Module 2: Introduction to Finite Volume Method Lecture 14: The Lecture deals with: The Basic Technique. Objectives_template

Size: px
Start display at page:

Download "Module 2: Introduction to Finite Volume Method Lecture 14: The Lecture deals with: The Basic Technique. Objectives_template"

Transcription

1 The Lecture deals with: The Basic Technique file:///d /chitra/nptel_phase2/mechanical/cfd/lecture14/14_1.htm[6/20/2012 4:40:30 PM]

2 The Basic Technique We have introduced the finite difference method. In the context of the method of weighted residuals, it can be said that the Finite Difference procedure is a collection method with piecewise definition of the field variable in the neighborhood of chosen grid points (or collection points). In a similar fashion the Finite Volume Method is a subdomain method with piecewise definition of the field variable in the neighborhood of chosen control volumes. The total solution domain is divided into many small control volumes which are usually rectangular (or arbitrary quadrilateral in shape. Nodal points are used within these control volumes for interpolating the field variable and usually, a single node at the centre of the control volume is used for each control volume. This method was developed by Patankar and Spalding (1972) and they proposed the use of the physical approach (where possible) for deriving the nodal equations. We shall illustrate the technique with the help of the 2-D heat conduction problem in rectangular geometry. Figure 14.1: Grid Arrangement for the Finite Volume Method Consider 2-D, steady heat conduction in rectangular geometry (Figure 14.1). The 2-D heat conduction equation is (14.1) where is the temperature field, is the thermal conductivity and Q is the heat generation per unit volume. At present we shall not consider any specific set of boundary conditions for the problem, but we shall discuss the handling of various type of boundary condition in due course. file:///d /chitra/nptel_phase2/mechanical/cfd/lecture14/14_2.htm[6/20/2012 4:40:30 PM]

3 The Basic Technique The two alternative ways of setting up the nodal equations are the weighted residual approach and the physical approach. Using the weighted residual approach, the 2-D heat conduction equation can be approximately satisfied by: (14.2) where the weight within the control volume. outside the control volume. Thus, we get, for each i = 1,...n (14.3) Interesting equation (14.3) by parts, we get: where the Gauss divergence theorem has been used to convert the volume integral to a surface integral. (14.4) The meaning of Eqn. (14.4) is that the net heat generation rate in the control volume is equal to the net sum of the rate of heat energy going out of the control volume where is the boundary of the control volume Equation (14.4) can be taken as an energy balance equation for the control volume. This balance equation can also be obtained physically, considering the balance of heat flux in Figure file:///d /chitra/nptel_phase2/mechanical/cfd/lecture14/14_3.htm[6/20/2012 4:40:30 PM]

4 Figure 14.2: Balance of Heat Flux in a Control Volume. For a typical node P with neighbors E,N,W,S (standing for east, north, west and south etc.) and corresponding control volume boundaries in those directions denoted by e,n,w,s etc., the heat balance for the control volume can be written as follows (for unit depth in z- direction): when is the heat flux (per unit area) on the east face, is the heat flux on the west face etc., and the faces are taken to be one unit deep perpendicular to the plane of the figure. Thus, is the total heat flux through the east face. The fluxes are taken to be positive in the directions indicated by the arrows. Physically, the above equation is equivalent to saying : Net rate of heat energy leaving the control volume through the boundary = Rate of heat generation within the control volume (CV) at steady state Thus, file:///d /chitra/nptel_phase2/mechanical/cfd/lecture14/14_3.htm[6/20/2012 4:40:30 PM]

5 (14.5) Which is the same statement as equation (14.4). In the implementation of the FVM procedure, the heat fluxes are expressed in terms of the nodal temperatures (T E, etc. at the CV centers) using piecewise interpolation around the control volume for the field variable (temperature in this case). Thus, assuming temperature to have linear variation between points E and P, the heat flux can be evaluated as follows: (14.6) while deriving (14.6) it has been assumed that the cell size is, constant in x-direction (equal to ). Similarly, is given by (14.7) Using similar expression for and also, the nodal equation for point P becomes: (14.8) This equation can be rewritten in the familiar form used in finite difference as: (14.9) where During numerical implementation, the subscripts E, W, etc. will be changed to numerical indices of i, j and solved in the same way (using point-by-point or line-by-line procedure etc.) as mentioned in previous lectures on finite differences. file:///d /chitra/nptel_phase2/mechanical/cfd/lecture14/14_3.htm[6/20/2012 4:40:30 PM]

6 The boundary conditions of a typical heat transfer problem can be handled in the following way. When the heat flux at the boundary is prescribed, say the corresponding heat flux term in the balance Equation (14.5) is set equal to the applied heat flux. For instance, for the control volumes adjacent to the x = 0 boundary as shown in Fig. 14.3, the term will be substituted by in equation (14.3). thus, (14.10) Equation (14.10) will be the nodal equation for such nodes. Figure 14.3: Prescribed Heat Flux at the Boundary. file:///d /chitra/nptel_phase2/mechanical/cfd/lecture14/14_4.htm[6/20/2012 4:40:31 PM]

7 When the boundary temperature is specified, the control volume shapes near the boundary can be changed to facilitate the implementation of the boundary conditions. For instance, consider the condition T = T L on the x = L boundary (see Fig. 14.4). For the nodes on the boundary, an imaginary extension of the control volumes outside the actual domain can be considered in line with the finite difference methodology described earlier. The physical boundary is taken to be at the center of boundary cell of width (see Figure 14.4), while the widths if the adjacent cells are thus reduced to Consider a typical control volume i near the x = L boundary as shown in Fig Figure 14.4: Boundary Condition, at x = L, T = T L. The boundary cells will need no nodal equation as the T = T L will be applied. The nodal equation for the adjacent cell P will be written considering a shortened control volume: (14.11) file:///d /chitra/nptel_phase2/mechanical/cfd/lecture14/14_5.htm[6/20/2012 4:40:31 PM]

8 where Note that T L has been used instead of T E in the above equation. So, the boundary condition is being directly applied. In this fashion, by adjusting the control volume spacing and the placement of nodes, nodal equations can be obtained at all nodes and these can be solved simultaneously by the matrix inversion technique, line-byline technique or point-by-point technique as discussed earlier. Having done the above exercise, we may like to look at a more generalized description of the finite volume method. Congratulations, you have finished Lecture 14. To view the next lecture select it from the left hand side menu of the page or click the next button. file:///d /chitra/nptel_phase2/mechanical/cfd/lecture14/14_5.htm[6/20/2012 4:40:31 PM]

FINITE VOLUME METHOD: BASIC PRINCIPLES AND EXAMPLES

FINITE VOLUME METHOD: BASIC PRINCIPLES AND EXAMPLES FINITE VOLUME METHOD: BASIC PRINCIPLES AND EXAMPLES SHRUTI JAIN B.Tech III Year, Electronics and Communication IIT Roorkee Tutors: Professor G. Biswas Professor S. Chakraborty ACKNOWLEDGMENTS I would like

More information

Numerical Solution Techniques in Mechanical and Aerospace Engineering

Numerical Solution Techniques in Mechanical and Aerospace Engineering Numerical Solution Techniques in Mechanical and Aerospace Engineering Chunlei Liang LECTURE 9 Finite Volume method II 9.1. Outline of Lecture Conservation property of Finite Volume method Apply FVM to

More information

Module 1: Introduction to Finite Difference Method and Fundamentals of CFD Lecture 7:

Module 1: Introduction to Finite Difference Method and Fundamentals of CFD Lecture 7: file:///d:/chitra/nptel_phase2/mechanical/cfd/lecture7/7_1.htm 1 of 1 6/20/2012 12:26 PM The Lecture deals with: Errors and Stability Analysis file:///d:/chitra/nptel_phase2/mechanical/cfd/lecture7/7_2.htm

More information

Module 1: Introduction to Finite Difference Method and Fundamentals of CFD Lecture 1: Finite Difference Method

Module 1: Introduction to Finite Difference Method and Fundamentals of CFD Lecture 1: Finite Difference Method file:///d:/chitra/nptel_phase2/mechanical/cfd/lecture1/1_1.htm 1 of 1 6/19/2012 4:29 PM The Lecture deals with: Classification of Partial Differential Equations Boundary and Initial Conditions Finite Differences

More information

Solution Methods. Steady State Diffusion Equation. Lecture 04

Solution Methods. Steady State Diffusion Equation. Lecture 04 Solution Methods Steady State Diffusion Equation Lecture 04 1 Solution methods Focus on finite volume method. Background of finite volume method. Discretization example. General solution method. Convergence.

More information

Pressure-velocity correction method Finite Volume solution of Navier-Stokes equations Exercise: Finish solving the Navier Stokes equations

Pressure-velocity correction method Finite Volume solution of Navier-Stokes equations Exercise: Finish solving the Navier Stokes equations Today's Lecture 2D grid colocated arrangement staggered arrangement Exercise: Make a Fortran program which solves a system of linear equations using an iterative method SIMPLE algorithm Pressure-velocity

More information

Solution Methods. Steady convection-diffusion equation. Lecture 05

Solution Methods. Steady convection-diffusion equation. Lecture 05 Solution Methods Steady convection-diffusion equation Lecture 05 1 Navier-Stokes equation Suggested reading: Gauss divergence theorem Integral form The key step of the finite volume method is to integrate

More information

FINITE-VOLUME SOLUTION OF DIFFUSION EQUATION AND APPLICATION TO MODEL PROBLEMS

FINITE-VOLUME SOLUTION OF DIFFUSION EQUATION AND APPLICATION TO MODEL PROBLEMS IJRET: International Journal of Research in Engineering and Technology eissn: 39-63 pissn: 3-738 FINITE-VOLUME SOLUTION OF DIFFUSION EQUATION AND APPLICATION TO MODEL PROBLEMS Asish Mitra Reviewer: Heat

More information

Two-Dimensional Steady State Heat Conduction

Two-Dimensional Steady State Heat Conduction Two-Dimensional Steady State Heat Conduction This sample analysis illustrates the manner in which the UD_scalar program can be used to perform steady state heat conduction analyses. The body analyzed,

More information

Solution of the Two-Dimensional Steady State Heat Conduction using the Finite Volume Method

Solution of the Two-Dimensional Steady State Heat Conduction using the Finite Volume Method Ninth International Conference on Computational Fluid Dynamics (ICCFD9), Istanbul, Turkey, July 11-15, 2016 ICCFD9-0113 Solution of the Two-Dimensional Steady State Heat Conduction using the Finite Volume

More information

Discretization of Convection Diffusion type equation

Discretization of Convection Diffusion type equation Discretization of Convection Diffusion type equation 10 th Indo German Winter Academy 2011 By, Rajesh Sridhar, Indian Institute of Technology Madras Guides: Prof. Vivek V. Buwa Prof. Suman Chakraborty

More information

Shape Function Generation and Requirements

Shape Function Generation and Requirements Shape Function Generation and Requirements Requirements Requirements (A) Interpolation condition. Takes a unit value at node i, and is zero at all other nodes. Requirements (B) Local support condition.

More information

Lecture 4.2 Finite Difference Approximation

Lecture 4.2 Finite Difference Approximation Lecture 4. Finite Difference Approimation 1 Discretization As stated in Lecture 1.0, there are three steps in numerically solving the differential equations. They are: 1. Discretization of the domain by

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University Numerical Methods for Partial Differential Equations Finite Difference Methods

More information

Finite volume method for CFD

Finite volume method for CFD Finite volume method for CFD Indo-German Winter Academy-2007 Ankit Khandelwal B-tech III year, Civil Engineering IIT Roorkee Course #2 (Numerical methods and simulation of engineering Problems) Mentor:

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING CAMBRIDGE, MASSACHUSETTS NUMERICAL FLUID MECHANICS FALL 2011

MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING CAMBRIDGE, MASSACHUSETTS NUMERICAL FLUID MECHANICS FALL 2011 MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING CAMBRIDGE, MASSACHUSETTS 02139 2.29 NUMERICAL FLUID MECHANICS FALL 2011 QUIZ 2 The goals of this quiz 2 are to: (i) ask some general

More information

BD1. Reciprocal space and Fourier transforms. IB Mineral Sciences Module B: Reciprocal Space, Symmetry and Crystallography

BD1. Reciprocal space and Fourier transforms. IB Mineral Sciences Module B: Reciprocal Space, Symmetry and Crystallography Reciprocal space and Fourier transforms The aim of this practical is to give you a chance to develop your intuition about the relationship between real space and reciprocal space. There are two halves

More information

Code No: RT41033 R13 Set No. 1 IV B.Tech I Semester Regular Examinations, November - 2016 FINITE ELEMENT METHODS (Common to Mechanical Engineering, Aeronautical Engineering and Automobile Engineering)

More information

Objectives. In this section you will learn the following. Development of Bearing Capacity Theory. Terzaghi's Bearing Capacity Theory

Objectives. In this section you will learn the following. Development of Bearing Capacity Theory. Terzaghi's Bearing Capacity Theory Objectives In this section you will learn the following Development of Bearing Capacity Theory Terzaghi's Bearing Capacity Theory Assumptions in Terzaghi s Bearing Capacity Theory. Meyerhof's Bearing Capacity

More information

Modeling a Composite Slot Cross-Section for Torsional Analysis

Modeling a Composite Slot Cross-Section for Torsional Analysis Modeling a Composite Slot Cross-Section for Torsional Analysis The cross-section in question is shown below (see also p. 432 in the textbook). Due to double symmetry, only one-quarter of the cross-section

More information

CHAPTER 8: Thermal Analysis

CHAPTER 8: Thermal Analysis CHAPER 8: hermal Analysis hermal Analysis: calculation of temperatures in a solid body. Magnitude and direction of heat flow can also be calculated from temperature gradients in the body. Modes of heat

More information

Vector components and motion

Vector components and motion Vector components and motion Objectives Distinguish between vectors and scalars and give examples of each. Use vector diagrams to interpret the relationships among vector quantities such as force and acceleration.

More information

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Module - 01 Lecture - 16

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Module - 01 Lecture - 16 Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras Module - 01 Lecture - 16 In the last lectures, we have seen one-dimensional boundary value

More information

Numerical Solution for Two Dimensional Laplace Equation with Dirichlet Boundary Conditions

Numerical Solution for Two Dimensional Laplace Equation with Dirichlet Boundary Conditions IOSR Journal of Mathematics (IOSR-JM) e-issn: 2278-5728,p-ISSN: 2319-765X, Volume 6, Issue 4 (May. - Jun. 2013), PP 66-75 Numerical Solution for Two Dimensional Laplace Equation with Dirichlet Boundary

More information

Project 4: Navier-Stokes Solution to Driven Cavity and Channel Flow Conditions

Project 4: Navier-Stokes Solution to Driven Cavity and Channel Flow Conditions Project 4: Navier-Stokes Solution to Driven Cavity and Channel Flow Conditions R. S. Sellers MAE 5440, Computational Fluid Dynamics Utah State University, Department of Mechanical and Aerospace Engineering

More information

Geog 210C Spring 2011 Lab 6. Geostatistics in ArcMap

Geog 210C Spring 2011 Lab 6. Geostatistics in ArcMap Geog 210C Spring 2011 Lab 6. Geostatistics in ArcMap Overview In this lab you will think critically about the functionality of spatial interpolation, improve your kriging skills, and learn how to use several

More information

Lecture 12: Finite Elements

Lecture 12: Finite Elements Materials Science & Metallurgy Part III Course M6 Computation of Phase Diagrams H. K. D. H. Bhadeshia Lecture 2: Finite Elements In finite element analysis, functions of continuous quantities such as temperature

More information

Potential & Potential Energy

Potential & Potential Energy Potential & Potential Energy Lecture 10: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay Electrostatic Boundary Conditions : We had seen that electric field has a discontinuity

More information

Gauss s Law & Potential

Gauss s Law & Potential Gauss s Law & Potential Lecture 7: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay Flux of an Electric Field : In this lecture we introduce Gauss s law which happens to

More information

MERGING (MERGE / MOSAIC) GEOSPATIAL DATA

MERGING (MERGE / MOSAIC) GEOSPATIAL DATA This help guide describes how to merge two or more feature classes (vector) or rasters into one single feature class or raster dataset. The Merge Tool The Merge Tool combines input features from input

More information

Vectors a vector is a quantity that has both a magnitude (size) and a direction

Vectors a vector is a quantity that has both a magnitude (size) and a direction Vectors In physics, a vector is a quantity that has both a magnitude (size) and a direction. Familiar examples of vectors include velocity, force, and electric field. For any applications beyond one dimension,

More information

Electric Fields and Potential

Electric Fields and Potential General Physics Lab 2 Siena College Object Electric Fields and Potential This experiment further explores the electrostatic interaction between charged objects. The concepts of electric field and potential

More information

PHY102 Electricity Topic 3 (Lectures 4 & 5) Gauss s Law

PHY102 Electricity Topic 3 (Lectures 4 & 5) Gauss s Law PHY1 Electricity Topic 3 (Lectures 4 & 5) Gauss s Law In this topic, we will cover: 1) Electric Flux ) Gauss s Law, relating flux to enclosed charge 3) Electric Fields and Conductors revisited Reading

More information

Computational Fluid Dynamics Prof. Dr. Suman Chakraborty Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Computational Fluid Dynamics Prof. Dr. Suman Chakraborty Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Computational Fluid Dynamics Prof. Dr. Suman Chakraborty Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture No. #12 Fundamentals of Discretization: Finite Volume Method

More information

Chapter 4. Two-Dimensional Finite Element Analysis

Chapter 4. Two-Dimensional Finite Element Analysis Chapter 4. Two-Dimensional Finite Element Analysis general two-dimensional boundary-value problems 4.1 The Boundary-Value Problem 2nd-order differential equation to consider α α β φ Ω (4.1) Laplace, Poisson

More information

5. FVM discretization and Solution Procedure

5. FVM discretization and Solution Procedure 5. FVM discretization and Solution Procedure 1. The fluid domain is divided into a finite number of control volumes (cells of a computational grid). 2. Integral form of the conservation equations are discretized

More information

Calculating equation coefficients

Calculating equation coefficients Fluid flow Calculating equation coefficients Construction Conservation Equation Surface Conservation Equation Fluid Conservation Equation needs flow estimation needs radiation and convection estimation

More information

Module 6: Free Convections Lecture 25: Buoyancy Driven Flows. The Lecture Contains: Free Convection. Objectives_template

Module 6: Free Convections Lecture 25: Buoyancy Driven Flows. The Lecture Contains: Free Convection. Objectives_template The Lecture Contains: Free Convection file:///d /Web%20Course%20(Ganesh%20Rana)/Dr.%20gautam%20biswas/Final/convective_heat_and_mass_transfer/lecture25/25_1.html[12/24/2014 6:07:31 PM] Introduction Now

More information

CLEA/VIREO PHOTOMETRY OF THE PLEIADES

CLEA/VIREO PHOTOMETRY OF THE PLEIADES CLEA/VIREO PHOTOMETRY OF THE PLEIADES Starting up the program The computer program you will use is a realistic simulation of a UBV photometer attached to a small (diameter=0.4 meters) research telescope.

More information

Photographs to Maps Using Aerial Photographs to Create Land Cover Maps

Photographs to Maps Using Aerial Photographs to Create Land Cover Maps Aerial photographs are an important source of information for maps, especially land cover and land use maps. Using ArcView, a map composed of points, lines, and areas (vector data) can be constructed from

More information

Module 2 : Electrostatics Lecture 9 : Electrostatic Potential

Module 2 : Electrostatics Lecture 9 : Electrostatic Potential Module 2 : Electrostatics Lecture 9 : Electrostatic Potential Objectives In this lecture you will learn the following Electric Dipole and field due to a dipole Torque on a dipole in an inhomogeneous electric

More information

Motion of a charged particle in an electric field. Electric flux

Motion of a charged particle in an electric field. Electric flux Lecture 3 Chapter 23 Motion of a charged particle in an electric field. Electric flux 95.144 Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Today we are going to discuss: Chapter

More information

Module 2 : Electrostatics Lecture 7 : Electric Flux

Module 2 : Electrostatics Lecture 7 : Electric Flux Module 2 : Electrostatics Lecture 7 : Electric Flux Objectives In this lecture you will learn the following Concept of flux and calculation of eletric flux throught simple geometrical objects Gauss's Law

More information

Name Student ID # Instructor Lab Period Date Due. Lab 5 Continuity

Name Student ID # Instructor Lab Period Date Due. Lab 5 Continuity Name Student ID # Instructor Lab Period Date Due Lab 5 Continuity Objectives 1. To visually represent the concept of continuity. 2. To develop an informal intuition for continuity. Continuity A fuction

More information

Gauss s Law. Lecture 3. Chapter Course website:

Gauss s Law. Lecture 3. Chapter Course website: Lecture 3 Chapter 24 Gauss s Law 95.144 Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Today we are going to discuss: Chapter 24: Section 24.2 Idea of Flux Section 24.3 Electric

More information

43.1 Vector Fields and their properties

43.1 Vector Fields and their properties Module 15 : Vector fields, Gradient, Divergence and Curl Lecture 43 : Vector fields and their properties [Section 43.1] Objectives In this section you will learn the following : Concept of Vector field.

More information

Lecture 3. Electric Field Flux, Gauss Law. Last Lecture: Electric Field Lines

Lecture 3. Electric Field Flux, Gauss Law. Last Lecture: Electric Field Lines Lecture 3. Electric Field Flux, Gauss Law Last Lecture: Electric Field Lines 1 iclicker Charged particles are fixed on grids having the same spacing. Each charge has the same magnitude Q with signs given

More information

OBJECTIVE: To understand the relation between electric fields and electric potential, and how conducting objects can influence electric fields.

OBJECTIVE: To understand the relation between electric fields and electric potential, and how conducting objects can influence electric fields. Name Section Question Sheet for Laboratory 4: EC-2: Electric Fields and Potentials OBJECTIVE: To understand the relation between electric fields and electric potential, and how conducting objects can influence

More information

Cubic Splines; Bézier Curves

Cubic Splines; Bézier Curves Cubic Splines; Bézier Curves 1 Cubic Splines piecewise approximation with cubic polynomials conditions on the coefficients of the splines 2 Bézier Curves computer-aided design and manufacturing MCS 471

More information

Module 9 : Infinite Series, Tests of Convergence, Absolute and Conditional Convergence, Taylor and Maclaurin Series

Module 9 : Infinite Series, Tests of Convergence, Absolute and Conditional Convergence, Taylor and Maclaurin Series Module 9 : Infinite Series, Tests of Convergence, Absolute and Conditional Convergence, Taylor and Maclaurin Series Lecture 27 : Series of functions [Section 271] Objectives In this section you will learn

More information

Name, Date, Period. R Θ R x R y

Name, Date, Period. R Θ R x R y Name, Date, Period Virtual Lab Vectors & Vector Operations Setup 1. Make sure your calculator is set to degrees and not radians. Sign out a laptop and power cord. Plug in the laptop and leave it plugged

More information

The Basic Definition of Flux

The Basic Definition of Flux The Basic Definition of Flux Imagine holding a rectangular wire loop of area A in front of a fan. The volume of air flowing through the loop each second depends on the angle between the loop and the direction

More information

Computation of Incompressible Flows: SIMPLE and related Algorithms

Computation of Incompressible Flows: SIMPLE and related Algorithms Computation of Incompressible Flows: SIMPLE and related Algorithms Milovan Perić CoMeT Continuum Mechanics Technologies GmbH milovan@continuummechanicstechnologies.de SIMPLE-Algorithm I - - - Consider

More information

Solving the Generalized Poisson Equation Using the Finite-Difference Method (FDM)

Solving the Generalized Poisson Equation Using the Finite-Difference Method (FDM) Solving the Generalized Poisson Equation Using the Finite-Difference Method (FDM) James R. Nagel September 30, 2009 1 Introduction Numerical simulation is an extremely valuable tool for those who wish

More information

Chapter 3. Formulation of FEM for Two-Dimensional Problems

Chapter 3. Formulation of FEM for Two-Dimensional Problems Chapter Formulation of FEM for Two-Dimensional Problems.1 Two-Dimensional FEM Formulation Many details of 1D and 2D formulations are the same. To demonstrate how a 2D formulation works we ll use the following

More information

SCIENTIFIC MEASUREMENTS

SCIENTIFIC MEASUREMENTS SCIENTIFIC MEASUREMENTS Textbook References: Textbook 4 th, Appendix A-1 & C-1 Textbook 5 th, Appendix B Lesson Objectives: By Studying this chapter, you will learn 1. What the fundamental quantities of

More information

Gauss s Law. Lecture 4. Chapter 27. Channel 61 (clicker) Physics II

Gauss s Law. Lecture 4. Chapter 27. Channel 61 (clicker) Physics II Lecture 4 Chapter 27 Physics II 01.30.2015 Gauss s Law 95.144 Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Lecture Capture: http://echo360.uml.edu/danylov201415/physics2spring.html

More information

Chapter 5 HIGH ACCURACY CUBIC SPLINE APPROXIMATION FOR TWO DIMENSIONAL QUASI-LINEAR ELLIPTIC BOUNDARY VALUE PROBLEMS

Chapter 5 HIGH ACCURACY CUBIC SPLINE APPROXIMATION FOR TWO DIMENSIONAL QUASI-LINEAR ELLIPTIC BOUNDARY VALUE PROBLEMS Chapter 5 HIGH ACCURACY CUBIC SPLINE APPROXIMATION FOR TWO DIMENSIONAL QUASI-LINEAR ELLIPTIC BOUNDARY VALUE PROBLEMS 5.1 Introduction When a physical system depends on more than one variable a general

More information

ADDING RCGEO BASEMAPS TO ARCMAP. Versions 10.0, 10.1 and 10.1 sp1

ADDING RCGEO BASEMAPS TO ARCMAP. Versions 10.0, 10.1 and 10.1 sp1 ADDING RCGEO BASEMAPS TO ARCMAP Versions 10.0, 10.1 and 10.1 sp1 May, 2014 Contents Adding the Ortho and Carto Base Maps to ArcMap... 2 Richland County Base Maps... 2 Adding the Base Map Connections ArcMap

More information

Student Exploration: Vectors

Student Exploration: Vectors Name: Date: Student Exploration: Vectors Vocabulary: component, dot product, magnitude, resultant, scalar, unit vector notation, vector Prior Knowledge Question (Do this BEFORE using the Gizmo.) An airplane

More information

Module 9: Packed beds Lecture 29: Drag, particles settling. Flow through a packed bed of solids. Drag. Criteria of settling.

Module 9: Packed beds Lecture 29: Drag, particles settling. Flow through a packed bed of solids. Drag. Criteria of settling. Flow through a packed bed of solids Drag Criteria of settling Hindred settling file:///d /Web%20Course/Dr.%20Nishith%20Verma/local%20server/fluid_mechanics/lecture29/29_1.htm[5/9/2012 3:38:37 PM] Flow

More information

Rutherford s Scattering Explanation

Rutherford s Scattering Explanation Exploration: Rutherford s Scattering Explanation The purpose of this exploration is to become familiar with Rutherford s analysis that formed a crucial part of his idea of a nuclear atom. To assist you

More information

Unit 15 Section 3 : Symmetry

Unit 15 Section 3 : Symmetry Unit 15 Section 3 : Symmetry In this section we revise the symmetry of objects and examine the symmetry of regular polygons. There are two types of symmetry: reflective symmetry and rotational symmetry.

More information

Lecture 3. Electric Field Flux, Gauss Law

Lecture 3. Electric Field Flux, Gauss Law Lecture 3. Electric Field Flux, Gauss Law Attention: the list of unregistered iclickers will be posted on our Web page after this lecture. From the concept of electric field flux to the calculation of

More information

Electric Field PHYS 296

Electric Field PHYS 296 Electric Field PHYS 296 Your name Lab section PRE-LAB QUIZZES 1. What will we investigate in this lab? 2. In a uniform electric field between two parallel plates, a potential probe records the electric

More information

Chapter 5. The Differential Forms of the Fundamental Laws

Chapter 5. The Differential Forms of the Fundamental Laws Chapter 5 The Differential Forms of the Fundamental Laws 1 5.1 Introduction Two primary methods in deriving the differential forms of fundamental laws: Gauss s Theorem: Allows area integrals of the equations

More information

Tutorial 12 Excess Pore Pressure (B-bar method) Undrained loading (B-bar method) Initial pore pressure Excess pore pressure

Tutorial 12 Excess Pore Pressure (B-bar method) Undrained loading (B-bar method) Initial pore pressure Excess pore pressure Tutorial 12 Excess Pore Pressure (B-bar method) Undrained loading (B-bar method) Initial pore pressure Excess pore pressure Introduction This tutorial will demonstrate the Excess Pore Pressure (Undrained

More information

Lecture 7. Capacitors and Electric Field Energy. Last lecture review: Electrostatic potential

Lecture 7. Capacitors and Electric Field Energy. Last lecture review: Electrostatic potential Lecture 7. Capacitors and Electric Field Energy Last lecture review: Electrostatic potential V r = U r q Q Iclicker question The figure shows cross sections through two equipotential surfaces. In both

More information

Draft Notes ME 608 Numerical Methods in Heat, Mass, and Momentum Transfer

Draft Notes ME 608 Numerical Methods in Heat, Mass, and Momentum Transfer Draft Notes ME 608 Numerical Methods in Heat, Mass, and Momentum Transfer Instructor: Jayathi Y. Murthy School of Mechanical Engineering Purdue University Spring 00 c 1998 J.Y. Murthy and S.R. Mathur.

More information

Finite Element Solver for Flux-Source Equations

Finite Element Solver for Flux-Source Equations Finite Element Solver for Flux-Source Equations Weston B. Lowrie A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Aeronautics Astronautics University

More information

Creating Axisymmetric Models in FEMAP

Creating Axisymmetric Models in FEMAP Creating Axisymmetric Models in FEMAP 1. Introduction NE/Nastran does not support 2-d axisymmetric elements. 3-d axisymmetric models are supported, and can be generated with a few additional steps. The

More information

LECTURE 10: REVIEW OF POWER SERIES. 1. Motivation

LECTURE 10: REVIEW OF POWER SERIES. 1. Motivation LECTURE 10: REVIEW OF POWER SERIES By definition, a power series centered at x 0 is a series of the form where a 0, a 1,... and x 0 are constants. For convenience, we shall mostly be concerned with the

More information

Capacitors and Capacitance

Capacitors and Capacitance [International campus Lab] Objective Investigate the force between the charged plates of a parallel plate capacitor and determine the capacitance of the capacitor. Determine the effect of a dielectric

More information

Gauss s Law. q 4. The Gaussian surfaces do not have to be spheres. Constant flux through any closed surface.

Gauss s Law. q 4. The Gaussian surfaces do not have to be spheres. Constant flux through any closed surface. The beauty of 1/R 2 Gauss s Law For a single point charge: The density of field lines signifies field strength, 1/R 2. Surface area 1/R 2. Constant flux of field lines through spheres, regardless of R.

More information

Lecture 20: Lagrange Interpolation and Neville s Algorithm. for I will pass through thee, saith the LORD. Amos 5:17

Lecture 20: Lagrange Interpolation and Neville s Algorithm. for I will pass through thee, saith the LORD. Amos 5:17 Lecture 20: Lagrange Interpolation and Neville s Algorithm for I will pass through thee, saith the LORD. Amos 5:17 1. Introduction Perhaps the easiest way to describe a shape is to select some points on

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University Discretization of Boundary Conditions Discretization of Boundary Conditions On

More information

LECTURE 16 GAUSS QUADRATURE In general for Newton-Cotes (equispaced interpolation points/ data points/ integration points/ nodes).

LECTURE 16 GAUSS QUADRATURE In general for Newton-Cotes (equispaced interpolation points/ data points/ integration points/ nodes). CE 025 - Lecture 6 LECTURE 6 GAUSS QUADRATURE In general for ewton-cotes (equispaced interpolation points/ data points/ integration points/ nodes). x E x S fx dx hw' o f o + w' f + + w' f + E 84 f 0 f

More information

CHARTING THE HEAVENS USING A VIRTUAL PLANETARIUM

CHARTING THE HEAVENS USING A VIRTUAL PLANETARIUM Name Partner(s) Section Date CHARTING THE HEAVENS USING A VIRTUAL PLANETARIUM You have had the opportunity to look at two different tools to display the night sky, the celestial sphere and the star chart.

More information

Chemical Kinetics I: The Dry Lab. Up until this point in our study of physical chemistry we have been interested in

Chemical Kinetics I: The Dry Lab. Up until this point in our study of physical chemistry we have been interested in Chemical Kinetics I: The Dry Lab Up until this point in our study of physical chemistry we have been interested in equilibrium properties; now we will begin to investigate non-equilibrium properties and

More information

3 rd class Mech. Eng. Dept. hamdiahmed.weebly.com Fourier Series

3 rd class Mech. Eng. Dept. hamdiahmed.weebly.com Fourier Series Definition 1 Fourier Series A function f is said to be piecewise continuous on [a, b] if there exists finitely many points a = x 1 < x 2

More information

Sec 1.1 CC Geometry History of Trigonometry Name:

Sec 1.1 CC Geometry History of Trigonometry Name: Sec. CC Geometry History of Trigonometry Name: The word trigonometry is of Greek origin and literally translates to Triangle Measurements. Some of the earliest trigonometric ratios recorded date back to

More information

Chapter 3: Newtonian Fluids

Chapter 3: Newtonian Fluids Chapter 3: Newtonian Fluids CM4650 Michigan Tech Navier-Stokes Equation v vv p t 2 v g 1 Chapter 3: Newtonian Fluid TWO GOALS Derive governing equations (mass and momentum balances Solve governing equations

More information

Lab 1: Importing Data, Rectification, Datums, Projections, and Coordinate Systems

Lab 1: Importing Data, Rectification, Datums, Projections, and Coordinate Systems Lab 1: Importing Data, Rectification, Datums, Projections, and Coordinate Systems Topics covered in this lab: i. Importing spatial data to TAS ii. Rectification iii. Conversion from latitude/longitude

More information

Nodalization. The student should be able to develop, with justification, a node-link diagram given a thermalhydraulic system.

Nodalization. The student should be able to develop, with justification, a node-link diagram given a thermalhydraulic system. Nodalization 3-1 Chapter 3 Nodalization 3.1 Introduction 3.1.1 Chapter content This chapter focusses on establishing a rationale for, and the setting up of, the geometric representation of thermalhydraulic

More information

11. Kriging. ACE 492 SA - Spatial Analysis Fall 2003

11. Kriging. ACE 492 SA - Spatial Analysis Fall 2003 11. Kriging ACE 492 SA - Spatial Analysis Fall 2003 c 2003 by Luc Anselin, All Rights Reserved 1 Objectives The goal of this lab is to further familiarize yourself with ESRI s Geostatistical Analyst, extending

More information

Physics 1A. Lecture 1B

Physics 1A. Lecture 1B Physics 1A Lecture 1B Angles: a Tricky Unit θ Angles are formally defined as a ratio of lengths; e.g. θ = Arclength/Radius [θ] = L/L = 1 This makes the angle unitless! The fundamental unit of angle is

More information

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists 4,000 116,000 120M Open access books available International authors and editors Downloads Our

More information

JUST THE MATHS UNIT NUMBER ORDINARY DIFFERENTIAL EQUATIONS 3 (First order equations (C)) A.J.Hobson

JUST THE MATHS UNIT NUMBER ORDINARY DIFFERENTIAL EQUATIONS 3 (First order equations (C)) A.J.Hobson JUST THE MATHS UNIT NUMBER 15.3 ORDINARY DIFFERENTIAL EQUATIONS 3 (First order equations (C)) by A.J.Hobson 15.3.1 Linear equations 15.3.2 Bernouilli s equation 15.3.3 Exercises 15.3.4 Answers to exercises

More information

How Do We Know Where an Earthquake Originated? Teacher's Guide

How Do We Know Where an Earthquake Originated? Teacher's Guide How Do We Know Where an Earthquake Originated? Teacher's Guide Standard Addressed: Grades 6-8: Scientific Inquiry 1 B/1, 2 Mathematical Inquiry 2 C/2 Technology and Science 3 A/2 Processes that shape the

More information

A Study on Numerical Solution to the Incompressible Navier-Stokes Equation

A Study on Numerical Solution to the Incompressible Navier-Stokes Equation A Study on Numerical Solution to the Incompressible Navier-Stokes Equation Zipeng Zhao May 2014 1 Introduction 1.1 Motivation One of the most important applications of finite differences lies in the field

More information

A) 1, 2, 3, 4 B) 4, 3, 2, 1 C) 2, 3, 1, 4 D) 2, 4, 1, 3 E) 3, 2, 4, 1. Page 2

A) 1, 2, 3, 4 B) 4, 3, 2, 1 C) 2, 3, 1, 4 D) 2, 4, 1, 3 E) 3, 2, 4, 1. Page 2 1. Two parallel-plate capacitors with different plate separation but the same capacitance are connected in series to a battery. Both capacitors are filled with air. The quantity that is NOT the same for

More information

A High-Order Galerkin Solver for the Poisson Problem on the Surface of the Cubed Sphere

A High-Order Galerkin Solver for the Poisson Problem on the Surface of the Cubed Sphere A High-Order Galerkin Solver for the Poisson Problem on the Surface of the Cubed Sphere Michael Levy University of Colorado at Boulder Department of Applied Mathematics August 10, 2007 Outline 1 Background

More information

Scientific Computing I

Scientific Computing I Scientific Computing I Module 8: An Introduction to Finite Element Methods Tobias Neckel Winter 2013/2014 Module 8: An Introduction to Finite Element Methods, Winter 2013/2014 1 Part I: Introduction to

More information

Lehrstuhl Informatik V. Lehrstuhl Informatik V. 1. solve weak form of PDE to reduce regularity properties. Lehrstuhl Informatik V

Lehrstuhl Informatik V. Lehrstuhl Informatik V. 1. solve weak form of PDE to reduce regularity properties. Lehrstuhl Informatik V Part I: Introduction to Finite Element Methods Scientific Computing I Module 8: An Introduction to Finite Element Methods Tobias Necel Winter 4/5 The Model Problem FEM Main Ingredients Wea Forms and Wea

More information

Lesson Plan 2 - Middle and High School Land Use and Land Cover Introduction. Understanding Land Use and Land Cover using Google Earth

Lesson Plan 2 - Middle and High School Land Use and Land Cover Introduction. Understanding Land Use and Land Cover using Google Earth Understanding Land Use and Land Cover using Google Earth Image an image is a representation of reality. It can be a sketch, a painting, a photograph, or some other graphic representation such as satellite

More information

Well-balanced DG scheme for Euler equations with gravity

Well-balanced DG scheme for Euler equations with gravity Well-balanced DG scheme for Euler equations with gravity Praveen Chandrashekar praveen@tifrbng.res.in Center for Applicable Mathematics Tata Institute of Fundamental Research Bangalore 560065 Higher Order

More information

PHYS102 - Gauss s Law.

PHYS102 - Gauss s Law. PHYS102 - Gauss s Law. Dr. Suess February 2, 2007 PRS Questions 2 Question #1.............................................................................. 2 Answer to Question #1......................................................................

More information

Non-linear and time-dependent material models in Mentat & MARC. Tutorial with Background and Exercises

Non-linear and time-dependent material models in Mentat & MARC. Tutorial with Background and Exercises Non-linear and time-dependent material models in Mentat & MARC Tutorial with Background and Exercises Eindhoven University of Technology Department of Mechanical Engineering Piet Schreurs July 7, 2009

More information

example consider flow of water in a pipe. At each point in the pipe, the water molecule has a velocity

example consider flow of water in a pipe. At each point in the pipe, the water molecule has a velocity Module 1: A Crash Course in Vectors Lecture 1: Scalar and Vector Fields Objectives In this lecture you will learn the following Learn about the concept of field Know the difference between a scalar field

More information

LAB 5 INSTRUCTIONS LINEAR REGRESSION AND CORRELATION

LAB 5 INSTRUCTIONS LINEAR REGRESSION AND CORRELATION LAB 5 INSTRUCTIONS LINEAR REGRESSION AND CORRELATION In this lab you will learn how to use Excel to display the relationship between two quantitative variables, measure the strength and direction of the

More information