of homework 4. rand( seed,34) p=[ ]; P=zeros(6,6); P(,[,5])=/; P(3,[,4])=/; P(5,[,6])=/; P(6,[3,4])=/; P(,)=; P(4,4)=; A=[ 4]; a=; for j=: x=stop_at_set(p,p,a,); a=a+length(x)-; end a=a/ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% The above gave the simulated value µ = The linear system for finding the h i in the cat and mouse problem is (using

3 notation as in the previous problem): h 7 =, h 9 = and h 3 h h 3 3 h 4 = 4 h 5 3 h 6 3 h 8 This can be solved numerically. The result is. h =.4, h 3 =.6, h 4 =.3, h = h 5 = h 8 =.5, h 6 =.7. The value we want is h 3 = Let X, X, X,... be a Markov chain with state space S. Decide whether the random variable T in each case below is a stopping time or not. Explain your answer. (a) T is the time of the rth visit to state i S, where r is a positive integer. This is a stopping time. The event {T = n} can be written as the union of events of the type: E E E n, where E n = {X n = i}, and each E k for k < n is either {X k i} or {X k = i}, where the latter occurs exactly r times. Therefore, {T = n} is an event expressible in terms of the X k for k up to time n. (b) T = T A + n, where A is a subset of S, T A is the hitting time at A, and n is a positive integer. This is a stopping time. In fact {T = n} = {T A = n n }. As T A is a stopping time, the event {T = n} only depends on X k for k n n. (c) T = T A n, where A is a subset of S, T A is the hitting time at A, and n is a positive integer. Essentially the same argument used in the previous item shows that this T is not a stopping time since the event {T = n} depends on X k for k up to n + n. (d) T is the first nonnegative integer n such that X n+ =, and T = if X n+ i for all n. This T is not a stopping time since the event {T = n} depends on knowledge of X n+. 4. Exercise.5.. This problem refers to the diagram of figure. 5. Exercise.5.. Let (X n ) n be a Markov chain on S = {,,,... } with transition probabilities given by ( ) α i + p =, p i,i+ + p i,i =, p i,i+ = p i,i. i 3

4 / /4 / /4 / / / /4 / / Figure : We know that for systems with finite state space, recurrent communicating classes are precisely the closed classes. So states, 5 and 3 are recurrent, whereas and 4 are transient. (In problem.3.4, α =.) First note that all p i,i and p i,i+, for i, are not equal to. This shows that the system is irreducible, i.e., there is only one communicating class. Therefore, either all states are recurrent or they are all transient. If all states are recurrent, the probability that X n as n is, and if all states are transient, the same probability is one. In fact, transience means that with probability, after some time the system will never again return to a given state. That is, for ω in a set of probability, for each positive integer L (a state) we can find another positive integer N (a time step) such that X n (ω) > L for all n N. But this is just the calculus definition of the limit X n (ω) as n. Therefore, the probabilities we wish to find are either, if the system is transient, or if it is recurrent. This is decided by using Theorem.5.3. Note that, as p =, P (T < ) = P (hit in finite time) = h {} where h {} is the probability of hitting starting from state. This probability can be calculated just as in the birth-and-death example. It is equal to if the series C = is divergent (see page 6-7 of text), and if the series is convergent h {} = C j= γ j γ j <. (Recall that γ = by definition.) Thus, the probability we seek is or depending on whether the series A is divergent or not, respectively. A j= 4

5 simple calculation shows that so that γ j = C = j= (j + ) α (j + ) α. We know that this series is divergent exactly when α. The conclusion is that { if α > P (X n as n ) = if α. 6. Exercise.6.. The rooted binary tree is the infinite graph indicated in figure 3. The graph on the right-hand side shows the transition probabilities of moving up or down along the tree. Notice that if we prove that the process on the right is transient, then the same is true for the process along the tree diagram. Thus the problem is reduced to showing transience for a birth-and-death chain. Since the chain is irreducible, we only need to show that the bottom state, denoted by, is transient. By theorem.5.3 it suffices to show that the probability of returning to in finite time is less than. This probability is the same as the hitting probability, h,, to given that the system starts at the second state from the bottom. The calculation used in example.3.4 shows that this number is less than if the series C = j= is convergent. But (with the notations of example.3.4) q i = q = /3 and p i = p = /3 for i, so that γ j = (q/p) j = (/) j. Therefore, the series is a convergent geometric series, and the chain is transient. γ j 5

6 /3 /3 /3 /3 /3 Figure 3: On the left: the rooted tree transition diagram. At each vertex the probabilities of moving to any of the neighboring vertices are equal. The transition diagram on the right shows the probabilities of moving up or down on the set of levels. 6

2. Transience and Recurrence

2. Transience and Recurrence Virtual Laboratories > 15. Markov Chains > 1 2 3 4 5 6 7 8 9 10 11 12 2. Transience and Recurrence The study of Markov chains, particularly the limiting behavior, depends critically on the random times

More information

MATH 564/STAT 555 Applied Stochastic Processes Homework 2, September 18, 2015 Due September 30, 2015

MATH 564/STAT 555 Applied Stochastic Processes Homework 2, September 18, 2015 Due September 30, 2015 ID NAME SCORE MATH 56/STAT 555 Applied Stochastic Processes Homework 2, September 8, 205 Due September 30, 205 The generating function of a sequence a n n 0 is defined as As : a ns n for all s 0 for which

More information

Classification of Countable State Markov Chains

Classification of Countable State Markov Chains Classification of Countable State Markov Chains Friday, March 21, 2014 2:01 PM How can we determine whether a communication class in a countable state Markov chain is: transient null recurrent positive

More information

Markov Chains (Part 3)

Markov Chains (Part 3) Markov Chains (Part 3) State Classification Markov Chains - State Classification Accessibility State j is accessible from state i if p ij (n) > for some n>=, meaning that starting at state i, there is

More information

Homework set 2 - Solutions

Homework set 2 - Solutions Homework set 2 - Solutions Math 495 Renato Feres Simulating a Markov chain in R Generating sample sequences of a finite state Markov chain. The following is a simple program for generating sample sequences

More information

Math 456: Mathematical Modeling. Tuesday, March 6th, 2018

Math 456: Mathematical Modeling. Tuesday, March 6th, 2018 Math 456: Mathematical Modeling Tuesday, March 6th, 2018 Markov Chains: Exit distributions and the Strong Markov Property Tuesday, March 6th, 2018 Last time 1. Weighted graphs. 2. Existence of stationary

More information

Birth-death chain models (countable state)

Birth-death chain models (countable state) Countable State Birth-Death Chains and Branching Processes Tuesday, March 25, 2014 1:59 PM Homework 3 posted, due Friday, April 18. Birth-death chain models (countable state) S = We'll characterize the

More information

Examples of Countable State Markov Chains Thursday, October 16, :12 PM

Examples of Countable State Markov Chains Thursday, October 16, :12 PM stochnotes101608 Page 1 Examples of Countable State Markov Chains Thursday, October 16, 2008 12:12 PM Homework 2 solutions will be posted later today. A couple of quick examples. Queueing model (without

More information

Lectures on Markov Chains

Lectures on Markov Chains Lectures on Markov Chains David M. McClendon Department of Mathematics Ferris State University 2016 edition 1 Contents Contents 2 1 Markov chains 4 1.1 The definition of a Markov chain.....................

More information

Markov Chains CK eqns Classes Hitting times Rec./trans. Strong Markov Stat. distr. Reversibility * Markov Chains

Markov Chains CK eqns Classes Hitting times Rec./trans. Strong Markov Stat. distr. Reversibility * Markov Chains Markov Chains A random process X is a family {X t : t T } of random variables indexed by some set T. When T = {0, 1, 2,... } one speaks about a discrete-time process, for T = R or T = [0, ) one has a continuous-time

More information

Markov Chains Handout for Stat 110

Markov Chains Handout for Stat 110 Markov Chains Handout for Stat 0 Prof. Joe Blitzstein (Harvard Statistics Department) Introduction Markov chains were first introduced in 906 by Andrey Markov, with the goal of showing that the Law of

More information

http://www.math.uah.edu/stat/markov/.xhtml 1 of 9 7/16/2009 7:20 AM Virtual Laboratories > 16. Markov Chains > 1 2 3 4 5 6 7 8 9 10 11 12 1. A Markov process is a random process in which the future is

More information

Stochastic Models: Markov Chains and their Generalizations

Stochastic Models: Markov Chains and their Generalizations Scuola di Dottorato in Scienza ed Alta Tecnologia Dottorato in Informatica Universita di Torino Stochastic Models: Markov Chains and their Generalizations Gianfranco Balbo e Andras Horvath Outline Introduction

More information

Homework set 3 - Solutions

Homework set 3 - Solutions Homework set 3 - Solutions Math 495 Renato Feres Problems 1. (Text, Exercise 1.13, page 38.) Consider the Markov chain described in Exercise 1.1: The Smiths receive the paper every morning and place it

More information

Lecture Notes 7 Random Processes. Markov Processes Markov Chains. Random Processes

Lecture Notes 7 Random Processes. Markov Processes Markov Chains. Random Processes Lecture Notes 7 Random Processes Definition IID Processes Bernoulli Process Binomial Counting Process Interarrival Time Process Markov Processes Markov Chains Classification of States Steady State Probabilities

More information

TMA 4265 Stochastic Processes Semester project, fall 2014 Student number and

TMA 4265 Stochastic Processes Semester project, fall 2014 Student number and TMA 4265 Stochastic Processes Semester project, fall 2014 Student number 730631 and 732038 Exercise 1 We shall study a discrete Markov chain (MC) {X n } n=0 with state space S = {0, 1, 2, 3, 4, 5, 6}.

More information

Powerful tool for sampling from complicated distributions. Many use Markov chains to model events that arise in nature.

Powerful tool for sampling from complicated distributions. Many use Markov chains to model events that arise in nature. Markov Chains Markov chains: 2SAT: Powerful tool for sampling from complicated distributions rely only on local moves to explore state space. Many use Markov chains to model events that arise in nature.

More information

12 Markov chains The Markov property

12 Markov chains The Markov property 12 Markov chains Summary. The chapter begins with an introduction to discrete-time Markov chains, and to the use of matrix products and linear algebra in their study. The concepts of recurrence and transience

More information

88 CONTINUOUS MARKOV CHAINS

88 CONTINUOUS MARKOV CHAINS 88 CONTINUOUS MARKOV CHAINS 3.4. birth-death. Continuous birth-death Markov chains are very similar to countable Markov chains. One new concept is explosion which means that an infinite number of state

More information

P i [B k ] = lim. n=1 p(n) ii <. n=1. V i :=

P i [B k ] = lim. n=1 p(n) ii <. n=1. V i := 2.7. Recurrence and transience Consider a Markov chain {X n : n N 0 } on state space E with transition matrix P. Definition 2.7.1. A state i E is called recurrent if P i [X n = i for infinitely many n]

More information

Homework 3 posted, due Tuesday, November 29.

Homework 3 posted, due Tuesday, November 29. Classification of Birth-Death Chains Tuesday, November 08, 2011 2:02 PM Homework 3 posted, due Tuesday, November 29. Continuing with our classification of birth-death chains on nonnegative integers. Last

More information

MATH 56A SPRING 2008 STOCHASTIC PROCESSES 65

MATH 56A SPRING 2008 STOCHASTIC PROCESSES 65 MATH 56A SPRING 2008 STOCHASTIC PROCESSES 65 2.2.5. proof of extinction lemma. The proof of Lemma 2.3 is just like the proof of the lemma I did on Wednesday. It goes like this. Suppose that â is the smallest

More information

MARKOV PROCESSES. Valerio Di Valerio

MARKOV PROCESSES. Valerio Di Valerio MARKOV PROCESSES Valerio Di Valerio Stochastic Process Definition: a stochastic process is a collection of random variables {X(t)} indexed by time t T Each X(t) X is a random variable that satisfy some

More information

(b) What is the variance of the time until the second customer arrives, starting empty, assuming that we measure time in minutes?

(b) What is the variance of the time until the second customer arrives, starting empty, assuming that we measure time in minutes? IEOR 3106: Introduction to Operations Research: Stochastic Models Fall 2006, Professor Whitt SOLUTIONS to Final Exam Chapters 4-7 and 10 in Ross, Tuesday, December 19, 4:10pm-7:00pm Open Book: but only

More information

The cost/reward formula has two specific widely used applications:

The cost/reward formula has two specific widely used applications: Applications of Absorption Probability and Accumulated Cost/Reward Formulas for FDMC Friday, October 21, 2011 2:28 PM No class next week. No office hours either. Next class will be 11/01. The cost/reward

More information

Hitting Probabilities

Hitting Probabilities Stat25B: Probability Theory (Spring 23) Lecture: 2 Hitting Probabilities Lecturer: James W. Pitman Scribe: Brian Milch 2. Hitting probabilities Consider a Markov chain with a countable state space S and

More information

1 Gambler s Ruin Problem

1 Gambler s Ruin Problem 1 Gambler s Ruin Problem Consider a gambler who starts with an initial fortune of $1 and then on each successive gamble either wins $1 or loses $1 independent of the past with probabilities p and q = 1

More information

At the boundary states, we take the same rules except we forbid leaving the state space, so,.

At the boundary states, we take the same rules except we forbid leaving the state space, so,. Birth-death chains Monday, October 19, 2015 2:22 PM Example: Birth-Death Chain State space From any state we allow the following transitions: with probability (birth) with probability (death) with probability

More information

MATH 56A: STOCHASTIC PROCESSES CHAPTER 2

MATH 56A: STOCHASTIC PROCESSES CHAPTER 2 MATH 56A: STOCHASTIC PROCESSES CHAPTER 2 2. Countable Markov Chains I started Chapter 2 which talks about Markov chains with a countably infinite number of states. I did my favorite example which is on

More information

Markov Processes Hamid R. Rabiee

Markov Processes Hamid R. Rabiee Markov Processes Hamid R. Rabiee Overview Markov Property Markov Chains Definition Stationary Property Paths in Markov Chains Classification of States Steady States in MCs. 2 Markov Property A discrete

More information

IE 336 Seat # Name (clearly) Closed book. One page of hand-written notes, front and back. No calculator. 60 minutes.

IE 336 Seat # Name (clearly) Closed book. One page of hand-written notes, front and back. No calculator. 60 minutes. Closed book. One page of hand-written notes, front and back. No calculator. 6 minutes. Cover page and four pages of exam. Fifteen questions. Each question is worth seven points. To receive full credit,

More information

Lecture 5. If we interpret the index n 0 as time, then a Markov chain simply requires that the future depends only on the present and not on the past.

Lecture 5. If we interpret the index n 0 as time, then a Markov chain simply requires that the future depends only on the present and not on the past. 1 Markov chain: definition Lecture 5 Definition 1.1 Markov chain] A sequence of random variables (X n ) n 0 taking values in a measurable state space (S, S) is called a (discrete time) Markov chain, if

More information

MATH 56A: STOCHASTIC PROCESSES CHAPTER 1

MATH 56A: STOCHASTIC PROCESSES CHAPTER 1 MATH 56A: STOCHASTIC PROCESSES CHAPTER. Finite Markov chains For the sake of completeness of these notes I decided to write a summary of the basic concepts of finite Markov chains. The topics in this chapter

More information

Statistics 150: Spring 2007

Statistics 150: Spring 2007 Statistics 150: Spring 2007 April 23, 2008 0-1 1 Limiting Probabilities If the discrete-time Markov chain with transition probabilities p ij is irreducible and positive recurrent; then the limiting probabilities

More information

Introduction to Stochastic Processes

Introduction to Stochastic Processes 18.445 Introduction to Stochastic Processes Lecture 1: Introduction to finite Markov chains Hao Wu MIT 04 February 2015 Hao Wu (MIT) 18.445 04 February 2015 1 / 15 Course description About this course

More information

Markov Chains and Stochastic Sampling

Markov Chains and Stochastic Sampling Part I Markov Chains and Stochastic Sampling 1 Markov Chains and Random Walks on Graphs 1.1 Structure of Finite Markov Chains We shall only consider Markov chains with a finite, but usually very large,

More information

CS 125 Section #10 (Un)decidability and Probability November 1, 2016

CS 125 Section #10 (Un)decidability and Probability November 1, 2016 CS 125 Section #10 (Un)decidability and Probability November 1, 2016 1 Countability Recall that a set S is countable (either finite or countably infinite) if and only if there exists a surjective mapping

More information

Transience: Whereas a finite closed communication class must be recurrent, an infinite closed communication class can be transient:

Transience: Whereas a finite closed communication class must be recurrent, an infinite closed communication class can be transient: Stochastic2010 Page 1 Long-Time Properties of Countable-State Markov Chains Tuesday, March 23, 2010 2:14 PM Homework 2: if you turn it in by 5 PM on 03/25, I'll grade it by 03/26, but you can turn it in

More information

Stochastic modelling of epidemic spread

Stochastic modelling of epidemic spread Stochastic modelling of epidemic spread Julien Arino Centre for Research on Inner City Health St Michael s Hospital Toronto On leave from Department of Mathematics University of Manitoba Julien Arino@umanitoba.ca

More information

Solutions to Homework Discrete Stochastic Processes MIT, Spring 2011

Solutions to Homework Discrete Stochastic Processes MIT, Spring 2011 Exercise 1 Solutions to Homework 6 6.262 Discrete Stochastic Processes MIT, Spring 2011 Let {Y n ; n 1} be a sequence of rv s and assume that lim n E[ Y n ] = 0. Show that {Y n ; n 1} converges to 0 in

More information

Markov chains. Randomness and Computation. Markov chains. Markov processes

Markov chains. Randomness and Computation. Markov chains. Markov processes Markov chains Randomness and Computation or, Randomized Algorithms Mary Cryan School of Informatics University of Edinburgh Definition (Definition 7) A discrete-time stochastic process on the state space

More information

Lecture 11: Introduction to Markov Chains. Copyright G. Caire (Sample Lectures) 321

Lecture 11: Introduction to Markov Chains. Copyright G. Caire (Sample Lectures) 321 Lecture 11: Introduction to Markov Chains Copyright G. Caire (Sample Lectures) 321 Discrete-time random processes A sequence of RVs indexed by a variable n 2 {0, 1, 2,...} forms a discretetime random process

More information

Readings: Finish Section 5.2

Readings: Finish Section 5.2 LECTURE 19 Readings: Finish Section 5.2 Lecture outline Markov Processes I Checkout counter example. Markov process: definition. -step transition probabilities. Classification of states. Example: Checkout

More information

MATH HOMEWORK PROBLEMS D. MCCLENDON

MATH HOMEWORK PROBLEMS D. MCCLENDON MATH 46- HOMEWORK PROBLEMS D. MCCLENDON. Consider a Markov chain with state space S = {0, }, where p = P (0, ) and q = P (, 0); compute the following in terms of p and q: (a) P (X 2 = 0 X = ) (b) P (X

More information

Homework #2 Solutions Due: September 5, for all n N n 3 = n2 (n + 1) 2 4

Homework #2 Solutions Due: September 5, for all n N n 3 = n2 (n + 1) 2 4 Do the following exercises from the text: Chapter (Section 3):, 1, 17(a)-(b), 3 Prove that 1 3 + 3 + + n 3 n (n + 1) for all n N Proof The proof is by induction on n For n N, let S(n) be the statement

More information

ISyE 6650 Probabilistic Models Fall 2007

ISyE 6650 Probabilistic Models Fall 2007 ISyE 6650 Probabilistic Models Fall 2007 Homework 4 Solution 1. (Ross 4.3) In this case, the state of the system is determined by the weather conditions in the last three days. Letting D indicate a dry

More information

SMSTC (2007/08) Probability.

SMSTC (2007/08) Probability. SMSTC (27/8) Probability www.smstc.ac.uk Contents 12 Markov chains in continuous time 12 1 12.1 Markov property and the Kolmogorov equations.................... 12 2 12.1.1 Finite state space.................................

More information

Arkansas Tech University MATH 2924: Calculus II Dr. Marcel B. Finan

Arkansas Tech University MATH 2924: Calculus II Dr. Marcel B. Finan Arkansas Tech University MATH 2924: Calculus II Dr. Marcel B. Finan 8. Sequences We start this section by introducing the concept of a sequence and study its convergence. Convergence of Sequences. An infinite

More information

Sequences and Summations

Sequences and Summations COMP 182 Algorithmic Thinking Sequences and Summations Luay Nakhleh Computer Science Rice University Chapter 2, Section 4 Reading Material Sequences A sequence is a function from a subset of the set of

More information

Necessary and sufficient conditions for strong R-positivity

Necessary and sufficient conditions for strong R-positivity Necessary and sufficient conditions for strong R-positivity Wednesday, November 29th, 2017 The Perron-Frobenius theorem Let A = (A(x, y)) x,y S be a nonnegative matrix indexed by a countable set S. We

More information

8. Statistical Equilibrium and Classification of States: Discrete Time Markov Chains

8. Statistical Equilibrium and Classification of States: Discrete Time Markov Chains 8. Statistical Equilibrium and Classification of States: Discrete Time Markov Chains 8.1 Review 8.2 Statistical Equilibrium 8.3 Two-State Markov Chain 8.4 Existence of P ( ) 8.5 Classification of States

More information

Stat 516, Homework 1

Stat 516, Homework 1 Stat 516, Homework 1 Due date: October 7 1. Consider an urn with n distinct balls numbered 1,..., n. We sample balls from the urn with replacement. Let N be the number of draws until we encounter a ball

More information

RANDOM WALKS IN ONE DIMENSION

RANDOM WALKS IN ONE DIMENSION RANDOM WALKS IN ONE DIMENSION STEVEN P. LALLEY 1. THE GAMBLER S RUIN PROBLEM 1.1. Statement of the problem. I have A dollars; my colleague Xinyi has B dollars. A cup of coffee at the Sacred Grounds in

More information

INTRODUCTION TO MARKOV CHAIN MONTE CARLO

INTRODUCTION TO MARKOV CHAIN MONTE CARLO INTRODUCTION TO MARKOV CHAIN MONTE CARLO 1. Introduction: MCMC In its simplest incarnation, the Monte Carlo method is nothing more than a computerbased exploitation of the Law of Large Numbers to estimate

More information

57:022 Principles of Design II Final Exam Solutions - Spring 1997

57:022 Principles of Design II Final Exam Solutions - Spring 1997 57:022 Principles of Design II Final Exam Solutions - Spring 1997 Part: I II III IV V VI Total Possible Pts: 52 10 12 16 13 12 115 PART ONE Indicate "+" if True and "o" if False: + a. If a component's

More information

Practice Final Solutions. 1. Consider the following algorithm. Assume that n 1. line code 1 alg(n) { 2 j = 0 3 if (n = 0) { 4 return j

Practice Final Solutions. 1. Consider the following algorithm. Assume that n 1. line code 1 alg(n) { 2 j = 0 3 if (n = 0) { 4 return j Practice Final Solutions 1. Consider the following algorithm. Assume that n 1. line code 1 alg(n) 2 j = 0 3 if (n = 0) 4 return j } 5 else 6 j = 2n+ alg(n 1) 7 return j } } Set up a recurrence relation

More information

Lecture 9 Classification of States

Lecture 9 Classification of States Lecture 9: Classification of States of 27 Course: M32K Intro to Stochastic Processes Term: Fall 204 Instructor: Gordan Zitkovic Lecture 9 Classification of States There will be a lot of definitions and

More information

IEOR 6711: Professor Whitt. Introduction to Markov Chains

IEOR 6711: Professor Whitt. Introduction to Markov Chains IEOR 6711: Professor Whitt Introduction to Markov Chains 1. Markov Mouse: The Closed Maze We start by considering how to model a mouse moving around in a maze. The maze is a closed space containing nine

More information

M3/4/5 S4 Applied Probability

M3/4/5 S4 Applied Probability M3/4/5 S4 Applied Probability Autumn 215 Badr Missaoui Room 545 Huxley Building Imperial College London E-Mail: badr.missaoui8@imperial.ac.uk Department of Mathematics Imperial College London 18 Queens

More information

Chapter 5. Continuous-Time Markov Chains. Prof. Shun-Ren Yang Department of Computer Science, National Tsing Hua University, Taiwan

Chapter 5. Continuous-Time Markov Chains. Prof. Shun-Ren Yang Department of Computer Science, National Tsing Hua University, Taiwan Chapter 5. Continuous-Time Markov Chains Prof. Shun-Ren Yang Department of Computer Science, National Tsing Hua University, Taiwan Continuous-Time Markov Chains Consider a continuous-time stochastic process

More information

Computer Science 385 Analysis of Algorithms Siena College Spring Topic Notes: Limitations of Algorithms

Computer Science 385 Analysis of Algorithms Siena College Spring Topic Notes: Limitations of Algorithms Computer Science 385 Analysis of Algorithms Siena College Spring 2011 Topic Notes: Limitations of Algorithms We conclude with a discussion of the limitations of the power of algorithms. That is, what kinds

More information

MATH 409 LECTURES THE KNAPSACK PROBLEM

MATH 409 LECTURES THE KNAPSACK PROBLEM MATH 409 LECTURES 19-21 THE KNAPSACK PROBLEM REKHA THOMAS We now leave the world of discrete optimization problems that can be solved in polynomial time and look at the easiest case of an integer program,

More information

Generating Functions

Generating Functions Semester 1, 2004 Generating functions Another means of organising enumeration. Two examples we have seen already. Example 1. Binomial coefficients. Let X = {1, 2,..., n} c k = # k-element subsets of X

More information

Lecture 20 : Markov Chains

Lecture 20 : Markov Chains CSCI 3560 Probability and Computing Instructor: Bogdan Chlebus Lecture 0 : Markov Chains We consider stochastic processes. A process represents a system that evolves through incremental changes called

More information

LIMITING PROBABILITY TRANSITION MATRIX OF A CONDENSED FIBONACCI TREE

LIMITING PROBABILITY TRANSITION MATRIX OF A CONDENSED FIBONACCI TREE International Journal of Applied Mathematics Volume 31 No. 18, 41-49 ISSN: 1311-178 (printed version); ISSN: 1314-86 (on-line version) doi: http://dx.doi.org/1.173/ijam.v31i.6 LIMITING PROBABILITY TRANSITION

More information

Discrete time Markov chains. Discrete Time Markov Chains, Limiting. Limiting Distribution and Classification. Regular Transition Probability Matrices

Discrete time Markov chains. Discrete Time Markov Chains, Limiting. Limiting Distribution and Classification. Regular Transition Probability Matrices Discrete time Markov chains Discrete Time Markov Chains, Limiting Distribution and Classification DTU Informatics 02407 Stochastic Processes 3, September 9 207 Today: Discrete time Markov chains - invariant

More information

Let (Ω, F) be a measureable space. A filtration in discrete time is a sequence of. F s F t

Let (Ω, F) be a measureable space. A filtration in discrete time is a sequence of. F s F t 2.2 Filtrations Let (Ω, F) be a measureable space. A filtration in discrete time is a sequence of σ algebras {F t } such that F t F and F t F t+1 for all t = 0, 1,.... In continuous time, the second condition

More information

Stochastic process. X, a series of random variables indexed by t

Stochastic process. X, a series of random variables indexed by t Stochastic process X, a series of random variables indexed by t X={X(t), t 0} is a continuous time stochastic process X={X(t), t=0,1, } is a discrete time stochastic process X(t) is the state at time t,

More information

Recap. Probability, stochastic processes, Markov chains. ELEC-C7210 Modeling and analysis of communication networks

Recap. Probability, stochastic processes, Markov chains. ELEC-C7210 Modeling and analysis of communication networks Recap Probability, stochastic processes, Markov chains ELEC-C7210 Modeling and analysis of communication networks 1 Recap: Probability theory important distributions Discrete distributions Geometric distribution

More information

Probability & Computing

Probability & Computing Probability & Computing Stochastic Process time t {X t t 2 T } state space Ω X t 2 state x 2 discrete time: T is countable T = {0,, 2,...} discrete space: Ω is finite or countably infinite X 0,X,X 2,...

More information

Lecture #5. Dependencies along the genome

Lecture #5. Dependencies along the genome Markov Chains Lecture #5 Background Readings: Durbin et. al. Section 3., Polanski&Kimmel Section 2.8. Prepared by Shlomo Moran, based on Danny Geiger s and Nir Friedman s. Dependencies along the genome

More information

Note that in the example in Lecture 1, the state Home is recurrent (and even absorbing), but all other states are transient. f ii (n) f ii = n=1 < +

Note that in the example in Lecture 1, the state Home is recurrent (and even absorbing), but all other states are transient. f ii (n) f ii = n=1 < + Random Walks: WEEK 2 Recurrence and transience Consider the event {X n = i for some n > 0} by which we mean {X = i}or{x 2 = i,x i}or{x 3 = i,x 2 i,x i},. Definition.. A state i S is recurrent if P(X n

More information

Probability, Random Processes and Inference

Probability, Random Processes and Inference INSTITUTO POLITÉCNICO NACIONAL CENTRO DE INVESTIGACION EN COMPUTACION Laboratorio de Ciberseguridad Probability, Random Processes and Inference Dr. Ponciano Jorge Escamilla Ambrosio pescamilla@cic.ipn.mx

More information

On Polynomial Cases of the Unichain Classification Problem for Markov Decision Processes

On Polynomial Cases of the Unichain Classification Problem for Markov Decision Processes On Polynomial Cases of the Unichain Classification Problem for Markov Decision Processes Eugene A. Feinberg Department of Applied Mathematics and Statistics State University of New York at Stony Brook

More information

Homework 4 due on Thursday, December 15 at 5 PM (hard deadline).

Homework 4 due on Thursday, December 15 at 5 PM (hard deadline). Large-Time Behavior for Continuous-Time Markov Chains Friday, December 02, 2011 10:58 AM Homework 4 due on Thursday, December 15 at 5 PM (hard deadline). How are formulas for large-time behavior of discrete-time

More information

Lecture 6. 2 Recurrence/transience, harmonic functions and martingales

Lecture 6. 2 Recurrence/transience, harmonic functions and martingales Lecture 6 Classification of states We have shown that all states of an irreducible countable state Markov chain must of the same tye. This gives rise to the following classification. Definition. [Classification

More information

series. Utilize the methods of calculus to solve applied problems that require computational or algebraic techniques..

series. Utilize the methods of calculus to solve applied problems that require computational or algebraic techniques.. 1 Use computational techniques and algebraic skills essential for success in an academic, personal, or workplace setting. (Computational and Algebraic Skills) MAT 203 MAT 204 MAT 205 MAT 206 Calculus I

More information

P P P NP-Hard: L is NP-hard if for all L NP, L L. Thus, if we could solve L in polynomial. Cook's Theorem and Reductions

P P P NP-Hard: L is NP-hard if for all L NP, L L. Thus, if we could solve L in polynomial. Cook's Theorem and Reductions Summary of the previous lecture Recall that we mentioned the following topics: P: is the set of decision problems (or languages) that are solvable in polynomial time. NP: is the set of decision problems

More information

Stat 451: Solutions to Assignment #1

Stat 451: Solutions to Assignment #1 Stat 451: Solutions to Assignment #1 2.1) By definition, 2 Ω is the set of all subsets of Ω. Therefore, to show that 2 Ω is a σ-algebra we must show that the conditions of the definition σ-algebra are

More information

Markov Chains. INDER K. RANA Department of Mathematics Indian Institute of Technology Bombay Powai, Mumbai , India

Markov Chains. INDER K. RANA Department of Mathematics Indian Institute of Technology Bombay Powai, Mumbai , India Markov Chains INDER K RANA Department of Mathematics Indian Institute of Technology Bombay Powai, Mumbai 400076, India email: ikrana@iitbacin Abstract These notes were originally prepared for a College

More information

Math 110 (S & E) Textbook: Calculus Early Transcendentals by James Stewart, 7 th Edition

Math 110 (S & E) Textbook: Calculus Early Transcendentals by James Stewart, 7 th Edition Math 110 (S & E) Textbook: Calculus Early Transcendentals by James Stewart, 7 th Edition 1 Appendix A : Numbers, Inequalities, and Absolute Values Sets A set is a collection of objects with an important

More information

Some Definition and Example of Markov Chain

Some Definition and Example of Markov Chain Some Definition and Example of Markov Chain Bowen Dai The Ohio State University April 5 th 2016 Introduction Definition and Notation Simple example of Markov Chain Aim Have some taste of Markov Chain and

More information

ELECTRICAL NETWORK THEORY AND RECURRENCE IN DISCRETE RANDOM WALKS

ELECTRICAL NETWORK THEORY AND RECURRENCE IN DISCRETE RANDOM WALKS ELECTRICAL NETWORK THEORY AND RECURRENCE IN DISCRETE RANDOM WALKS DANIEL STRAUS Abstract This paper investigates recurrence in one dimensional random walks After proving recurrence, an alternate approach

More information

MATH 324 Summer 2011 Elementary Number Theory. Notes on Mathematical Induction. Recall the following axiom for the set of integers.

MATH 324 Summer 2011 Elementary Number Theory. Notes on Mathematical Induction. Recall the following axiom for the set of integers. MATH 4 Summer 011 Elementary Number Theory Notes on Mathematical Induction Principle of Mathematical Induction Recall the following axiom for the set of integers. Well-Ordering Axiom for the Integers If

More information

3. The Voter Model. David Aldous. June 20, 2012

3. The Voter Model. David Aldous. June 20, 2012 3. The Voter Model David Aldous June 20, 2012 We now move on to the voter model, which (compared to the averaging model) has a more substantial literature in the finite setting, so what s written here

More information

CSCE 750 Final Exam Answer Key Wednesday December 7, 2005

CSCE 750 Final Exam Answer Key Wednesday December 7, 2005 CSCE 750 Final Exam Answer Key Wednesday December 7, 2005 Do all problems. Put your answers on blank paper or in a test booklet. There are 00 points total in the exam. You have 80 minutes. Please note

More information

Math 324 Summer 2012 Elementary Number Theory Notes on Mathematical Induction

Math 324 Summer 2012 Elementary Number Theory Notes on Mathematical Induction Math 4 Summer 01 Elementary Number Theory Notes on Mathematical Induction Principle of Mathematical Induction Recall the following axiom for the set of integers. Well-Ordering Axiom for the Integers If

More information

1 Continuous-time chains, finite state space

1 Continuous-time chains, finite state space Université Paris Diderot 208 Markov chains Exercises 3 Continuous-time chains, finite state space Exercise Consider a continuous-time taking values in {, 2, 3}, with generator 2 2. 2 2 0. Draw the diagramm

More information

Math 564 Homework 1. Solutions.

Math 564 Homework 1. Solutions. Math 564 Homework 1. Solutions. Problem 1. Prove Proposition 0.2.2. A guide to this problem: start with the open set S = (a, b), for example. First assume that a >, and show that the number a has the properties

More information

EECS 495: Randomized Algorithms Lecture 14 Random Walks. j p ij = 1. Pr[X t+1 = j X 0 = i 0,..., X t 1 = i t 1, X t = i] = Pr[X t+

EECS 495: Randomized Algorithms Lecture 14 Random Walks. j p ij = 1. Pr[X t+1 = j X 0 = i 0,..., X t 1 = i t 1, X t = i] = Pr[X t+ EECS 495: Randomized Algorithms Lecture 14 Random Walks Reading: Motwani-Raghavan Chapter 6 Powerful tool for sampling complicated distributions since use only local moves Given: to explore state space.

More information

Nonnegative Matrices I

Nonnegative Matrices I Nonnegative Matrices I Daisuke Oyama Topics in Economic Theory September 26, 2017 References J. L. Stuart, Digraphs and Matrices, in Handbook of Linear Algebra, Chapter 29, 2006. R. A. Brualdi and H. J.

More information

Markov Chains, Stochastic Processes, and Matrix Decompositions

Markov Chains, Stochastic Processes, and Matrix Decompositions Markov Chains, Stochastic Processes, and Matrix Decompositions 5 May 2014 Outline 1 Markov Chains Outline 1 Markov Chains 2 Introduction Perron-Frobenius Matrix Decompositions and Markov Chains Spectral

More information

Harmonic Functions and Brownian Motion in Several Dimensions

Harmonic Functions and Brownian Motion in Several Dimensions Harmonic Functions and Brownian Motion in Several Dimensions Steven P. Lalley October 11, 2016 1 d -Dimensional Brownian Motion Definition 1. A standard d dimensional Brownian motion is an R d valued continuous-time

More information

Outlines. Discrete Time Markov Chain (DTMC) Continuous Time Markov Chain (CTMC)

Outlines. Discrete Time Markov Chain (DTMC) Continuous Time Markov Chain (CTMC) Markov Chains (2) Outlines Discrete Time Markov Chain (DTMC) Continuous Time Markov Chain (CTMC) 2 pj ( n) denotes the pmf of the random variable p ( n) P( X j) j We will only be concerned with homogenous

More information

Lecture 21. David Aldous. 16 October David Aldous Lecture 21

Lecture 21. David Aldous. 16 October David Aldous Lecture 21 Lecture 21 David Aldous 16 October 2015 In continuous time 0 t < we specify transition rates or informally P(X (t+δ)=j X (t)=i, past ) q ij = lim δ 0 δ P(X (t + dt) = j X (t) = i) = q ij dt but note these

More information

Notes for Math 450 Stochastic Petri nets and reactions

Notes for Math 450 Stochastic Petri nets and reactions Notes for Math 450 Stochastic Petri nets and reactions Renato Feres Petri nets Petri nets are a special class of networks, introduced in 96 by Carl Adam Petri, that provide a convenient language and graphical

More information

Lecture 5. 1 Chung-Fuchs Theorem. Tel Aviv University Spring 2011

Lecture 5. 1 Chung-Fuchs Theorem. Tel Aviv University Spring 2011 Random Walks and Brownian Motion Tel Aviv University Spring 20 Instructor: Ron Peled Lecture 5 Lecture date: Feb 28, 20 Scribe: Yishai Kohn In today's lecture we return to the Chung-Fuchs theorem regarding

More information

Math 180B Homework 4 Solutions

Math 180B Homework 4 Solutions Math 80B Homework 4 Solutions Note: We will make repeated use of the following result. Lemma. Let (X n ) be a time-homogeneous Markov chain with countable state space S, let A S, and let T = inf { n 0

More information

STOCHASTIC PROCESSES Basic notions

STOCHASTIC PROCESSES Basic notions J. Virtamo 38.3143 Queueing Theory / Stochastic processes 1 STOCHASTIC PROCESSES Basic notions Often the systems we consider evolve in time and we are interested in their dynamic behaviour, usually involving

More information