Hitting Probabilities

Size: px
Start display at page:

Download "Hitting Probabilities"

Transcription

1 Stat25B: Probability Theory (Spring 23) Lecture: 2 Hitting Probabilities Lecturer: James W. Pitman Scribe: Brian Milch 2. Hitting probabilities Consider a Markov chain with a countable state space S and a transition matrix P. Suppose we want to find P i (chain hits A before C) for some i S and disjoint subsets A and C of S. We define the boundary B := A C. It is obvious that P i (chain hits A before C) for i B c is determined by the transition probabilities P (j, k) for j / B, k S. Since this probability does not involve P (b, j) for b B, j S, there is no loss of generality in assuming, as we will from now on, that B is an absorbing boundary, meaning that P (b, b) = for all b B. If we let τ := inf{n : X n B}, where B is absorbing, then we can restate our problem as finding the hitting probability P i (X τ A) for some A B. Define: We can condition on X and decompose to get: h A (i) P i (X τ A) P i (X τ A) = j P i (X = j, X τ A) h A (i) = j P ij h A (j) ( ) To see that we re handling the boundary cases correctly, note that if i B, then P ij = for j i. And the values of h A on the boundary are: { if j A h A (j) = if j B \ A The assumption that B is absorbing makes the equations ( ) hold for all i S, which simplifies the discussion. Another way to write ( ) is: h A = P h A. Thus h A is a harmonic function, as defined in the previous lecture. Also, h A satisfies the boundary condition: h = A on B, meaning h A (i) = A (i) for i B. Thus the function h = h A solves the boundary value problem h = P h h = A on B (BVP) One of the homework problems (an easy application of martingale theory) is to show that if P i (hit B eventually) =, then h = h A is the unique solution of this BVP. This can also be deduced from the more general characteriation of h A given in the following theorem, by consideration of both h A and h B A. 2-

2 Hitting Probabilities 2-2 What if P i (hit B eventually) <? Then consider the escape probability: e B (i) P i (never hit B) = P i (X n / B, n ) For example, consider a biased random walk with P (i, i + ) = p and P (i, i ) = q. Suppose p > q, and let B = {}. Then e B () >. By conditioning on X, we can show e B = P e B : that is, escape probabilities are also harmonic functions. Clearly, e B = on B. Now, note that the set of solutions of h = P h is a vector space: if we add harmonic functions or take scalar multiples, we still get harmonic functions. We have seen that: h = h A solves h = P h and h = A on B h = e B solves h = P h and h = on B Therefore for any constant c, h = h A + ce B solves h = P h and h = A on B. So when e B is not identically ero, h A is not the unique h such that h = P h and h = A on B. The problem now is how to characterie the hitting probability vector h A among all solutions of the BVP. Theorem 2. h = h A is the minimal non-negative solution of (BVP). That is, if h solves (BVP) and h(i) for all i in S, then h(i) h A (i) for all i S. Proof: First note that h A (i) = P i (X n A for some n) = lim P i(x n A) = lim (P n A ) i Suppose h and h satisfies (BVP). Then: by absorbing boundary assumption because X n A implies X n+ A h A P n h P n A n because P ij But P n h = h because h is harmonic. So for all i S, we have: h(i) (P n A ) i n h(i) lim (P n A ) i = h A (i). 2.. Example: Simple random walk on {,, 2,...} with absorbing Let P (, ) =, and for i, let P (i, i + ) = p and P (i, i ) = q. Let h (i) = P i (ever hit ). Then h = h solves: h(i) = qh(i ) + ph(i + ) h() =

3 Hitting Probabilities 2-3 Rather than solving these equations directly, we can use a shortcut based on the observation that P (ever hit ) = P i (ever hit i ) for all i. So by the strong Markov property: So we just have to compute h(). h(2) = h() 2 h(i) = (h()) i h() = q + p h() 2 x = q + px 2 where x = h(). The roots of this equation are x {, q/p}. So we have two non-negative harmonic functions that solve (BVP): h(i) ( q h(i) = p By the theorem proved above, h is the smaller one. That is: ( ( { h (i) = min, p)) q i if p q = ( ) i q p if p > q ) i 2..2 Example: Extinction probabilities for branching process Suppose we are given an offspring distribution p, p, p 2,... with p i =, p <, and p i. A branching process models a population where each individual has a number of offspring with this distribution (that is, the probability of an individual having offspring is p, etc.). The chain is: X = initial number of individuals X n = number of individuals in generation n Clearly the state is absorbing. So h (i) = P i (population dies out) = P i (X n = eventually). Note that if there are i individuals in a generation, then their descendants form i independent trees. These i trees must all die out in order for the entire population to die out. So h (i) = h () i. Now, by summing over X, we find that: h () = p j (h ()) j j= We now introduce a probability generating function: p j j = E ( X) j= where Pr(X = j) = p j. Note that = h () solves = : in fact, h () is the minimal solution in [, ] of =.

4 Hitting Probabilities 2-4 subcritical critical supercritical µ < µ = µ > Figure 2.: Plots of the curve (solid) and the 45-degree line (dashed) for branching processes with various values of µ. Thus we can find h () by plotting versus over the interval [, ], and observing where the plot intersects the 45-degree line =. Note that G() = p >, and G() = p j =. Also, is convex. As illustrated in Figure 2., the number of roots depends on the quantity: µ jp j = G () j= In the subcritical case where µ <, the only root is at =, so h () =. In the critical case where µ =, the curve is tangent to the line = at =. Again, = is the only root, so h () =. But in the supercritical case where µ >, there are two roots, and h () is the smaller one. The conclusion is that for µ, the branching process dies out almost surely. For µ >, the branching process dies out with probability (h ()) i, where h () is the smaller of the two solutions of =. The case p = is special: then µ =, but = for all [, ], so h () = (the smallest root). 2.2 Strong Markov property Section 5.2 of Durrett deals with the strong Markov property. Suppose we have a chain X, X,... with sequence space Ω. Recall that a random time τ : Ω {,, 2,..., } is a stopping time if {τ = n} σ(x, X 2,..., X n ). For example, τ = inf{n : X n A} is a stopping time. Theorem 2.2 (Strong Markov property) For any Markov chain X n with transition matrix P, and any stopping time τ: (X, X,..., X τ ) and (X τ, X τ+,...) are conditionally independent given X τ on {τ < }; given (X,..., X τ ) with X τ = j, the process (X τ, X τ+,...) is a Markov chain with transition matrix P started in state j. Sketch of proof: We first show that the theorem holds when τ is a fixed (not random) time. Then we show that it is true in general by conditioning on the value of τ, and summing over all

5 Hitting Probabilities 2-5 possible τ values. See the textbook for details.

Note that in the example in Lecture 1, the state Home is recurrent (and even absorbing), but all other states are transient. f ii (n) f ii = n=1 < +

Note that in the example in Lecture 1, the state Home is recurrent (and even absorbing), but all other states are transient. f ii (n) f ii = n=1 < + Random Walks: WEEK 2 Recurrence and transience Consider the event {X n = i for some n > 0} by which we mean {X = i}or{x 2 = i,x i}or{x 3 = i,x 2 i,x i},. Definition.. A state i S is recurrent if P(X n

More information

Math Homework 5 Solutions

Math Homework 5 Solutions Math 45 - Homework 5 Solutions. Exercise.3., textbook. The stochastic matrix for the gambler problem has the following form, where the states are ordered as (,, 4, 6, 8, ): P = The corresponding diagram

More information

Modern Discrete Probability Branching processes

Modern Discrete Probability Branching processes Modern Discrete Probability IV - Branching processes Review Sébastien Roch UW Madison Mathematics November 15, 2014 1 Basic definitions 2 3 4 Galton-Watson branching processes I Definition A Galton-Watson

More information

MATH 564/STAT 555 Applied Stochastic Processes Homework 2, September 18, 2015 Due September 30, 2015

MATH 564/STAT 555 Applied Stochastic Processes Homework 2, September 18, 2015 Due September 30, 2015 ID NAME SCORE MATH 56/STAT 555 Applied Stochastic Processes Homework 2, September 8, 205 Due September 30, 205 The generating function of a sequence a n n 0 is defined as As : a ns n for all s 0 for which

More information

2. Transience and Recurrence

2. Transience and Recurrence Virtual Laboratories > 15. Markov Chains > 1 2 3 4 5 6 7 8 9 10 11 12 2. Transience and Recurrence The study of Markov chains, particularly the limiting behavior, depends critically on the random times

More information

Lecture 5. If we interpret the index n 0 as time, then a Markov chain simply requires that the future depends only on the present and not on the past.

Lecture 5. If we interpret the index n 0 as time, then a Markov chain simply requires that the future depends only on the present and not on the past. 1 Markov chain: definition Lecture 5 Definition 1.1 Markov chain] A sequence of random variables (X n ) n 0 taking values in a measurable state space (S, S) is called a (discrete time) Markov chain, if

More information

Lecture 10. Theorem 1.1 [Ergodicity and extremality] A probability measure µ on (Ω, F) is ergodic for T if and only if it is an extremal point in M.

Lecture 10. Theorem 1.1 [Ergodicity and extremality] A probability measure µ on (Ω, F) is ergodic for T if and only if it is an extremal point in M. Lecture 10 1 Ergodic decomposition of invariant measures Let T : (Ω, F) (Ω, F) be measurable, and let M denote the space of T -invariant probability measures on (Ω, F). Then M is a convex set, although

More information

BRANCHING PROCESSES 1. GALTON-WATSON PROCESSES

BRANCHING PROCESSES 1. GALTON-WATSON PROCESSES BRANCHING PROCESSES 1. GALTON-WATSON PROCESSES Galton-Watson processes were introduced by Francis Galton in 1889 as a simple mathematical model for the propagation of family names. They were reinvented

More information

Dynamic Programming Lecture #4

Dynamic Programming Lecture #4 Dynamic Programming Lecture #4 Outline: Probability Review Probability space Conditional probability Total probability Bayes rule Independent events Conditional independence Mutual independence Probability

More information

14 Branching processes

14 Branching processes 4 BRANCHING PROCESSES 6 4 Branching processes In this chapter we will consider a rom model for population growth in the absence of spatial or any other resource constraints. So, consider a population of

More information

Introduction to Stochastic Processes

Introduction to Stochastic Processes 18.445 Introduction to Stochastic Processes Lecture 1: Introduction to finite Markov chains Hao Wu MIT 04 February 2015 Hao Wu (MIT) 18.445 04 February 2015 1 / 15 Course description About this course

More information

Lecture 06 01/31/ Proofs for emergence of giant component

Lecture 06 01/31/ Proofs for emergence of giant component M375T/M396C: Topics in Complex Networks Spring 2013 Lecture 06 01/31/13 Lecturer: Ravi Srinivasan Scribe: Tianran Geng 6.1 Proofs for emergence of giant component We now sketch the main ideas underlying

More information

Stochastic Process (ENPC) Monday, 22nd of January 2018 (2h30)

Stochastic Process (ENPC) Monday, 22nd of January 2018 (2h30) Stochastic Process (NPC) Monday, 22nd of January 208 (2h30) Vocabulary (english/français) : distribution distribution, loi ; positive strictement positif ; 0,) 0,. We write N Z,+ and N N {0}. We use the

More information

Positive and null recurrent-branching Process

Positive and null recurrent-branching Process December 15, 2011 In last discussion we studied the transience and recurrence of Markov chains There are 2 other closely related issues about Markov chains that we address Is there an invariant distribution?

More information

Brownian Motion and the Dirichlet Problem

Brownian Motion and the Dirichlet Problem Brownian Motion and the Dirichlet Problem Mario Teixeira Parente August 29, 2016 1/22 Topics for the talk 1. Solving the Dirichlet problem on bounded domains 2. Application: Recurrence/Transience of Brownian

More information

Math 6810 (Probability) Fall Lecture notes

Math 6810 (Probability) Fall Lecture notes Math 6810 (Probability) Fall 2012 Lecture notes Pieter Allaart University of North Texas September 23, 2012 2 Text: Introduction to Stochastic Calculus with Applications, by Fima C. Klebaner (3rd edition),

More information

Stochastic Processes

Stochastic Processes Stochastic Processes 8.445 MIT, fall 20 Mid Term Exam Solutions October 27, 20 Your Name: Alberto De Sole Exercise Max Grade Grade 5 5 2 5 5 3 5 5 4 5 5 5 5 5 6 5 5 Total 30 30 Problem :. True / False

More information

P (A G) dp G P (A G)

P (A G) dp G P (A G) First homework assignment. Due at 12:15 on 22 September 2016. Homework 1. We roll two dices. X is the result of one of them and Z the sum of the results. Find E [X Z. Homework 2. Let X be a r.v.. Assume

More information

Notes 15 : UI Martingales

Notes 15 : UI Martingales Notes 15 : UI Martingales Math 733 - Fall 2013 Lecturer: Sebastien Roch References: [Wil91, Chapter 13, 14], [Dur10, Section 5.5, 5.6, 5.7]. 1 Uniform Integrability We give a characterization of L 1 convergence.

More information

T 1. The value function v(x) is the expected net gain when using the optimal stopping time starting at state x:

T 1. The value function v(x) is the expected net gain when using the optimal stopping time starting at state x: 108 OPTIMAL STOPPING TIME 4.4. Cost functions. The cost function g(x) gives the price you must pay to continue from state x. If T is your stopping time then X T is your stopping state and f(x T ) is your

More information

MATH 56A SPRING 2008 STOCHASTIC PROCESSES 65

MATH 56A SPRING 2008 STOCHASTIC PROCESSES 65 MATH 56A SPRING 2008 STOCHASTIC PROCESSES 65 2.2.5. proof of extinction lemma. The proof of Lemma 2.3 is just like the proof of the lemma I did on Wednesday. It goes like this. Suppose that â is the smallest

More information

1 Ways to Describe a Stochastic Process

1 Ways to Describe a Stochastic Process purdue university cs 59000-nmc networks & matrix computations LECTURE NOTES David F. Gleich September 22, 2011 Scribe Notes: Debbie Perouli 1 Ways to Describe a Stochastic Process We will use the biased

More information

Population growth: Galton-Watson process. Population growth: Galton-Watson process. A simple branching process. A simple branching process

Population growth: Galton-Watson process. Population growth: Galton-Watson process. A simple branching process. A simple branching process Population growth: Galton-Watson process Population growth: Galton-Watson process Asimplebranchingprocess September 27, 2013 Probability law on the n-th generation 1/26 2/26 A simple branching process

More information

MATH 56A: STOCHASTIC PROCESSES CHAPTER 2

MATH 56A: STOCHASTIC PROCESSES CHAPTER 2 MATH 56A: STOCHASTIC PROCESSES CHAPTER 2 2. Countable Markov Chains I started Chapter 2 which talks about Markov chains with a countably infinite number of states. I did my favorite example which is on

More information

Lecture 12. F o s, (1.1) F t := s>t

Lecture 12. F o s, (1.1) F t := s>t Lecture 12 1 Brownian motion: the Markov property Let C := C(0, ), R) be the space of continuous functions mapping from 0, ) to R, in which a Brownian motion (B t ) t 0 almost surely takes its value. Let

More information

Notes 1 : Measure-theoretic foundations I

Notes 1 : Measure-theoretic foundations I Notes 1 : Measure-theoretic foundations I Math 733-734: Theory of Probability Lecturer: Sebastien Roch References: [Wil91, Section 1.0-1.8, 2.1-2.3, 3.1-3.11], [Fel68, Sections 7.2, 8.1, 9.6], [Dur10,

More information

Lecture Notes (Math 90): Week IX (Thursday)

Lecture Notes (Math 90): Week IX (Thursday) Lecture Notes (Math 90): Week IX (Thursday) Alicia Harper November 13, 2017 Monotonic functions/convexity and Concavity 1 The Story 1.1 Monotonic Functions Recall that we say a function is increasing if

More information

Erdős-Renyi random graphs basics

Erdős-Renyi random graphs basics Erdős-Renyi random graphs basics Nathanaël Berestycki U.B.C. - class on percolation We take n vertices and a number p = p(n) with < p < 1. Let G(n, p(n)) be the graph such that there is an edge between

More information

Inference for Stochastic Processes

Inference for Stochastic Processes Inference for Stochastic Processes Robert L. Wolpert Revised: June 19, 005 Introduction A stochastic process is a family {X t } of real-valued random variables, all defined on the same probability space

More information

A D VA N C E D P R O B A B I L - I T Y

A D VA N C E D P R O B A B I L - I T Y A N D R E W T U L L O C H A D VA N C E D P R O B A B I L - I T Y T R I N I T Y C O L L E G E T H E U N I V E R S I T Y O F C A M B R I D G E Contents 1 Conditional Expectation 5 1.1 Discrete Case 6 1.2

More information

Lecture 7. We can regard (p(i, j)) as defining a (maybe infinite) matrix P. Then a basic fact is

Lecture 7. We can regard (p(i, j)) as defining a (maybe infinite) matrix P. Then a basic fact is MARKOV CHAINS What I will talk about in class is pretty close to Durrett Chapter 5 sections 1-5. We stick to the countable state case, except where otherwise mentioned. Lecture 7. We can regard (p(i, j))

More information

Markov Chains Absorption (cont d) Hamid R. Rabiee

Markov Chains Absorption (cont d) Hamid R. Rabiee Markov Chains Absorption (cont d) Hamid R. Rabiee 1 Absorbing Markov Chain An absorbing state is one in which the probability that the process remains in that state once it enters the state is 1 (i.e.,

More information

Statistics 253/317 Introduction to Probability Models. Winter Midterm Exam Monday, Feb 10, 2014

Statistics 253/317 Introduction to Probability Models. Winter Midterm Exam Monday, Feb 10, 2014 Statistics 253/317 Introduction to Probability Models Winter 2014 - Midterm Exam Monday, Feb 10, 2014 Student Name (print): (a) Do not sit directly next to another student. (b) This is a closed-book, closed-note

More information

Lecture 17: May 29, 2002

Lecture 17: May 29, 2002 EE596 Pat. Recog. II: Introduction to Graphical Models University of Washington Spring 2000 Dept. of Electrical Engineering Lecture 17: May 29, 2002 Lecturer: Jeff ilmes Scribe: Kurt Partridge, Salvador

More information

Notes 18 : Optional Sampling Theorem

Notes 18 : Optional Sampling Theorem Notes 18 : Optional Sampling Theorem Math 733-734: Theory of Probability Lecturer: Sebastien Roch References: [Wil91, Chapter 14], [Dur10, Section 5.7]. Recall: DEF 18.1 (Uniform Integrability) A collection

More information

Problem Sheet 1. You may assume that both F and F are σ-fields. (a) Show that F F is not a σ-field. (b) Let X : Ω R be defined by 1 if n = 1

Problem Sheet 1. You may assume that both F and F are σ-fields. (a) Show that F F is not a σ-field. (b) Let X : Ω R be defined by 1 if n = 1 Problem Sheet 1 1. Let Ω = {1, 2, 3}. Let F = {, {1}, {2, 3}, {1, 2, 3}}, F = {, {2}, {1, 3}, {1, 2, 3}}. You may assume that both F and F are σ-fields. (a) Show that F F is not a σ-field. (b) Let X :

More information

Convergence of random variables, and the Borel-Cantelli lemmas

Convergence of random variables, and the Borel-Cantelli lemmas Stat 205A Setember, 12, 2002 Convergence of ranom variables, an the Borel-Cantelli lemmas Lecturer: James W. Pitman Scribes: Jin Kim (jin@eecs) 1 Convergence of ranom variables Recall that, given a sequence

More information

Markov Chains and MCMC

Markov Chains and MCMC Markov Chains and MCMC CompSci 590.02 Instructor: AshwinMachanavajjhala Lecture 4 : 590.02 Spring 13 1 Recap: Monte Carlo Method If U is a universe of items, and G is a subset satisfying some property,

More information

Lecture 6. 2 Recurrence/transience, harmonic functions and martingales

Lecture 6. 2 Recurrence/transience, harmonic functions and martingales Lecture 6 Classification of states We have shown that all states of an irreducible countable state Markov chain must of the same tye. This gives rise to the following classification. Definition. [Classification

More information

1 Measurable Functions

1 Measurable Functions 36-752 Advanced Probability Overview Spring 2018 2. Measurable Functions, Random Variables, and Integration Instructor: Alessandro Rinaldo Associated reading: Sec 1.5 of Ash and Doléans-Dade; Sec 1.3 and

More information

9.4 Vector and Scalar Fields; Derivatives

9.4 Vector and Scalar Fields; Derivatives 9.4 Vector and Scalar Fields; Derivatives Vector fields A vector field v is a vector-valued function defined on some domain of R 2 or R 3. Thus if D is a subset of R 3, a vector field v with domain D associates

More information

4 Branching Processes

4 Branching Processes 4 Branching Processes Organise by generations: Discrete time. If P(no offspring) 0 there is a probability that the process will die out. Let X = number of offspring of an individual p(x) = P(X = x) = offspring

More information

Markov processes Course note 2. Martingale problems, recurrence properties of discrete time chains.

Markov processes Course note 2. Martingale problems, recurrence properties of discrete time chains. Institute for Applied Mathematics WS17/18 Massimiliano Gubinelli Markov processes Course note 2. Martingale problems, recurrence properties of discrete time chains. [version 1, 2017.11.1] We introduce

More information

Problem Points S C O R E Total: 120

Problem Points S C O R E Total: 120 PSTAT 160 A Final Exam December 10, 2015 Name Student ID # Problem Points S C O R E 1 10 2 10 3 10 4 10 5 10 6 10 7 10 8 10 9 10 10 10 11 10 12 10 Total: 120 1. (10 points) Take a Markov chain with the

More information

6.262: Discrete Stochastic Processes 2/2/11. Lecture 1: Introduction and Probability review

6.262: Discrete Stochastic Processes 2/2/11. Lecture 1: Introduction and Probability review 6.262: Discrete Stochastic Processes 2/2/11 Lecture 1: Introduction and Probability review Outline: Probability in the real world Probability as a branch of mathematics Discrete stochastic processes Processes

More information

MIXING TIMES OF RANDOM WALKS ON DYNAMIC CONFIGURATION MODELS

MIXING TIMES OF RANDOM WALKS ON DYNAMIC CONFIGURATION MODELS MIXING TIMES OF RANDOM WALKS ON DYNAMIC CONFIGURATION MODELS Frank den Hollander Leiden University, The Netherlands New Results and Challenges with RWDRE, 11 13 January 2017, Heilbronn Institute for Mathematical

More information

RANDOM WALKS AND THE PROBABILITY OF RETURNING HOME

RANDOM WALKS AND THE PROBABILITY OF RETURNING HOME RANDOM WALKS AND THE PROBABILITY OF RETURNING HOME ELIZABETH G. OMBRELLARO Abstract. This paper is expository in nature. It intuitively explains, using a geometrical and measure theory perspective, why

More information

Lecture 20 : Markov Chains

Lecture 20 : Markov Chains CSCI 3560 Probability and Computing Instructor: Bogdan Chlebus Lecture 0 : Markov Chains We consider stochastic processes. A process represents a system that evolves through incremental changes called

More information

EECS 229A Spring 2007 * * (a) By stationarity and the chain rule for entropy, we have

EECS 229A Spring 2007 * * (a) By stationarity and the chain rule for entropy, we have EECS 229A Spring 2007 * * Solutions to Homework 3 1. Problem 4.11 on pg. 93 of the text. Stationary processes (a) By stationarity and the chain rule for entropy, we have H(X 0 ) + H(X n X 0 ) = H(X 0,

More information

1. Let X and Y be independent exponential random variables with rate α. Find the densities of the random variables X 3, X Y, min(x, Y 3 )

1. Let X and Y be independent exponential random variables with rate α. Find the densities of the random variables X 3, X Y, min(x, Y 3 ) 1 Introduction These problems are meant to be practice problems for you to see if you have understood the material reasonably well. They are neither exhaustive (e.g. Diffusions, continuous time branching

More information

Lecture 2. We now introduce some fundamental tools in martingale theory, which are useful in controlling the fluctuation of martingales.

Lecture 2. We now introduce some fundamental tools in martingale theory, which are useful in controlling the fluctuation of martingales. Lecture 2 1 Martingales We now introduce some fundamental tools in martingale theory, which are useful in controlling the fluctuation of martingales. 1.1 Doob s inequality We have the following maximal

More information

Problems on Evolutionary dynamics

Problems on Evolutionary dynamics Problems on Evolutionary dynamics Doctoral Programme in Physics José A. Cuesta Lausanne, June 10 13, 2014 Replication 1. Consider the Galton-Watson process defined by the offspring distribution p 0 =

More information

Lecture 11: Introduction to Markov Chains. Copyright G. Caire (Sample Lectures) 321

Lecture 11: Introduction to Markov Chains. Copyright G. Caire (Sample Lectures) 321 Lecture 11: Introduction to Markov Chains Copyright G. Caire (Sample Lectures) 321 Discrete-time random processes A sequence of RVs indexed by a variable n 2 {0, 1, 2,...} forms a discretetime random process

More information

Math 416 Lecture 11. Math 416 Lecture 16 Exam 2 next time

Math 416 Lecture 11. Math 416 Lecture 16 Exam 2 next time Math 416 Lecture 11 Math 416 Lecture 16 Exam 2 next time Birth and death processes, queueing theory In arrival processes, the state only jumps up. In a birth-death process, it can either jump up or down

More information

An Introduction to Entropy and Subshifts of. Finite Type

An Introduction to Entropy and Subshifts of. Finite Type An Introduction to Entropy and Subshifts of Finite Type Abby Pekoske Department of Mathematics Oregon State University pekoskea@math.oregonstate.edu August 4, 2015 Abstract This work gives an overview

More information

A primer on basic probability and Markov chains

A primer on basic probability and Markov chains A primer on basic probability and Markov chains David Aristo January 26, 2018 Contents 1 Basic probability 2 1.1 Informal ideas and random variables.................... 2 1.2 Probability spaces...............................

More information

25.1 Markov Chain Monte Carlo (MCMC)

25.1 Markov Chain Monte Carlo (MCMC) CS880: Approximations Algorithms Scribe: Dave Andrzejewski Lecturer: Shuchi Chawla Topic: Approx counting/sampling, MCMC methods Date: 4/4/07 The previous lecture showed that, for self-reducible problems,

More information

Interlude: Practice Final

Interlude: Practice Final 8 POISSON PROCESS 08 Interlude: Practice Final This practice exam covers the material from the chapters 9 through 8. Give yourself 0 minutes to solve the six problems, which you may assume have equal point

More information

Lecture 7. µ(x)f(x). When µ is a probability measure, we say µ is a stationary distribution.

Lecture 7. µ(x)f(x). When µ is a probability measure, we say µ is a stationary distribution. Lecture 7 1 Stationary measures of a Markov chain We now study the long time behavior of a Markov Chain: in particular, the existence and uniqueness of stationary measures, and the convergence of the distribution

More information

Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 27

Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 27 CS 70 Discrete Mathematics for CS Spring 007 Luca Trevisan Lecture 7 Infinity and Countability Consider a function f that maps elements of a set A (called the domain of f ) to elements of set B (called

More information

Lecture 9 Classification of States

Lecture 9 Classification of States Lecture 9: Classification of States of 27 Course: M32K Intro to Stochastic Processes Term: Fall 204 Instructor: Gordan Zitkovic Lecture 9 Classification of States There will be a lot of definitions and

More information

Spring 2014 Advanced Probability Overview. Lecture Notes Set 1: Course Overview, σ-fields, and Measures

Spring 2014 Advanced Probability Overview. Lecture Notes Set 1: Course Overview, σ-fields, and Measures 36-752 Spring 2014 Advanced Probability Overview Lecture Notes Set 1: Course Overview, σ-fields, and Measures Instructor: Jing Lei Associated reading: Sec 1.1-1.4 of Ash and Doléans-Dade; Sec 1.1 and A.1

More information

MATH 56A SPRING 2008 STOCHASTIC PROCESSES

MATH 56A SPRING 2008 STOCHASTIC PROCESSES MATH 56A SPRING 008 STOCHASTIC PROCESSES KIYOSHI IGUSA Contents 4. Optimal Stopping Time 95 4.1. Definitions 95 4.. The basic problem 95 4.3. Solutions to basic problem 97 4.4. Cost functions 101 4.5.

More information

Chase Joyner. 901 Homework 1. September 15, 2017

Chase Joyner. 901 Homework 1. September 15, 2017 Chase Joyner 901 Homework 1 September 15, 2017 Problem 7 Suppose there are different types of coupons available when buying cereal; each box contains one coupon and the collector is seeking to collect

More information

Testing Series With Mixed Terms

Testing Series With Mixed Terms Testing Series With Mixed Terms Philippe B. Laval Series with Mixed Terms 1. Introduction 2. Absolute v.s. Conditional Convergence 3. Alternating Series 4. The Ratio and Root Tests 5. Conclusion 1 Introduction

More information

PREPRINT 2007:25. Multitype Galton-Watson processes escaping extinction SERIK SAGITOV MARIA CONCEIÇÃO SERRA

PREPRINT 2007:25. Multitype Galton-Watson processes escaping extinction SERIK SAGITOV MARIA CONCEIÇÃO SERRA PREPRINT 2007:25 Multitype Galton-Watson processes escaping extinction SERIK SAGITOV MARIA CONCEIÇÃO SERRA Department of Mathematical Sciences Division of Mathematical Statistics CHALMERS UNIVERSITY OF

More information

Non-homogeneous random walks on a semi-infinite strip

Non-homogeneous random walks on a semi-infinite strip Non-homogeneous random walks on a semi-infinite strip Chak Hei Lo Joint work with Andrew R. Wade World Congress in Probability and Statistics 11th July, 2016 Outline Motivation: Lamperti s problem Our

More information

M3/4/5 S4 Applied Probability

M3/4/5 S4 Applied Probability M3/4/5 S4 Applied Probability Autumn 215 Badr Missaoui Room 545 Huxley Building Imperial College London E-Mail: badr.missaoui8@imperial.ac.uk Department of Mathematics Imperial College London 18 Queens

More information

MATH 56A: STOCHASTIC PROCESSES CHAPTER 1

MATH 56A: STOCHASTIC PROCESSES CHAPTER 1 MATH 56A: STOCHASTIC PROCESSES CHAPTER. Finite Markov chains For the sake of completeness of these notes I decided to write a summary of the basic concepts of finite Markov chains. The topics in this chapter

More information

ECE534, Spring 2018: Solutions for Problem Set #4 Due Friday April 6, 2018

ECE534, Spring 2018: Solutions for Problem Set #4 Due Friday April 6, 2018 ECE534, Spring 2018: s for Problem Set #4 Due Friday April 6, 2018 1. MMSE Estimation, Data Processing and Innovations The random variables X, Y, Z on a common probability space (Ω, F, P ) are said to

More information

the time it takes until a radioactive substance undergoes a decay

the time it takes until a radioactive substance undergoes a decay 1 Probabilities 1.1 Experiments with randomness Wewillusethetermexperimentinaverygeneralwaytorefertosomeprocess that produces a random outcome. Examples: (Ask class for some first) Here are some discrete

More information

RECURRENCE IN COUNTABLE STATE MARKOV CHAINS

RECURRENCE IN COUNTABLE STATE MARKOV CHAINS RECURRENCE IN COUNTABLE STATE MARKOV CHAINS JIN WOO SUNG Abstract. This paper investigates the recurrence and transience of countable state irreducible Markov chains. Recurrence is the property that a

More information

Lecture 1: An introduction to probability theory

Lecture 1: An introduction to probability theory Econ 514: Probability and Statistics Lecture 1: An introduction to probability theory Random Experiments Random experiment: Experiment/phenomenon/action/mechanism with outcome that is not (fully) predictable.

More information

6 Markov Chain Monte Carlo (MCMC)

6 Markov Chain Monte Carlo (MCMC) 6 Markov Chain Monte Carlo (MCMC) The underlying idea in MCMC is to replace the iid samples of basic MC methods, with dependent samples from an ergodic Markov chain, whose limiting (stationary) distribution

More information

Lecture 2: Tipping Point and Branching Processes

Lecture 2: Tipping Point and Branching Processes ENAS-962 Theoretical Challenges in Networ Science Lecture 2: Tipping Point and Branching Processes Lecturer: Amin Karbasi Scribes: Amin Karbasi 1 The Tipping Point In most given systems, there is an inherent

More information

1 Random Walks and Electrical Networks

1 Random Walks and Electrical Networks CME 305: Discrete Mathematics and Algorithms Random Walks and Electrical Networks Random walks are widely used tools in algorithm design and probabilistic analysis and they have numerous applications.

More information

6. Brownian Motion. Q(A) = P [ ω : x(, ω) A )

6. Brownian Motion. Q(A) = P [ ω : x(, ω) A ) 6. Brownian Motion. stochastic process can be thought of in one of many equivalent ways. We can begin with an underlying probability space (Ω, Σ, P) and a real valued stochastic process can be defined

More information

De los ejercicios de abajo (sacados del libro de Georgii, Stochastics) se proponen los siguientes:

De los ejercicios de abajo (sacados del libro de Georgii, Stochastics) se proponen los siguientes: Probabilidades y Estadística (M) Práctica 7 2 cuatrimestre 2018 Cadenas de Markov De los ejercicios de abajo (sacados del libro de Georgii, Stochastics) se proponen los siguientes: 6,2, 6,3, 6,7, 6,8,

More information

Martingale Theory for Finance

Martingale Theory for Finance Martingale Theory for Finance Tusheng Zhang October 27, 2015 1 Introduction 2 Probability spaces and σ-fields 3 Integration with respect to a probability measure. 4 Conditional expectation. 5 Martingales.

More information

Introduction to Stochastic Processes

Introduction to Stochastic Processes Stat251/551 (Spring 2017) Stochastic Processes Lecture: 1 Introduction to Stochastic Processes Lecturer: Sahand Negahban Scribe: Sahand Negahban 1 Organization Issues We will use canvas as the course webpage.

More information

Stat 516, Homework 1

Stat 516, Homework 1 Stat 516, Homework 1 Due date: October 7 1. Consider an urn with n distinct balls numbered 1,..., n. We sample balls from the urn with replacement. Let N be the number of draws until we encounter a ball

More information

Generating Functions. STAT253/317 Winter 2013 Lecture 8. More Properties of Generating Functions Random Walk w/ Reflective Boundary at 0

Generating Functions. STAT253/317 Winter 2013 Lecture 8. More Properties of Generating Functions Random Walk w/ Reflective Boundary at 0 Generating Function STAT253/37 Winter 203 Lecture 8 Yibi Huang January 25, 203 Generating Function For a non-negative-integer-valued random variable T, the generating function of T i the expected value

More information

Lecture 17 Brownian motion as a Markov process

Lecture 17 Brownian motion as a Markov process Lecture 17: Brownian motion as a Markov process 1 of 14 Course: Theory of Probability II Term: Spring 2015 Instructor: Gordan Zitkovic Lecture 17 Brownian motion as a Markov process Brownian motion is

More information

18.175: Lecture 2 Extension theorems, random variables, distributions

18.175: Lecture 2 Extension theorems, random variables, distributions 18.175: Lecture 2 Extension theorems, random variables, distributions Scott Sheffield MIT Outline Extension theorems Characterizing measures on R d Random variables Outline Extension theorems Characterizing

More information

Stochastic Processes (Stochastik II)

Stochastic Processes (Stochastik II) Stochastic Processes (Stochastik II) Lecture Notes Zakhar Kabluchko University of Ulm Institute of Stochastics L A TEX-version: Judith Schmidt Vorwort Dies ist ein unvollständiges Skript zur Vorlesung

More information

Brownian Motion. 1 Definition Brownian Motion Wiener measure... 3

Brownian Motion. 1 Definition Brownian Motion Wiener measure... 3 Brownian Motion Contents 1 Definition 2 1.1 Brownian Motion................................. 2 1.2 Wiener measure.................................. 3 2 Construction 4 2.1 Gaussian process.................................

More information

Resistance Growth of Branching Random Networks

Resistance Growth of Branching Random Networks Peking University Oct.25, 2018, Chengdu Joint work with Yueyun Hu (U. Paris 13) and Shen Lin (U. Paris 6), supported by NSFC Grant No. 11528101 (2016-2017) for Research Cooperation with Oversea Investigators

More information

Lecture Notes 7 Random Processes. Markov Processes Markov Chains. Random Processes

Lecture Notes 7 Random Processes. Markov Processes Markov Chains. Random Processes Lecture Notes 7 Random Processes Definition IID Processes Bernoulli Process Binomial Counting Process Interarrival Time Process Markov Processes Markov Chains Classification of States Steady State Probabilities

More information

The Theory behind PageRank

The Theory behind PageRank The Theory behind PageRank Mauro Sozio Telecom ParisTech May 21, 2014 Mauro Sozio (LTCI TPT) The Theory behind PageRank May 21, 2014 1 / 19 A Crash Course on Discrete Probability Events and Probability

More information

Random Process Lecture 1. Fundamentals of Probability

Random Process Lecture 1. Fundamentals of Probability Random Process Lecture 1. Fundamentals of Probability Husheng Li Min Kao Department of Electrical Engineering and Computer Science University of Tennessee, Knoxville Spring, 2016 1/43 Outline 2/43 1 Syllabus

More information

Probabilistic Graphical Models Homework 2: Due February 24, 2014 at 4 pm

Probabilistic Graphical Models Homework 2: Due February 24, 2014 at 4 pm Probabilistic Graphical Models 10-708 Homework 2: Due February 24, 2014 at 4 pm Directions. This homework assignment covers the material presented in Lectures 4-8. You must complete all four problems to

More information

Martingale Theory and Applications

Martingale Theory and Applications Martingale Theory and Applications Dr Nic Freeman June 4, 2015 Contents 1 Conditional Expectation 2 1.1 Probability spaces and σ-fields............................ 2 1.2 Random Variables...................................

More information

Lecture 6 Feb 5, The Lebesgue integral continued

Lecture 6 Feb 5, The Lebesgue integral continued CPSC 550: Machine Learning II 2008/9 Term 2 Lecture 6 Feb 5, 2009 Lecturer: Nando de Freitas Scribe: Kevin Swersky This lecture continues the discussion of the Lebesque integral and introduces the concepts

More information

Stochastic process for macro

Stochastic process for macro Stochastic process for macro Tianxiao Zheng SAIF 1. Stochastic process The state of a system {X t } evolves probabilistically in time. The joint probability distribution is given by Pr(X t1, t 1 ; X t2,

More information

General Power Series

General Power Series General Power Series James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University March 29, 2018 Outline Power Series Consequences With all these preliminaries

More information

of the set A. Note that the cross-section A ω :={t R + : (t,ω) A} is empty when ω/ π A. It would be impossible to have (ψ(ω), ω) A for such an ω.

of the set A. Note that the cross-section A ω :={t R + : (t,ω) A} is empty when ω/ π A. It would be impossible to have (ψ(ω), ω) A for such an ω. AN-1 Analytic sets For a discrete-time process {X n } adapted to a filtration {F n : n N}, the prime example of a stopping time is τ = inf{n N : X n B}, the first time the process enters some Borel set

More information

SMSTC (2007/08) Probability.

SMSTC (2007/08) Probability. SMSTC (27/8) Probability www.smstc.ac.uk Contents 12 Markov chains in continuous time 12 1 12.1 Markov property and the Kolmogorov equations.................... 12 2 12.1.1 Finite state space.................................

More information

Biased random walks on subcritical percolation clusters with an infinite open path

Biased random walks on subcritical percolation clusters with an infinite open path Biased random walks on subcritical percolation clusters with an infinite open path Application for Transfer to DPhil Student Status Dissertation Annika Heckel March 3, 202 Abstract We consider subcritical

More information

18.175: Lecture 30 Markov chains

18.175: Lecture 30 Markov chains 18.175: Lecture 30 Markov chains Scott Sheffield MIT Outline Review what you know about finite state Markov chains Finite state ergodicity and stationarity More general setup Outline Review what you know

More information

Theory and Applications of Stochastic Systems Lecture Exponential Martingale for Random Walk

Theory and Applications of Stochastic Systems Lecture Exponential Martingale for Random Walk Instructor: Victor F. Araman December 4, 2003 Theory and Applications of Stochastic Systems Lecture 0 B60.432.0 Exponential Martingale for Random Walk Let (S n : n 0) be a random walk with i.i.d. increments

More information