Linear least squares problems and smoothing filters

Size: px
Start display at page:

Download "Linear least squares problems and smoothing filters"

Transcription

1 Linear least squares problems and smoothing filters Krystyna Ziętak (Wroclaw) Iwona Wróbel (Warsaw) Birmingham, September 14, 2010

2 Outline 1 Savitzky-Golay filters 2 Gram polynomials 3 Persson and Strang filters 4 Experiments 5 Legendre-based filter 6 References

3 Goal of talk is to show that false formula can lead to better method im(z) real(z)

4 Task Given points t 1 <... < t m and measured data corrupted by random noise y 1,...,y m. Compute smoothed value of y i ỹ i = N R j= N L g j y i+j where g j are filter coefficients

5 Concept of Savitzky and Golay (1964) interior point t i : 1+N L i m N R polynomial v(t) approximates data over the set of points {t i NL,...,t i+nr } in the least-squares sense smoothed ỹ i = v(t i )

6 N L = N R = N N ỹ i = v(t i ) = g j y i+j = g T y j= N g = A i (A T i A i ) 1 A T i e A i rectangular Vandermonde, t i N,...,t i+n y = [y i N,...,y i+n ] T e = [0,...,0, 1, 0,...,0] T

7 Uniformly spaced data t j+1 t j = new variable, t h = (t t i )/ new points t j h j = j i t i 0

8 Savitzky-Golay filter coefficients g T = [g N,...g N ] g = A i (A T i A i ) 1 A T i e = = B(B T B) 1 B T e = B(B T B) 1 e 1 B rectangular Vandermonde, N,...,N e 1 = [1, 0,...,0] T, e = [0,...,0, 1, 0,...,0] T

9 1 N ( N) 2 ( N) n 1 N + 1 ( N + 1) 2 ( N + 1) n B = N N 2 N n C = ( N) n ( N) n 1 N 1 ( N + 1) n ( N + 1) n 1 N N n N n 1 N 1

10 How to compute g = B(B T B) 1 e 1? n degree of approx. polynomial C = QR 1 g = Qe n+1 r n+1,n+1 Gander, von Matt

11 Orthogonal (discrete) Gram polynomials orthogonal over point set S N = { N,...,N} q j (h) = j k=0 ( 1) k+j(j +k)(2k) (N +h) (k) (k!) 2 (2N) (k), q 0 (h) = 1, a (0) = 1 a (k) = a(a 1) (a k + 1)

12 discrete Dirac delta δ N = e = [0,...,0, 1, 0,...,0] T R n+1 S N = { N,...,N}, n degree, even polynomial least-squares approximation over S N to δ N q(h) = q n(0)q n+1 (h) ξηh ξ and η constant, depend on n and N filter coefficients g T = [q( N),...,q(N)]

13 orthogonal Legendre polynomials [ 1, 1] recurrence relation P k (s) = 2k 1 k P i,p j = linear change of variable 1 1 P i (s)p j (s)ds. sp k 1 (s) k 1 P k 2 (s), k = 1, 2,... k P 0 (s) = 1. [ 1, 1] [ N,N]

14 Filter coefficients Dirac delta δ(s) Persson-Strang δ(s) = 0 for s 0, δ(s) = for s = 0, least-squares approximation to Dirac delta on interval [ N,N] expressed by Legendre polynomials Savitzky-Golay least-squares approximation to vector e = [0,...,0, 1, 0,...,0] T over the point set { N, N + 1,...,N}

15 Persson and Strang filter (2003) degree of polynomial n even, uniformly spaced data, Persson-Strang polynomial [ N,N] filter coefficients g N,...,g N g j = L(j) L(h) = n+1 2 P n(0) P n+1 ( 2h 2N+1 h ) Optimal Legendre" polynomial g j = K(j) K(h) = n+1 2 P n(0) P ( h n+1 N) h

16 Examples of approximating polynomials n = 2 q(h) = Savitzky-Golay (Gram) 15h 2 (2N 1)(2N + 1)(2N + 3) + 9N 2 + 9N 3 (2N 1)(2N + 1)(2N + 3) Persson-Strang optimal Legendre L(h) = 15h2 (2N + 1) (2N + 1) K(h) = 15h2 8N N

17 0.08 error Opt. Leg error Strang Gram N=16, n= error Opt. Leg error Strang Gram N=100, n= Figure : Savitzky-Golay polynomial q(h) (green); q(h) L(h) and q(h) K(h); N = 16 (on left), right); degree n = 2 differences N = 100 (on

18 Opt Leg error Strang error Savitzky Golya N=16, n= Opt Leg error Strang error Savitzky Golya N=100, n= Figure : Savitzky-Golay polynomial q(h) (green); q(h) L(h) and q(h) K(h); N = 16 (on left), right); degree n = 4 differences N = 100 (on

19 Gander and von Matt test function on [0, 1] F(t) = e 100(t 1 5 )2 +e 500(t 2 5 )2 +e 2500(t 3 5 )2 +e 12500(t 4 5 )2 uniform spaced data; t j = j 1 for j = 1,...,m, where m = 1000 m 1 y j = F(t j )+ε randn, where ε = 0.1 degree of polynomial n = 4 window N = 16 Savitzky-Golay, Persson-Strang, optimal Legendre

20 Figure : F(t) exact and noise (on left); by Savitzky-Golay (on right) F(t) exact and smoothed

21 Figure : F(t) exact and smoothed by optimal Legender (on left); F(t) exact and smoothed by Persson-Strang (on right)

22 Errors: F(t) exact smoothed data (subtraction) Figure : Savitzky-Golay (green) and Persson-Strang (red), (on left); Savitzky-Golay (green), optimal Legendre (red), (on right)

23 Gander-von Matt test function on [0, 0.5] F(t) = e 100(t 1 5 )2 +e 500(t 2 5 )2 +e 2500(t 3 5 )2 +e 12500(t 4 5 )2 uniform spaced data; t j = j 1 for j = 1,...,m, where m = 1000 m 1 y j = F(t j )+ε randn, where ε = 0.1 degree of polynomial n = 4 window N = 32 Savitzky-Golay, Persson-Strang, optimal Legendre

24 Savitzky Golay N=32,n= Figure : F(t) exact and noise (on left); F(t) exact and smoothed by Savitzky-Golay (on right); N = 32, n = 4

25 Errors: F(t) exact smoothed data (subtraction) Error Savitzky Golay error Savitzky Golay Opt Legendre Strang N=32,n=4 N=32,n= Figure : error Savitzky-Golay (blue), optim. Legendre (red), on left; error Savitzky-Golay (blue), Persson-Strang (red), on right, N = 32,n = 4

26 Persson and Strang write that the Legendre-based filters have extra advantages: in the case of irregularly spaced or missing data the polynomials stay the same and it is only the sampling points that change. (...) The simplicity becomes especially valuable when the input no longer consists of uniformly spaced samples. The output from the new filter will be the natural non-uniform generalization of an ordinary convolution". [t i N,t i+n ] [ N,N]

27 window t i NL,...,t i+nr new variable h = t t i t, new points t = t i+n R t i NL N L +N R h (i) j = t j t i t for j = i N L,...i +N R. α i = h (i) i N L, β i = h (i) i+n R approximation of Dirac delta on [α i,β i ]

28 P k (t) Legendre polynomial [ 1, 1] [α i,β i ] Z (i) k (h) = P k ( 2 h+ α ) i +β i β i α i α i β i K (i) (h) = n+1 2 Z(i) n+1 (0)Z(i) n (h) Z n (i) (0)Z (i) n+1 (h) h ỹ i = i+n R g (i) j y j, where g (i) j j=i N L = K (i) (h (i) j )

29 Bad news

30 A. Eisinberg, P. Pugliese, N. Salerno, Numer. Math Vandermonde matrices on integer nodes: the rectangular case their case 1, 2,...,N B = V T V Hankel matrix explicit Cholesky factor of B pseudo-inverse of V combinatorial identities our case N,...,N

31 References Abraham Savitzky ( ) was an Americal analytical chemist. He specialized in the digital processing of infrared spectra. Marcel J.E. Golay ( ) was a Swiss-born mathematician, physicst and information theorist. Golay error-correcting codes Savitzky coauthored with Marcel J.E. Golay an oft-cited paper describing the Savitzky-Golay smoothing filter.

32 THANK YOU FOR YOUR ATTENTION

Discrete Orthogonal Polynomials on Equidistant Nodes

Discrete Orthogonal Polynomials on Equidistant Nodes International Mathematical Forum, 2, 2007, no. 21, 1007-1020 Discrete Orthogonal Polynomials on Equidistant Nodes Alfredo Eisinberg and Giuseppe Fedele Dip. di Elettronica, Informatica e Sistemistica Università

More information

Part IB Numerical Analysis

Part IB Numerical Analysis Part IB Numerical Analysis Definitions Based on lectures by G. Moore Notes taken by Dexter Chua Lent 206 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after

More information

Inverses. Stephen Boyd. EE103 Stanford University. October 28, 2017

Inverses. Stephen Boyd. EE103 Stanford University. October 28, 2017 Inverses Stephen Boyd EE103 Stanford University October 28, 2017 Outline Left and right inverses Inverse Solving linear equations Examples Pseudo-inverse Left and right inverses 2 Left inverses a number

More information

6.4 Krylov Subspaces and Conjugate Gradients

6.4 Krylov Subspaces and Conjugate Gradients 6.4 Krylov Subspaces and Conjugate Gradients Our original equation is Ax = b. The preconditioned equation is P Ax = P b. When we write P, we never intend that an inverse will be explicitly computed. P

More information

Large Deviations, Linear Statistics, and Scaling Limits for Mahler Ensemble of Complex Random Polynomials

Large Deviations, Linear Statistics, and Scaling Limits for Mahler Ensemble of Complex Random Polynomials Large Deviations, Linear Statistics, and Scaling Limits for Mahler Ensemble of Complex Random Polynomials Maxim L. Yattselev joint work with Christopher D. Sinclair International Conference on Approximation

More information

Phys 201. Matrices and Determinants

Phys 201. Matrices and Determinants Phys 201 Matrices and Determinants 1 1.1 Matrices 1.2 Operations of matrices 1.3 Types of matrices 1.4 Properties of matrices 1.5 Determinants 1.6 Inverse of a 3 3 matrix 2 1.1 Matrices A 2 3 7 =! " 1

More information

On the inversion of the Vandermonde matrix

On the inversion of the Vandermonde matrix On the inversion of the Vandermonde matrix A. Eisinberg, G. Fedele Dip. Elettronica Informatica e Sistemistica, Università degli Studi della Calabria, 87036, Rende (Cs), Italy Abstract The inversion of

More information

ANALOGUES OF THE TRIPLE PRODUCT IDENTITY, LEBESGUE S IDENTITY AND EULER S PENTAGONAL NUMBER THEOREM

ANALOGUES OF THE TRIPLE PRODUCT IDENTITY, LEBESGUE S IDENTITY AND EULER S PENTAGONAL NUMBER THEOREM q-hypergeometric PROOFS OF POLYNOMIAL ANALOGUES OF THE TRIPLE PRODUCT IDENTITY, LEBESGUE S IDENTITY AND EULER S PENTAGONAL NUMBER THEOREM S OLE WARNAAR Abstract We present alternative, q-hypergeometric

More information

. =. a i1 x 1 + a i2 x 2 + a in x n = b i. a 11 a 12 a 1n a 21 a 22 a 1n. i1 a i2 a in

. =. a i1 x 1 + a i2 x 2 + a in x n = b i. a 11 a 12 a 1n a 21 a 22 a 1n. i1 a i2 a in Vectors and Matrices Continued Remember that our goal is to write a system of algebraic equations as a matrix equation. Suppose we have the n linear algebraic equations a x + a 2 x 2 + a n x n = b a 2

More information

Math 520 Exam 2 Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008

Math 520 Exam 2 Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008 Math 520 Exam 2 Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008 Exam 2 will be held on Tuesday, April 8, 7-8pm in 117 MacMillan What will be covered The exam will cover material from the lectures

More information

Estimation of River Current Using Kalman Filter Finite Element Method. Abstract

Estimation of River Current Using Kalman Filter Finite Element Method. Abstract Kawahara Lab (February, ) Chuo Univ. JAPAN Estimation of River Current Using Kalman Filter Finite Element Method Shin-ichiro SEKIGUCHI Department of Civil Engineering, Chuo University, Kasuga --7, Bunkyo-ku,

More information

Math 320, spring 2011 before the first midterm

Math 320, spring 2011 before the first midterm Math 320, spring 2011 before the first midterm Typical Exam Problems 1 Consider the linear system of equations 2x 1 + 3x 2 2x 3 + x 4 = y 1 x 1 + 3x 2 2x 3 + 2x 4 = y 2 x 1 + 2x 3 x 4 = y 3 where x 1,,

More information

A DISCRETE VIEW OF FAÀ DI BRUNO. 1. Introduction. How are the following two problems related?

A DISCRETE VIEW OF FAÀ DI BRUNO. 1. Introduction. How are the following two problems related? ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 46, Number, 06 A DISCRETE VIEW OF FAÀ DI BRUNO RAYMOND A BEAUREGARD AND VLADIMIR A DOBRUSHKIN ABSTRACT It is shown how solving a discrete convolution problem

More information

1 Examples of Weak Induction

1 Examples of Weak Induction More About Mathematical Induction Mathematical induction is designed for proving that a statement holds for all nonnegative integers (or integers beyond an initial one). Here are some extra examples of

More information

Chapter 1: Systems of linear equations and matrices. Section 1.1: Introduction to systems of linear equations

Chapter 1: Systems of linear equations and matrices. Section 1.1: Introduction to systems of linear equations Chapter 1: Systems of linear equations and matrices Section 1.1: Introduction to systems of linear equations Definition: A linear equation in n variables can be expressed in the form a 1 x 1 + a 2 x 2

More information

May 9, 2014 MATH 408 MIDTERM EXAM OUTLINE. Sample Questions

May 9, 2014 MATH 408 MIDTERM EXAM OUTLINE. Sample Questions May 9, 24 MATH 48 MIDTERM EXAM OUTLINE This exam will consist of two parts and each part will have multipart questions. Each of the 6 questions is worth 5 points for a total of points. The two part of

More information

Performance Evaluation of Generalized Polynomial Chaos

Performance Evaluation of Generalized Polynomial Chaos Performance Evaluation of Generalized Polynomial Chaos Dongbin Xiu, Didier Lucor, C.-H. Su, and George Em Karniadakis 1 Division of Applied Mathematics, Brown University, Providence, RI 02912, USA, gk@dam.brown.edu

More information

Lecture 6. Numerical methods. Approximation of functions

Lecture 6. Numerical methods. Approximation of functions Lecture 6 Numerical methods Approximation of functions Lecture 6 OUTLINE 1. Approximation and interpolation 2. Least-square method basis functions design matrix residual weighted least squares normal equation

More information

Symmetric functions and the Vandermonde matrix

Symmetric functions and the Vandermonde matrix J ournal of Computational and Applied Mathematics 172 (2004) 49-64 Symmetric functions and the Vandermonde matrix Halil Oruç, Hakan K. Akmaz Department of Mathematics, Dokuz Eylül University Fen Edebiyat

More information

Stage-structured Populations

Stage-structured Populations Department of Biology New Mexico State University Las Cruces, New Mexico 88003 brook@nmsu.edu Fall 2009 Age-Structured Populations All individuals are not equivalent to each other Rates of survivorship

More information

8 A pseudo-spectral solution to the Stokes Problem

8 A pseudo-spectral solution to the Stokes Problem 8 A pseudo-spectral solution to the Stokes Problem 8.1 The Method 8.1.1 Generalities We are interested in setting up a pseudo-spectral method for the following Stokes Problem u σu p = f in Ω u = 0 in Ω,

More information

Numerical Methods I Orthogonal Polynomials

Numerical Methods I Orthogonal Polynomials Numerical Methods I Orthogonal Polynomials Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 Course G63.2010.001 / G22.2420-001, Fall 2010 Nov. 4th and 11th, 2010 A. Donev (Courant Institute)

More information

12. Cholesky factorization

12. Cholesky factorization L. Vandenberghe ECE133A (Winter 2018) 12. Cholesky factorization positive definite matrices examples Cholesky factorization complex positive definite matrices kernel methods 12-1 Definitions a symmetric

More information

Bessel s and legendre s equations

Bessel s and legendre s equations Chapter 12 Bessel s and legendre s equations 12.1 Introduction Many linear differential equations having variable coefficients cannot be solved by usual methods and we need to employ series solution method

More information

Continuous functions that are nowhere differentiable

Continuous functions that are nowhere differentiable Continuous functions that are nowhere differentiable S. Kesavan The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai - 600113. e-mail: kesh @imsc.res.in Abstract It is shown that the existence

More information

Sistemas de Aquisição de Dados. Mestrado Integrado em Eng. Física Tecnológica 2016/17 Aula 3, 3rd September

Sistemas de Aquisição de Dados. Mestrado Integrado em Eng. Física Tecnológica 2016/17 Aula 3, 3rd September Sistemas de Aquisição de Dados Mestrado Integrado em Eng. Física Tecnológica 2016/17 Aula 3, 3rd September The Data Converter Interface Analog Media and Transducers Signal Conditioning Signal Conditioning

More information

Method of Finite Elements I

Method of Finite Elements I Method of Finite Elements I PhD Candidate - Charilaos Mylonas HIL H33.1 and Boundary Conditions, 26 March, 2018 Institute of Structural Engineering Method of Finite Elements I 1 Outline 1 2 Penalty method

More information

ORTHOGONAL SERIES REGRESSION ESTIMATORS FOR AN IRREGULARLY SPACED DESIGN

ORTHOGONAL SERIES REGRESSION ESTIMATORS FOR AN IRREGULARLY SPACED DESIGN APPLICATIONES MATHEMATICAE 7,3(000), pp. 309 318 W.POPIŃSKI(Warszawa) ORTHOGONAL SERIES REGRESSION ESTIMATORS FOR AN IRREGULARLY SPACED DESIGN Abstract. Nonparametric orthogonal series regression function

More information

Section 9.2: Matrices. Definition: A matrix A consists of a rectangular array of numbers, or elements, arranged in m rows and n columns.

Section 9.2: Matrices. Definition: A matrix A consists of a rectangular array of numbers, or elements, arranged in m rows and n columns. Section 9.2: Matrices Definition: A matrix A consists of a rectangular array of numbers, or elements, arranged in m rows and n columns. That is, a 11 a 12 a 1n a 21 a 22 a 2n A =...... a m1 a m2 a mn A

More information

Notes on Mathematics

Notes on Mathematics Notes on Mathematics - 12 1 Peeyush Chandra, A. K. Lal, V. Raghavendra, G. Santhanam 1 Supported by a grant from MHRD 2 Contents I Linear Algebra 7 1 Matrices 9 1.1 Definition of a Matrix......................................

More information

Seismic imaging and multiple removal via model order reduction

Seismic imaging and multiple removal via model order reduction Seismic imaging and multiple removal via model order reduction Alexander V. Mamonov 1, Liliana Borcea 2, Vladimir Druskin 3, and Mikhail Zaslavsky 3 1 University of Houston, 2 University of Michigan Ann

More information

CS 4204 Computer Graphics

CS 4204 Computer Graphics CS 4204 Computer Graphics Vector and Matrix Yong Cao Virginia Tech Vectors N-tuple: Vectors N-tuple tuple: Magnitude: Unit vectors Normalizing a vector Operations with vectors Addition Multiplication with

More information

Math Camp II. Basic Linear Algebra. Yiqing Xu. Aug 26, 2014 MIT

Math Camp II. Basic Linear Algebra. Yiqing Xu. Aug 26, 2014 MIT Math Camp II Basic Linear Algebra Yiqing Xu MIT Aug 26, 2014 1 Solving Systems of Linear Equations 2 Vectors and Vector Spaces 3 Matrices 4 Least Squares Systems of Linear Equations Definition A linear

More information

Lecture 11. Linear systems: Cholesky method. Eigensystems: Terminology. Jacobi transformations QR transformation

Lecture 11. Linear systems: Cholesky method. Eigensystems: Terminology. Jacobi transformations QR transformation Lecture Cholesky method QR decomposition Terminology Linear systems: Eigensystems: Jacobi transformations QR transformation Cholesky method: For a symmetric positive definite matrix, one can do an LU decomposition

More information

Inderjit Dhillon The University of Texas at Austin

Inderjit Dhillon The University of Texas at Austin Inderjit Dhillon The University of Texas at Austin ( Universidad Carlos III de Madrid; 15 th June, 2012) (Based on joint work with J. Brickell, S. Sra, J. Tropp) Introduction 2 / 29 Notion of distance

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 7: More on Householder Reflectors; Least Squares Problems Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 15 Outline

More information

Digital Processing of Noise Experimental Sorption Data using Savitzky-Golay filter

Digital Processing of Noise Experimental Sorption Data using Savitzky-Golay filter Digital Processing of Noise Experimental Sorption Data using Savitzky-Golay filter Vladimír Hanta 1, Jaroslav Poživil 1, Karel Friess 2 Department of Computing and Control Engineering 1, Department of

More information

Polynomials. p n (x) = a n x n + a n 1 x n 1 + a 1 x + a 0, where

Polynomials. p n (x) = a n x n + a n 1 x n 1 + a 1 x + a 0, where Polynomials Polynomials Evaluation of polynomials involve only arithmetic operations, which can be done on today s digital computers. We consider polynomials with real coefficients and real variable. p

More information

Recurrence Relations

Recurrence Relations Recurrence Relations Recurrence Relations Reading (Epp s textbook) 5.6 5.8 1 Recurrence Relations A recurrence relation for a sequence aa 0, aa 1, aa 2, ({a n }) is a formula that relates each term a k

More information

Contents. Preface to the Third Edition (2007) Preface to the Second Edition (1992) Preface to the First Edition (1985) License and Legal Information

Contents. Preface to the Third Edition (2007) Preface to the Second Edition (1992) Preface to the First Edition (1985) License and Legal Information Contents Preface to the Third Edition (2007) Preface to the Second Edition (1992) Preface to the First Edition (1985) License and Legal Information xi xiv xvii xix 1 Preliminaries 1 1.0 Introduction.............................

More information

L2-7 Some very stylish matrix decompositions for solving Ax = b 10 Oct 2015

L2-7 Some very stylish matrix decompositions for solving Ax = b 10 Oct 2015 L-7 Some very stylish matrix decompositions for solving Ax = b 10 Oct 015 Marty McFly: Wait a minute, Doc. Ah... Are you telling me you built a time machine... out of a DeLorean? Doc Brown: The way I see

More information

Hankel determinants, continued fractions, orthgonal polynomials, and hypergeometric series

Hankel determinants, continued fractions, orthgonal polynomials, and hypergeometric series Hankel determinants, continued fractions, orthgonal polynomials, and hypergeometric series Ira M. Gessel with Jiang Zeng and Guoce Xin LaBRI June 8, 2007 Continued fractions and Hankel determinants There

More information

Polynomial analogues of Ramanujan congruences for Han s hooklength formula

Polynomial analogues of Ramanujan congruences for Han s hooklength formula Polynomial analogues of Ramanujan congruences for Han s hooklength formula William J. Keith CELC, University of Lisbon Email: william.keith@gmail.com Detailed arxiv preprint: 1109.1236 Context Partition

More information

SUMS OF ENTIRE FUNCTIONS HAVING ONLY REAL ZEROS

SUMS OF ENTIRE FUNCTIONS HAVING ONLY REAL ZEROS PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 00, Number 0, Pages 000 000 S 0002-9939(XX)0000-0 SUMS OF ENTIRE FUNCTIONS HAVING ONLY REAL ZEROS STEVEN R. ADAMS AND DAVID A. CARDON (Communicated

More information

Conservation Laws & Applications

Conservation Laws & Applications Rocky Mountain Mathematics Consortium Summer School Conservation Laws & Applications Lecture V: Discontinuous Galerkin Methods James A. Rossmanith Department of Mathematics University of Wisconsin Madison

More information

Target Tracking and Classification using Collaborative Sensor Networks

Target Tracking and Classification using Collaborative Sensor Networks Target Tracking and Classification using Collaborative Sensor Networks Xiaodong Wang Department of Electrical Engineering Columbia University p.1/3 Talk Outline Background on distributed wireless sensor

More information

Numerical Linear Algebra

Numerical Linear Algebra Numerical Linear Algebra The two principal problems in linear algebra are: Linear system Given an n n matrix A and an n-vector b, determine x IR n such that A x = b Eigenvalue problem Given an n n matrix

More information

Polynomial Solutions of Nth Order Nonhomogeneous Differential Equations

Polynomial Solutions of Nth Order Nonhomogeneous Differential Equations Polynomial Solutions of th Order onhomogeneous Differential Equations Lawrence E. Levine Ray Maleh Department of Mathematical Sciences Stevens Institute of Technology Hoboken,J 07030 llevine@stevens-tech.edu

More information

1 Cricket chirps: an example

1 Cricket chirps: an example Notes for 2016-09-26 1 Cricket chirps: an example Did you know that you can estimate the temperature by listening to the rate of chirps? The data set in Table 1 1. represents measurements of the number

More information

Computational Linear Algebra

Computational Linear Algebra Computational Linear Algebra PD Dr. rer. nat. habil. Ralf Peter Mundani Computation in Engineering / BGU Scientific Computing in Computer Science / INF Winter Term 2017/18 Part 2: Direct Methods PD Dr.

More information

(Mathematical Operations with Arrays) Applied Linear Algebra in Geoscience Using MATLAB

(Mathematical Operations with Arrays) Applied Linear Algebra in Geoscience Using MATLAB Applied Linear Algebra in Geoscience Using MATLAB (Mathematical Operations with Arrays) Contents Getting Started Matrices Creating Arrays Linear equations Mathematical Operations with Arrays Using Script

More information

Standard paths in another composition poset

Standard paths in another composition poset Standard paths in another composition poset Jan Snellman Department of Mathematics, Stockholm University SE-10691 Stockholm, Sweden Jan.Snellmanmath.su.se Submitted: Oct 8, 2003; Accepted: Oct 17, 2004;

More information

Quick Tour of Linear Algebra and Graph Theory

Quick Tour of Linear Algebra and Graph Theory Quick Tour of Linear Algebra and Graph Theory CS224w: Social and Information Network Analysis Fall 2012 Yu Wayne Wu Based on Borja Pelato s version in Fall 2011 Matrices and Vectors Matrix: A rectangular

More information

arxiv:math/ v1 [math.na] 12 Jul 2004

arxiv:math/ v1 [math.na] 12 Jul 2004 arxiv:math/0407177v1 [math.na] 12 Jul 2004 On improving the accuracy of Horner s and Goertzel s algorithms Alica Smoktunowicz and Iwona Wróbel Faculty of Mathematics and Information Science, Warsaw University

More information

Modified Bessel functions : Iα, Kα

Modified Bessel functions : Iα, Kα Modified Bessel functions : Iα, Kα The Bessel functions are valid even for complex arguments x, and an important special case is that of a purely imaginary argument. In this case, the solutions to the

More information

CS 598: Communication Cost Analysis of Algorithms Lecture 9: The Ideal Cache Model and the Discrete Fourier Transform

CS 598: Communication Cost Analysis of Algorithms Lecture 9: The Ideal Cache Model and the Discrete Fourier Transform CS 598: Communication Cost Analysis of Algorithms Lecture 9: The Ideal Cache Model and the Discrete Fourier Transform Edgar Solomonik University of Illinois at Urbana-Champaign September 21, 2016 Fast

More information

Nonlinear acoustic imaging via reduced order model backprojection

Nonlinear acoustic imaging via reduced order model backprojection Nonlinear acoustic imaging via reduced order model backprojection Alexander V. Mamonov 1, Vladimir Druskin 2, Andrew Thaler 3 and Mikhail Zaslavsky 2 1 University of Houston, 2 Schlumberger-Doll Research

More information

Lecture 1 From Continuous-Time to Discrete-Time

Lecture 1 From Continuous-Time to Discrete-Time Lecture From Continuous-Time to Discrete-Time Outline. Continuous and Discrete-Time Signals and Systems................. What is a signal?................................2 What is a system?.............................

More information

Howard Mark and Jerome Workman Jr.

Howard Mark and Jerome Workman Jr. Linearity in Calibration: How to Test for Non-linearity Previous methods for linearity testing discussed in this series contain certain shortcomings. In this installment, the authors describe a method

More information

Matrices. Chapter What is a Matrix? We review the basic matrix operations. An array of numbers a a 1n A = a m1...

Matrices. Chapter What is a Matrix? We review the basic matrix operations. An array of numbers a a 1n A = a m1... Chapter Matrices We review the basic matrix operations What is a Matrix? An array of numbers a a n A = a m a mn with m rows and n columns is a m n matrix Element a ij in located in position (i, j The elements

More information

Determinants of Partition Matrices

Determinants of Partition Matrices journal of number theory 56, 283297 (1996) article no. 0018 Determinants of Partition Matrices Georg Martin Reinhart Wellesley College Communicated by A. Hildebrand Received February 14, 1994; revised

More information

arxiv: v1 [math-ph] 1 Nov 2016

arxiv: v1 [math-ph] 1 Nov 2016 Revisiting SUN) integrals Jean-Bernard Zuber Sorbonne Universités, UPMC Univ Paris 06, UMR 7589, LPTHE, F-75005, Paris, France & CNRS, UMR 7589, LPTHE, F-75005, Paris, France Abstract arxiv:6.00236v [math-ph]

More information

Rectangular Young tableaux and the Jacobi ensemble

Rectangular Young tableaux and the Jacobi ensemble Rectangular Young tableaux and the Jacobi ensemble Philippe Marchal October 20, 2015 Abstract It has been shown by Pittel and Romik that the random surface associated with a large rectangular Young tableau

More information

Review of some mathematical tools

Review of some mathematical tools MATHEMATICAL FOUNDATIONS OF SIGNAL PROCESSING Fall 2016 Benjamín Béjar Haro, Mihailo Kolundžija, Reza Parhizkar, Adam Scholefield Teaching assistants: Golnoosh Elhami, Hanjie Pan Review of some mathematical

More information

c 1 v 1 + c 2 v 2 = 0 c 1 λ 1 v 1 + c 2 λ 1 v 2 = 0

c 1 v 1 + c 2 v 2 = 0 c 1 λ 1 v 1 + c 2 λ 1 v 2 = 0 LECTURE LECTURE 2 0. Distinct eigenvalues I haven t gotten around to stating the following important theorem: Theorem: A matrix with n distinct eigenvalues is diagonalizable. Proof (Sketch) Suppose n =

More information

arxiv: v2 [math.na] 27 Dec 2016

arxiv: v2 [math.na] 27 Dec 2016 An algorithm for constructing Equiangular vectors Azim rivaz a,, Danial Sadeghi a a Department of Mathematics, Shahid Bahonar University of Kerman, Kerman 76169-14111, IRAN arxiv:1412.7552v2 [math.na]

More information

Matrices BUSINESS MATHEMATICS

Matrices BUSINESS MATHEMATICS Matrices BUSINESS MATHEMATICS 1 CONTENTS Matrices Special matrices Operations with matrices Matrix multipication More operations with matrices Matrix transposition Symmetric matrices Old exam question

More information

Review: Continuous Fourier Transform

Review: Continuous Fourier Transform Review: Continuous Fourier Transform Review: convolution x t h t = x τ h(t τ)dτ Convolution in time domain Derivation Convolution Property Interchange the order of integrals Let Convolution Property By

More information

Four Point Gauss Quadrature Runge Kuta Method Of Order 8 For Ordinary Differential Equations

Four Point Gauss Quadrature Runge Kuta Method Of Order 8 For Ordinary Differential Equations International journal of scientific and technical research in engineering (IJSTRE) www.ijstre.com Volume Issue ǁ July 206. Four Point Gauss Quadrature Runge Kuta Method Of Order 8 For Ordinary Differential

More information

LUCK S THEOREM ALEX WRIGHT

LUCK S THEOREM ALEX WRIGHT LUCK S THEOREM ALEX WRIGHT Warning: These are the authors personal notes for a talk in a learning seminar (October 2015). There may be incorrect or misleading statements. Corrections welcome. 1. Convergence

More information

arxiv:math/ v1 [math.qa] 5 Nov 2002

arxiv:math/ v1 [math.qa] 5 Nov 2002 A new quantum analog of the Brauer algebra arxiv:math/0211082v1 [math.qa] 5 Nov 2002 A. I. Molev School of Mathematics and Statistics University of Sydney, NSW 2006, Australia alexm@ maths.usyd.edu.au

More information

Algebro-geometric aspects of Heine-Stieltjes theory

Algebro-geometric aspects of Heine-Stieltjes theory Dedicated to Heinrich Eduard Heine and his 4 years old riddle Algebro-geometric aspects of Heine-Stieltjes theory Boris Shapiro, Stockholm University, shapiro@math.su.se February, 9 Introduction and main

More information

Interpolation. Chapter Interpolation. 7.2 Existence, Uniqueness and conditioning

Interpolation. Chapter Interpolation. 7.2 Existence, Uniqueness and conditioning 76 Chapter 7 Interpolation 7.1 Interpolation Definition 7.1.1. Interpolation of a given function f defined on an interval [a,b] by a polynomial p: Given a set of specified points {(t i,y i } n with {t

More information

Q T A = R ))) ) = A n 1 R

Q T A = R ))) ) = A n 1 R Q T A = R As with the LU factorization of A we have, after (n 1) steps, Q T A = Q T A 0 = [Q 1 Q 2 Q n 1 ] T A 0 = [Q n 1 Q n 2 Q 1 ]A 0 = (Q n 1 ( (Q 2 (Q 1 A 0 }{{} A 1 ))) ) = A n 1 R Since Q T A =

More information

MA 1B ANALYTIC - HOMEWORK SET 7 SOLUTIONS

MA 1B ANALYTIC - HOMEWORK SET 7 SOLUTIONS MA 1B ANALYTIC - HOMEWORK SET 7 SOLUTIONS 1. (7 pts)[apostol IV.8., 13, 14] (.) Let A be an n n matrix with characteristic polynomial f(λ). Prove (by induction) that the coefficient of λ n 1 in f(λ) is

More information

Derivation of the Kalman Filter

Derivation of the Kalman Filter Derivation of the Kalman Filter Kai Borre Danish GPS Center, Denmark Block Matrix Identities The key formulas give the inverse of a 2 by 2 block matrix, assuming T is invertible: T U 1 L M. (1) V W N P

More information

Power Series Solutions to the Legendre Equation

Power Series Solutions to the Legendre Equation Power Series Solutions to the Legendre Equation Department of Mathematics IIT Guwahati The Legendre equation The equation (1 x 2 )y 2xy + α(α + 1)y = 0, (1) where α is any real constant, is called Legendre

More information

Linear algebra. 1.1 Numbers. d n x = 10 n (1.1) n=m x

Linear algebra. 1.1 Numbers. d n x = 10 n (1.1) n=m x 1 Linear algebra 1.1 Numbers The natural numbers are the positive integers and zero. Rational numbers are ratios of integers. Irrational numbers have decimal digits d n d n x = 10 n (1.1 n=m x that do

More information

Isogeometric Analysis:

Isogeometric Analysis: Isogeometric Analysis: some approximation estimates for NURBS L. Beirao da Veiga, A. Buffa, Judith Rivas, G. Sangalli Euskadi-Kyushu 2011 Workshop on Applied Mathematics BCAM, March t0th, 2011 Outline

More information

Recurrence Relations between Symmetric Polynomials of n-th Order

Recurrence Relations between Symmetric Polynomials of n-th Order Applied Mathematical Sciences, Vol. 8, 214, no. 15, 5195-522 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/1.12988/ams.214.47525 Recurrence Relations between Symmetric Polynomials of n-th Order Yuriy

More information

Lecture 4: Products of Matrices

Lecture 4: Products of Matrices Lecture 4: Products of Matrices Winfried Just, Ohio University January 22 24, 2018 Matrix multiplication has a few surprises up its sleeve Let A = [a ij ] m n, B = [b ij ] m n be two matrices. The sum

More information

Lecture 3: QR-Factorization

Lecture 3: QR-Factorization Lecture 3: QR-Factorization This lecture introduces the Gram Schmidt orthonormalization process and the associated QR-factorization of matrices It also outlines some applications of this factorization

More information

Howard Mark and Jerome Workman Jr.

Howard Mark and Jerome Workman Jr. Derivatives in Spectroscopy Part IV Calibrating with Derivatives Howard Mark and Jerome Workman Jr. 44 Spectroscopy 19(1) January 2004 Our previous three columns (1 3) contained discussion of the theoretical

More information

Substitution cut-and-project tilings with n-fold rotational symmetry

Substitution cut-and-project tilings with n-fold rotational symmetry Substitution cut-and-project tilings with n-fold rotational symmetry Victor Hubert Lutfalla 2017 Lutfalla (LIPN & UTU ) Tilings 2017 1 / 35 Introduction Tilings Lutfalla (LIPN & UTU ) Tilings 2017 2 /

More information

Trajectory Smoothing as a Linear Optimal Control Problem

Trajectory Smoothing as a Linear Optimal Control Problem Trajectory Smoothing as a Linear Optimal Control Problem Biswadip Dey & P. S. Krishnaprasad Allerton Conference - 212 Monticello, IL, USA. October 4, 212 Background and Motivation 1 Background and Motivation

More information

Inverses of regular Hessenberg matrices

Inverses of regular Hessenberg matrices Proceedings of the 10th International Conference on Computational and Mathematical Methods in Science and Engineering, CMMSE 2010 27 30 June 2010. Inverses of regular Hessenberg matrices J. Abderramán

More information

A hyperfactorial divisibility Darij Grinberg *long version*

A hyperfactorial divisibility Darij Grinberg *long version* A hyperfactorial divisibility Darij Grinberg *long version* Let us define a function H : N N by n H n k! for every n N Our goal is to prove the following theorem: Theorem 0 MacMahon We have H b + c H c

More information

Mathematical Methods wk 2: Linear Operators

Mathematical Methods wk 2: Linear Operators John Magorrian, magog@thphysoxacuk These are work-in-progress notes for the second-year course on mathematical methods The most up-to-date version is available from http://www-thphysphysicsoxacuk/people/johnmagorrian/mm

More information

4. Matrix inverses. left and right inverse. linear independence. nonsingular matrices. matrices with linearly independent columns

4. Matrix inverses. left and right inverse. linear independence. nonsingular matrices. matrices with linearly independent columns L. Vandenberghe ECE133A (Winter 2018) 4. Matrix inverses left and right inverse linear independence nonsingular matrices matrices with linearly independent columns matrices with linearly independent rows

More information

Journal of Inequalities in Pure and Applied Mathematics

Journal of Inequalities in Pure and Applied Mathematics Journal of Inequalities in Pure and Applied Mathematics ON A HYBRID FAMILY OF SUMMATION INTEGRAL TYPE OPERATORS VIJAY GUPTA AND ESRA ERKUŞ School of Applied Sciences Netaji Subhas Institute of Technology

More information

On the Distribution of the Subset Sum Pseudorandom Number Generator on Elliptic Curves

On the Distribution of the Subset Sum Pseudorandom Number Generator on Elliptic Curves On the Distribution of the Subset Sum Pseudorandom Number Generator on Elliptic Curves Simon R. Blacburn Department of Mathematics Royal Holloway University of London Egham, Surrey, TW20 0EX, UK s.blacburn@rhul.ac.u

More information

Affine extractors over large fields with exponential error

Affine extractors over large fields with exponential error Affine extractors over large fields with exponential error Jean Bourgain Zeev Dvir Ethan Leeman Abstract We describe a construction of explicit affine extractors over large finite fields with exponentially

More information

LECTURE NOTES ELEMENTARY NUMERICAL METHODS. Eusebius Doedel

LECTURE NOTES ELEMENTARY NUMERICAL METHODS. Eusebius Doedel LECTURE NOTES on ELEMENTARY NUMERICAL METHODS Eusebius Doedel TABLE OF CONTENTS Vector and Matrix Norms 1 Banach Lemma 20 The Numerical Solution of Linear Systems 25 Gauss Elimination 25 Operation Count

More information

A Second Course in Elementary Differential Equations

A Second Course in Elementary Differential Equations A Second Course in Elementary Differential Equations Marcel B Finan Arkansas Tech University c All Rights Reserved August 3, 23 Contents 28 Calculus of Matrix-Valued Functions of a Real Variable 4 29 nth

More information

COURSE Numerical integration of functions (continuation) 3.3. The Romberg s iterative generation method

COURSE Numerical integration of functions (continuation) 3.3. The Romberg s iterative generation method COURSE 7 3. Numerical integration of functions (continuation) 3.3. The Romberg s iterative generation method The presence of derivatives in the remainder difficulties in applicability to practical problems

More information

The inverse of a tridiagonal matrix

The inverse of a tridiagonal matrix Linear Algebra and its Applications 325 (2001) 109 139 www.elsevier.com/locate/laa The inverse of a tridiagonal matrix Ranjan K. Mallik Department of Electrical Engineering, Indian Institute of Technology,

More information

Interpretable Nonnegative Matrix Decompositions

Interpretable Nonnegative Matrix Decompositions 27 August 2008 Outline 1 Introduction 2 Definitions 3 Algorithms and Complexity 4 Experiments Synthetic Data Real Data 5 Conclusions Outline 1 Introduction 2 Definitions 3 Algorithms and Complexity 4 Experiments

More information

Wi-Run: Multi-Runner Step Estimation Using Commodity Wi-Fi

Wi-Run: Multi-Runner Step Estimation Using Commodity Wi-Fi Wi-Run: Multi-Runner Step Estimation Using Commodity Wi-Fi Lei Zhang Meiguang Liu Liangfu Lu Liangyi Gong Tianjin University, Tianjin, China 2018.06 Outline 1 Motivation 2 Challenge and Solution 3 The

More information

APPM/MATH Problem Set 6 Solutions

APPM/MATH Problem Set 6 Solutions APPM/MATH 460 Problem Set 6 Solutions This assignment is due by 4pm on Wednesday, November 6th You may either turn it in to me in class or in the box outside my office door (ECOT ) Minimal credit will

More information

Function approximation

Function approximation Week 9: Monday, Mar 26 Function approximation A common task in scientific computing is to approximate a function. The approximated function might be available only through tabulated data, or it may be

More information