Laboratory scale tests for the assessment of solid explosive blast effects

Size: px
Start display at page:

Download "Laboratory scale tests for the assessment of solid explosive blast effects"

Transcription

1 Structures Under Shock and Impact X 63 Laboratory scale tests for the assessment of solid explosive blast effects K. Cheval 1, O. Loiseau 1 & V. Vala 2 1 Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-Aux-Roses, France 2 Crit Interim Nucléaire, Antony, France Abstract The definition of blast loads applying to a complex geometry structure is, nowadays, still a hard task when numerical simulation is used, essentially because of the different scales involved: as a matter of fact, modelling the detonation of a charge and its resulting load on a structure requires one to model the charge itself, the structure and the surrounding air, which rapidly leads to large size models on which parametrical studies become unaffordable. So, on the basis of the Crank-Hopkinson s law, an experimental set-up has been developed to support reduced scale structures as well as reduced scale detonating solid charges. As a final objective, the set-up must be used to produce the entry data for numerical assessments of the structure resistance. This set-up is composed of a modular table, sensors and targets and has been designed to conduct nondestructive studies. In the context of security, the general aim is to study the effects of detonation shock waves in the vicinity of test installations and to test various shock wave mitigation means that could be implemented for the protection of facilities in sensitive locations. In particular, the set-up offers the possibility of measuring the loading in terms of pressuretime curves, even for very complex situations like multiple reflections, combination and diffraction. The present paper summarizes the development of the set-up, as well as the first tests performed. The main features of the table, the instrumentation and the pyrotechnics are given. Also, the paper summarizes a first qualification test campaign that was conducted in the year In this campaign, free field blast tests (i.e. blast tests performed without structures) have been conducted. Overpressure maxima, arrival time of the shock wave and impulse are presented as nondimensional characteristics of the pressure time history. The results obtained have been found to be in good agreement with reference curves available from the open literature. Keywords: blast waves, detonation, pressure measurements, safety. doi: /su080071

2 64 Structures Under Shock and Impact X 1 Introduction Although there have been important developments during the last decade, the definition of blast loads applying to a complex geometry structure is, nowadays, still a hard task when numerical simulation is used, essentially because of the different scales involved (both in space and in time). As a matter of fact, modelling the detonation of a charge and its resulting load on a structure requires modelling the charge itself, the structure and the air surrounding the charge and the structure, which rapidly leads to large size models on which parametrical studies become unaffordable. Meanwhile parametrical studies are often necessary to predict the vulnerability of structures and humans to blast. Because full-scale testing of realistic target geometries and realistic effects of charge position are often prohibitively expansive and time consuming, as far as detonation is involved, small-scale testing is a well-proven means to assess blast loading. Indeed, many blast parameters can be scaled for charge masses ranging from milligrams to tons. The most widely used method of blast scaling is Hopkinson s cube-root law for scaled distance, time and impulse. This method has been used by various authors in order to assess the pressure evolution in time and space in the context of indoor detonations in a multi-chamber building [1] (Germany, 2001), to assess the vulnerability of structures and humans to blast ([2] (Canada, 2004), [3] (Japan, 2004)). Paper [1] notably shows how the blast waves may be visualized by use of particular optical techniques well adapted to small-scaled models using Nitropenta charges of 0.5 g. Paper [2] reports how the consequences of an explosive blast in urban scenarios have been predicted by modelling, based on scaled geometries experiments and the detonation of 50 g C4 charges; whereas paper [3] presents an optical set-up carried out to measure pressure and to observe wave propagation when an explosion of a 10 mg silver azide cylinder-shaped charge occurs in a modelled nuclear facility. Also, in the field of small scale experiments, the work by Brossard and co-workers [6] (France, ) illustrates how gaseous detonation effects may also be investigated at reduced scale. The experimental set-up described in this paper is a laboratory scale set-up, able to support detonations of solid explosives up to 64 g of TNT equivalent. The set-up has been designed with the objective of producing the blast pressures induced by the detonation of masses of TNT equivalent ranging from 1 g to 64 g, meaning to be used as entry data for numerical assessments of the structure resistance. In the context of security, the general aim is to study the effects of blast waves in the vicinity of test installations and to test various shock wave mitigation means that could be implemented for the protection of facilities in sensitive locations. The set-up especially offers the possibility to measure the loading in terms of pressure-time curves, even for very complex situations like multiple reflections, combination and diffraction. 2 Description of the experimental set-up The experimental set-up is composed of a modular table, sensors and targets and has been designed to conduct non destructive studies. Experimental campaigns

3 Structures Under Shock and Impact X 65 are performed at the SNPE s Research Centre located at Le Bouchet (Vert-Le- Petit, France). SNPE ensures all the pyrotechnics handling aspects of the experiments, and also provided the data recording system. 2.1 The modular table The small-scale configurations are tested on IRSN s blast table, which is essentially a 1.6 x 2.4 m planar table. The table features an array of mounting holes that facilitate the placement of modular 40 x 40 x 5 cm wooden plates and pressure transducers. Figure 1: The modular table. A specific steel covered and reinforced 40 x 40 cm plate is supported by a specially designed stool to support the explosive charge. The modularity of the table offers the possibility to place the explosive charge at any location on the table, provided that the charge needs to be detonated at the centre of the detonation support plate. The table itself is made of a steel tubular truss structure, designed to be easily dismantled and transported. All feet are adjustable in height to permit the use of the table on any poorly planar floors (such as floor of experimental detonation bunker). The materials constituting the table are chosen so that the transmission of the shock waves by the table itself is limited. 2.2 Gauges As far as the first tests campaign is concerned, eight piezoelectric pressure transducers (Kistler, 603B (0-200 bars)) and four piezoresistive pressure transducers (Endevco, 8510B (0-0.3 bars), and 8510C (0-6.9 bars)) are mounted

4 66 Structures Under Shock and Impact X on an elastic support inserted in the holes provided for this purpose. Each pressure transducer is statically calibrated with its amplifier and electric cable that connects them one to each over. 2.3 Detonating charge A hemispherical charge of plastrite is initiated from the bottom using electrical detonators. The explosive masses used for the purpose of the experiments related in the present paper are 1 g, 8 g, and 64 g. The aim of considering such masses is to get an easy conversion of the real distances into scaled distances, as indicated within the table 1. Table 1: Examples of distance conversion for the used explosive masses during the 1 st tests campaign. Explosive mass 1 g 8 g 64 g TNT hemisphere radius (density 1520 kg/m 3 ) 6.8 mm 13.6 mm 27.2 mm Actual distance associated with a scaled distance of 0,1 m/kg 1/3 1 cm 2 cm 4 cm Scaled distance associated with a real distance of 3 m 30 m/kg 1/3 15 m/kg 1/3 7,5 m/kg 1/3 2.4 Data acquisition system As far as this first campaign is concerned, a NICOLET Genesis (LDS Test & Measurement) data acquisition and transient recorder system has been used for the data acquisition. Based on the concept of a mainframe with plug-in modules, the Genesis offers up to 16 channels in the portable available tower mainframe. With 200 ksample/s or 1 MSample/s digitizing rate at 16-bit resolution, it is ideally suited for high definition transient recording. 3 Free-field tests campaign 3.1 Objectives The aim of this first free-field campaign is to validate the reduced scale experimental concept and to qualify the measurement chain. The records of pressure vs. time history are used in order to: to verify the trials reproducibility and to give an estimation of the dispersion within the measures, to check the scaling law or Hopkinson s law, to determine the characteristic parameters of the blast wave - pressure, pulse, time of arrival, length of the positive phase, form factor - identified by the time evolution of the pressure, and compare the values obtained with values from abacuses available in the literature.

5 Structures Under Shock and Impact X 67 The references associated with the last two points are formulas of abacuses from the books by Kinney and Graham [8] and by Baker et al. [9]. 3.2 Geometrical definition of the campaign Selection of table location The modular table is placed at the centre of a closed 7 x 8 m bunker to avoid the perturbation from reflection from the walls Selection of gauges and charge locations A series of three trials has been conducted for each mass of explosive (1 g, 8 g and 64 g). For each of these trials, a set of eight pressure transducers is placed on the table. Three ranges of a set of positions for pressure transducers are planned: a near-field area (labelled (A)), an intermediate-field area (labelled (B)), and a far-field area (labelled (C)). For each range, pressure transducers are placed with reference to the explosive charge at distances set among a geometric progression: this is designed to obtain a homogeneous range of sampling distances for an exploitation of the results on a logarithmic scale. Finally, each configuration trial is performed twice, in order to assess the dispersion in the reproducibility of measurements. The total number of trials during this first tests campaign is 18 as indicated in table 2. Table 2: Trials denomination. Trial denomination Explosive mass Area (A) Area (B) Area (C) 1 g 1a/1b 4a/4b 7a/7b 8 g 2a/2b 5a/5b 8a/8b 64 g 3a/3b 6a/6b 9a/9b Between two adjacent areas, transition points of measurements are set: thus for each zone, the farthest transducer is included in the next area as the nearest transducer. As a result of their limited range of use dedicated to low pressure measurements, Endevco pressure transducers are preferentially used in far-field areas. They are arranged in addition to the Kistler 603B to make statements at the same distance, at low pressure. This allows comparing the behaviour of Kistler and Endevco pressure transducers in the range of use. 3.3 Free-field results Results The verification focused on the positive part of the pressure-time history signal, i.e.: the time of arrival of the blast wave (ta), the peak overpressure maximum (P max ), the impulse (I + ) and the duration (td) of the positive phase, and their non dimensional equivalents.

6 68 Structures Under Shock and Impact X Area (C) Area (B) Area (A) Figure 2: Positioning of pressure transducers on area: (A) definition of areas (B) and (C). Several formulas have been empirically established to express the maximum overpressure for an observer in the field of a strong detonation of explosives. Such a formula, extracted from the reference [8], is given by equation (1) below and is also represented by a solid line on figure 2. P max P 0 = z z z z (1) where m is the mass of the sphere, z is the reduced distance defined as r/m 1/3 and r is the distance between the centre of the hemisphere and the observer. The maximum overpressures obtained by the detonation of a half-sphere on the table are equivalent to the overpressures obtained by the detonation of a sphere of same radius in the open air. The mass considered here is equal to twice the mass of the hemisphere used in the tests, weighted by the ratio of TNT equivalent plastrite for overpressure. This coefficient was determined during a preliminary test phase whose objective was to determine the TNT equivalent of plastrite. In the end we get m = 1.27 x 2 x m tests. The relative error of measurement is determined by the difference between the measured pressure and the pressure assessed using the formula eqn. (1), referred to be the theoretical value, as follows (see table 3):

7 Structures Under Shock and Impact X 69 P / P0 100,00 10,00 1,00 Trial 1a Trial 1b Trial 2a Trial 2b Trial 3b Trial 4a Trial 4b Trial 5b Trial 6b Trial 7b Trial 8b Trial 9b Kinney's theory 0,10 0,01 0,10 1,00 10,00 100,00 Reduced distance (m/kg^1/3) Figure 3: Overpressure vs. scaled distance. I + / m 1/3 (bars.s/kg 1/3 ) 1,00E-02 1,00E-03 1,00E-04 Trial 1a Trial 1b Trial 2a Trial 2b Trial 3b Trial 4a Trial 4b Trial 5b Trial 6b Trial 7b Trial 8b Trial 9b Kinney's Theory 1,00E-05 0,10 1,00 10,00 100,00 Reduced distance (m / kg 1/3 ) Figure 4: Positive phase impulse vs. scaled distance. error = [Measured pressure - pressure calculated by eqn. (1)] / Pressure calculated by eqn. (1) The results concerning the impulse of the pressure-time history are treated similarly, using a TNT equivalent plastrite for impulse of 0.90 (see figure 4). (2)

8 70 Structures Under Shock and Impact X As far as each characteristic of the pressure-time history signal is concerned, histograms of relative errors were plotted: means and standard deviations of the relative errors are summed up in table 3 which shows a good agreement between the measured performed with the small-scale experiment set-up and theory. It has to be noticed that the standard deviation remains relatively small for that kind of experiments. In addition, bias is almost zero for overpressure and times, whereas it reaches around 10 % for the impulse measurements. This parameter is also widely dispersed from an experimental standpoint. Table 3: Means and standard deviation of relative errors. Measurand P max / P 0 ta / m 1/3 td / m 1/3 I + / m 1/3 Mean -5 % -0.8 % 9.5 % -10 % Standard deviation 15 % -9 % 26 % 20 % Overpressure (bars) Surpression (bars) Piezoresistive pressure transducer (trial 1a) Piezoelectric pressure transducer (trial 1a) Figure 5: Time (s) Recorded piezoelectric and piezoresistive pressure transducers comparison Comparison of pressure transducer technologies In intermediate-field area as well as in far-field area, as illustrated with figure 5, piezoresistive and piezoelectric pressure transducers give the same information for the overpressure, the time of arrival, the impulse and the duration of the positive phase. On the one hand, it may appear that piezoresistive pressure transducers present the drawback of an oscillatory behaviour that requires the use of numerical filtering. On the other hand, in near-field area, especially with the higher explosive charge we tested (64 g), every Kistler (piezoelectric) pressure transducer reported a continuous depression after the passage of the wave, during

9 Structures Under Shock and Impact X 71 the negative phase of the signal, which makes the signals recorded impossible to be processed when the characteristics of the negative phase are investigated. This effect has already been observed with test gaseous bubbles detonation in nearfield measurements [7]. As can be read in open literature concerning piezoresistive and piezoelectric pressure transducers, the two technologies are well suited for detonic experiments. Nevertheless, piezoelectric materials exhibit pyroelectric properties which could greatly influence the quality of the measure. It may therefore be possible that piezoelectric pressure transducers would be, for a big explosive charge and in near-field, in a measure range where the pyroelectric property would be highlighted: it would be the case when transducers where placed within the space for the expansion of the fireball. Empirical formula [10] can be used to evaluate the radius of the fireball generated within fuel detonations, as a function of the mass of hydrocarbons. Nevertheless, these formulas do not allow determining the radius of the fireball associated with solid explosive detonations. 4 Conclusion In order to conduct security studies in which the effects of blast waves in the vicinity of industrial sensitive installations need to be investigated, IRSN has developed an experimental set-up composed of a modular table and pressure transducers. The experimental set-up is a support for non destructive studies and dedicated to testing various shock wave mitigation means that could be implemented for the protection of facilities in sensitive locations. The first campaign performed in the end of 2006 allowed to qualify the measurement chain and to validate the concept of small-scale experiments. This validation was conducted through a free-field campaign of measurements, and the results were compared with the data currently available in open literature. As a matter of fact, overpressure maxima, arrival time of the shock wave and impulse of pressure time histories are presented as non dimensional characteristics of the pressure time history and have been found in good agreement with reference curves available from the open literature. The set-up now offers the possibility to measure the loading in terms of pressure-time curves and is now ready for more complex situations, such as multiple reflections, combination, diffraction, or parametrical studies upon the shape of the explosive (cylinder, hemisphere, cube, ) under miscellaneous detonation configurations (at altitude, multiple detonation). References [1] Reichenbach H., Neuwald P., Indoor detonations - Visualization and pressure measurements in small-scale models, Proceedings of SPIE - The International Society for Optical Engineering 4183, pp , [2] Ripley R.C., von Rosen B., Ritzel D.V., Whitehouse D.R., Small-Scale Modeling of Explosive Blasts in Urban Scenarios, 21st International Symposium on Ballistics, April 19-23, 2004, Adelaide, Australia.

10 72 Structures Under Shock and Impact X [3] Miura A., Matsuo A., Mizukaki T., Shiraishi T., Utsunomiya G., Takayama K., Nojiri I., Reflection and diffraction Phenomena of Blast Wave Propagation in Nuclear Fuel Cycle Facility, JSME International Journal, Series B: Fluids and Thermal Engineering 47 (2), pp , [4] Mizukaki T., Takayama K., Experimental simulation of large-scale explosion using a micro-charge explosion (II) - Numerical study on shock waves propagation starting from detonation wave propagation in explosive, Science and Technology of Energetic Materials 66 (1), pp , [5] Mizukaki T., Miura A., Takayama K., Experimental simulation of largescale explosion using a micro-charge explosion (I) - Behaviour of shock waves in a complicated closed-space, Science and Technology of Energetic Materials 65 (5), pp , [6] Brossard J., Bailly P., Desrosier C., Renard J., Overpressure imposed by a blast wave, Progress in Astronautics and Aeronautics, Vol. 114, pp , [7] Trélat S., Sochet I., Autrusson B., Loiseau O., Cheval K., Strong explosion near a parallelepipedic structure, Shock Waves 16 (4-5), pp , [8] Kinney, Graham, Explosive Shocks in Air, Springer Verlag (1962) [9] Baker et al., Explosion Hazards and Evaluations, Elsevier (1983). [10] Dorofeev S.B., Fireballs from deflagration and detonation of heterogeneous fuel-rich clouds, Fire Safety Journal, 25, pp , 1995.

Impulsive loading on reinforced concrete slabs - blast loading function N. Duranovic & A.J. Watson Department of Civil and Structural Engineering,

Impulsive loading on reinforced concrete slabs - blast loading function N. Duranovic & A.J. Watson Department of Civil and Structural Engineering, Impulsive loading on reinforced concrete slabs - blast loading function N. Duranovic & A.J. Watson Department of Civil and Structural Engineering, University of Sheffield, UK ABSTRACT This paper describes

More information

Impact of a shock wave on a structure on explosion at altitude

Impact of a shock wave on a structure on explosion at altitude Impact of a shock wave on a structure on explosion at altitude Sophie Trelat, Isabelle Sochet, Bruno Autrusson, Karine Cheval, Olivier Loiseau To cite this version: Sophie Trelat, Isabelle Sochet, Bruno

More information

NUMERICAL SIMULATION OF HYDROGEN EXPLOSION TESTS WITH A BARRIER WALL FOR BLAST MITIGATION

NUMERICAL SIMULATION OF HYDROGEN EXPLOSION TESTS WITH A BARRIER WALL FOR BLAST MITIGATION NUMERICAL SIMULATION OF HYDROGEN EXPLOSION TESTS WITH A BARRIER WALL FOR BLAST MITIGATION NOZU, T. 1, TANAKA, R., OGAWA, T. 3, HIBI, K. 1 and SAKAI, Y. 4 1 Institute of Technology, Shimizu Corporation,

More information

Improving Safety Provisions of Structural Design of Containment Against External Explosion

Improving Safety Provisions of Structural Design of Containment Against External Explosion IAEA-CN-164-3P09 Improving Safety Provisions of Structural Design of Containment Against External Explosion Javed Iqbal Pakistan Atomic Energy Commission Saeed Ahmad University of Engineering & Technology,

More information

TESTS ON REINFORCED CONCRETE LOW-RISE SHEAR WALLS UNDER STATIC CYCLIC LOADING

TESTS ON REINFORCED CONCRETE LOW-RISE SHEAR WALLS UNDER STATIC CYCLIC LOADING 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No.257 TESTS ON REINFORCED CONCRETE LOW-RISE SHEAR WALLS UNDER STATIC CYCLIC LOADING Marc BOUCHON 1, Nebojsa

More information

Influence of a Dispersed Ignition in the Explosion of Two-Phase Mixtures

Influence of a Dispersed Ignition in the Explosion of Two-Phase Mixtures 25 th ICDERS August 2 7, 2015 Leeds, UK in the Explosion of Two-Phase Mixtures J.M. Pascaud Université d Orléans Laboratoire Prisme 63, avenue de Lattre de Tassigny 18020 BOURGES Cedex, France 1 Introduction

More information

Shock Wave Propagation due to Methane-Air Mixture Explosion and Effect on a Concrete Enclosure

Shock Wave Propagation due to Methane-Air Mixture Explosion and Effect on a Concrete Enclosure Shock Wave Propagation due to Methane-Air Mixture Explosion and Effect on a Concrete Enclosure Sharad Tripathi, T.C.Arun Murthy, Alain Hodin, K.Suresh, Anup Ghosh International Contents 1. Introduction

More information

Validation of LS-DYNA MMALE with Blast Experiments

Validation of LS-DYNA MMALE with Blast Experiments 12 th International LS-DYNA Users Conference Blast/Impact(3) Validation of LS-DYNA MMALE with Blast Experiments Yuli Huang and Michael R. Willford Arup, San Francisco, CA 94116 Leonard E. Schwer Schwer

More information

Influence of Different Parameters on the TNT-Equivalent of an Explosion

Influence of Different Parameters on the TNT-Equivalent of an Explosion Influence of Different Parameters on the TNT-Equivalent of an Explosion 53 Central European Journal of Energetic Materials, 2011, 8(1), 53-67 ISSN 1733-7178 Influence of Different Parameters on the TNT-Equivalent

More information

Seismic Sources. Seismic sources. Requirements; Principles; Onshore, offshore. Reading: Telford et al., Section 4.5 Sheriff and Geldart, Chapter 7

Seismic Sources. Seismic sources. Requirements; Principles; Onshore, offshore. Reading: Telford et al., Section 4.5 Sheriff and Geldart, Chapter 7 Seismic Sources Seismic sources Requirements; Principles; Onshore, offshore. Reading: Telford et al., Section 4.5 Sheriff and Geldart, Chapter 7 Seismic Source Localized region within which a sudden increase

More information

Impact of the volume of rooms on shock wave propagation within a multi-chamber system

Impact of the volume of rooms on shock wave propagation within a multi-chamber system Impact of the volume of rooms on shock wave propagation within a multi-chamber system Baptiste Julien, Isabelle Sochet, Thierry Vaillant To cite this version: Baptiste Julien, Isabelle Sochet, Thierry

More information

Protection of concrete slabs with granular material against explosive actions: Experimentation and modelling

Protection of concrete slabs with granular material against explosive actions: Experimentation and modelling Protection of concrete slabs with granular material against explosive actions: Experimentation and modelling Ricardo Ramos November 2017 Abstract Nowadays, the catastrophic effects of explosive actions

More information

Blast wave attenuation by lightly destructable granular materials

Blast wave attenuation by lightly destructable granular materials Blast wave attenuation by lightly destructable granular materials V.V. Golub 1, F.K. Lu 2, S.A. Medin 1, O.A. Mirova 1, A.N. Parshikov 1, V.A. Petukhov 1, and V.V. Volodin 1 1 Institute for High Energy

More information

CHAPTER 5 TNT EQUIVALENCE OF FIREWORKS

CHAPTER 5 TNT EQUIVALENCE OF FIREWORKS 109 CHAPTER 5 TNT EQUIVALENCE OF FIREWORKS 5.1 INTRODUCTION 5.1.1 Explosives and Fireworks Explosives are reactive substances that can release high amount of energy when initiated (Meyer 1987). Explosive

More information

A methodology for momentum flux measurements in two-phase blast flows

A methodology for momentum flux measurements in two-phase blast flows Computational Methods in Multiphase Flow IV 29 A methodology for momentum flux measurements in two-phase blast flows R. G. Ames 1 & M. J. Murphy 2 1 Naval Surface Warfare Center, Dahlgren Division, USA

More information

PHOTOINSTRUMENTATION FOR WARHEAD CHARACTERISATION. R. Campbell and C.R. Wilkinson

PHOTOINSTRUMENTATION FOR WARHEAD CHARACTERISATION. R. Campbell and C.R. Wilkinson WM42 XXXX 19th International Symposium of Ballistics, 7 11 May 2001, Interlaken, Switzerland PHOTOINSTRUMENTATION FOR WARHEAD CHARACTERISATION R. Campbell and C.R. Wilkinson Weapons System Division, Defence

More information

Effects of Closing Blocks on Hazard Areas

Effects of Closing Blocks on Hazard Areas Effects of Closing Blocks on Hazard Areas Jin Soo Choi, Jae Woon Ahn, Seong Won Cho, Yong Sung Jeon, Jong Hun Park, So-Yong Song Agency for Defense Development Taejon, Republic of Korea ABSTRACT A series

More information

MITIGATION OF VAPOUR CLOUD EXPLOSIONS BY CHEMICAL INHIBITION

MITIGATION OF VAPOUR CLOUD EXPLOSIONS BY CHEMICAL INHIBITION MITIGATION OF VAPOUR CLOUD EXPLOSIONS BY CHEMICAL INHIBITION Dirk Roosendans a, Pol Hoorelbeke b, Kees van Wingerden c a PhD Fellow, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Elsene, Belgium b Total,

More information

AE Source Orientation by Plate Wave Analysis * Michael R. Gorman Aeronautics and Astronautics Naval Postgraduate School Monterey, CA 93943

AE Source Orientation by Plate Wave Analysis * Michael R. Gorman Aeronautics and Astronautics Naval Postgraduate School Monterey, CA 93943 AE Source Orientation by Plate Wave Analysis * Michael R. Gorman Aeronautics and Astronautics Naval Postgraduate School Monterey, CA 93943 William H. Prosser NASA Langley Research Center Hampton, VA 23665

More information

Effects of Constrictions on Blast-Hazard Areas

Effects of Constrictions on Blast-Hazard Areas Effects of Constrictions on Blast-Hazard Areas So-young Song, Jae Woon Ahn, Jong Won Park Sang Hun. Baek, Soo Won Kim, Jun Wung Lee Agency for Defence Development Taejon, Republic of Korea ABSTRACT A series

More information

Integrated anti-terrorism physics-based modelling part 1: threats, loads and structural response

Integrated anti-terrorism physics-based modelling part 1: threats, loads and structural response Safety and Security Engineering II 509 Integrated anti-terrorism physics-based modelling part 1: threats, loads and structural response F. A. Maestas, J. L. Smith & L. A. Young Applied Research Associates,

More information

Air Blast and the Science of Dynamic High Amplitude Acoustic Pressure Measurements. 1

Air Blast and the Science of Dynamic High Amplitude Acoustic Pressure Measurements.   1 Air Blast and the Science of Dynamic High Amplitude Acoustic Pressure Measurements 1 Agenda Blast Pressure Summary Pencil Probe Design Pencil Probe Positioning Other Blast Pressure Sensors Microphones

More information

DYNAMIC LOAD ANALYSIS OF EXPLOSION IN INHOMOGENEOUS HYDROGEN-AIR

DYNAMIC LOAD ANALYSIS OF EXPLOSION IN INHOMOGENEOUS HYDROGEN-AIR DYNAMIC LOAD ANALYSIS OF EXPLOSION IN INHOMOGENEOUS HYDROGEN-AIR Bjerketvedt, D. 1, Vaagsaether, K. 1, and Rai, K. 1 1 Faculty of Technology, Natural Sciences and Maritime Sciences, University College

More information

Numerical simulation of air blast waves

Numerical simulation of air blast waves Numerical simulation of air blast waves M. Arrigoni, S. Kerampran, ENSTA Bretagne, France J.-B. Mouillet, Altair Engineering France B. Simoens, M. Lefebvre, S. Tuilard, Ecole Royal Militaire de Bruxelles,

More information

ALIGNMENT OF THE MSGC BARREL SUPPORT STRUCTURE

ALIGNMENT OF THE MSGC BARREL SUPPORT STRUCTURE ALIGNMENT OF THE MSGC BARREL SUPPORT STRUCTURE Kari Tammi*, Miikka Kotamäki*, Antti Onnela+, Tommi Vanhala* *HIP, Helsinki Institute of Physics, CERN/EP, CH-1211 GENEVA + CERN, European Laboratory for

More information

TRANSITION TO DETONATION IN NON-UNIFORM H2-AIR: CHEMICAL KINETICS OF SHOCK-INDUCED STRONG IGNITION

TRANSITION TO DETONATION IN NON-UNIFORM H2-AIR: CHEMICAL KINETICS OF SHOCK-INDUCED STRONG IGNITION TRANSITION TO DETONATION IN NON-UNIFORM H2-AIR: CHEMICAL KINETICS OF SHOCK-INDUCED STRONG IGNITION L.R. BOECK*, J. HASSLBERGER AND T. SATTELMAYER INSTITUTE OF THERMODYNAMICS, TU MUNICH *BOECK@TD.MW.TUM.DE

More information

Chemically-Augmented Pulsed Laser-Ramjet

Chemically-Augmented Pulsed Laser-Ramjet Chemically-Augmented Pulsed Laser-Ramjet IEPC-27-97 Presented at the 3 th International Electric Propulsion Conference, Florence, Italy Tomoki Kaneko * Hideyuki Horisawa Kazunobu Tamadao Department of

More information

PoS(idm2008)010. The PICASSO Dark Matter Search Project. A. Davour for the PICASSO collaboration Queen s University

PoS(idm2008)010. The PICASSO Dark Matter Search Project. A. Davour for the PICASSO collaboration Queen s University The PICASSO Dark Matter Search Project A. Davour for the PICASSO collaboration Queen s University E-mail: adavour@owl.phy.queensu.ca PICASSO is an array of bubble detectors constructed to search for spin

More information

Improved Consequence Modelling for Hypothetical Accidents in Fusion Power Plants

Improved Consequence Modelling for Hypothetical Accidents in Fusion Power Plants Improved Consequence Modelling for Hypothetical Accidents in Fusion Power Plants W. E. Han Euratom/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxfordshire, OX14 3DB, Tel.: +44 135 588 e-mail:

More information

Development of PC-Based Leak Detection System Using Acoustic Emission Technique

Development of PC-Based Leak Detection System Using Acoustic Emission Technique Key Engineering Materials Online: 004-08-5 ISSN: 66-9795, Vols. 70-7, pp 55-50 doi:0.408/www.scientific.net/kem.70-7.55 004 Trans Tech Publications, Switzerland Citation & Copyright (to be inserted by

More information

Directional Warhead Design Methodology for a Tailored Fragment Beam

Directional Warhead Design Methodology for a Tailored Fragment Beam Directional Warhead Design Methodology for a Tailored Fragment Beam 637 Central European Journal of Energetic Materials, 2015, 12(4), 637-649 ISSN 1733-7178 e-issn 2353-1843 Directional Warhead Design

More information

The Effects of Nuclear Weapons

The Effects of Nuclear Weapons The Effects of Nuclear Weapons Compiled and edited by Samuel Glasstone and Philip J. Dolan Third Edition Prepared and published by the UNITED STATES DEPARTMENT OF DEFENSE and the ENERGY RESEARCH AND DEVELOPMENT

More information

Modelling II ABSTRACT

Modelling II ABSTRACT 6th International Conference on NDE in Relation to Structural Integrity for Nuclear and Pressurized Components October 2007, Budapest, Hungary For more papers of this publication click: www.ndt.net/search/docs.php3?mainsource=70

More information

Excerpt from the Proceedings of the COMSOL Conference 2010 Boston

Excerpt from the Proceedings of the COMSOL Conference 2010 Boston Excerpt from the Proceedings of the COMSOL Conference 21 Boston Uncertainty Analysis, Verification and Validation of a Stress Concentration in a Cantilever Beam S. Kargar *, D.M. Bardot. University of

More information

SHOCK FOCUSING IN WATER IN A CONVERGENT CARBON FIBER COMPOSITE STRUCTURE

SHOCK FOCUSING IN WATER IN A CONVERGENT CARBON FIBER COMPOSITE STRUCTURE THE 19 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS SHOCK FOCUSING IN WATER IN A CONVERGENT CARBON FIBER COMPOSITE STRUCTURE C. Wang 1, V. Eliasson 2 * 1 Department of Physics, University of Southern

More information

Behavior of an impacted reinforced concrete slab: percussion and punching analysis

Behavior of an impacted reinforced concrete slab: percussion and punching analysis Behavior of an impacted reinforced concrete slab: percussion and punching analysis P. Perrotin 1, F. Delhomme 1,2, M. Mommessin 1 & J.-P. Mougin 1 1 Laboratory Design Optimisation and Environmental Engineering

More information

EXPLOSION MODELING AND DAMAGE ASSESSMENT SOFTWARE

EXPLOSION MODELING AND DAMAGE ASSESSMENT SOFTWARE EXPLOSION MODELING AND DAMAGE ASSESSMENT SOFTWARE Thomas G. Grosch Trinity Consultants, Inc. 12801 North Central Expressway, Suite 1200 Dallas, Texas 75243 USA tgrosch@trinityconsultants.com and Dr. Frank

More information

Severe, unconfined petrol vapour explosions

Severe, unconfined petrol vapour explosions Severe, unconfined petrol vapour explosions Graham Atkinson Health and Safety Laboratory Fire and Process Safety Unit Buncefield - Lessons for whom? Plant managers Safety managers Risk assessors Explosion

More information

Mixing and Combustion of Rich Fireballs

Mixing and Combustion of Rich Fireballs Mixing and Combustion of Rich Fireballs F. Pintgen and J. E. Shepherd Graduate Aeronautical Laboratories California Institute of Technology Pasadena, CA 91125 U.S.A. GALCIT Report FM23-4 October 14, 23

More information

New perspectives in X-ray detection of concealed illicit materials brought by CdTe/CdZnTe spectrometric detectors

New perspectives in X-ray detection of concealed illicit materials brought by CdTe/CdZnTe spectrometric detectors New perspectives in X-ray detection of concealed illicit materials brought by CdTe/CdZnTe spectrometric detectors Jean-Marc Dinten, Jean-Louis Amans, Loïck Verger, Olivier Peyret CEA-LETI, MINATEC, Recherche

More information

NUMERICAL SIMULATION OF BLAST RESISTANT STEEL PLATE STRENGTHENED WITH COMPOSITE

NUMERICAL SIMULATION OF BLAST RESISTANT STEEL PLATE STRENGTHENED WITH COMPOSITE Journal of KONES Powertrain and Transport, Vol. 18, No. 3 2011 NUMERICAL SIMULATION OF BLAST RESISTANT STEEL PLATE STRENGTHENED WITH COMPOSITE Krzysztof Kosiuczenko, Tadeusz Niezgoda, Wies aw Barnat, Robert

More information

Blast effects of external explosions

Blast effects of external explosions Author manuscript, published in "Eighth International Symposium on Hazards, Prevention, and Mitigation of Industrial Explosions, Yokohama : Japan (010)" Blast effects of external explosions I. Sochet Ecole

More information

SMALL-SCALE TESTING ON GROUND SHOCK PROPAGATION IN MIXED GEOLOGICAL MEDIA

SMALL-SCALE TESTING ON GROUND SHOCK PROPAGATION IN MIXED GEOLOGICAL MEDIA SMALL-SCALE TESTING ON GROUND SHOCK PROPAGATION IN MIXED GEOLOGICAL MEDIA Yingxin ZHOU and Karen O Y CHONG Lands & Estates Organization, Ministry of Defense, 1 Depot Road #12-05, Singapore 109679. Phone:

More information

Simulation of Piezoelectric Induced Lamb Waves in Plates

Simulation of Piezoelectric Induced Lamb Waves in Plates Simulation of Piezoelectric Induced Lamb Waves in Plates C. WILLBERG, J. M. VIVAR-PEREZ, Z. AHMAD and U. GABBERT ABSTRACT The use of Lamb waves for damage detection and non-destructive evaluation have

More information

Convergence study of 1 D CFD 1 cell size for shockwave parameters using Autodyn hydrocode

Convergence study of 1 D CFD 1 cell size for shockwave parameters using Autodyn hydrocode AAMS Vol. 12, No. 2 (2013) 213 220. Convergence study of 1 D CFD 1 cell size for shockwave parameters using Autodyn hydrocode OMÁN Zsolt 2 The use of CFD codes has become widespread to solve the shockwave

More information

Computational airblast modelling of commercial explosives

Computational airblast modelling of commercial explosives Structures Under Shock and Impact X 45 Computational airblast modelling of commercial explosives B. J. Zapata & D. C. Weggel Department of Civil and Environmental Engineering, UNC Charlotte, USA Abstract

More information

UNCERTAINTY ANALYSIS IN BURIED LANDMINE BLAST CHARACTERIZATION DRDC-RDDC-2016-N029

UNCERTAINTY ANALYSIS IN BURIED LANDMINE BLAST CHARACTERIZATION DRDC-RDDC-2016-N029 UNCERTAINTY ANALYSIS IN BURIED LANDMINE BLAST CHARACTERIZATION DRDC-RDDC-2016-N029 M. Ceh, T. Josey, W. Roberts Defence Research and Development Canada, Suffield Research Centre, PO Box 4000, Stn Main,

More information

Shock factor investigation in a 3-D finite element model under shock loading

Shock factor investigation in a 3-D finite element model under shock loading 10(2013) 941 952 Shock factor investigation in a 3-D finite element model under shock loading Abstract In this paper, a scaled 3D ship under shock loading is modeled and analyzed by finite element method.

More information

FEA modelling prediction of the transmitted overpressure and particle acceleration within a frame subjected to shock tube blast loadings

FEA modelling prediction of the transmitted overpressure and particle acceleration within a frame subjected to shock tube blast loadings 18 th World IMACS / MODSIM Congress, Cairns, Australia 13-17 July 2009 http://mssanz.org.au/modsim09 FEA modelling prediction of the transmitted overpressure and particle acceleration within a frame Tan,

More information

ABSTRACT INTRODUCTION

ABSTRACT INTRODUCTION A gauge for measurements of soil-structure interface force due to explosive loading H. Ilstad," T. B0rvik& & K.A. Malo" ^Department of Structural Engineering, The Norwegian Institute of Technology, N-7034

More information

Impact of Laser on Fine Structure by Using Object Oriented Programming

Impact of Laser on Fine Structure by Using Object Oriented Programming Impact of Laser on Fine Structure by Using Object Oriented Programming Author s Details: (1) Bashir Ahmed Malik-PhD Scholar, Department of Physics-Shah Abdul Latif University Khairpur Mirs Pro. (2) Dr.Qurban

More information

In Situ Triaxial Tests

In Situ Triaxial Tests Page No.: 1 More than 40 years have passed since, with all due urgency, STINI and MÜLLER pointed out the absolute necessity of conducting large-scale tests in engineering geology and rock mechanics. The

More information

RELIABILITY OF COMPOSITE STRUCTURES - IMPACT LOADING -

RELIABILITY OF COMPOSITE STRUCTURES - IMPACT LOADING - RELIABILITY OF COMPOSITE STRUCTURES - IMPACT LOADING - L.Guillaumat 1 1 LA.M.E.F.-E.N.S.A.M. Esplanade des Arts et Métiers 33405 Talence Cedex - FRANCE SUMMARY: This paper deals with a method to study

More information

Optimization of a car seat under impact load

Optimization of a car seat under impact load Structures Under Shock and Impact X 9 Optimization of a car seat under impact load F. J. Szabó Department of Machine Elements, University of Miskolc, Hungary Abstract The behaviour of the metal structure

More information

PROPERTY STUDY ON EMATS WITH VISUALIZATION OF ULTRASONIC PROPAGATION

PROPERTY STUDY ON EMATS WITH VISUALIZATION OF ULTRASONIC PROPAGATION More Info at Open Access Database www.ndt.net/?id=18576 PROPERTY STUDY ON EMATS WITH VISUALIZATION OF ULTRASONIC PROPAGATION T. Yamamoto, T. Furukawa, I. Komura Japan Power Engineering and Inspection Corporation,

More information

Numerical simulation on ground vibration caused by the demolition of a 200 m high chimney

Numerical simulation on ground vibration caused by the demolition of a 200 m high chimney Numerical simulation on ground vibration caused by the demolition of a 2 m high chimney Wenming Jiang 1, Feng Lin 2 Department of Structural Engineering, Tongji University, Shanghai, China 2 Corresponding

More information

Available online at ScienceDirect. Nuclear power plant explosions at Fukushima-Daiichi. Takashi Tsuruda*

Available online at   ScienceDirect. Nuclear power plant explosions at Fukushima-Daiichi. Takashi Tsuruda* Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 62 ( 2013 ) 71 77 The 9 th Asia-Oceania Symposium on Fire Science and Technology Nuclear power plant explosions at Fukushima-Daiichi

More information

SEISMIC PEAK PARTCILE VELOCITY AND ACCELERATION RESPONSE TO MINING FACES FIRING IN A LIGHT OF NUMERICAL MODELING AND UNDERGROUND MEASUREMENTS

SEISMIC PEAK PARTCILE VELOCITY AND ACCELERATION RESPONSE TO MINING FACES FIRING IN A LIGHT OF NUMERICAL MODELING AND UNDERGROUND MEASUREMENTS 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 Number of tremors SEISMIC PEAK PARTCILE VELOCITY AND ACCELERATION

More information

Fragmentation and Safety Distances

Fragmentation and Safety Distances Fragmentation and Safety Distances Examples MNGN 444 Spring 2016 Recommended Literature 1. Explosives Engineering - Paul W. Cooper. 2. Manual for the Prediction of Blast and Fragment Loadings in Structures

More information

EXPERIMENTS WITH RELEASE AND IGNITION OF HYDROGEN GAS IN A 3 M LONG CHANNEL

EXPERIMENTS WITH RELEASE AND IGNITION OF HYDROGEN GAS IN A 3 M LONG CHANNEL EXPERIMENTS WITH RELEASE AND IGNITION OF HYDROGEN GAS IN A 3 M LONG CHANNEL Sommersel, O. K. 1, Bjerketvedt, D. 1, Vaagsaether, K. 1, and Fannelop, T.K. 1, 2 1 Department of Technology, Telemark University

More information

DYNAMIC RESPONSE OF BOX-TYPE SONAR STRUCTURE. Sameer Abdul Azeez and O.R.Nandagopan

DYNAMIC RESPONSE OF BOX-TYPE SONAR STRUCTURE. Sameer Abdul Azeez and O.R.Nandagopan ICSV14 Cairns Australia 9-12 July, 2007 DYNAMIC RESPONSE OF BOX-TYPE SONAR STRUCTURE Sameer Abdul Azeez and O.R.Nandagopan Naval Physical & Oceanographic Laboratory, Kochi, India 682 021 tsonpol@vsnl.com

More information

Calculating Damage from Asteroid Impacts. H. J. Melosh Purdue University Planetary Defense Conference April 18, 2013

Calculating Damage from Asteroid Impacts. H. J. Melosh Purdue University Planetary Defense Conference April 18, 2013 Calculating Damage from Asteroid Impacts H. J. Melosh Purdue University Planetary Defense Conference April 18, 2013 Impact Effects can be divided into two basic categories: Local or Regional: Global: Thermal

More information

EA-10/14. EA Guidelines on the Calibration of Static Torque Measuring Devices. Publication Reference PURPOSE

EA-10/14. EA Guidelines on the Calibration of Static Torque Measuring Devices. Publication Reference PURPOSE Publication Reference EA-10/14 EA Guidelines on the Calibration of Static Torque Measuring Devices PURPOSE This document has been produced by EA to improve harmonisation in determining the calibration

More information

Discrete Element Modelling of a Reinforced Concrete Structure

Discrete Element Modelling of a Reinforced Concrete Structure Discrete Element Modelling of a Reinforced Concrete Structure S. Hentz, L. Daudeville, F.-V. Donzé Laboratoire Sols, Solides, Structures, Domaine Universitaire, BP 38041 Grenoble Cedex 9 France sebastian.hentz@inpg.fr

More information

Secondary Fragments from Accidental Explosions in Above Ground Ammunition Storage Houses at High Loading Densities

Secondary Fragments from Accidental Explosions in Above Ground Ammunition Storage Houses at High Loading Densities Secondary Fragments from Accidental Explosions in Above Ground Ammunition Storage Houses at High Loading Densities Contents Gerhard H. Guerke Fraunhofer-Institut füer Kurzzeitdynamik Ernst-Mach-Institut

More information

Axial Higher Order Modes Cluster (A-HOMC) Guided Wave for Pipe Inspection.

Axial Higher Order Modes Cluster (A-HOMC) Guided Wave for Pipe Inspection. 384 Proceedings of the National Seminar & Exhibition on Non-Destructive Evaluation NDE 2009, December 10-12, 2009 Axial Higher Order Modes Cluster (A-HOMC) Guided Wave for Pipe Inspection. Chandrasekaran

More information

Phased Array Inspection at Elevated Temperatures

Phased Array Inspection at Elevated Temperatures Phased Array Inspection at Elevated Temperatures Mohammad Marvasti 1, Mike Matheson 2, Michael Wright, Deepak Gurjar, Philippe Cyr, Steven Peters Eclipse Scientific Inc., 97 Randall Dr., Waterloo, Ontario,

More information

Probabilistic Safety Assessment and Reliability Engineering: Reactor Safety and Incomplete Information

Probabilistic Safety Assessment and Reliability Engineering: Reactor Safety and Incomplete Information Probabilistic Safety Assessment and Reliability Engineering: Reactor Safety and Incomplete Information B. BEAUZAMY SCM - Société de Calcul Mathématique, Faubourg Saint Honoré, 75008 Paris, France Tel :

More information

Modeling the Effects of Structural Ribs in Kevlar Laminates for Personnel Protection

Modeling the Effects of Structural Ribs in Kevlar Laminates for Personnel Protection Modeling the Effects of Structural Ribs in Kevlar Laminates for Personnel Protection Devon Downes 1, Manouchehr Nejad Ensan 1, James M. Sands 2, Kevin Williams 3, Amal Bouamoul 3 1 Institute for Aerospace

More information

INDEX. (The index refers to the continuous pagination)

INDEX. (The index refers to the continuous pagination) (The index refers to the continuous pagination) Accuracy in physical models methods for assessing overall assessment acquisition of information acrylonitrile hazards polymerisation toxic effects toxic

More information

Turbine Meter TRZ 03 PRODUCT INFORMATION. Reliable Measurement of Gas

Turbine Meter TRZ 03 PRODUCT INFORMATION. Reliable Measurement of Gas Turbine Meter TRZ 0 PRODUCT INFORMATION Reliable Measurement of Gas TURBINE METER TRZ 0 Method of operation, Construction Method of operation The TRZ 0 turbine meter is a flow meter suitable for gas measurement

More information

DEVELOPMENT OF DROP WEIGHT IMPACT TEST MACHINE

DEVELOPMENT OF DROP WEIGHT IMPACT TEST MACHINE CHAPTER-8 DEVELOPMENT OF DROP WEIGHT IMPACT TEST MACHINE 8.1 Introduction The behavior of materials is different when they are subjected to dynamic loading [9]. The testing of materials under dynamic conditions

More information

Deflagration Parameters of Stoichiometric Propane-air Mixture During the Initial Stage of Gaseous Explosions in Closed Vessels

Deflagration Parameters of Stoichiometric Propane-air Mixture During the Initial Stage of Gaseous Explosions in Closed Vessels Deflagration Parameters of Stoichiometric Propane-air Mixture During the Initial Stage of Gaseous Explosions in Closed Vessels VENERA BRINZEA 1, MARIA MITU 1, CODINA MOVILEANU 1, DOMNINA RAZUS 1 *, DUMITRU

More information

On-stream Inspection for High Temperature Hydrogen Attack

On-stream Inspection for High Temperature Hydrogen Attack ECNDT 2006 - Tu.3.8.4 On-stream Inspection for High Temperature Hydrogen Attack Alexandre BLEUZE, Michel CENCE, Delphine SCHWARTZ, Gilbert CHELMINIAK, METALSCAN, Saint-Rémy, France Abstract. An inspection

More information

Numerical Analysis of Steel Building Under blast Loading

Numerical Analysis of Steel Building Under blast Loading Numerical Analysis of Steel Building Under blast Loading Mohammad M. Abdallah 1, 1 College of Civil and Transportation Engineering,Hohai Univ., No. 1 Xikang Rd., Nanjing City, Jiangsu Province210098, China.

More information

A Simple Approximate Method for Predicting Impact Force History and Application to Pyroshock Simulation

A Simple Approximate Method for Predicting Impact Force History and Application to Pyroshock Simulation , July 4-6, 2018, London, U.K. A Simple Approximate Method for Predicting Impact Force History and Application to Pyroshock Simulation Mun-Guk Kim, In-Gul Kim, Eun-Su Go, Min-Hyeok Jeon, Min-Song Kang,

More information

Chapter 3. Experimentation and Data Acquisition

Chapter 3. Experimentation and Data Acquisition 48 Chapter 3 Experimentation and Data Acquisition In order to achieve the objectives set by the present investigation as mentioned in the Section 2.5, an experimental set-up has been fabricated by mounting

More information

Calibration and Experimental Validation of LS-DYNA Composite Material Models by Multi Objective Optimization Techniques

Calibration and Experimental Validation of LS-DYNA Composite Material Models by Multi Objective Optimization Techniques 9 th International LS-DYNA Users Conference Optimization Calibration and Experimental Validation of LS-DYNA Composite Material Models by Multi Objective Optimization Techniques Stefano Magistrali*, Marco

More information

Analysis of thermal effects in grouped silos of grain elevators

Analysis of thermal effects in grouped silos of grain elevators Int. Agrophysics, 2006, 20, 301-307 INTERNATIONAL Agrophysics www.ipan.lublin.pl/int-agrophysics Analysis of thermal effects in grouped silos of grain elevators A. apko and J.A. Prusiel* Institute of Civil

More information

About Some Features of a Magma Flow Structure at Explosive Volcano Eruptions

About Some Features of a Magma Flow Structure at Explosive Volcano Eruptions About Some Features of a Magma Flow Structure at Explosive Volcano Eruptions V. Kedrinskiy 1 Introduction The cyclic character of magma ejections is one of the basic aspects in the research field of the

More information

Simulation of sympathetic detonation by a CIP Eulerian code

Simulation of sympathetic detonation by a CIP Eulerian code Computational Ballistics II 107 Simulation of sympathetic detonation by a CIP Eulerian code S. Kubota 1, Z. Liu 2, T. Saburi 1, Y. Ogata 1 & M. Yoshida 1 1 Research Center for Explosion Safety, National

More information

Measurement of Sound Speed Following the Fluid Temperature Using Acoustic Inspection Device

Measurement of Sound Speed Following the Fluid Temperature Using Acoustic Inspection Device 207 Journal of the Korean Society for Nondestructive Testing Vol. 30, No. 3 (2010. 6) Measurement of Sound Speed Following the Fluid Temperature Using Acoustic Inspection Device E. S. Jeon*, W. T. Kim*,

More information

NUMERICAL AND EXPERIMENTAL STUDY OF FAILURE IN STEEL BEAMS UNDER IMPACT CONDITIONS

NUMERICAL AND EXPERIMENTAL STUDY OF FAILURE IN STEEL BEAMS UNDER IMPACT CONDITIONS Blucher Mechanical Engineering Proceedings May 2014, vol. 1, num. 1 www.proceedings.blucher.com.br/evento/10wccm NUMERICAL AND EXPERIMENTAL STUDY OF FAILURE IN STEEL BEAMS UNDER IMPACT CONDITIONS E. D.

More information

Simulation of dust explosions in spray dryers

Simulation of dust explosions in spray dryers Simulation of dust explosions in spray dryers Dr.-Ing. K. van Wingerden, Dipl. Ing. T. Skjold, Dipl. Ing. O. R. Hansen, GexCon AS, Bergen (N) and Dipl. Ing. R. Siwek, FireEx Consultant GmbH, Giebenach

More information

Contents. Preface... xvii

Contents. Preface... xvii Contents Preface... xvii CHAPTER 1 Idealized Flow Machines...1 1.1 Conservation Equations... 1 1.1.1 Conservation of mass... 2 1.1.2 Conservation of momentum... 3 1.1.3 Conservation of energy... 3 1.2

More information

Analysis of contact deformation between a coated flat plate and a sphere and its practical application

Analysis of contact deformation between a coated flat plate and a sphere and its practical application Computer Methods and Experimental Measurements for Surface Effects and Contact Mechanics VII 307 Analysis of contact deformation between a coated flat plate and a sphere and its practical application T.

More information

Vladimir Sobes 2, Luiz Leal 3, Andrej Trkov 4 and Matt Falk 5

Vladimir Sobes 2, Luiz Leal 3, Andrej Trkov 4 and Matt Falk 5 A Study of the Required Fidelity for the Representation of Angular Distributions of Elastic Scattering in the Resolved Resonance Region for Nuclear Criticality Safety Applications 1 Vladimir Sobes 2, Luiz

More information

AE 3051, Lab #16. Investigation of the Ideal Gas State Equation. By: George P. Burdell. Group E3

AE 3051, Lab #16. Investigation of the Ideal Gas State Equation. By: George P. Burdell. Group E3 AE 3051, Lab #16 Investigation of the Ideal Gas State Equation By: George P. Burdell Group E3 Summer Semester 000 Abstract The validity of the ideal gas equation of state was experimentally tested for

More information

HOMOGENEOUS ELECTRORHEOLOGICAL FLUIDS APPLIED TO VIBRATION CONTROL

HOMOGENEOUS ELECTRORHEOLOGICAL FLUIDS APPLIED TO VIBRATION CONTROL HOMOGENEOUS ELECTRORHEOLOGICAL FLUIDS APPLIED TO VIBRATION CONTROL A.K. El Wahed Division of Mechanical Engineering & Mechatronics, Faculty of Engineering and Physical Sciences, University of Dundee, Dundee.

More information

CONCRETE TECHNOLOGY LABORATORY

CONCRETE TECHNOLOGY LABORATORY CONCRETE TECHNOLOGY LABORATORY DEPARTMENT OF CIVIL ENGINEERING CHULALONGKORN UNIVERSITY Tested by... ID No.... Date... Graded by... TEST No. C-7 NON-DESTRUCTIVE TEST OF HARDENED CONCRETE Part A Pulse Velocity

More information

Characterization of Large Structures & Components

Characterization of Large Structures & Components Structures & Components KEY BENEFITS Key Drivers: Lack of good knowledge about the position, the identification and the radiological specification of contamination on or inside large components. Significant

More information

Primary Calibration of Shock Transducers Influence of the Laser Spot Position

Primary Calibration of Shock Transducers Influence of the Laser Spot Position Primary Calibration of Shock Transducers Influence of the Laser Spot Position Dr. Martin Brucke, Philipp Begoff, Michael Mende, Frank Schulz Introduction Shock Exciters according to ISO 16063-13 (1) 1.

More information

Understanding uncertainties associated with the 5128A RHapid-Cal Humidity Generator

Understanding uncertainties associated with the 5128A RHapid-Cal Humidity Generator Understanding uncertainties associated with the 5128A RHapid-Cal Humidity Generator Technical Note The Fluke Calibration 5128A RHapid-Cal Humidity Generator provides a portable, stable test environment

More information

Study of Rupture Directivity in a Foam Rubber Physical Model

Study of Rupture Directivity in a Foam Rubber Physical Model Progress Report Task 1D01 Study of Rupture Directivity in a Foam Rubber Physical Model Rasool Anooshehpoor and James N. Brune University of Nevada, Reno Seismological Laboratory (MS/174) Reno, Nevada 89557-0141

More information

MAGNETIC FLUX LEAKAGE INVESTIGATION OF INTERACTING DEFECTS: COMPETITIVE EFFECTS OF STRESS CONCENTRATION AND MAGNETIC SHIELDING

MAGNETIC FLUX LEAKAGE INVESTIGATION OF INTERACTING DEFECTS: COMPETITIVE EFFECTS OF STRESS CONCENTRATION AND MAGNETIC SHIELDING MAGNETIC FLUX LEAKAGE INVESTIGATION OF INTERACTING DEFECTS: COMPETITIVE EFFECTS OF STRESS CONCENTRATION AND MAGNETIC SHIELDING C Mandache 1,2 and L Clapham 1 1 Queen s University, Kingston, Ontario, K7L

More information

STRUCTURAL ANALYSIS OF THE LIFTING DEVICE DETECTOR SUPPORTS FOR THE LHCb VERTEX LOCATOR (VELO)

STRUCTURAL ANALYSIS OF THE LIFTING DEVICE DETECTOR SUPPORTS FOR THE LHCb VERTEX LOCATOR (VELO) National Institute for Nuclear Physics and High Energy Physics Kruislaan 409 1098 SJ Amsterdam The Netherlands NIKHEF Reference no.: MT-VELO 04-2 EDMS no: 466608 OF THE LIFTING DEVICE DETECTOR SUPPORTS

More information

VIBRATION MEASUREMENT OF TSING MA BRIDGE DECK UNITS DURING ERECTION

VIBRATION MEASUREMENT OF TSING MA BRIDGE DECK UNITS DURING ERECTION VIBRATION MEASUREMENT OF TSING MA BRIDGE DECK UNITS DURING ERECTION Tommy CHAN Assistant Professor The Polytechnic University Ching Kwong LAU Deputy Director Highways Dept., Government Jan Ming KO Chair

More information

Code Strategy for Simulating Severe Accident Scenario

Code Strategy for Simulating Severe Accident Scenario Code Strategy for Simulating Severe Accident Scenario C. SUTEAU, F. SERRE, J.-M; RUGGIERI, F. BERTRAND -CEA- March 4-7, 2013, Paris, France christophe.suteau@cea.fr OULINES INTRODUCTION AND CONTEXT REFERENCE

More information

REPRESENTATIVE MECHANICAL SHOCK TESTING FOR SATELLITE ELECTRONIC UNITS

REPRESENTATIVE MECHANICAL SHOCK TESTING FOR SATELLITE ELECTRONIC UNITS REPRESENTATIVE MECHANICAL SHOCK TESTING FOR SATELLITE ELECTRONIC UNITS B. Brévart, J. Poirier, S. Behar-Lafenêtre, N. Girault THALES ALENIA SPACE FRANCE 2 nd Workshop on Spacecraft Shock Environment and

More information

ON SOUND POWER MEASUREMENT OF THE ENGINE IN ANECHOIC ROOM WITH IMPERFECTIONS

ON SOUND POWER MEASUREMENT OF THE ENGINE IN ANECHOIC ROOM WITH IMPERFECTIONS ON SOUND POWER MEASUREMENT OF THE ENGINE IN ANECHOIC ROOM WITH IMPERFECTIONS Mehdi Mehrgou 1, Ola Jönsson 2, and Leping Feng 3 1 AVL List Gmbh., Hans-list-platz 1,8020, Graz, Austria 2 Scania CV AB, Södertälje,

More information