Modified Bessel functions : Iα, Kα

Size: px
Start display at page:

Download "Modified Bessel functions : Iα, Kα"

Transcription

1 Modified Bessel functions : Iα, Kα The Bessel functions are valid even for complex arguments x, and an important special case is that of a purely imaginary argument. In this case, the solutions to the Bessel equation are called the modified Bessel functions (or occasionally the hyperbolic Bessel functions) of the first and second kind, and are defined by any of these equivalent alternatives: Exist many integral representations of these functions. The following for K α (x), is useful for the calculus of the Feynmann propagator in the field theory: These are chosen to be real-valued for real and positive arguments x. The series expansion for I α (x) is thus similar to that for J α (x), but without the alternating ( 1) m factor. I α (x) and K α (x) are the two linearly independent solutions to the modified Bessel's equation: Unlike the ordinary Bessel functions, which are oscillating as functions of a real argument, I α and K α are exponentially growing and decaying functions, respectively. Like the ordinary Bessel function J α, the function I α goes to zero at x = 0 for α > 0 and is finite at x = 0 for α = 0. Analogously, K α diverges at x = 0. Modified Bessel functions of 1st kind, I α (x), for α=0,1,2,3 Modified Bessel functions of 2nd kind, K α (x), for α=0,1,2,3 The modified Bessel function of the second kind has also been called by the now-rare names:

2 Basset function modified Bessel function of the third kind modified Hankel function [2] MacDonald function Spherical Bessel functions: jn, yn Spherical Bessel functions of 1st kind, j n (x), for n = 0, 1, 2 Spherical Bessel functions of 2nd kind, y n (x), for n = 0, 1, 2 When solving the Helmholtz equation in spherical coordinates by separation of variables, the radial equation has the form: The two linearly independent solutions to this equation are called the spherical Bessel functions j n and y n, and are related to the ordinary Bessel functions J n and Y n by: [3]

3 y n is also denoted n n or η n ; some authors call these functions the spherical Neumann functions. The spherical Bessel functions can also be written as: The first spherical Bessel function j 0 (x) is also known as the (unnormalized) sinc function. The first few spherical Bessel functions are: [4] and [5] The general identity is Differential relations In the following f n is any of where

4 Spherical Hankel functions : h n There are also spherical analogues of the Hankel functions: In fact, there are simple closed-form expressions for the Bessel functions of half-integer order in terms of the standard trigonometric functions, and therefore for the spherical Bessel functions. In particular, for nonnegative integers n: and is the complex-conjugate of this (for real x). It follows, for example, that j 0 (x) = sin(x) / x and y 0 (x) = cos(x) / x, and so on. Riccati Bessel functions : Sn,Cn,ζn Riccati Bessel functions only slightly differ from spherical Bessel functions: They satisfy the differential equation: This differential equation, and the Riccati Bessel solutions, arises in the problem of scattering of electromagnetic waves by a sphere, known as Mie scattering after the first published solution by Mie (1908). See e.g. Du (2004) [6] for recent developments and references. Following Debye (1909), the notation ψ n,χ n is sometimes used instead of S n,c n. Asymptotic forms The Bessel functions have the following asymptotic forms for non-negative α. For small arguments, one obtains: [7]

5 where γ is the Euler Mascheroni constant ( ) and Γ denotes the gamma function. For large arguments, they become: [7] (For α=1/2 these formulas are exact; see the spherical Bessel functions above.) Asymptotic forms for the other types of Bessel function follow straightforwardly from the above relations. For example, for large, the modified Bessel functions become: while for small arguments, they become: Properties For integer order α = n, J n is often defined via a Laurent series for a generating function: an approach used by P. A. Hansen in (This can be generalized to non-integer order by contour integration or other methods.) Another important relation for integer orders is the Jacobi Anger expansion:

6 which is used to expand a plane wave as a sum of cylindrical waves, or to find the Fourier series of a tonemodulated FM signal. More generally, a series is called Neumann expansion of ƒ. The coefficients for ν = 0 have the explicit form Selected functions admit the special representation where O k is Neumann's polynomial [8]. with due to the orthogonality relation More generally, if ƒ has a branch-point near the origin of such a nature that f(z) = a k J ν + k (z), k = 0 then or is ƒ's Laplace transform. [9] where Another way to define the Bessel functions is the Poisson representation formula:

7 where k > -1/2 and z is a complex number. [10] This formula is useful especially when working with Fourier transforms. The functions J α, Y α, H α (1), and H α (2) all satisfy the recurrence relations: where Z denotes J, Y, H (1), or H (2). (These two identities are often combined, e.g. added or subtracted, to yield various other relations.) In this way, for example, one can compute Bessel functions of higher orders (or higher derivatives) given the values at lower orders (or lower derivatives). In particular, it follows that: Modified Bessel functions follow similar relations : and The recurrence relation reads where C α denotes I α or e απi K α. These recurrence relations are useful for discrete diffusion problems. Because Bessel's equation becomes Hermitian (self-adjoint) if it is divided by x, the solutions must satisfy an orthogonality relationship for appropriate boundary conditions. In particular, it follows that: where α > -1, δ m,n is the Kronecker delta, and u α,m is the m-th zero of J α (x). This orthogonality relation can then be used to extract the coefficients in the Fourier Bessel series, where a function is expanded in the basis of the functions J α (x u α,m ) for fixed α and varying m. (An analogous relationship for the spherical Bessel functions follows immediately.)

8 Another orthogonality relation is the closure equation: for α > -1/2 and where δ is the Dirac delta function. This property is used to construct an arbitrary function from a series of Bessel functions by means of the Hankel transform. For the spherical Bessel functions the orthogonality relation is: for α > 0. Another important property of Bessel's equations, which follows from Abel's identity, involves the Wronskian of the solutions: where A α and B α are any two solutions of Bessel's equation, and C α is a constant independent of x (which depends on α and on the particular Bessel functions considered). For example, if A α = J α and B α = Y α, then C α is 2/π. This also holds for the modified Bessel functions; for example, if A α = I α and B α = K α, then C α is - 1. (There are a large number of other known integrals and identities that are not reproduced here, but which can be found in the references.) Connection with Fourier Transform The Fourier transform of Bessels functions have closed forms in the following situations: here U is Kummer's function of the second kind. Multiplication theorem The Bessel functions obey a multiplication theorem where λ and ν may be taken as arbitrary complex numbers. A similar form may be given for Y ν (z) and [11] [12] etc.

9 Bourget's hypothesis Bessel himself originally proved that for non-negative integers n, the equation J n (x) = 0 has an infinite number of solutions in x. [13] When the functions J n (x) are plotted on the same graph, though, none of the zeros seem to coincide for different values of n except for the zero at x = 0. This phenomenon is known as Bourget's hypothesis after the nineteenth century French mathematician who studied Bessel functions. Specifically it states that for any integers n 0 and m 1, the functions J n (x) and J n+m (x) have no common zeros other than the one at x = 0. The theorem was proved by Siegel in [14] Derivatives of J,Y,I,H,K These formulas may be found in this [15] reference. p - 1 dependency (note that the above equation is for y = J,Y,I,H (1),H (2) ) (note that the above equation is for y = K) p + 1 dependency (note that the above equation is for y = J,Y,K,H (1),H (2) ) (note that the above equation is for y = I) Other relationships (note that the above equation is for y = J,Y,H (1),H (2) only) (note that the above equation is for y = J,Y,H (1),H (2) only)

10 Selected identities

Bessel function - Wikipedia, the free encyclopedia

Bessel function - Wikipedia, the free encyclopedia Bessel function - Wikipedia, the free encyclopedia Bessel function Page 1 of 9 From Wikipedia, the free encyclopedia In mathematics, Bessel functions, first defined by the mathematician Daniel Bernoulli

More information

1 Solutions in cylindrical coordinates: Bessel functions

1 Solutions in cylindrical coordinates: Bessel functions 1 Solutions in cylindrical coordinates: Bessel functions 1.1 Bessel functions Bessel functions arise as solutions of potential problems in cylindrical coordinates. Laplace s equation in cylindrical coordinates

More information

Appendix A Vector Analysis

Appendix A Vector Analysis Appendix A Vector Analysis A.1 Orthogonal Coordinate Systems A.1.1 Cartesian (Rectangular Coordinate System The unit vectors are denoted by x, ŷ, ẑ in the Cartesian system. By convention, ( x, ŷ, ẑ triplet

More information

Bessel Functions and Their Applications: Solution to Schrödinger equation in a cylindrical function of the second kind and Hankel Functions

Bessel Functions and Their Applications: Solution to Schrödinger equation in a cylindrical function of the second kind and Hankel Functions Bessel Functions and Their Applications: Solution to Schrödinger equation in a cylindrical function of the second kind and Hankel Functions 1 Faisal Adamu Idris, 2 Aisha Layla Buhari, 3 Tahir Usman Adamu

More information

Light Scattering Group

Light Scattering Group Light Scattering Inversion Light Scattering Group A method of inverting the Mie light scattering equation of spherical homogeneous particles of real and complex argument is being investigated The aims

More information

Solutions to Laplace s Equation in Cylindrical Coordinates and Numerical solutions. ρ + (1/ρ) 2 V

Solutions to Laplace s Equation in Cylindrical Coordinates and Numerical solutions. ρ + (1/ρ) 2 V Solutions to Laplace s Equation in Cylindrical Coordinates and Numerical solutions Lecture 8 1 Introduction Solutions to Laplace s equation can be obtained using separation of variables in Cartesian and

More information

METHODS OF THEORETICAL PHYSICS

METHODS OF THEORETICAL PHYSICS METHODS OF THEORETICAL PHYSICS Philip M. Morse PROFESSOR OF PHYSICS MASSACHUSETTS INSTITUTE OF TECHNOLOGY Herman Feshbach PROFESSOR OF PHYSICS MASSACHUSETTS INSTITUTE OF TECHNOLOGY PART I: CHAPTERS 1 TO

More information

Tyn Myint-U Lokenath Debnath. Linear Partial Differential Equations for Scientists and Engineers. Fourth Edition. Birkhauser Boston Basel Berlin

Tyn Myint-U Lokenath Debnath. Linear Partial Differential Equations for Scientists and Engineers. Fourth Edition. Birkhauser Boston Basel Berlin Tyn Myint-U Lokenath Debnath Linear Partial Differential Equations for Scientists and Engineers Fourth Edition Birkhauser Boston Basel Berlin Preface to the Fourth Edition Preface to the Third Edition

More information

Introductions to ExpIntegralEi

Introductions to ExpIntegralEi Introductions to ExpIntegralEi Introduction to the exponential integrals General The exponential-type integrals have a long history. After the early developments of differential calculus, mathematicians

More information

ADVANCED ENGINEERING MATHEMATICS MATLAB

ADVANCED ENGINEERING MATHEMATICS MATLAB ADVANCED ENGINEERING MATHEMATICS WITH MATLAB THIRD EDITION Dean G. Duffy Contents Dedication Contents Acknowledgments Author Introduction List of Definitions Chapter 1: Complex Variables 1.1 Complex Numbers

More information

Special Functions of Mathematical Physics

Special Functions of Mathematical Physics Arnold F. Nikiforov Vasilii B. Uvarov Special Functions of Mathematical Physics A Unified Introduction with Applications Translated from the Russian by Ralph P. Boas 1988 Birkhäuser Basel Boston Table

More information

Chapter 4. Series Solutions. 4.1 Introduction to Power Series

Chapter 4. Series Solutions. 4.1 Introduction to Power Series Series Solutions Chapter 4 In most sciences one generation tears down what another has built and what one has established another undoes. In mathematics alone each generation adds a new story to the old

More information

Survival Guide to Bessel Functions

Survival Guide to Bessel Functions Survival Guide to Bessel Functions December, 13 1 The Problem (Original by Mike Herman; edits and additions by Paul A.) For cylindrical boundary conditions, Laplace s equation is: [ 1 s Φ ] + 1 Φ s s s

More information

Bessel s and legendre s equations

Bessel s and legendre s equations Chapter 12 Bessel s and legendre s equations 12.1 Introduction Many linear differential equations having variable coefficients cannot be solved by usual methods and we need to employ series solution method

More information

ADVANCED ENGINEERING MATHEMATICS

ADVANCED ENGINEERING MATHEMATICS ADVANCED ENGINEERING MATHEMATICS DENNIS G. ZILL Loyola Marymount University MICHAEL R. CULLEN Loyola Marymount University PWS-KENT O I^7 3 PUBLISHING COMPANY E 9 U Boston CONTENTS Preface xiii Parti ORDINARY

More information

FOURIER SERIES, TRANSFORMS, AND BOUNDARY VALUE PROBLEMS

FOURIER SERIES, TRANSFORMS, AND BOUNDARY VALUE PROBLEMS fc FOURIER SERIES, TRANSFORMS, AND BOUNDARY VALUE PROBLEMS Second Edition J. RAY HANNA Professor Emeritus University of Wyoming Laramie, Wyoming JOHN H. ROWLAND Department of Mathematics and Department

More information

PHYS 404 Lecture 1: Legendre Functions

PHYS 404 Lecture 1: Legendre Functions PHYS 404 Lecture 1: Legendre Functions Dr. Vasileios Lempesis PHYS 404 - LECTURE 1 DR. V. LEMPESIS 1 Legendre Functions physical justification Legendre functions or Legendre polynomials are the solutions

More information

Course Outline. Date Lecture Topic Reading

Course Outline. Date Lecture Topic Reading Course Outline Date Lecture Topic Reading Graduate Mathematical Physics Tue 24 Aug Linear Algebra: Theory 744 756 Vectors, bases and components Linear maps and dual vectors Inner products and adjoint operators

More information

Introduction to Mathematical Physics

Introduction to Mathematical Physics Introduction to Mathematical Physics Methods and Concepts Second Edition Chun Wa Wong Department of Physics and Astronomy University of California Los Angeles OXFORD UNIVERSITY PRESS Contents 1 Vectors

More information

Topics for the Qualifying Examination

Topics for the Qualifying Examination Topics for the Qualifying Examination Quantum Mechanics I and II 1. Quantum kinematics and dynamics 1.1 Postulates of Quantum Mechanics. 1.2 Configuration space vs. Hilbert space, wave function vs. state

More information

Contents. I Basic Methods 13

Contents. I Basic Methods 13 Preface xiii 1 Introduction 1 I Basic Methods 13 2 Convergent and Divergent Series 15 2.1 Introduction... 15 2.1.1 Power series: First steps... 15 2.1.2 Further practical aspects... 17 2.2 Differential

More information

Lecture 4b. Bessel functions. Introduction. Generalized factorial function. 4b.1. Using integration by parts it is easy to show that

Lecture 4b. Bessel functions. Introduction. Generalized factorial function. 4b.1. Using integration by parts it is easy to show that 4b. Lecture 4b Using integration by parts it is easy to show that Bessel functions Introduction In the previous lecture the separation of variables method led to Bessel's equation y' ' y ' 2 y= () 2 Here

More information

MATHEMATICAL FORMULAS AND INTEGRALS

MATHEMATICAL FORMULAS AND INTEGRALS MATHEMATICAL FORMULAS AND INTEGRALS ALAN JEFFREY Department of Engineering Mathematics University of Newcastle upon Tyne Newcastle upon Tyne United Kingdom Academic Press San Diego New York Boston London

More information

Analogues for Bessel Functions of the Christoffel-Darboux Identity

Analogues for Bessel Functions of the Christoffel-Darboux Identity Analogues for Bessel Functions of the Christoffel-Darboux Identity Mark Tygert Research Report YALEU/DCS/RR-1351 March 30, 2006 Abstract We derive analogues for Bessel functions of what is known as the

More information

Mathematical Methods for Engineers and Scientists 1

Mathematical Methods for Engineers and Scientists 1 K.T. Tang Mathematical Methods for Engineers and Scientists 1 Complex Analysis, Determinants and Matrices With 49 Figures and 2 Tables fyj Springer Part I Complex Analysis 1 Complex Numbers 3 1.1 Our Number

More information

SPECIAL FUNCTIONS OF MATHEMATICS FOR ENGINEERS

SPECIAL FUNCTIONS OF MATHEMATICS FOR ENGINEERS SPECIAL FUNCTIONS OF MATHEMATICS FOR ENGINEERS Second Edition LARRY C. ANDREWS OXFORD UNIVERSITY PRESS OXFORD TOKYO MELBOURNE SPIE OPTICAL ENGINEERING PRESS A Publication of SPIE The International Society

More information

Two special equations: Bessel s and Legendre s equations. p Fourier-Bessel and Fourier-Legendre series. p

Two special equations: Bessel s and Legendre s equations. p Fourier-Bessel and Fourier-Legendre series. p LECTURE 1 Table of Contents Two special equations: Bessel s and Legendre s equations. p. 259-268. Fourier-Bessel and Fourier-Legendre series. p. 453-460. Boundary value problems in other coordinate system.

More information

ORDINARY DIFFERENTIAL EQUATIONS

ORDINARY DIFFERENTIAL EQUATIONS ORDINARY DIFFERENTIAL EQUATIONS GABRIEL NAGY Mathematics Department, Michigan State University, East Lansing, MI, 4884 NOVEMBER 9, 7 Summary This is an introduction to ordinary differential equations We

More information

Electromagnetism HW 1 math review

Electromagnetism HW 1 math review Electromagnetism HW math review Problems -5 due Mon 7th Sep, 6- due Mon 4th Sep Exercise. The Levi-Civita symbol, ɛ ijk, also known as the completely antisymmetric rank-3 tensor, has the following properties:

More information

Bessel s Equation. MATH 365 Ordinary Differential Equations. J. Robert Buchanan. Fall Department of Mathematics

Bessel s Equation. MATH 365 Ordinary Differential Equations. J. Robert Buchanan. Fall Department of Mathematics Bessel s Equation MATH 365 Ordinary Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Background Bessel s equation of order ν has the form where ν is a constant. x 2 y + xy

More information

APPLIED PARTIM DIFFERENTIAL EQUATIONS with Fourier Series and Boundary Value Problems

APPLIED PARTIM DIFFERENTIAL EQUATIONS with Fourier Series and Boundary Value Problems APPLIED PARTIM DIFFERENTIAL EQUATIONS with Fourier Series and Boundary Value Problems Fourth Edition Richard Haberman Department of Mathematics Southern Methodist University PEARSON Prentice Hall PEARSON

More information

Index. B beats, 508 Bessel equation, 505 binomial coefficients, 45, 141, 153 binomial formula, 44 biorthogonal basis, 34

Index. B beats, 508 Bessel equation, 505 binomial coefficients, 45, 141, 153 binomial formula, 44 biorthogonal basis, 34 Index A Abel theorems on power series, 442 Abel s formula, 469 absolute convergence, 429 absolute value estimate for integral, 188 adiabatic compressibility, 293 air resistance, 513 algebra, 14 alternating

More information

Index. Cambridge University Press Essential Mathematical Methods for the Physical Sciences K. F. Riley and M. P. Hobson.

Index. Cambridge University Press Essential Mathematical Methods for the Physical Sciences K. F. Riley and M. P. Hobson. absolute convergence of series, 547 acceleration vector, 88 addition rule for probabilities, 618, 623 addition theorem for spherical harmonics Yl m (θ,φ), 340 adjoint, see Hermitian conjugate adjoint operators,

More information

PHYS 502 Lecture 8: Legendre Functions. Dr. Vasileios Lempesis

PHYS 502 Lecture 8: Legendre Functions. Dr. Vasileios Lempesis PHYS 502 Lecture 8: Legendre Functions Dr. Vasileios Lempesis Introduction Legendre functions or Legendre polynomials are the solutions of Legendre s differential equation that appear when we separate

More information

MATHEMATICAL FORMULAS AND INTEGRALS

MATHEMATICAL FORMULAS AND INTEGRALS HANDBOOK OF MATHEMATICAL FORMULAS AND INTEGRALS Second Edition ALAN JEFFREY Department of Engineering Mathematics University of Newcastle upon Tyne Newcastle upon Tyne United Kingdom ACADEMIC PRESS A Harcourt

More information

Solutions to Laplace s Equations- II

Solutions to Laplace s Equations- II Solutions to Laplace s Equations- II Lecture 15: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay Laplace s Equation in Spherical Coordinates : In spherical coordinates

More information

Lecture 19: Ordinary Differential Equations: Special Functions

Lecture 19: Ordinary Differential Equations: Special Functions Lecture 19: Ordinary Differential Equations: Special Functions Key points Hermite differential equation: Legendre's differential equation: Bessel's differential equation: Modified Bessel differential equation:

More information

Vector Spaces. Vector space, ν, over the field of complex numbers, C, is a set of elements a, b,..., satisfying the following axioms.

Vector Spaces. Vector space, ν, over the field of complex numbers, C, is a set of elements a, b,..., satisfying the following axioms. Vector Spaces Vector space, ν, over the field of complex numbers, C, is a set of elements a, b,..., satisfying the following axioms. For each two vectors a, b ν there exists a summation procedure: a +

More information

Linear Partial Differential Equations for Scientists and Engineers

Linear Partial Differential Equations for Scientists and Engineers Tyn Myint-U Lokenath Debnath Linear Partial Differential Equations for Scientists and Engineers Fourth Edition Birkhäuser Boston Basel Berlin Tyn Myint-U 5 Sue Terrace Westport, CT 06880 USA Lokenath Debnath

More information

NPTEL

NPTEL NPTEL Syllabus Selected Topics in Mathematical Physics - Video course COURSE OUTLINE Analytic functions of a complex variable. Calculus of residues, Linear response; dispersion relations. Analytic continuation

More information

PARTIAL DIFFERENTIAL EQUATIONS and BOUNDARY VALUE PROBLEMS

PARTIAL DIFFERENTIAL EQUATIONS and BOUNDARY VALUE PROBLEMS PARTIAL DIFFERENTIAL EQUATIONS and BOUNDARY VALUE PROBLEMS NAKHLE H. ASMAR University of Missouri PRENTICE HALL, Upper Saddle River, New Jersey 07458 Contents Preface vii A Preview of Applications and

More information

BESSEL FUNCTIONS APPENDIX D

BESSEL FUNCTIONS APPENDIX D APPENDIX D BESSEL FUNCTIONS D.1 INTRODUCTION Bessel functions are not classified as one of the elementary functions in mathematics; however, Bessel functions appear in the solution of many physical problems

More information

HEAT CONDUCTION USING GREEN S FUNCTIONS

HEAT CONDUCTION USING GREEN S FUNCTIONS HEAT CONDUCTION USING GREEN S FUNCTIONS Preface to the first edition Preface to the second edition Author Biographies Nomenclature TABLE OF CONTENTS FOR SECOND EDITION December 2009 Page viii x xii xiii

More information

Contents. Part I Vector Analysis

Contents. Part I Vector Analysis Contents Part I Vector Analysis 1 Vectors... 3 1.1 BoundandFreeVectors... 4 1.2 Vector Operations....................................... 4 1.2.1 Multiplication by a Scalar.......................... 5 1.2.2

More information

1 Infinite-Dimensional Vector Spaces

1 Infinite-Dimensional Vector Spaces Theoretical Physics Notes 4: Linear Operators In this installment of the notes, we move from linear operators in a finitedimensional vector space (which can be represented as matrices) to linear operators

More information

Classical Fourier Analysis

Classical Fourier Analysis Loukas Grafakos Classical Fourier Analysis Second Edition 4y Springer 1 IP Spaces and Interpolation 1 1.1 V and Weak IP 1 1.1.1 The Distribution Function 2 1.1.2 Convergence in Measure 5 1.1.3 A First

More information

Before you begin read these instructions carefully:

Before you begin read these instructions carefully: NATURAL SCIENCES TRIPOS Part IB & II (General) Tuesday, 29 May, 2012 9:00 am to 12:00 pm MATHEMATICS (1) Before you begin read these instructions carefully: You may submit answers to no more than six questions.

More information

Contents. 1 Basic Equations 1. Acknowledgment. 1.1 The Maxwell Equations Constitutive Relations 11

Contents. 1 Basic Equations 1. Acknowledgment. 1.1 The Maxwell Equations Constitutive Relations 11 Preface Foreword Acknowledgment xvi xviii xix 1 Basic Equations 1 1.1 The Maxwell Equations 1 1.1.1 Boundary Conditions at Interfaces 4 1.1.2 Energy Conservation and Poynting s Theorem 9 1.2 Constitutive

More information

d 1 µ 2 Θ = 0. (4.1) consider first the case of m = 0 where there is no azimuthal dependence on the angle φ.

d 1 µ 2 Θ = 0. (4.1) consider first the case of m = 0 where there is no azimuthal dependence on the angle φ. 4 Legendre Functions In order to investigate the solutions of Legendre s differential equation d ( µ ) dθ ] ] + l(l + ) m dµ dµ µ Θ = 0. (4.) consider first the case of m = 0 where there is no azimuthal

More information

This ODE arises in many physical systems that we shall investigate. + ( + 1)u = 0. (λ + s)x λ + s + ( + 1) a λ. (s + 1)(s + 2) a 0

This ODE arises in many physical systems that we shall investigate. + ( + 1)u = 0. (λ + s)x λ + s + ( + 1) a λ. (s + 1)(s + 2) a 0 Legendre equation This ODE arises in many physical systems that we shall investigate We choose We then have Substitution gives ( x 2 ) d 2 u du 2x 2 dx dx + ( + )u u x s a λ x λ a du dx λ a λ (λ + s)x

More information

Boundary. DIFFERENTIAL EQUATIONS with Fourier Series and. Value Problems APPLIED PARTIAL. Fifth Edition. Richard Haberman PEARSON

Boundary. DIFFERENTIAL EQUATIONS with Fourier Series and. Value Problems APPLIED PARTIAL. Fifth Edition. Richard Haberman PEARSON APPLIED PARTIAL DIFFERENTIAL EQUATIONS with Fourier Series and Boundary Value Problems Fifth Edition Richard Haberman Southern Methodist University PEARSON Boston Columbus Indianapolis New York San Francisco

More information

Communication Signals (Haykin Sec. 2.4 and Ziemer Sec Sec. 2.4) KECE321 Communication Systems I

Communication Signals (Haykin Sec. 2.4 and Ziemer Sec Sec. 2.4) KECE321 Communication Systems I Communication Signals (Haykin Sec..4 and iemer Sec...4-Sec..4) KECE3 Communication Systems I Lecture #3, March, 0 Prof. Young-Chai Ko 년 3 월 일일요일 Review Signal classification Phasor signal and spectra Representation

More information

Chapter 4 Sequences and Series

Chapter 4 Sequences and Series Chapter 4 Sequences and Series 4.1 Sequence Review Sequence: a set of elements (numbers or letters or a combination of both). The elements of the set all follow the same rule (logical progression). The

More information

Taylor and Maclaurin Series. Copyright Cengage Learning. All rights reserved.

Taylor and Maclaurin Series. Copyright Cengage Learning. All rights reserved. 11.10 Taylor and Maclaurin Series Copyright Cengage Learning. All rights reserved. We start by supposing that f is any function that can be represented by a power series f(x)= c 0 +c 1 (x a)+c 2 (x a)

More information

4 Power Series Solutions: Frobenius Method

4 Power Series Solutions: Frobenius Method 4 Power Series Solutions: Frobenius Method Now the ODE adventure takes us to series solutions for ODEs, a technique A & W, that is often viable, valuable and informative. These can be readily applied Sec.

More information

Index. for Ɣ(a, z), 39. convergent asymptotic representation, 46 converging factor, 40 exponentially improved, 39

Index. for Ɣ(a, z), 39. convergent asymptotic representation, 46 converging factor, 40 exponentially improved, 39 Index Abramowitz function computed by Clenshaw s method, 74 absolute error, 356 Airy function contour integral for, 166 Airy functions algorithm, 359 asymptotic estimate of, 18 asymptotic expansions, 81,

More information

Qualification Exam: Mathematical Methods

Qualification Exam: Mathematical Methods Qualification Exam: Mathematical Methods Name:, QEID#41534189: August, 218 Qualification Exam QEID#41534189 2 1 Mathematical Methods I Problem 1. ID:MM-1-2 Solve the differential equation dy + y = sin

More information

SPECIAL FUNCTIONS AN INTRODUCTION TO THE CLASSICAL FUNCTIONS OF MATHEMATICAL PHYSICS

SPECIAL FUNCTIONS AN INTRODUCTION TO THE CLASSICAL FUNCTIONS OF MATHEMATICAL PHYSICS SPECIAL FUNCTIONS AN INTRODUCTION TO THE CLASSICAL FUNCTIONS OF MATHEMATICAL PHYSICS SPECIAL FUNCTIONS AN INTRODUCTION TO THE CLASSICAL FUNCTIONS OF MATHEMATICAL PHYSICS NICO M.TEMME Centrum voor Wiskunde

More information

METHODS OF THEORETICAL PHYSICS

METHODS OF THEORETICAL PHYSICS METHODS OF THEORETICAL PHYSICS Philip M. Morse PROFESSOR OF PHYSICS MASSACHUSETTS INSTITUTE OF TECHNOLOGY Herman Feshbach PROFESSOR OF PHYSICS MASSACHUSETTS INSTITUTE OF TECHNOLOGY PART II: CHAPTERS 9

More information

AND NONLINEAR SCIENCE SERIES. Partial Differential. Equations with MATLAB. Matthew P. Coleman. CRC Press J Taylor & Francis Croup

AND NONLINEAR SCIENCE SERIES. Partial Differential. Equations with MATLAB. Matthew P. Coleman. CRC Press J Taylor & Francis Croup CHAPMAN & HALL/CRC APPLIED MATHEMATICS AND NONLINEAR SCIENCE SERIES An Introduction to Partial Differential Equations with MATLAB Second Edition Matthew P Coleman Fairfield University Connecticut, USA»C)

More information

Vectors in Function Spaces

Vectors in Function Spaces Jim Lambers MAT 66 Spring Semester 15-16 Lecture 18 Notes These notes correspond to Section 6.3 in the text. Vectors in Function Spaces We begin with some necessary terminology. A vector space V, also

More information

FRACTIONAL DIFFERENTIAL EQUATIONS

FRACTIONAL DIFFERENTIAL EQUATIONS FRACTIONAL DIFFERENTIAL EQUATIONS An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and some of their Applications by Igor Podlubny Technical University

More information

AN INTRODUCTION TO THE FRACTIONAL CALCULUS AND FRACTIONAL DIFFERENTIAL EQUATIONS

AN INTRODUCTION TO THE FRACTIONAL CALCULUS AND FRACTIONAL DIFFERENTIAL EQUATIONS AN INTRODUCTION TO THE FRACTIONAL CALCULUS AND FRACTIONAL DIFFERENTIAL EQUATIONS KENNETH S. MILLER Mathematical Consultant Formerly Professor of Mathematics New York University BERTRAM ROSS University

More information

Physics 342 Lecture 23. Radial Separation. Lecture 23. Physics 342 Quantum Mechanics I

Physics 342 Lecture 23. Radial Separation. Lecture 23. Physics 342 Quantum Mechanics I Physics 342 Lecture 23 Radial Separation Lecture 23 Physics 342 Quantum Mechanics I Friday, March 26th, 2010 We begin our spherical solutions with the simplest possible case zero potential. Aside from

More information

On an Eigenvalue Problem Involving Legendre Functions by Nicholas J. Rose North Carolina State University

On an Eigenvalue Problem Involving Legendre Functions by Nicholas J. Rose North Carolina State University On an Eigenvalue Problem Involving Legendre Functions by Nicholas J. Rose North Carolina State University njrose@math.ncsu.edu 1. INTRODUCTION. The classical eigenvalue problem for the Legendre Polynomials

More information

Separation of Variables in Linear PDE: One-Dimensional Problems

Separation of Variables in Linear PDE: One-Dimensional Problems Separation of Variables in Linear PDE: One-Dimensional Problems Now we apply the theory of Hilbert spaces to linear differential equations with partial derivatives (PDE). We start with a particular example,

More information

Quantum Mechanics Solutions

Quantum Mechanics Solutions Quantum Mechanics Solutions (a (i f A and B are Hermitian, since (AB = B A = BA, operator AB is Hermitian if and only if A and B commute So, we know that [A,B] = 0, which means that the Hilbert space H

More information

INDEX. Baker-Hausdorf formula, 294 Basis states, 754 Basis vectors, 141, 167, 245 Bayes criteria, 738

INDEX. Baker-Hausdorf formula, 294 Basis states, 754 Basis vectors, 141, 167, 245 Bayes criteria, 738 INDEX Absolute maximum, 14 Absolute minimum, 14 Absolutely integrable, 591 Action, 653 Action at a distance, 109 Addition formula Bessel functions, 537 Alternating series, 313 Amplitude spectrum, 609 Analytic

More information

Generalized Functions Theory and Technique Second Edition

Generalized Functions Theory and Technique Second Edition Ram P. Kanwal Generalized Functions Theory and Technique Second Edition Birkhauser Boston Basel Berlin Contents Preface to the Second Edition x Chapter 1. The Dirac Delta Function and Delta Sequences 1

More information

ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS. Special Functions GEORGE E. ANDREWS RICHARD ASKEY RANJAN ROY CAMBRIDGE UNIVERSITY PRESS

ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS. Special Functions GEORGE E. ANDREWS RICHARD ASKEY RANJAN ROY CAMBRIDGE UNIVERSITY PRESS ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS Special Functions GEORGE E. ANDREWS RICHARD ASKEY RANJAN ROY CAMBRIDGE UNIVERSITY PRESS Preface page xiii 1 The Gamma and Beta Functions 1 1.1 The Gamma

More information

Die Grundlehren der mathematischen Wissenschaften

Die Grundlehren der mathematischen Wissenschaften Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Beriicksichtigung der Anwendungsgebiete Band 52 H erau.fgegeben von J. L. Doob. E. Heinz F. Hirzebruch. E. Hopf H.

More information

Understand the existence and uniqueness theorems and what they tell you about solutions to initial value problems.

Understand the existence and uniqueness theorems and what they tell you about solutions to initial value problems. Review Outline To review for the final, look over the following outline and look at problems from the book and on the old exam s and exam reviews to find problems about each of the following topics.. Basics

More information

. (70.1) r r. / r. Substituting, we have the following equation for f:

. (70.1) r r. / r. Substituting, we have the following equation for f: 7 Spherical waves Let us consider a sound wave in which the distribution of densit velocit etc, depends only on the distance from some point, ie, is spherically symmetrical Such a wave is called a spherical

More information

MATHEMATICS (MATH) Calendar

MATHEMATICS (MATH) Calendar MATHEMATICS (MATH) This is a list of the Mathematics (MATH) courses available at KPU. For information about transfer of credit amongst institutions in B.C. and to see how individual courses transfer, go

More information

Course Code: MTH-S101 Breakup: 3 1 0 4 Course Name: Mathematics-I Course Details: Unit-I: Sequences & Series: Definition, Monotonic sequences, Bounded sequences, Convergent and Divergent Sequences Infinite

More information

Course Code: MTH-S101 Breakup: 3 1 0 4 Course Name: Mathematics-I Course Details: Unit-I: Sequences & Series: Definition, Monotonic sequences, Bounded sequences, Convergent and Divergent Sequences Infinite

More information

GATE Engineering Mathematics SAMPLE STUDY MATERIAL. Postal Correspondence Course GATE. Engineering. Mathematics GATE ENGINEERING MATHEMATICS

GATE Engineering Mathematics SAMPLE STUDY MATERIAL. Postal Correspondence Course GATE. Engineering. Mathematics GATE ENGINEERING MATHEMATICS SAMPLE STUDY MATERIAL Postal Correspondence Course GATE Engineering Mathematics GATE ENGINEERING MATHEMATICS ENGINEERING MATHEMATICS GATE Syllabus CIVIL ENGINEERING CE CHEMICAL ENGINEERING CH MECHANICAL

More information

ORDINARY DIFFERENTIAL EQUATIONS

ORDINARY DIFFERENTIAL EQUATIONS ORDINARY DIFFERENTIAL EQUATIONS GABRIEL NAGY Mathematics Department, Michigan State University, East Lansing, MI, 48824. JANUARY 3, 25 Summary. This is an introduction to ordinary differential equations.

More information

Shigeji Fujita and Salvador V Godoy. Mathematical Physics WILEY- VCH. WILEY-VCH Verlag GmbH & Co. KGaA

Shigeji Fujita and Salvador V Godoy. Mathematical Physics WILEY- VCH. WILEY-VCH Verlag GmbH & Co. KGaA Shigeji Fujita and Salvador V Godoy Mathematical Physics WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Contents Preface XIII Table of Contents and Categories XV Constants, Signs, Symbols, and General Remarks

More information

Bessel functions. The drum problem: Consider the wave equation (with c = 1) in a disc with homogeneous Dirichlet boundary conditions:

Bessel functions. The drum problem: Consider the wave equation (with c = 1) in a disc with homogeneous Dirichlet boundary conditions: Bessel functions The drum problem: Consider the wave equation (with c = 1) in a disc with homogeneous Dirichlet boundary conditions: u = u t, u(r 0,θ,t) = 0, u u(r,θ,0) = f(r,θ), (r,θ,0) = g(r,θ). t (Note

More information

METHODS FOR SOLVING MATHEMATICAL PHYSICS PROBLEMS

METHODS FOR SOLVING MATHEMATICAL PHYSICS PROBLEMS METHODS FOR SOLVING MATHEMATICAL PHYSICS PROBLEMS V.I. Agoshkov, P.B. Dubovski, V.P. Shutyaev CAMBRIDGE INTERNATIONAL SCIENCE PUBLISHING Contents PREFACE 1. MAIN PROBLEMS OF MATHEMATICAL PHYSICS 1 Main

More information

Index. Cambridge University Press Foundation Mathematics for the Physical Sciences K. F. Riley and M. P. Hobson.

Index. Cambridge University Press Foundation Mathematics for the Physical Sciences K. F. Riley and M. P. Hobson. absolute convergence of series, 225 acceleration vector, 449 addition rule for probabilities, 603, 608 adjoint, see Hermitian conjugate algebra of complex numbers, 177 8 matrices, 378 9 power series, 236

More information

Orthonormal series expansion and finite spherical Hankel transform of generalized functions

Orthonormal series expansion and finite spherical Hankel transform of generalized functions Malaya Journal of Matematik 2(1)(2013) 77 82 Orthonormal series expansion and finite spherical Hankel transform of generalized functions S.K. Panchal a, a Department of Mathematics, Dr. Babasaheb Ambedkar

More information

Index. C 2 ( ), 447 C k [a,b], 37 C0 ( ), 618 ( ), 447 CD 2 CN 2

Index. C 2 ( ), 447 C k [a,b], 37 C0 ( ), 618 ( ), 447 CD 2 CN 2 Index advection equation, 29 in three dimensions, 446 advection-diffusion equation, 31 aluminum, 200 angle between two vectors, 58 area integral, 439 automatic step control, 119 back substitution, 604

More information

23 Elements of analytic ODE theory. Bessel s functions

23 Elements of analytic ODE theory. Bessel s functions 23 Elements of analytic ODE theory. Bessel s functions Recall I am changing the variables) that we need to solve the so-called Bessel s equation 23. Elements of analytic ODE theory Let x 2 u + xu + x 2

More information

INTEGRAL TRANSFORMS and THEIR APPLICATIONS

INTEGRAL TRANSFORMS and THEIR APPLICATIONS INTEGRAL TRANSFORMS and THEIR APPLICATIONS Lokenath Debnath Professor and Chair of Mathematics and Professor of Mechanical and Aerospace Engineering University of Central Florida Orlando, Florida CRC Press

More information

Hypersingular Integrals and Their Applications

Hypersingular Integrals and Their Applications Hypersingular Integrals and Their Applications Stefan G. Samko Rostov State University, Russia and University ofalgarve, Portugal London and New York Contents Preface xv Notation 1 Part 1. Hypersingular

More information

1. Mathematical Tools

1. Mathematical Tools 1. Mathematical Tools 1.1 Coordinate Systems Suppose u 1, u 2, and u 3 are the coordinates of a general coordinate coordinate system in which the (ê 1, ê 2, ê 3 ) unit or basis vectors specify the directions

More information

Second-order ordinary differential equations Special functions, Sturm-Liouville theory and transforms R.S. Johnson

Second-order ordinary differential equations Special functions, Sturm-Liouville theory and transforms R.S. Johnson Second-order ordinary differential equations Special functions, Sturm-Liouville theory and transforms R.S. Johnson R.S. Johnson Second-order ordinary differential equations Special functions, Sturm-Liouville

More information

ENGI 9420 Lecture Notes 1 - ODEs Page 1.01

ENGI 9420 Lecture Notes 1 - ODEs Page 1.01 ENGI 940 Lecture Notes - ODEs Page.0. Ordinary Differential Equations An equation involving a function of one independent variable and the derivative(s) of that function is an ordinary differential equation

More information

Electrodynamics I Midterm - Part A - Closed Book KSU 2005/10/17 Electro Dynamic

Electrodynamics I Midterm - Part A - Closed Book KSU 2005/10/17 Electro Dynamic Electrodynamics I Midterm - Part A - Closed Book KSU 5//7 Name Electro Dynamic. () Write Gauss Law in differential form. E( r) =ρ( r)/ɛ, or D = ρ, E= electricfield,ρ=volume charge density, ɛ =permittivity

More information

1 Introduction. Green s function notes 2018

1 Introduction. Green s function notes 2018 Green s function notes 8 Introduction Back in the "formal" notes, we derived the potential in terms of the Green s function. Dirichlet problem: Equation (7) in "formal" notes is Φ () Z ( ) ( ) 3 Z Φ (

More information

Harmonic Oscillator. Robert B. Griffiths Version of 5 December Notation 1. 3 Position and Momentum Representations of Number Eigenstates 2

Harmonic Oscillator. Robert B. Griffiths Version of 5 December Notation 1. 3 Position and Momentum Representations of Number Eigenstates 2 qmd5 Harmonic Oscillator Robert B. Griffiths Version of 5 December 0 Contents Notation Eigenstates of the Number Operator N 3 Position and Momentum Representations of Number Eigenstates 4 Coherent States

More information

5.4 Bessel s Equation. Bessel Functions

5.4 Bessel s Equation. Bessel Functions SEC 54 Bessel s Equation Bessel Functions J (x) 87 # with y dy>dt, etc, constant A, B, C, D, K, and t 5 HYPERGEOMETRIC ODE At B (t t )(t t ), t t, can be reduced to the hypergeometric equation with independent

More information

CHAPTER 4 ELECTROMAGNETIC WAVES IN CYLINDRICAL SYSTEMS

CHAPTER 4 ELECTROMAGNETIC WAVES IN CYLINDRICAL SYSTEMS CHAPTER 4 ELECTROMAGNETIC WAVES IN CYLINDRICAL SYSTEMS The vector Helmholtz equations satisfied by the phasor) electric and magnetic fields are where. In low-loss media and for a high frequency, i.e.,

More information

221A Lecture Notes Steepest Descent Method

221A Lecture Notes Steepest Descent Method Gamma Function A Lecture Notes Steepest Descent Method The best way to introduce the steepest descent method is to see an example. The Stirling s formula for the behavior of the factorial n! for large

More information

R. Courant and D. Hilbert METHODS OF MATHEMATICAL PHYSICS Volume II Partial Differential Equations by R. Courant

R. Courant and D. Hilbert METHODS OF MATHEMATICAL PHYSICS Volume II Partial Differential Equations by R. Courant R. Courant and D. Hilbert METHODS OF MATHEMATICAL PHYSICS Volume II Partial Differential Equations by R. Courant CONTENTS I. Introductory Remarks S1. General Information about the Variety of Solutions.

More information

BASIC EXAM ADVANCED CALCULUS/LINEAR ALGEBRA

BASIC EXAM ADVANCED CALCULUS/LINEAR ALGEBRA 1 BASIC EXAM ADVANCED CALCULUS/LINEAR ALGEBRA This part of the Basic Exam covers topics at the undergraduate level, most of which might be encountered in courses here such as Math 233, 235, 425, 523, 545.

More information

Review for Exam 2. Review for Exam 2.

Review for Exam 2. Review for Exam 2. Review for Exam 2. 5 or 6 problems. No multiple choice questions. No notes, no books, no calculators. Problems similar to homeworks. Exam covers: Regular-singular points (5.5). Euler differential equation

More information

PDEs, ODEs, Analytic Continuation, Special Functions, Sturm-Liouville Problems and All That 1

PDEs, ODEs, Analytic Continuation, Special Functions, Sturm-Liouville Problems and All That 1 Prepared for submission to JHEP PDEs, ODEs, Analytic Continuation, Special Functions, Sturm-Liouville Problems and All That 1 C.P. Burgess Department of Physics, McGill University These notes present an

More information