Rheological Measurements: Viscoelastic Properties

Size: px
Start display at page:

Download "Rheological Measurements: Viscoelastic Properties"

Transcription

1 Rheological Measurements: Viscoelastic Properties Cone-plate rheometer oscillated over a range of frequencies () Imposed: sinusoidal torque () Measured: sinusoidal strain () 1 RADA16-II 1% Gel Self-assembling peptide. Modulus (Pa) Frequency (rad/s) G' Pa G'' Pa Gel: G >> G Little frequency dependence 1 RADA16-II 1% Solution Viscous solution: Lower values of moduli Modulus (Pa) 1.1 G' Pa G'' Pa Frequency dependent Frequency (rad/s) G. Kim, 23 1

2 Interpretation of displacement (x) of a microsphere (radius a) inside the cytoplasm. Assumes elastic and viscous contributions are additive as in a Voigt model. (G = µ) dx F(t) = 6a G x + µ dt Sphere in an infinite elastic medium G = F cos 6ax G = Sphere in an infinite Newtonian fluid F sin 6ax Smooth muscle cells -- with and without activation. Obtained using magnetic twisting cytometry. (a) 1 4 G''(Pa) G'(Pa) (b) G' (Pa) G * = G 1 5 (c) (G, φ /2π) f(hz) (d) 1 4 G' G'' f(hz) x1 f(hz) (1 + i )(2 x)cos 2 (x 1) + iµ Image removed due to copyright restrictions. Storage (a) and loss (b) moduli plotted over 5 decades of frequency for smooth muscle cells under control conditions (solid squares), after treatment for 1 minutes with histamine to produce smooth muscle activation (open squares), an agent to eliminate baseline tone, DBcAMP (solid triangles), or cytochalasin D, to disrupt actin filaments (open triangles). (c) shows the extrapolation of the data for illustrating the intersection at high frequency, and (d) directly compares the data from (a) and (b) under control conditions. Solid lines are the fit to the data by eqn. (68) with G =53.6 kpa and =2.5x1 8 rad/s. (Reproduced from Fabry, et al., 21) 2

3 Oscillatory shear tests. Storage and loss moduli (in Pa). 1 G' Storage modules (Pa) Viscosity (Pa.s) Loss modulus (Pa) G" ω(rad/s) Shear oscillation tests of pig kidney at strain.2%, which specifies the components of the dynamic modulus in terms of frequency. The standard deviations are also shown as error bars Experimental measurements made by cell poking (lymphocyte) (Zahalak, et al., 199).45 A F.35 FORCE (NEWTONS) a DISTANCE IN ( METERS ) 3

4 Terminology for poroelasticity H = 2G + = confined _ compression _modulus v f = local _ fluid _ velocity u v s = local _ solid _ velocity = t U = mean _ fluid _ speed _(relative_ to _ solid _ phase) A f = fluid _ area A s = solid _ area A f = porosity = Af + A s k = hydraulic _ permeability Poroelastic materials 11 Governing equations: 1. Constitutive law x 1 ij 3. Conservation of mass u U = (v f v s ) = v rel v s = t 4. Conservation of momentum ( tot = 2G ij ) ij p ij 2. Fluid-solid viscous interactions (Darcy s Law) U = kp u 1 1D forms tot 11 = (2G + ) 11 p U 1 = k p x 1 U 1 = u 1 + U t tot 11 = x 1 tot = 2 u 1 u 1 U = Hk 2 t x 1 4

5 Poroelasticity -- confined compression Impose displacements at boundaries: u 1 (x 1, t=) = 11 u 1 (x 1 =L, t>) = u 1 u 1 (x 1 =, t>) = u U = 2 u 1 u = Hk 1 t x 1 u 1 x 1 Characteristic time ~ L 2 /Hk x 1 Solution (Fourier series) t u 1 (x 1,t) = u 1 x 1 A n sin n x 1 exp L n L n L 2 n = 2 n 2 Hk Stress relaxation results for 4 tumor types Confined compression experiments 11 Stress, mmhg u 1 x Time, s 5

6 Equilibrium stress-strain curves for 4 tumor types 3 Stress (mmhg) Strain Used to calculate confined compression modulus, H. Assumed linear for strains < Hydraulic permeability as a function of tissue deformation 1-5 K, cm 2 /mmhg sec Four different tumor tissues. Obtained from stress relaxation experiments in confined compression Strain 1-7 cm 2 / (mmhg. s) = 1.4x1-13 m 4 / (N. s).3 6

7 Typical Length Scales in Biology DNA width microtubule width typical animal cell length of DNA in a chromosome human meters histone chromatin Proteins width Width of lipid bilayer nucleus length of DNA contained in a typical human cell Similar spectra exist in time scales or energy scales. Typical Eukaryotic Cell 1 µm = 1-6 m 1 nm = 1-9 m 1 Å = 1-1 m 7

8 Plasma Membrane Plasma Membrane 2-D Elastic Plate A Typical Epithelial Cell Microvillus Apical Surface Tight Junctions Adherens Junction Spot Desmosome Lateral Surface Gap Junction Intermediate Filament Basal Surface Basal Lamina Hemidesmosome 8

9 Cell-cell junctions Images removed due to copyright restrictions. Fig Schematic showing the different types of cell junctions present in an epithelial cell as found in the small intestine. Tight junctions near the apical surface essentially prevent the passage of all molecules. The spot desmosomes and adherens junctions provide for cell-cell anchoring, and the hemidesmosomes for anchoring to the basal lamina. Gap junctions provide a means for communication between neighboring cells. [Reproduced from Lodish et al., Molecular Cell Biology, 2.] Detailed structure of a focal adhesion Actin Fim ERM Nex VASP Ten Zyx CRP Abl Parv Pl3K Csk ASAP1 Vnx Vin Tal Calp II Fil α Act PAK FAK Grb-7 α Vin β SHP-2 SHPS-1 α Pall β PIX Vin PKL Pax Src FK PINCH ILK β α β β Cav α β CAS SHIP-2 α β DRAL β α α Vin Pon β α PKC Lay Synd Synt β Syn 4 upar Extracellular Matrix Transmission of Forces from the Extracellular Matrix to The Cytoskeleton 9

10 Staining of actin and nuclei in fibroblast cells (J. Lammerding) Image removed due to copyright restrictions. The cytoskeleton as a homogeneous, isotropic, elastic material. Image removed due to copyright restrictions. The cytoskeleton of a macrophage lamellipodium as seen by electron microscopy. The fibrous structure is mainly comprised of actin filaments. (John Hartiwick, 1

11 Forces and deformations are transmitted throughout the cell by the cytoskeleton Figure removed due to copyright restrictions. Fibroblast with fluorescent mitochondria forced by a magnetic bead D. Ingber, P. LeDuc A variety of methods have been used to probe cell mechanics 1 2 AFM Magnetic Bead 3 Micropipette Aspiration 4 Optical trap Silica bead Red blood cell Optical trap Silica bead 5 Shear Flow 6 Stretching Focal adhesion complex Soft Membrane Bao & Suresh, 23 11

12 Are cells linear elastic materials? One example: Indentation Experiments FORCE (NEWTONS) X Neutrophils (Zahalak et al., 199) 2a Micropipette aspiration 2 Linear relationship 2a L/a 1 L p (dynes/cm 2 ) Experimental result obtained on a from an endothelial cell micropipette experiment. Data from Theret et al.,

13 Measurements Cell type Measurement method Shear modulus (Pa) Reference lymphocyte poking 3 Zahalak et al. of cell shear lymphocyte (activated) poking 7-11 Zahalak et al. modulus found neutrophil (activated) poking Zahalak et al. poking 11 Zahalak et al. in the literature. neutrophil NIH 3T3 fibrobalst magnetic tweezers 2,-4, Bausch et al. NIH 3T3 fibroblast AFM 4,-1, Haga et al. J774 mouse magnetic tweezers 343 Bausch et al. macrophage Values range over 3T3 and NRK AFM 1,-1, Rotsch & fibroblast 3-4 orders of magnitude! al. Rademacher mouse fibroblast poking 16 (E) Peterson et endothelial cell aspiration 4-5 Theret et al. bovine endothelial cell indentation 4-6 Sato et al. porcine endothelial cell aspiration 75 (E) Sato et al. endothelial cell magnetic twisting 2.2 (round) (E) Wang et al. cytometry (MTC) 4.5 (spread) (E) bovine endothelial cell MTC Wang & Stamenovic human chondrocytes aspiration 33 Trickey et al. smooth muscle cell MTC 11.5 (E) Stamenovic & Coughlin COS7 (kidney laser tracking ( G * ) Yamada, et epithelial) microrheology al. Elastic or viscoelastic?? Cells are viscoelastic FORCE (NEWTONS) x Indentation depth (-1.6µm) Images removed due to copyright restrictions. Micropipette Aspiration DISTANCE ( METERS ) x 1-5 Indentation (Zahalak et al., 199) 13

14 Comparison between experiments and Maxwell fluid model: Ramped force application.6 Bead Displacement, µm Numerical simulation Experimental data.4.6 kpa G =.4 kpa.2 1. kpa Time, s 2 5 pn Force Time 2s Experiments suggest a shear modulus of about 1. kpa for NIH T3T fibroblasts Sinusoidal Forcing.4 Numerical simulation (G =.4-1. kpa) Experimental data Bead Displacement, µm G =.4 kpa 2 3 Time, s 4 1. kpa Cells appear to behave as a Maxwell viscoelastic material with characteristic time constant of ~1s Force, pn Time, s

15 Magnetic Twisting Cytometry (a) G''(Pa) G'(Pa) (b) G' (Pa) 1 5 (c) (G, φ /2π) f(hz) (d) 1 4 G' G'' f(hz) f(hz) Testing over a wider range of frequencies illustrates a more complex, but still viscoelastic, behavior. T G * = G + ig = (t) (t) is a geometry-dependent prefactor determined from finite element analysis G * = G x 1 ( 1 + i ) (2 x)cos (x 1) 2 + i µ is the Gamma-function; G, and x are adjustable parameters Consistent with models for soft, glassy materials Viscoelastic or Poroelastic?? Microfilaments Intermediate Filaments Microtubules Cells have a porous, fluidfilled matrix. Images removed due to copyright restrictions. 15

16 Are thermal (Brownian) effects important? Lipid vesicles exhibit a fluctuationdominated regime and an elastic regime when inflated from zero tension. (Evans and Rawicz, PRL, 199) ln (N) (dyn/cm) N (dyn/cm) SOPC:CHOL Fluctuation-dominated A α = A SOPC:CHOL DGDG A α = A Elastic stretching DGDG Measurements of membrane tension and fractional area dilation for two vesicles with different lipid compositions. (a) A fluctuation-dominated regime appears at low tensions: a slope of 8πkc/kT. (b) Crossover to direct expansion at high tension: a slope of K. (open symbols, ascending pressure; solid symbols, descending pressure.) Homogeneous, isotropic?? Images removed due to copyright restrictions. Mapping cell surface elasticity using AFM Elasticity mapping in a fibroblast (NIH3T3) cell using atomic force microscopy. The elasticity map (A) shows gross differences with the lowest values corresponding to the nucleus (N), and a small pocket (arrow) low in actin content. The height of the cell from the substrate is shown in (B). The two lower images are stained for actin (C) and microtubules (D) from the same cell. (Reproduced from Haga, et al., 2) Cells are inhomogeneous and anisotropic. 16

17 What else needs to be considered?? Cells are dynamic. Properties are constantly changing. Cell Motility Images removed due to copyright restrictions. Fluorescently tagged actin Actin is a polymer The cytoskeleton is active Coordinated processes: adhesion, (de-) polymerization Active Cell Contraction Image removed due to copyright restrictions. Cardiac myocyte (Jan Lammerding) 17

18 Cells can sense and respond to mechanical stimuli Mechanotransduction: Hair cell stimulation tip link tension in tip link increases stereocilium Images removed due to copyright restrictions. SEM of the stereocilia on the surface of a single hair cell (Hudspeth) Tension in the tip link activates a stretch-activated ion channel, leading to intracellular calcium ion fluctuations. 18

Website: Selected readings Topics Introduction to Cell Biology Analysis of Cell Mechanics Cell

Website:   Selected readings Topics Introduction to Cell Biology Analysis of Cell Mechanics Cell Session 1 Website: http://faculty.washington.edu/nsniadec/me599/w13/ Selected readings Topics Introduction to Cell Biology Analysis of Cell Mechanics Cell Mechanics Modeling Measuring Cell Forces Mechanotransduction

More information

Molecular, Cellular & Tissue Biomechanics. Goal: Develop a fundamental understanding of biomechanics over a wide range of length scales.

Molecular, Cellular & Tissue Biomechanics. Goal: Develop a fundamental understanding of biomechanics over a wide range of length scales. 1 Molecular, Cellular & Tissue Biomechanics Goal: Develop a fundamental understanding of biomechanics over a wide range of length scales. 20.310, 2.793, 6.024 Fall, 2006 MOLECULAR MECHANICS Biomolecules

More information

Lecture Note October 1, 2009 Nanostructure characterization techniques

Lecture Note October 1, 2009 Nanostructure characterization techniques Lecture Note October 1, 29 Nanostructure characterization techniques UT-Austin PHYS 392 T, unique # 5977 ME 397 unique # 1979 CHE 384, unique # 151 Instructor: Professor C.K. Shih Subjects: Applications

More information

Measurements and Models of Cytoskeletal Rheology

Measurements and Models of Cytoskeletal Rheology Measurements and Models of Cytoskeletal Rheology Roger D. Kamm MIT Department of Mechanical Engineering Department of Biological Engineering Acknowledgements: TaeYoon Kim, Hyunsuk Lee, Belinda Yap, Jeff

More information

Lecture 4: viscoelasticity and cell mechanics

Lecture 4: viscoelasticity and cell mechanics Teaser movie: flexible robots! R. Shepherd, Whitesides group, Harvard 1 Lecture 4: viscoelasticity and cell mechanics S-RSI Physics Lectures: Soft Condensed Matter Physics Jacinta C. Conrad University

More information

CEMB summer school. Intro to cell and tissue mechanics July 10, 2017 Paul Janmey

CEMB summer school. Intro to cell and tissue mechanics July 10, 2017 Paul Janmey CEMB summer school. Intro to cell and tissue mechanics July 10, 2017 Paul Janmey janmey@mail.med.upenn.edu Soft Stiff Motivation Soft tissues have well-defined and controlled elastic moduli Cells in vitro

More information

Lecture 3 13/11/2018

Lecture 3 13/11/2018 Lecture 3 13/11/2018 1 Plasma membrane ALL cells have a cell membrane made of proteins and lipids. protein channel Cell Membrane Layer 1 Layer 2 lipid bilayer protein pump Lipid bilayer allows water, carbon

More information

Figure 1.1: Flaccid (a) and swollen (b) red blood cells being drawn into a micropipette. The scale bars represent 5 µm. Figure adapted from [2].

Figure 1.1: Flaccid (a) and swollen (b) red blood cells being drawn into a micropipette. The scale bars represent 5 µm. Figure adapted from [2]. 1 Biomembranes 1.1 Micropipette aspiration 1.1.1 Experimental setup Figure 1.1: Flaccid (a) and swollen (b) red blood cells being drawn into a micropipette. The scale bars represent 5 µm. Figure adapted

More information

Bio 111 Study Guide Chapter 6 Tour of the Cell

Bio 111 Study Guide Chapter 6 Tour of the Cell Bio 111 Study Guide Chapter 6 Tour of the Cell BEFORE CLASS: Reading: Read the whole chapter from p. 93-121, mostly skimming Concept 6.1 on microscopy. Figure 6.8 on pp. 100-101 is really helpful in showing

More information

AY 2013/2014 BEng Mechanical Engineering Individual Project

AY 2013/2014 BEng Mechanical Engineering Individual Project Lloyd Chua S1148054 AY 2013/2014 BEng Mechanical Engineering Individual Project Final Report Abstract Cells are the most fundamental biological units of living organisms and their rheological and mechanical

More information

Chemical aspects of the cell. Shape and structure of the cell

Chemical aspects of the cell. Shape and structure of the cell Chemical aspects of the cell Shape and structure of the cell Cellular composition https://www.studyblue.com/ 2 Cellular composition Set of videos with basic information: Cell characteristics: https://www.youtube.com/watch?v=urujd5nexc8

More information

Nature Protocols: doi: /nprot Supplementary Figure 1

Nature Protocols: doi: /nprot Supplementary Figure 1 Supplementary Figure 1 Photographs of the 3D-MTC device and the confocal fluorescence microscopy. I: The system consists of a Leica SP8-Confocal microscope (with an option of STED), a confocal PC, a 3D-MTC

More information

Cell Biology Review. The key components of cells that concern us are as follows: 1. Nucleus

Cell Biology Review. The key components of cells that concern us are as follows: 1. Nucleus Cell Biology Review Development involves the collective behavior and activities of cells, working together in a coordinated manner to construct an organism. As such, the regulation of development is intimately

More information

Cell (Learning Objectives)

Cell (Learning Objectives) Cell (Learning Objectives) 1. Understand & describe the basic components necessary for a functional cell. 2. Review the order of appearance of cells on earth and explain the endosymbiotic theory. 3. Compare

More information

Amneh Auben. Abdulrahman Jabr. Diala Abu-Hassan

Amneh Auben. Abdulrahman Jabr. Diala Abu-Hassan 21 Amneh Auben Abdulrahman Jabr Diala Abu-Hassan Matrix polysaccharides Extracellular matrix (ECM): It s a collection of components that fills the spaces outside the cell or between the cells. ---------

More information

One- and two-particle microrheology in solutions of actin, fd-virus and inorganic rods

One- and two-particle microrheology in solutions of actin, fd-virus and inorganic rods Microrheology of Biopolymers (ITP Complex Fluids Program 3/05/02) One- and two-particle microrheology in solutions of actin, fd-virus and inorganic rods Christoph Schmidt Vrije Universiteit Amsterdam Collaborators:

More information

GEM4 Summer School OpenCourseWare

GEM4 Summer School OpenCourseWare GEM4 Summer School OpenCourseWare http://gem4.educommons.net/ http://www.gem4.org/ Lecture: Microrheology of a Complex Fluid by Dr. Peter So. Given August 10, 2006 during the GEM4 session at MIT in Cambridge,

More information

Elasticity of biological gels

Elasticity of biological gels Seminar II Elasticity of biological gels Author: Gašper Gregorič Mentor: assoc. prof. Primož Ziherl Ljubljana, February 2014 Abstract In the seminar we discuss the elastic behavior of biological gels,

More information

6 Mechanotransduction

6 Mechanotransduction 6.1 Motivation The process of converting physical forces into biochemical signals and integrating these signals into the cellular response is referred to as mechnotransduction [11, 20]. To fully understand

More information

Micro-rheology of cells and soft matter with the NanoTracker

Micro-rheology of cells and soft matter with the NanoTracker Micro-rheology of cells and soft matter with the NanoTracker Introduction In micro-rheological measurements, the complex deformation or flow of viscoelastic systems under small external forces is investigated.

More information

A Quantitative Model of Cellular Elasticity Based on Tensegrity

A Quantitative Model of Cellular Elasticity Based on Tensegrity A Quantitative Model of Cellular Elasticity Based on Tensegrity Dimitrije Stamenović Mark F. Coughlin Department of Biomedical Engineering, Boston University, Boston, MA 02215 A tensegrity structure composed

More information

Local Measurements of Viscoelastic Parameters of Adherent Cell Surfaces by Magnetic Bead Microrheometry

Local Measurements of Viscoelastic Parameters of Adherent Cell Surfaces by Magnetic Bead Microrheometry 2038 Biophysical Journal Volume 75 October 1998 2038 2049 Local Measurements of Viscoelastic Parameters of Adherent Cell Surfaces by Magnetic Bead Microrheometry Andreas R. Bausch,* Florian Ziemann,* Alexei

More information

Components of a functional cell. Boundary-membrane Cytoplasm: Cytosol (soluble components) & particulates DNA-information Ribosomes-protein synthesis

Components of a functional cell. Boundary-membrane Cytoplasm: Cytosol (soluble components) & particulates DNA-information Ribosomes-protein synthesis Cell (Outline) - Components of a functional cell - Major Events in the History of Earth: abiotic and biotic phases; anaerobic and aerobic atmosphere - Prokaryotic cells impact on the biosphere - Origin

More information

Cells to Tissues. Peter Takizawa Department of Cell Biology

Cells to Tissues. Peter Takizawa Department of Cell Biology Cells to Tissues Peter Takizawa Department of Cell Biology From one cell to ensembles of cells. Multicellular organisms require individual cells to work together in functional groups. This means cells

More information

Untangling the Mechanics of Entangled Biopolymers

Untangling the Mechanics of Entangled Biopolymers Untangling the Mechanics of Entangled Biopolymers Rae M. Robertson-Anderson Physics Department University of San Diego students/postdocs: Cole Chapman, PhD Tobias Falzone, PhD Stephanie Gorczyca, USD 16

More information

World of The Cell. How big is a cell?

World of The Cell. How big is a cell? World of The Cell Chapter 4 How big is a cell? The smallest cell is a Mycoplasmas (very small bacteria are barely bigger) Bacteria are just bigger than a single organelle of a animal cell Plant and animal

More information

Name: Class: Date: ID: A

Name: Class: Date: ID: A Class: Date: Ch 7 Review Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Researchers use fluorescent labels and light microscopy to a. follow

More information

Chapter 4 A Tour of the Cell*

Chapter 4 A Tour of the Cell* Chapter 4 A Tour of the Cell* *Lecture notes are to be used as a study guide only and do not represent the comprehensive information you will need to know for the exams. The Fundamental Units of Life Cells

More information

COMPLEX EFFECTS OF MOLECULAR TOPOLOGY, LENGTH AND CONCENTRATION ON MOLECULAR DYNAMICS IN ENTANGLED DNA BLENDS

COMPLEX EFFECTS OF MOLECULAR TOPOLOGY, LENGTH AND CONCENTRATION ON MOLECULAR DYNAMICS IN ENTANGLED DNA BLENDS COMPLEX EFFECTS OF MOLECULAR TOPOLOGY, LENGTH AND CONCENTRATION ON MOLECULAR DYNAMICS IN ENTANGLED DNA BLENDS Students Cole E. Chapman Kent Lee Dean Henze Collaborators Doug Smith (UCSD) Sachin Shanbhag

More information

BIO 311C Spring 2010

BIO 311C Spring 2010 BIO 311C Spring 2010 Prokaryotic cells contain structures that are very similar to structures of the eukaryotic cytoskeleton. Prokaryotic cytoskeletal elements are required for cell division, maintaining

More information

Quantitative Analysis of Forces in Cells

Quantitative Analysis of Forces in Cells Quantitative Analysis of Forces in Cells Anders Carlsson Washington University in St Louis Basic properties of forces in cells Measurement methods and magnitudes of particular types of forces: Polymerization

More information

CM4655 Polymer Rheology Lab. Torsional Shear Flow: Parallel-plate and Cone-and-plate

CM4655 Polymer Rheology Lab. Torsional Shear Flow: Parallel-plate and Cone-and-plate CM4655 Polymer heology Lab Torsional Shear Flow: Parallel-plate and Cone-and-plate (Steady and SAOS) Professor Faith A. Morrison Department of Chemical Engineering Michigan Technological University r (-plane

More information

Chapter 3: Cells. Lectures by Mark Manteuffel, St. Louis Community College

Chapter 3: Cells. Lectures by Mark Manteuffel, St. Louis Community College Chapter 3: Cells Lectures by Mark Manteuffel, St. Louis Community College Learning Objectives Be able to describe: what a cell is & two main classes of cells. structure & functions of cell membranes. how

More information

Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. chapter 7 Test Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Who was one of the first people to identify and see cork cells? a. Anton van

More information

Biology, 7e (Campbell) Chapter 6: A Tour of the Cell

Biology, 7e (Campbell) Chapter 6: A Tour of the Cell Biology, 7e (Campbell) Chapter 6: A Tour of the Cell Chapter Questions 1) What limits the resolving power of a light microscope? A) the type of lens used to magnify the object under study B) the shortest

More information

4.4 Tensegrity model for the cytoskeleton

4.4 Tensegrity model for the cytoskeleton 4.4 Tensegrity model for the cytoskeleton Why is the cell membrane model of the previous section not sufficient to charcterize cells like fibroblasts? What is the fundamental difference between a red blood

More information

TENSEGRITY: THE ARCHITECTURAL BASIS OF CELLULAR MECHANOTRANSDUCTION

TENSEGRITY: THE ARCHITECTURAL BASIS OF CELLULAR MECHANOTRANSDUCTION Annu. Rev. Physiol. 1997. 59:575 99 Copyright c 1997 by Annual Reviews Inc. All rights reserved TENSEGRITY: THE ARCHITECTURAL BASIS OF CELLULAR MECHANOTRANSDUCTION D. E. Ingber Departments of Pathology

More information

Elasticity of the human red blood cell skeleton

Elasticity of the human red blood cell skeleton Biorheology 40 (2003) 247 251 247 IOS Press Elasticity of the human red blood cell skeleton G. Lenormand, S. Hénon, A. Richert, J. Siméon and F. Gallet Laboratoire de Biorhéologie et d Hydrodynamique Physico-Chimique,

More information

A. The Cell: The Basic Unit of Life. B. Prokaryotic Cells. D. Organelles that Process Information. E. Organelles that Process Energy

A. The Cell: The Basic Unit of Life. B. Prokaryotic Cells. D. Organelles that Process Information. E. Organelles that Process Energy The Organization of Cells A. The Cell: The Basic Unit of Life Lecture Series 4 The Organization of Cells B. Prokaryotic Cells C. Eukaryotic Cells D. Organelles that Process Information E. Organelles that

More information

Rheology of Soft Materials. Rheology

Rheology of Soft Materials. Rheology Τ Thomas G. Mason Department of Chemistry and Biochemistry Department of Physics and Astronomy California NanoSystems Institute Τ γ 26 by Thomas G. Mason All rights reserved. γ (t) τ (t) γ τ Δt 2π t γ

More information

Lecture 17: Cell Mechanics

Lecture 17: Cell Mechanics Lecture 17: Cell Mechanics We will focus on how the cell functions as a mechanical unit, with all of the membrane and cytoskeletal components acting as an integrated whole to accomplish a mechanical function.

More information

Life is Cellular Section 7.1

Life is Cellular Section 7.1 Life is Cellular Section 7.1 Objectives Understand Cell theory Distinguish between prokaryotes and eukaryotes Understand different types of microscopy, and how they work in more detail What is a Cell?

More information

Viscoelasticity. Basic Notions & Examples. Formalism for Linear Viscoelasticity. Simple Models & Mechanical Analogies. Non-linear behavior

Viscoelasticity. Basic Notions & Examples. Formalism for Linear Viscoelasticity. Simple Models & Mechanical Analogies. Non-linear behavior Viscoelasticity Basic Notions & Examples Formalism for Linear Viscoelasticity Simple Models & Mechanical Analogies Non-linear behavior Viscoelastic Behavior Generic Viscoelasticity: exhibition of both

More information

Hair Cells: The Sensory Transducers of the Inner Ear

Hair Cells: The Sensory Transducers of the Inner Ear Chapter 1 Hair Cells: The Sensory Transducers of the Inner Ear Hair cells are specialized cells that transform a mechanical motion into changes in membrane potential. Such changes, whereby one form of

More information

NIH Public Access Author Manuscript Curr Biol. Author manuscript; available in PMC 2010 June 21.

NIH Public Access Author Manuscript Curr Biol. Author manuscript; available in PMC 2010 June 21. NIH Public Access Author Manuscript Published in final edited form as: Curr Biol. 2009 September 15; 19(17): R745 R748. doi:10.1016/j.cub.2009.06.034. The mechanical cell Shang-You Tee 1, Andreas Bausch

More information

Supplementary Information. SI Text 1: Derivation and assumptions of the effective temperature model

Supplementary Information. SI Text 1: Derivation and assumptions of the effective temperature model Supplementary Information SI Text 1: Derivation and assumptions of the effective temperature model We assume that the displacements of intracellular particles are due to passive thermal activity and active

More information

Adaptive Response of Actin Bundles under Mechanical Stress

Adaptive Response of Actin Bundles under Mechanical Stress Biophysical Journal, Volume 113 Supplemental Information Adaptive Response of Actin Bundles under Mechanical Stress Florian Rückerl, Martin Lenz, Timo Betz, John Manzi, Jean-Louis Martiel, Mahassine Safouane,

More information

Review. Rheological properties of biological materials

Review. Rheological properties of biological materials Review. Rheological properties of biological materials C. Verdier a, J. Etienne a, A. Duperray b,c, L. Preziosi d a Laboratoire de Spectrométrie Physique, 140 avenue de la Physique BP87, 38402 Saint-Martin

More information

Massachusetts Institute of Technology Harvard Medical School Brigham and Women s Hospital VA Boston Healthcare System 2.79J/3.96J/BE.

Massachusetts Institute of Technology Harvard Medical School Brigham and Women s Hospital VA Boston Healthcare System 2.79J/3.96J/BE. Massachusetts Institute of Technology Harvard Medical School Brigham and Women s Hospital VA Boston Healthcare System 2.79J/3.96J/BE.441/HST522J INTEGRINS I.V. Yannas, Ph.D. and M. Spector, Ph.D. Regulator

More information

Supplementary Methods

Supplementary Methods Supplementary Methods Modeling of magnetic field In this study, the magnetic field was generated with N52 grade nickel-plated neodymium block magnets (K&J Magnetics). The residual flux density of the magnets

More information

Cells Under the Microscope Measuring Cell Structures

Cells Under the Microscope Measuring Cell Structures Copy into Note Packet and Return to Teacher Chapter 3 Cell Structure Section 1: Looking at Cells Objectives Describe how scientists measure the length of objects. Relate magnification and resolution in

More information

Guided Reading Activities

Guided Reading Activities Name Period Chapter 4: A Tour of the Cell Guided Reading Activities Big Idea: Introduction to the Cell Answer the following questions as you read Modules 4.1 4.4: 1. A(n) uses a beam of light to illuminate

More information

Honors Biology-CW/HW Cell Biology 2018

Honors Biology-CW/HW Cell Biology 2018 Class: Date: Honors Biology-CW/HW Cell Biology 2018 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Hooke s discovery of cells was made observing a. living

More information

6 Models of cytoskeletal mechanics based on tensegrity

6 Models of cytoskeletal mechanics based on tensegrity 6 Models of cytoskeletal mechanics based on tensegrity Dimitrije Stamenović ABSTRACT: Cell shape is an important determinant of cell function and it provides a regulatory mechanism to the cell. The idea

More information

Chapter 4: Cells: The Working Units of Life

Chapter 4: Cells: The Working Units of Life Name Period Chapter 4: Cells: The Working Units of Life 1. What are the three critical components of the cell theory? 2. What are the two important conceptual implications of the cell theory? 3. Which

More information

Zimmerman AP Biology CBHS South Name Chapter 7&8 Guided Reading Assignment 1) What is resolving power and why is it important in biology?

Zimmerman AP Biology CBHS South Name Chapter 7&8 Guided Reading Assignment 1) What is resolving power and why is it important in biology? Zimmerman AP Biology CBHS South Name Chapter 7&8 Guided Reading Assignment 1) What is resolving power and why is it important in biology? 2) How does an electron microscope work and what is the difference

More information

Supplementary material to On the rheology of pendular gels and morphological developments in paste- like ternary systems based on capillary attraction

Supplementary material to On the rheology of pendular gels and morphological developments in paste- like ternary systems based on capillary attraction Electronic Supplementary Material (ESI) for Soft Matter. This journal is The Royal Society of Chemistry 214 Supplementary material to On the rheology of pendular gels and morphological developments in

More information

Entanglements. M < M e. M > M e. Rouse. Zero-shear viscosity vs. M (note change of slope) Edwards degennes Doi. Berry + Fox, slope 3.4.

Entanglements. M < M e. M > M e. Rouse. Zero-shear viscosity vs. M (note change of slope) Edwards degennes Doi. Berry + Fox, slope 3.4. Entanglements Zero-shear viscosity vs. M (note change of slope) M < M e Rouse slope 3.4 M > M e Edwards degennes Doi slope 1 Berry + Fox, 1968 Question: Which factors affect the Me: T, P, M, flexibility,

More information

Micro-Rheology Measurements with the NanoTracker

Micro-Rheology Measurements with the NanoTracker Micro-Rheology Measurements with the NanoTracker JPK s NanoTracker optical tweezers system is a versatile high resolution force measurement tool. It is based on the principle of optical trapping and uses

More information

SUPPLEMENTARY INFORMATION 1

SUPPLEMENTARY INFORMATION 1 1 Supplementary information Effect of the viscoelasticity of substrate: In the main text, we indicated the role of the viscoelasticity of substrate. In all problems involving a coupling of a viscous medium

More information

Medical Biophysics II. Final exam theoretical questions 2013.

Medical Biophysics II. Final exam theoretical questions 2013. Medical Biophysics II. Final exam theoretical questions 2013. 1. Early atomic models. Rutherford-experiment. Franck-Hertz experiment. Bohr model of atom. 2. Quantum mechanical atomic model. Quantum numbers.

More information

The Cell. C h a p t e r. PowerPoint Lecture Slides prepared by Jason LaPres North Harris College Houston, Texas

The Cell. C h a p t e r. PowerPoint Lecture Slides prepared by Jason LaPres North Harris College Houston, Texas C h a p t e r 2 The Cell PowerPoint Lecture Slides prepared by Jason LaPres North Harris College Houston, Texas Copyright 2009 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Introduction

More information

Cytoskeleton dynamics simulation of the red blood cell

Cytoskeleton dynamics simulation of the red blood cell 1 Cytoskeleton dynamics simulation of the red blood cell Ju Li Collaborators: Subra Suresh, Ming Dao, George Lykotrafitis, Chwee-Teck Lim Optical tweezers stretching of healthy human red blood cell 2 Malaria

More information

Colloidal Suspension Rheology Chapter 1 Study Questions

Colloidal Suspension Rheology Chapter 1 Study Questions Colloidal Suspension Rheology Chapter 1 Study Questions 1. What forces act on a single colloidal particle suspended in a flowing fluid? Discuss the dependence of these forces on particle radius. 2. What

More information

Lecture 7: Rheology and milli microfluidic

Lecture 7: Rheology and milli microfluidic 1 and milli microfluidic Introduction In this chapter, we come back to the notion of viscosity, introduced in its simplest form in the chapter 2. We saw that the deformation of a Newtonian fluid under

More information

CHAPTER 2 The Cell: An Overview

CHAPTER 2 The Cell: An Overview CHAPTER 2 The Cell: An Overview MULTIPLE CHOICE 1. Which plant tissue did the first observed cells come from? a. cork b. pollen c. a maple leaf d. human skin ANS: A PTS: 1 DIF: Easy REF: p. 25 TOP: 2.0

More information

Viscoelasticity, Creep and Oscillation Experiment. Basic Seminar Applied Rheology

Viscoelasticity, Creep and Oscillation Experiment. Basic Seminar Applied Rheology Viscoelasticity, Creep and Oscillation Experiment Basic Seminar Applied Rheology Overview Repetition of some basic terms Viscoelastic behavior Experimental approach to viscoelasticity Creep- and recovery

More information

1. The plasma membrane of eukaryotic cells is supported by a. actin filaments. b. microtubules. c. lamins. d. intermediate filaments.

1. The plasma membrane of eukaryotic cells is supported by a. actin filaments. b. microtubules. c. lamins. d. intermediate filaments. ANALYSIS AND MODELING OF CELL MECHANICS Homework #2 (due 1/30/13) This homework involves comprehension of key biomechanical concepts of the cytoskeleton, cell-matrix adhesions, and cellcell adhesions.

More information

me239 mechanics of the cell - syllabus me239 mechanics of the cell me239 mechanics of the cell - grading me239 mechanics of the cell - overview

me239 mechanics of the cell - syllabus me239 mechanics of the cell me239 mechanics of the cell - grading me239 mechanics of the cell - overview 6 mechanotransduction wong, goktepe, kuhl [2010] me239 mechanics of the cell add l information http://biomechanics.stanford.edu and coursework 1 me239 mechanics of the cell - syllabus favorite topics in

More information

Chapter 6: A Tour of the Cell

Chapter 6: A Tour of the Cell Chapter 6: A Tour of the Cell 1. The study of cells has been limited by their small size, and so they were not seen and described until 1665, when Robert Hooke first looked at dead cells from an oak tree.

More information

A. The Cell: The Basic Unit of Life. B. Prokaryotic Cells. C. Eukaryotic Cells. D. Organelles that Process Information

A. The Cell: The Basic Unit of Life. B. Prokaryotic Cells. C. Eukaryotic Cells. D. Organelles that Process Information The Organization of Cells A. The Cell: The Basic Unit of Life Lecture Series 4 The Organization of Cells B. Prokaryotic Cells C. Eukaryotic Cells D. Organelles that Process Information E. Organelles that

More information

Goals: Viruses: not considered alive. Living cells. Plants. Bacteria. Animals. Archae Bacteria. Protists. Fungi. The prokaryotic cell structure

Goals: Viruses: not considered alive. Living cells. Plants. Bacteria. Animals. Archae Bacteria. Protists. Fungi. The prokaryotic cell structure Goals: Identify the structures of eukaryotic and prokaryotic cells Identify the differences between viruses, prokaryotes and eukaryotes Use knowledge about differences between types of cells to solve a

More information

MOLECULAR MECHANICS OF CYTOSKELETAL COMPONENTS

MOLECULAR MECHANICS OF CYTOSKELETAL COMPONENTS MOLECULAR MECHANICS OF CYTOSKELETAL COMPONENTS M. Atakhorrami Vrije Universiteit Amsterdam, Dept. Phys. Amsterdam, The Netherlands K.M. Addas Rowland Institute at Harvard Cambridge, MA, USA M. Buchanan,

More information

Life at Low D. Lecture I : Biological Filaments (1D)

Life at Low D. Lecture I : Biological Filaments (1D) ife at ow D ecture I : Biological Filaments (1D) Cytoskeleton The "scaffolding" or "skeleton" contained within the cytoplasm Cytoskeleton comprised of 3 types of protein filaments: a) Actin b) Microtubules

More information

Session 11: Complex Modulus of Viscoelastic Polymers

Session 11: Complex Modulus of Viscoelastic Polymers Session 11: Complex Modulus of Viscoelastic Polymers Jennifer Hay Factory Application Engineer Nano-Scale Sciences Division Agilent Technologies jenny.hay@agilent.com To view previous sessions: https://agilenteseminar.webex.com/agilenteseminar/onstage/g.php?p=117&t=m

More information

RHEOLOGY Principles, Measurements, and Applications. Christopher W. Macosko

RHEOLOGY Principles, Measurements, and Applications. Christopher W. Macosko RHEOLOGY Principles, Measurements, and Applications I -56081-5'79~5 1994 VCH Publishers. Inc. New York Part I. CONSTITUTIVE RELATIONS 1 1 l Elastic Solid 5 1.1 Introduction 5 1.2 The Stress Tensor 8 1.2.1

More information

Rheological Modelling of Polymeric Systems for Foods: Experiments and Simulations

Rheological Modelling of Polymeric Systems for Foods: Experiments and Simulations Rheological Modelling of Polymeric Systems for Foods: Experiments and Simulations P.H.S. Santos a, M.A. Carignano b, O.H. Campanella a a Department of Agricultural and Biological Engineering, Purdue University,

More information

Rheology, Adhesion, and Debonding of Lightly Cross-linked Polymer Gels

Rheology, Adhesion, and Debonding of Lightly Cross-linked Polymer Gels Rheology, Adhesion, and Debonding of Lightly Cross-linked Polymer Gels Nicholas B. Wyatt, and Anne M. Grillet 2 Materials Science and Engineering Division 2 Engineering Sciences Division Sandia National

More information

APPENDIX. A.1. Sensitivity analysis of the non-dimensional equations for stretch growth

APPENDIX. A.1. Sensitivity analysis of the non-dimensional equations for stretch growth 335 336 337 338 339 340 34 342 343 344 APPENDIX A.. Sensitivity analysis of the non-dimensional equations for stretch growth Our goal in this section of the appendix is to show how the solutions of the

More information

CELLS STRUCTURE AND FUNCTION

CELLS STRUCTURE AND FUNCTION CELLS STRUCTURE AND FUNCTION Jhia Anjela D. Rivera Department of Biological Sciences School of Science and Technology Centro Escolar University DISCOVERY OF CELLS Robert Hooke (1665): Observed a thin slice

More information

A SIMULTANEOUS SENSING CUM ACTUATING MICROCANTILEVER TRANSDUCER FOR DETERMINATION OF SINGLE CELL S MECHANICAL PROPERTIES

A SIMULTANEOUS SENSING CUM ACTUATING MICROCANTILEVER TRANSDUCER FOR DETERMINATION OF SINGLE CELL S MECHANICAL PROPERTIES A SIMULTANEOUS SENSING CUM ACTUATING MICROCANTILEVER TRANSDUCER FOR DETERMINATION OF SINGLE CELL S MECHANICAL PROPERTIES FELICIA REZANDA School of Mechanical and Aerospace Enginerring A thesis submitted

More information

Chapter 16. Cellular Movement: Motility and Contractility. Lectures by Kathleen Fitzpatrick Simon Fraser University Pearson Education, Inc.

Chapter 16. Cellular Movement: Motility and Contractility. Lectures by Kathleen Fitzpatrick Simon Fraser University Pearson Education, Inc. Chapter 16 Cellular Movement: Motility and Contractility Lectures by Kathleen Fitzpatrick Simon Fraser University Two eukaryotic motility systems 1. Interactions between motor proteins and microtubules

More information

CONSISTENCY OF RHEOLOGICAL EXPERIMENTS FOR PSA CHARACTERIZATION

CONSISTENCY OF RHEOLOGICAL EXPERIMENTS FOR PSA CHARACTERIZATION CONSISTENCY OF RHEOLOGICAL EXPERIMENTS FOR PSA CHARACTERIZATION Dr. Laura Yao, Senior Research Chemist, Scapa North America, Windsor, CT Robert Braiewa, Research Chemist, Scapa North America, Windsor,

More information

Super-resolution microscopy reveals a LINC complex recruitment at nuclear indentation sites

Super-resolution microscopy reveals a LINC complex recruitment at nuclear indentation sites Supplementary Information Super-resolution microscopy reveals a LINC complex recruitment at nuclear indentation sites Marie Versaevel 1, Jean-Baptiste Braquenier 2, Maryam Riaz 1, Thomas Grevesse 1, Joséphine

More information

Module 2: Foundations in biology

Module 2: Foundations in biology alevelbiology.co.uk Module 2: Foundations in biology SPECIFICATION 2.1.1 Cell structure Learners should be able to demonstrate and apply their knowledge and understanding of: (a) The use of microscopy

More information

Cell Types. Prokaryotes

Cell Types. Prokaryotes Cell Types Prokaryotes before nucleus no membrane-bound nucleus only organelle present is the ribosome all other reactions occur in the cytoplasm not very efficient Ex.: bacteria 1 Cell Types Eukaryotes

More information

Concept 6.1 To study cells, biologists use microscopes and the tools of biochemistry

Concept 6.1 To study cells, biologists use microscopes and the tools of biochemistry Name Period Chapter 6: A Tour of the Cell Concept 6.1 To study cells, biologists use microscopes and the tools of biochemistry 1. The study of cells has been limited by their small size, and so they were

More information

Zimmerman AP Biology CBHS South Name Chapter 7&8 Guided Reading Assignment 1) What is resolving power and why is it important in biology?

Zimmerman AP Biology CBHS South Name Chapter 7&8 Guided Reading Assignment 1) What is resolving power and why is it important in biology? Zimmerman AP Biology CBHS South Name Chapter 7&8 Guided Reading Assignment 1) What is resolving power and why is it important in biology? 2) How does an electron microscope work and what is the difference

More information

Human biology Cells: The Basic Units of Life. Dr. Rawaa Salim Hameed

Human biology Cells: The Basic Units of Life. Dr. Rawaa Salim Hameed Human biology Cells: The Basic Units of Life Dr. Rawaa Salim Hameed Reference Text book of human biology by John Kenneth Inglis 3 rd Ed (1985) Cells: The Basic Units of Life Cell theory Cell theory consists

More information

Now starts the fun stuff Cell structure and function

Now starts the fun stuff Cell structure and function Now starts the fun stuff Cell structure and function Cell Theory The three statements of the cell theory are: All organisms are composed of one or more cells and the processes of life occur in these cells.

More information

Linear viscoelastic behavior

Linear viscoelastic behavior Harvard-MIT Division of Health Sciences and Technology HST.523J: Cell-Matrix Mechanics Prof. Ioannis Yannas Linear viscoelastic behavior 1. The constitutive equation depends on load history. 2. Diagnostic

More information

Micropipette aspiration of living cells

Micropipette aspiration of living cells Journal of Biomechanics 33 (2000) 15}22 Review Micropipette aspiration of living cells Robert M. Hochmuth* Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708-0300,

More information

Biology: Life on Earth

Biology: Life on Earth Teresa Audesirk Gerald Audesirk Bruce E. Byers Biology: Life on Earth Eighth Edition Lecture for Chapter 4 Cell Structure and Function Copyright 2008 Pearson Prentice Hall, Inc. Chapter 4 Outline 4.1 What

More information

Contents. Preface XIII. 1 General Introduction 1 References 6

Contents. Preface XIII. 1 General Introduction 1 References 6 VII Contents Preface XIII 1 General Introduction 1 References 6 2 Interparticle Interactions and Their Combination 7 2.1 Hard-Sphere Interaction 7 2.2 Soft or Electrostatic Interaction 7 2.3 Steric Interaction

More information

Chapter 4. Table of Contents. Section 1 The History of Cell Biology. Section 2 Introduction to Cells. Section 3 Cell Organelles and Features

Chapter 4. Table of Contents. Section 1 The History of Cell Biology. Section 2 Introduction to Cells. Section 3 Cell Organelles and Features Cell Structure and Function Table of Contents Section 1 The History of Cell Biology Section 2 Introduction to Cells Section 3 Cell Organelles and Features Section 4 Unique Features of Plant Cells Section

More information

O.k., Now Starts the Good Stuff (Part II) Eukaryotic Cell Structure and Function

O.k., Now Starts the Good Stuff (Part II) Eukaryotic Cell Structure and Function O.k., Now Starts the Good Stuff (Part II) Eukaryotic Cell Structure and Function Eukaryotic Cells These cells have membrane-bound structures called organelles. Cell processes occur in these organelles.

More information

4.1 Cells are the Fundamental Units of Life. Cell Structure. Cells. Fundamental units of life Cell theory. Except possibly viruses.

4.1 Cells are the Fundamental Units of Life. Cell Structure. Cells. Fundamental units of life Cell theory. Except possibly viruses. Cells 4.1 Cells are the Fundamental Units of Life Fundamental units of life Cell theory All living things are composed of one or more cells. The cell is the most basic unit of life. All cells come from

More information

Biology Exam #1 Study Guide. True/False Indicate whether the statement is true or false. F 1. All living things are composed of many cells.

Biology Exam #1 Study Guide. True/False Indicate whether the statement is true or false. F 1. All living things are composed of many cells. Biology Exam #1 Study Guide True/False Indicate whether the statement is true or false. F 1. All living things are composed of many cells. T 2. Membranes are selectively permeable if they allow only certain

More information

VISCOELASTIC PROPERTIES OF POLYMERS

VISCOELASTIC PROPERTIES OF POLYMERS VISCOELASTIC PROPERTIES OF POLYMERS John D. Ferry Professor of Chemistry University of Wisconsin THIRD EDITION JOHN WILEY & SONS New York Chichester Brisbane Toronto Singapore Contents 1. The Nature of

More information

Measuring the anisotropy of the cerebrum in the linear regime

Measuring the anisotropy of the cerebrum in the linear regime Measuring the anisotropy of the cerebrum in the linear regime L. Tang MT 06.26 Coaches: Dr.Ir. J.A.W. van Dommelen Ing. M. Hrapko June 20, 2006 2 Abstract In this report the anisotropy is measured of the

More information