Finding Limits of Multiscale SPDEs

Size: px
Start display at page:

Download "Finding Limits of Multiscale SPDEs"

Transcription

1 Finding Limits of Multiscale SPDEs David Kelly Martin Hairer Mathematics Institute University of Warwick Coventry UK CV4 7AL November 3, 213 Multiscale Systems, Warwick David Kelly (Warwick) Multiscale SPDEs November 3, / 1

2 A Classic Result Let X ε satisfy the SDE dx ε (t) = 1 ε b(x ε/ε)dt + σ(x ε /ε)db(t) with b, σ being periodic C 2 functions and X ε taking values on S 1. Eg. Take σ = 1, b = V ( ). Then the SDE described a gradient flow over the highly oscillatory potential V ( /ε). David Kelly (Warwick) Multiscale SPDEs November 3, / 1

3 A Classic Result Let X ε satisfy the SDE dx ε (t) = 1 ε b(x ε/ε)dt + σ(x ε /ε)db(t) with b, σ being periodic C 2 functions and X ε taking values on S 1. Eg. Take σ = 1, b = V ( ). Then the SDE described a gradient flow over the highly oscillatory potential V ( /ε). If σ is strictly positive and b/σ 2 dx = then X ε c X where X is a BM and c > is some constant determined by b and σ. David Kelly (Warwick) Multiscale SPDEs November 3, / 1

4 Homogenization of PDEs If we denote the generator of X ε as L ε = 1 ε b(x/ε) x σ2 (x/ε) x 2 where x S 1. We can use the classic result to homogenize PDEs t u ε = L ε u ε t u = c x 2 u u ε () = g u() = g since u ε (t) = E[g(X ε (t))]. David Kelly (Warwick) Multiscale SPDEs November 3, / 1

5 Homogenization of PDEs If we denote the generator of X ε as L ε = 1 ε b(x/ε) x σ2 (x/ε) 2 x where x S 1. We can use the classic result to homogenize PDEs t u ε = L ε u ε t u = c 2 x u u ε () = g u() = g since u ε (t) = E[g(X ε (t))]. We can also add a forcing term t u ε = L ε u ε + f t u = c 2 x u + f u ε () = g u() = g since u ε (t) = E[g(X ε (t))] + E[f (X ε(t s), s)]ds. This works provided f = f (x, t) is nice enough. David Kelly (Warwick) Multiscale SPDEs November 3, / 1

6 Homogenization of SPDEs We try to find a limit to du ε (t) = L ε u ε (t)dt + Q 1/2 dw (t) u ε () = where dw dt is space-time white noise and Q 1/2 is a positive, bounded linear operator with Q 1/2 e ikx = λ k e ikx with λ k. Hence, we can also write du ε (t) = L ε u ε (t)dt + λ k e ikx dw k (t) k Z where W k are complex BMs with W k = W k and otherwise independent. David Kelly (Warwick) Multiscale SPDEs November 3, / 1

7 First Result Theorem (Compact Q) If λ k and u satisfies then for any s > 3/4. du(t) = c 2 x u(t)dt + Q 1/2 dw (t), E sup u ε (t) u(t) 2 H s as ε, t [,T ] If we know λ k k α for some α > then we can improve to s > (3/4 3α/2). David Kelly (Warwick) Multiscale SPDEs November 3, / 1

8 Second Result Theorem (Bounded Q) If λ k λ and û satisfies dû(t) = c 2 x û(t)dt + k ( λk 2 + λ 2 ( ρ 2 1) ) 1/2 e ikx dŵ k (t) for some new sequence of BMs Ŵ k and ρ satisfies L ρ = with ρ, 1 = 1. dist Then there exists a sequence of processes û ε = u ε such that for any s > 1. E sup û ε (t) û(t) 2 H s as ε, t [,T ] eg. For STWN, dû = c 2 x ûdt + ρ dŵ David Kelly (Warwick) Multiscale SPDEs November 3, / 1

9 Sketch of Proof We use the following interpolation strategy E u ε (t) u(t) 2 H s = for some β (, 1). For the high modes m <ε β E u ε (t) u(t), e imx 2 (1 + m 2 ) s + m ε β E u ε (t) u(t), e imx 2 (1 + m 2 ) s m ε β E u ε (t) u(t), e imx 2 (1+m 2 ) s ε 2βs ( E uε (t) 2 + E u(t) 2). If E u ε (t) 2 doesn t blow up too much, then we need only worry about the low modes. David Kelly (Warwick) Multiscale SPDEs November 3, / 1

10 Sketch of Proof We have a mild solution given by u ε (t) = k λ k S ε (t s)e ikx dw k (s) where S ε is the semigroup generated by L ε. David Kelly (Warwick) Multiscale SPDEs November 3, / 1

11 Sketch of Proof We have a mild solution given by u ε (t) = k λ k S ε (t s)e ikx dw k (s) where S ε is the semigroup generated by L ε. We take m < ε β and try to approximate u ε, e imx = k λ k S ε (t s)e ikx, e imx dw k (s) This can be approximated using (a quantitative version of) our classical result S ε (t s)e ikx = e ikx k2 (t s) + O(εk) David Kelly (Warwick) Multiscale SPDEs November 3, / 1

12 We have that u ε (t), e imx = λ m e m2 (t s) dw m (s) + λ k Rε k (t s), e imx dw k k = u, e imx + λ k Rε k (t s), e imx dw k (s) k Estimates for Rε k get bad when k ε 1, so this only works if λ k k 1/2. David Kelly (Warwick) Multiscale SPDEs November 3, / 1

13 We have that u ε (t), e imx = λ m e m2 (t s) dw m (s) + λ k Rε k (t s), e imx dw k k = u, e imx + λ k Rε k (t s), e imx dw k (s) k Estimates for R k ε get bad when k ε 1, so this only works if λ k k 1/2. A better approach is to use the adjoint semigroup u ε (t), e imx = k λ k e ikx, Sε (t s)e imx dw k (s) With the adjoint classical result S ε (t s)e imx = ρ(x/ε)e imx m2 (t s) + O(εm) David Kelly (Warwick) Multiscale SPDEs November 3, / 1

14 We have u ε (t), e imx = k λ k e ikx, ρ(x/ε)e imx e m2 (t s) dw k (s) + R Since ε 1 N, only terms with k = m + p/ε for any p Z will remain. David Kelly (Warwick) Multiscale SPDEs November 3, / 1

15 We have u ε (t), e imx = k λ k e ikx, ρ(x/ε)e imx e m2 (t s) dw k (s) + R Since ε 1 N, only terms with k = m + p/ε for any p Z will remain. We have λ m+p/ε ρ, e ipx e m2 (t s) dw m+p/ε (s) p and isolating the first term λ m e m2 (t s) dw m (s) + λ m+p/ε ρ, e ipx e m2 (t s) dw m+p/ε (s) p If λ k, this proves the result for Q compact. David Kelly (Warwick) Multiscale SPDEs November 3, / 1

16 If λ k λ, then these extra terms no longer vanish. We have that λ m+p/ε ρ, e ipx e m2 (t s) dw m+p/ε (s) is equal in distribution to p ( ) 1/2 λ m+p/ε 2 ρ, e ipx 2 e m2 (t s) dŵ m (s) p ( λ m 2 + λ 2 ( ρ 2 1) ) 1/2 This proves the result for Q bounded. e m2 (t s) dŵm(s) David Kelly (Warwick) Multiscale SPDEs November 3, / 1

17 Ergodic Properties If µ ε and µ are (respectively) the invariant measures of the original and limiting SPDEs then we can show that under the H s Wasserstein metric. µ ε µ as ε David Kelly (Warwick) Multiscale SPDEs November 3, / 1

18 Extensions Similar results hold for all SPDEs of the form du ε (t) = L ε u ε (t)dt + k q k (x/ε)e ikx dw k (t) for C 1 periodic functions q k. This is the structure possessed by noise that is cell-translation invariant. i.e. The law of the noise is invariant if you shift it by a cell. David Kelly (Warwick) Multiscale SPDEs November 3, / 1

19 Extensions Similar results hold for all SPDEs of the form du ε (t) = L ε u ε (t)dt + k q k (x/ε)e ikx dw k (t) for C 1 periodic functions q k. This is the structure possessed by noise that is cell-translation invariant. i.e. The law of the noise is invariant if you shift it by a cell. Thank You! David Kelly (Warwick) Multiscale SPDEs November 3, / 1

Homogenization for chaotic dynamical systems

Homogenization for chaotic dynamical systems Homogenization for chaotic dynamical systems David Kelly Ian Melbourne Department of Mathematics / Renci UNC Chapel Hill Mathematics Institute University of Warwick November 3, 2013 Duke/UNC Probability

More information

Fast-slow systems with chaotic noise

Fast-slow systems with chaotic noise Fast-slow systems with chaotic noise David Kelly Ian Melbourne Courant Institute New York University New York NY www.dtbkelly.com May 12, 215 Averaging and homogenization workshop, Luminy. Fast-slow systems

More information

Fast-slow systems with chaotic noise

Fast-slow systems with chaotic noise Fast-slow systems with chaotic noise David Kelly Ian Melbourne Courant Institute New York University New York NY www.dtbkelly.com May 1, 216 Statistical properties of dynamical systems, ESI Vienna. David

More information

Weak Feller Property and Invariant Measures

Weak Feller Property and Invariant Measures Weak Feller Property and Invariant Measures Martin Ondreját, J. Seidler, Z. Brzeźniak Institute of Information Theory and Automation Academy of Sciences Prague September 11, 2012 Outline 2010: Stochastic

More information

Large deviations and averaging for systems of slow fast stochastic reaction diffusion equations.

Large deviations and averaging for systems of slow fast stochastic reaction diffusion equations. Large deviations and averaging for systems of slow fast stochastic reaction diffusion equations. Wenqing Hu. 1 (Joint work with Michael Salins 2, Konstantinos Spiliopoulos 3.) 1. Department of Mathematics

More information

Rough Burgers-like equations with multiplicative noise

Rough Burgers-like equations with multiplicative noise Rough Burgers-like equations with multiplicative noise Martin Hairer Hendrik Weber Mathematics Institute University of Warwick Bielefeld, 3.11.21 Burgers-like equation Aim: Existence/Uniqueness for du

More information

Introduction to Random Diffusions

Introduction to Random Diffusions Introduction to Random Diffusions The main reason to study random diffusions is that this class of processes combines two key features of modern probability theory. On the one hand they are semi-martingales

More information

Some Topics in Stochastic Partial Differential Equations

Some Topics in Stochastic Partial Differential Equations Some Topics in Stochastic Partial Differential Equations November 26, 2015 L Héritage de Kiyosi Itô en perspective Franco-Japonaise, Ambassade de France au Japon Plan of talk 1 Itô s SPDE 2 TDGL equation

More information

Mean-field SDE driven by a fractional BM. A related stochastic control problem

Mean-field SDE driven by a fractional BM. A related stochastic control problem Mean-field SDE driven by a fractional BM. A related stochastic control problem Rainer Buckdahn, Université de Bretagne Occidentale, Brest Durham Symposium on Stochastic Analysis, July 1th to July 2th,

More information

What do we know about EnKF?

What do we know about EnKF? What do we know about EnKF? David Kelly Kody Law Andrew Stuart Andrew Majda Xin Tong Courant Institute New York University New York, NY April 10, 2015 CAOS seminar, Courant. David Kelly (NYU) EnKF April

More information

Large Deviations Principles for McKean-Vlasov SDEs, Skeletons, Supports and the law of iterated logarithm

Large Deviations Principles for McKean-Vlasov SDEs, Skeletons, Supports and the law of iterated logarithm Large Deviations Principles for McKean-Vlasov SDEs, Skeletons, Supports and the law of iterated logarithm Gonçalo dos Reis University of Edinburgh (UK) & CMA/FCT/UNL (PT) jointly with: W. Salkeld, U. of

More information

Analysis of SPDEs Arising in Path Sampling Part I: The Gaussian Case

Analysis of SPDEs Arising in Path Sampling Part I: The Gaussian Case Analysis of SPDEs Arising in Path Sampling Part I: The Gaussian Case September 2, 2005 M. Hairer 1, A. M. Stuart 1, J. Voss 1,2, and P. Wiberg 1,3 1 Mathematics Institute, The University of Warwick, Coventry

More information

Stochastic Modelling in Climate Science

Stochastic Modelling in Climate Science Stochastic Modelling in Climate Science David Kelly Mathematics Department UNC Chapel Hill dtbkelly@gmail.com November 16, 2013 David Kelly (UNC) Stochastic Climate November 16, 2013 1 / 36 Why use stochastic

More information

Hypoelliptic multiscale Langevin diffusions and Slow fast stochastic reaction diffusion equations.

Hypoelliptic multiscale Langevin diffusions and Slow fast stochastic reaction diffusion equations. Hypoelliptic multiscale Langevin diffusions and Slow fast stochastic reaction diffusion equations. Wenqing Hu. 1 (Joint works with Michael Salins 2 and Konstantinos Spiliopoulos 3.) 1. Department of Mathematics

More information

Strong uniqueness for stochastic evolution equations with possibly unbounded measurable drift term

Strong uniqueness for stochastic evolution equations with possibly unbounded measurable drift term 1 Strong uniqueness for stochastic evolution equations with possibly unbounded measurable drift term Enrico Priola Torino (Italy) Joint work with G. Da Prato, F. Flandoli and M. Röckner Stochastic Processes

More information

Zdzislaw Brzeźniak. Department of Mathematics University of York. joint works with Mauro Mariani (Roma 1) and Gaurav Dhariwal (York)

Zdzislaw Brzeźniak. Department of Mathematics University of York. joint works with Mauro Mariani (Roma 1) and Gaurav Dhariwal (York) Navier-Stokes equations with constrained L 2 energy of the solution Zdzislaw Brzeźniak Department of Mathematics University of York joint works with Mauro Mariani (Roma 1) and Gaurav Dhariwal (York) Stochastic

More information

Interest Rate Models:

Interest Rate Models: 1/17 Interest Rate Models: from Parametric Statistics to Infinite Dimensional Stochastic Analysis René Carmona Bendheim Center for Finance ORFE & PACM, Princeton University email: rcarmna@princeton.edu

More information

Improved diffusion Monte Carlo

Improved diffusion Monte Carlo Improved diffusion Monte Carlo Jonathan Weare University of Chicago with Martin Hairer (U of Warwick) October 4, 2012 Diffusion Monte Carlo The original motivation for DMC was to compute averages with

More information

Intertwinings for Markov processes

Intertwinings for Markov processes Intertwinings for Markov processes Aldéric Joulin - University of Toulouse Joint work with : Michel Bonnefont - Univ. Bordeaux Workshop 2 Piecewise Deterministic Markov Processes ennes - May 15-17, 2013

More information

LAN property for sde s with additive fractional noise and continuous time observation

LAN property for sde s with additive fractional noise and continuous time observation LAN property for sde s with additive fractional noise and continuous time observation Eulalia Nualart (Universitat Pompeu Fabra, Barcelona) joint work with Samy Tindel (Purdue University) Vlad s 6th birthday,

More information

Walsh Diffusions. Andrey Sarantsev. March 27, University of California, Santa Barbara. Andrey Sarantsev University of Washington, Seattle 1 / 1

Walsh Diffusions. Andrey Sarantsev. March 27, University of California, Santa Barbara. Andrey Sarantsev University of Washington, Seattle 1 / 1 Walsh Diffusions Andrey Sarantsev University of California, Santa Barbara March 27, 2017 Andrey Sarantsev University of Washington, Seattle 1 / 1 Walsh Brownian Motion on R d Spinning measure µ: probability

More information

Zdzislaw Brzeźniak. Department of Mathematics University of York. joint works with Mauro Mariani (Roma 1) and Gaurav Dhariwal (York)

Zdzislaw Brzeźniak. Department of Mathematics University of York. joint works with Mauro Mariani (Roma 1) and Gaurav Dhariwal (York) Navier-Stokes equations with constrained L 2 energy of the solution Zdzislaw Brzeźniak Department of Mathematics University of York joint works with Mauro Mariani (Roma 1) and Gaurav Dhariwal (York) LMS

More information

Weak Convergence of Numerical Methods for Dynamical Systems and Optimal Control, and a relation with Large Deviations for Stochastic Equations

Weak Convergence of Numerical Methods for Dynamical Systems and Optimal Control, and a relation with Large Deviations for Stochastic Equations Weak Convergence of Numerical Methods for Dynamical Systems and, and a relation with Large Deviations for Stochastic Equations Mattias Sandberg KTH CSC 2010-10-21 Outline The error representation for weak

More information

ORNSTEIN-UHLENBECK PROCESSES ON LIE GROUPS

ORNSTEIN-UHLENBECK PROCESSES ON LIE GROUPS ORNSTEIN-UHLENBECK PROCESSES ON LIE ROUPS FABRICE BAUDOIN, MARTIN HAIRER, JOSEF TEICHMANN Abstract. We consider Ornstein-Uhlenbeck processes (OU-processes related to hypoelliptic diffusion on finite-dimensional

More information

Applications of the periodic unfolding method to multi-scale problems

Applications of the periodic unfolding method to multi-scale problems Applications of the periodic unfolding method to multi-scale problems Doina Cioranescu Université Paris VI Santiago de Compostela December 14, 2009 Periodic unfolding method and multi-scale problems 1/56

More information

Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio ( )

Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio ( ) Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio (2014-2015) Etienne Tanré - Olivier Faugeras INRIA - Team Tosca November 26th, 2014 E. Tanré (INRIA - Team Tosca) Mathematical

More information

Random and Deterministic perturbations of dynamical systems. Leonid Koralov

Random and Deterministic perturbations of dynamical systems. Leonid Koralov Random and Deterministic perturbations of dynamical systems Leonid Koralov - M. Freidlin, L. Koralov Metastability for Nonlinear Random Perturbations of Dynamical Systems, Stochastic Processes and Applications

More information

On some relations between Optimal Transport and Stochastic Geometric Mechanics

On some relations between Optimal Transport and Stochastic Geometric Mechanics Title On some relations between Optimal Transport and Stochastic Geometric Mechanics Banff, December 218 Ana Bela Cruzeiro Dep. Mathematics IST and Grupo de Física-Matemática Univ. Lisboa 1 / 2 Title Based

More information

Stochastic Differential Equations

Stochastic Differential Equations Chapter 5 Stochastic Differential Equations We would like to introduce stochastic ODE s without going first through the machinery of stochastic integrals. 5.1 Itô Integrals and Itô Differential Equations

More information

The Schrödinger equation with spatial white noise potential

The Schrödinger equation with spatial white noise potential The Schrödinger equation with spatial white noise potential Arnaud Debussche IRMAR, ENS Rennes, UBL, CNRS Hendrik Weber University of Warwick Abstract We consider the linear and nonlinear Schrödinger equation

More information

The dynamical Sine-Gordon equation

The dynamical Sine-Gordon equation The dynamical Sine-Gordon equation Hao Shen (University of Warwick) Joint work with Martin Hairer October 9, 2014 Dynamical Sine-Gordon Equation Space dimension d = 2. Equation depends on parameter >0.

More information

ODE Final exam - Solutions

ODE Final exam - Solutions ODE Final exam - Solutions May 3, 018 1 Computational questions (30 For all the following ODE s with given initial condition, find the expression of the solution as a function of the time variable t You

More information

Exact Simulation of Multivariate Itô Diffusions

Exact Simulation of Multivariate Itô Diffusions Exact Simulation of Multivariate Itô Diffusions Jose Blanchet Joint work with Fan Zhang Columbia and Stanford July 7, 2017 Jose Blanchet (Columbia/Stanford) Exact Simulation of Diffusions July 7, 2017

More information

Hypothesis testing for Stochastic PDEs. Igor Cialenco

Hypothesis testing for Stochastic PDEs. Igor Cialenco Hypothesis testing for Stochastic PDEs Igor Cialenco Department of Applied Mathematics Illinois Institute of Technology igor@math.iit.edu Joint work with Liaosha Xu Research partially funded by NSF grants

More information

Paracontrolled KPZ equation

Paracontrolled KPZ equation Paracontrolled KPZ equation Nicolas Perkowski Humboldt Universität zu Berlin November 6th, 2015 Eighth Workshop on RDS Bielefeld Joint work with Massimiliano Gubinelli Nicolas Perkowski Paracontrolled

More information

Sharp estimates on metastable lifetimes for one- and two-dimensional Allen Cahn SPDEs

Sharp estimates on metastable lifetimes for one- and two-dimensional Allen Cahn SPDEs Nils Berglund nils.berglund@univ-orleans.fr http://www.univ-orleans.fr/mapmo/membres/berglund/ COSMOS Workshop, École des Ponts ParisTech Sharp estimates on metastable lifetimes for one- and two-dimensional

More information

Large Deviations from the Hydrodynamic Limit for a System with Nearest Neighbor Interactions

Large Deviations from the Hydrodynamic Limit for a System with Nearest Neighbor Interactions Large Deviations from the Hydrodynamic Limit for a System with Nearest Neighbor Interactions Amarjit Budhiraja Department of Statistics & Operations Research University of North Carolina at Chapel Hill

More information

Chapter 7 The Time-Dependent Navier-Stokes Equations Turbulent Flows

Chapter 7 The Time-Dependent Navier-Stokes Equations Turbulent Flows Chapter 7 The Time-Dependent Navier-Stokes Equations Turbulent Flows Remark 7.1. Turbulent flows. The usually used model for turbulent incompressible flows are the incompressible Navier Stokes equations

More information

SPDEs, criticality, and renormalisation

SPDEs, criticality, and renormalisation SPDEs, criticality, and renormalisation Hendrik Weber Mathematics Institute University of Warwick Potsdam, 06.11.2013 An interesting model from Physics I Ising model Spin configurations: Energy: Inverse

More information

LYAPUNOV EXPONENTS AND STABILITY FOR THE STOCHASTIC DUFFING-VAN DER POL OSCILLATOR

LYAPUNOV EXPONENTS AND STABILITY FOR THE STOCHASTIC DUFFING-VAN DER POL OSCILLATOR LYAPUNOV EXPONENTS AND STABILITY FOR THE STOCHASTIC DUFFING-VAN DER POL OSCILLATOR Peter H. Baxendale Department of Mathematics University of Southern California Los Angeles, CA 90089-3 USA baxendal@math.usc.edu

More information

Quasi-invariant Measures on Path Space. Denis Bell University of North Florida

Quasi-invariant Measures on Path Space. Denis Bell University of North Florida Quasi-invariant Measures on Path Space Denis Bell University of North Florida Transformation of measure under the flow of a vector field Let E be a vector space (or a manifold), equipped with a finite

More information

Large subsets of semigroups

Large subsets of semigroups CHAPTER 8 Large subsets of semigroups In the van der Waerden theorem 7.5, we are given a finite colouring ω = A 1 A r of the commutative semigroup (ω, +); the remark 7.7(b) states that (at least) one of

More information

EnKF and filter divergence

EnKF and filter divergence EnKF and filter divergence David Kelly Andrew Stuart Kody Law Courant Institute New York University New York, NY dtbkelly.com December 12, 2014 Applied and computational mathematics seminar, NIST. David

More information

Metastability for interacting particles in double-well potentials and Allen Cahn SPDEs

Metastability for interacting particles in double-well potentials and Allen Cahn SPDEs Nils Berglund nils.berglund@univ-orleans.fr http://www.univ-orleans.fr/mapmo/membres/berglund/ SPA 2017 Contributed Session: Interacting particle systems Metastability for interacting particles in double-well

More information

Introduction to multiscale modeling and simulation. Explicit methods for ODEs : forward Euler. y n+1 = y n + tf(y n ) dy dt = f(y), y(0) = y 0

Introduction to multiscale modeling and simulation. Explicit methods for ODEs : forward Euler. y n+1 = y n + tf(y n ) dy dt = f(y), y(0) = y 0 Introduction to multiscale modeling and simulation Lecture 5 Numerical methods for ODEs, SDEs and PDEs The need for multiscale methods Two generic frameworks for multiscale computation Explicit methods

More information

Calculus of Variations. Final Examination

Calculus of Variations. Final Examination Université Paris-Saclay M AMS and Optimization January 18th, 018 Calculus of Variations Final Examination Duration : 3h ; all kind of paper documents (notes, books...) are authorized. The total score of

More information

Regularity of Stochastic Partial Differential Equations in Besov Spaces Related to Adaptive Schemes

Regularity of Stochastic Partial Differential Equations in Besov Spaces Related to Adaptive Schemes Regularity of Stochastic Partial Differential Equations in Besov Spaces Related to Adaptive Schemes Petru A. Cioica Philipps-Universität Marburg Workshop on New Discretization Methods for the Numerical

More information

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS PROBABILITY: LIMIT THEOREMS II, SPRING 218. HOMEWORK PROBLEMS PROF. YURI BAKHTIN Instructions. You are allowed to work on solutions in groups, but you are required to write up solutions on your own. Please

More information

Minimal periods of semilinear evolution equations with Lipschitz nonlinearity

Minimal periods of semilinear evolution equations with Lipschitz nonlinearity Minimal periods of semilinear evolution equations with Lipschitz nonlinearity James C. Robinson a Alejandro Vidal-López b a Mathematics Institute, University of Warwick, Coventry, CV4 7AL, U.K. b Departamento

More information

Continuous dependence estimates for the ergodic problem with an application to homogenization

Continuous dependence estimates for the ergodic problem with an application to homogenization Continuous dependence estimates for the ergodic problem with an application to homogenization Claudio Marchi Bayreuth, September 12 th, 2013 C. Marchi (Università di Padova) Continuous dependence Bayreuth,

More information

Ergodicity in data assimilation methods

Ergodicity in data assimilation methods Ergodicity in data assimilation methods David Kelly Andy Majda Xin Tong Courant Institute New York University New York NY www.dtbkelly.com April 15, 2016 ETH Zurich David Kelly (CIMS) Data assimilation

More information

Neighboring feasible trajectories in infinite dimension

Neighboring feasible trajectories in infinite dimension Neighboring feasible trajectories in infinite dimension Marco Mazzola Université Pierre et Marie Curie (Paris 6) H. Frankowska and E. M. Marchini Control of State Constrained Dynamical Systems Padova,

More information

PDEs in Image Processing, Tutorials

PDEs in Image Processing, Tutorials PDEs in Image Processing, Tutorials Markus Grasmair Vienna, Winter Term 2010 2011 Direct Methods Let X be a topological space and R: X R {+ } some functional. following definitions: The mapping R is lower

More information

Speeding up Convergence to Equilibrium for Diffusion Processes

Speeding up Convergence to Equilibrium for Diffusion Processes Speeding up Convergence to Equilibrium for Diffusion Processes G.A. Pavliotis Department of Mathematics Imperial College London Joint Work with T. Lelievre(CERMICS), F. Nier (CERMICS), M. Ottobre (Warwick),

More information

Asymptotic Analysis 88 (2014) DOI /ASY IOS Press

Asymptotic Analysis 88 (2014) DOI /ASY IOS Press Asymptotic Analysis 88 4) 5 DOI.333/ASY-4 IOS Press Smoluchowski Kramers approximation and large deviations for infinite dimensional gradient systems Sandra Cerrai and Michael Salins Department of Mathematics,

More information

Parameter Estimation for Stochastic Evolution Equations with Non-commuting Operators

Parameter Estimation for Stochastic Evolution Equations with Non-commuting Operators Parameter Estimation for Stochastic Evolution Equations with Non-commuting Operators Sergey V. Lototsky and Boris L. Rosovskii In: V. Korolyuk, N. Portenko, and H. Syta (editors), Skorokhod s Ideas in

More information

Mean Field Games on networks

Mean Field Games on networks Mean Field Games on networks Claudio Marchi Università di Padova joint works with: S. Cacace (Rome) and F. Camilli (Rome) C. Marchi (Univ. of Padova) Mean Field Games on networks Roma, June 14 th, 2017

More information

Carleson Measures for Besov-Sobolev Spaces and Non-Homogeneous Harmonic Analysis

Carleson Measures for Besov-Sobolev Spaces and Non-Homogeneous Harmonic Analysis Carleson Measures for Besov-Sobolev Spaces and Non-Homogeneous Harmonic Analysis Brett D. Wick Georgia Institute of Technology School of Mathematics & Humboldt Fellow Institut für Mathematik Universität

More information

Dynamical systems with Gaussian and Levy noise: analytical and stochastic approaches

Dynamical systems with Gaussian and Levy noise: analytical and stochastic approaches Dynamical systems with Gaussian and Levy noise: analytical and stochastic approaches Noise is often considered as some disturbing component of the system. In particular physical situations, noise becomes

More information

Structures de regularité. de FitzHugh Nagumo

Structures de regularité. de FitzHugh Nagumo Nils Berglund nils.berglund@univ-orleans.fr http://www.univ-orleans.fr/mapmo/membres/berglund/ Strasbourg, Séminaire Calcul Stochastique Structures de regularité et renormalisation d EDPS de FitzHugh Nagumo

More information

Ergodic properties of highly degenerate 2D stochastic Navier-Stokes equations

Ergodic properties of highly degenerate 2D stochastic Navier-Stokes equations Ergodic properties of highly degenerate D stochastic Navier-Stokes equations Martin Hairer a Jonathan C. Mattingly b a Math Department, The University of Warwick, Coventry CV4 7AL, UK b Math Department,

More information

Math 46, Applied Math (Spring 2009): Final

Math 46, Applied Math (Spring 2009): Final Math 46, Applied Math (Spring 2009): Final 3 hours, 80 points total, 9 questions worth varying numbers of points 1. [8 points] Find an approximate solution to the following initial-value problem which

More information

Lecture 4: Introduction to stochastic processes and stochastic calculus

Lecture 4: Introduction to stochastic processes and stochastic calculus Lecture 4: Introduction to stochastic processes and stochastic calculus Cédric Archambeau Centre for Computational Statistics and Machine Learning Department of Computer Science University College London

More information

Functional Analysis Exercise Class

Functional Analysis Exercise Class Functional Analysis Exercise Class Week 2 November 6 November Deadline to hand in the homeworks: your exercise class on week 9 November 13 November Exercises (1) Let X be the following space of piecewise

More information

Hairer /Gubinelli-Imkeller-Perkowski

Hairer /Gubinelli-Imkeller-Perkowski Hairer /Gubinelli-Imkeller-Perkowski Φ 4 3 I The 3D dynamic Φ 4 -model driven by space-time white noise Let us study the following real-valued stochastic PDE on (0, ) T 3, where ξ is the space-time white

More information

Rough paths methods 1: Introduction

Rough paths methods 1: Introduction Rough paths methods 1: Introduction Samy Tindel Purdue University University of Aarhus 216 Samy T. (Purdue) Rough Paths 1 Aarhus 216 1 / 16 Outline 1 Motivations for rough paths techniques 2 Summary of

More information

Exact Simulation of Diffusions and Jump Diffusions

Exact Simulation of Diffusions and Jump Diffusions Exact Simulation of Diffusions and Jump Diffusions A work by: Prof. Gareth O. Roberts Dr. Alexandros Beskos Dr. Omiros Papaspiliopoulos Dr. Bruno Casella 28 th May, 2008 Content 1 Exact Algorithm Construction

More information

Weak solutions to Fokker-Planck equations and Mean Field Games

Weak solutions to Fokker-Planck equations and Mean Field Games Weak solutions to Fokker-Planck equations and Mean Field Games Alessio Porretta Universita di Roma Tor Vergata LJLL, Paris VI March 6, 2015 Outlines of the talk Brief description of the Mean Field Games

More information

Amplitude Equations. Dirk Blömker. natural slow-fast systems for SPDEs. Heraklion, Crete, November 27, supported by.

Amplitude Equations. Dirk Blömker. natural slow-fast systems for SPDEs. Heraklion, Crete, November 27, supported by. Heraklion, Crete, November 27, 2012 Dirk Blömker Amplitude Equations natural systems for SPDEs joint work with : supported by Martin Hairer (Warwick), Grigorios A. Pavliotis (Imperial College) Christian

More information

EnKF and Catastrophic filter divergence

EnKF and Catastrophic filter divergence EnKF and Catastrophic filter divergence David Kelly Kody Law Andrew Stuart Mathematics Department University of North Carolina Chapel Hill NC bkelly.com June 4, 2014 SIAM UQ 2014 Savannah. David Kelly

More information

Regularity structures and renormalisation of FitzHugh-Nagumo SPDEs in three space dimensions

Regularity structures and renormalisation of FitzHugh-Nagumo SPDEs in three space dimensions Nils Berglund nils.berglund@univ-orleans.fr http://www.univ-orleans.fr/mapmo/membres/berglund/ EPFL, Seminar of Probability and Stochastic Processes Regularity structures and renormalisation of FitzHugh-Nagumo

More information

Dynamics and stochastic limit for phase transition problems. problems with noise. Dimitra Antonopoulou IACM-FORTH

Dynamics and stochastic limit for phase transition problems. problems with noise. Dimitra Antonopoulou IACM-FORTH Dynamics and stochastic limit for phase transition problems with noise IACM-FORTH International Conference on Applied Mathematics, September 16-20, 2013, ACMAC, Heraklion, Greece Table of contents 1 1.1

More information

Phase-field systems with nonlinear coupling and dynamic boundary conditions

Phase-field systems with nonlinear coupling and dynamic boundary conditions 1 / 46 Phase-field systems with nonlinear coupling and dynamic boundary conditions Cecilia Cavaterra Dipartimento di Matematica F. Enriques Università degli Studi di Milano cecilia.cavaterra@unimi.it VIII

More information

The Continuity of SDE With Respect to Initial Value in the Total Variation

The Continuity of SDE With Respect to Initial Value in the Total Variation Ξ44fflΞ5» ο ffi fi $ Vol.44, No.5 2015 9" ADVANCES IN MATHEMATICS(CHINA) Sep., 2015 doi: 10.11845/sxjz.2014024b The Continuity of SDE With Respect to Initial Value in the Total Variation PENG Xuhui (1.

More information

Lecture 12: Detailed balance and Eigenfunction methods

Lecture 12: Detailed balance and Eigenfunction methods Miranda Holmes-Cerfon Applied Stochastic Analysis, Spring 2015 Lecture 12: Detailed balance and Eigenfunction methods Readings Recommended: Pavliotis [2014] 4.5-4.7 (eigenfunction methods and reversibility),

More information

TD 1: Hilbert Spaces and Applications

TD 1: Hilbert Spaces and Applications Université Paris-Dauphine Functional Analysis and PDEs Master MMD-MA 2017/2018 Generalities TD 1: Hilbert Spaces and Applications Exercise 1 (Generalized Parallelogram law). Let (H,, ) be a Hilbert space.

More information

Non-degeneracy of perturbed solutions of semilinear partial differential equations

Non-degeneracy of perturbed solutions of semilinear partial differential equations Non-degeneracy of perturbed solutions of semilinear partial differential equations Robert Magnus, Olivier Moschetta Abstract The equation u + F(V (εx, u = 0 is considered in R n. For small ε > 0 it is

More information

MATH 5616H INTRODUCTION TO ANALYSIS II SAMPLE FINAL EXAM: SOLUTIONS

MATH 5616H INTRODUCTION TO ANALYSIS II SAMPLE FINAL EXAM: SOLUTIONS MATH 5616H INTRODUCTION TO ANALYSIS II SAMPLE FINAL EXAM: SOLUTIONS You may not use notes, books, etc. Only the exam paper, a pencil or pen may be kept on your desk during the test. Calculators are not

More information

Backward Stochastic Differential Equations with Infinite Time Horizon

Backward Stochastic Differential Equations with Infinite Time Horizon Backward Stochastic Differential Equations with Infinite Time Horizon Holger Metzler PhD advisor: Prof. G. Tessitore Università di Milano-Bicocca Spring School Stochastic Control in Finance Roscoff, March

More information

Stochastic 2-D Navier-Stokes Equation

Stochastic 2-D Navier-Stokes Equation Wayne State University Mathematics Faculty Research Publications Mathematics 1-1-22 Stochastic 2-D Navier-Stokes Equation J. L. Menaldi Wayne State University, menaldi@wayne.edu S. S. Sritharan United

More information

Minimal time mean field games

Minimal time mean field games based on joint works with Samer Dweik and Filippo Santambrogio PGMO Days 2017 Session Mean Field Games and applications EDF Lab Paris-Saclay November 14th, 2017 LMO, Université Paris-Sud Université Paris-Saclay

More information

Una aproximación no local de un modelo para la formación de pilas de arena

Una aproximación no local de un modelo para la formación de pilas de arena Cabo de Gata-2007 p. 1/2 Una aproximación no local de un modelo para la formación de pilas de arena F. Andreu, J.M. Mazón, J. Rossi and J. Toledo Cabo de Gata-2007 p. 2/2 OUTLINE The sandpile model of

More information

Stochastic Viral Dynamics with Beddington-DeAngelis Functional Response

Stochastic Viral Dynamics with Beddington-DeAngelis Functional Response Stochastic Viral Dynamics with Beddington-DeAngelis Functional Response Junyi Tu, Yuncheng You University of South Florida, USA you@mail.usf.edu IMA Workshop in Memory of George R. Sell June 016 Outline

More information

An Introduction to Stochastic Partial Dierential Equations

An Introduction to Stochastic Partial Dierential Equations An Introduction to Stochastic Partial Dierential Equations Herry Pribawanto Suryawan Dept. of Mathematics, Sanata Dharma University, Yogyakarta 29. August 2014 Herry Pribawanto Suryawan (Math USD) SNAMA

More information

Malliavin Calculus in Finance

Malliavin Calculus in Finance Malliavin Calculus in Finance Peter K. Friz 1 Greeks and the logarithmic derivative trick Model an underlying assent by a Markov process with values in R m with dynamics described by the SDE dx t = b(x

More information

Solving Stochastic Partial Differential Equations as Stochastic Differential Equations in Infinite Dimensions - a Review

Solving Stochastic Partial Differential Equations as Stochastic Differential Equations in Infinite Dimensions - a Review Solving Stochastic Partial Differential Equations as Stochastic Differential Equations in Infinite Dimensions - a Review L. Gawarecki Kettering University NSF/CBMS Conference Analysis of Stochastic Partial

More information

analysis for transport equations and applications

analysis for transport equations and applications Multi-scale analysis for transport equations and applications Mihaï BOSTAN, Aurélie FINOT University of Aix-Marseille, FRANCE mihai.bostan@univ-amu.fr Numerical methods for kinetic equations Strasbourg

More information

PDE Methods for Mean Field Games with Non-Separable Hamiltonian: Data in Sobolev Spaces (Continued) David Ambrose June 29, 2018

PDE Methods for Mean Field Games with Non-Separable Hamiltonian: Data in Sobolev Spaces (Continued) David Ambrose June 29, 2018 PDE Methods for Mean Field Games with Non-Separable Hamiltonian: Data in Sobolev Spaces Continued David Ambrose June 29, 218 Steps of the energy method Introduce an approximate problem. Prove existence

More information

Bayesian inverse problems with Laplacian noise

Bayesian inverse problems with Laplacian noise Bayesian inverse problems with Laplacian noise Remo Kretschmann Faculty of Mathematics, University of Duisburg-Essen Applied Inverse Problems 2017, M27 Hangzhou, 1 June 2017 1 / 33 Outline 1 Inverse heat

More information

Dynamic Bertrand and Cournot Competition

Dynamic Bertrand and Cournot Competition Dynamic Bertrand and Cournot Competition Effects of Product Differentiation Andrew Ledvina Department of Operations Research and Financial Engineering Princeton University Joint with Ronnie Sircar Princeton-Lausanne

More information

STABILITY OF THE OVERDAMPED LANGEVIN EQUATION IN DOUBLE-WELL POTENTIAL

STABILITY OF THE OVERDAMPED LANGEVIN EQUATION IN DOUBLE-WELL POTENTIAL STABILITY OF THE OVERDAMPED LANGEVIN EQUATION IN DOUBLE-WELL POTENTIAL NIKOLA SANDRIĆ Abstract. In this article, we discuss stability of the one-dimensional overdamped Langevin equation in double-well

More information

Nonlinear Modulational Instability of Dispersive PDE Models

Nonlinear Modulational Instability of Dispersive PDE Models Nonlinear Modulational Instability of Dispersive PDE Models Jiayin Jin, Shasha Liao, and Zhiwu Lin Georgia Tech ICERM workshop on water waves, 4/28/2017 Jiayin Jin, Shasha Liao, and Zhiwu Lin Georgia Tech

More information

ON THE POLICY IMPROVEMENT ALGORITHM IN CONTINUOUS TIME

ON THE POLICY IMPROVEMENT ALGORITHM IN CONTINUOUS TIME ON THE POLICY IMPROVEMENT ALGORITHM IN CONTINUOUS TIME SAUL D. JACKA AND ALEKSANDAR MIJATOVIĆ Abstract. We develop a general approach to the Policy Improvement Algorithm (PIA) for stochastic control problems

More information

2012 NCTS Workshop on Dynamical Systems

2012 NCTS Workshop on Dynamical Systems Barbara Gentz gentz@math.uni-bielefeld.de http://www.math.uni-bielefeld.de/ gentz 2012 NCTS Workshop on Dynamical Systems National Center for Theoretical Sciences, National Tsing-Hua University Hsinchu,

More information

p 1 ( Y p dp) 1/p ( X p dp) 1 1 p

p 1 ( Y p dp) 1/p ( X p dp) 1 1 p Doob s inequality Let X(t) be a right continuous submartingale with respect to F(t), t 1 P(sup s t X(s) λ) 1 λ {sup s t X(s) λ} X + (t)dp 2 For 1 < p

More information

Igor Cialenco. Department of Applied Mathematics Illinois Institute of Technology, USA joint with N.

Igor Cialenco. Department of Applied Mathematics Illinois Institute of Technology, USA joint with N. Parameter Estimation for Stochastic Navier-Stokes Equations Igor Cialenco Department of Applied Mathematics Illinois Institute of Technology, USA igor@math.iit.edu joint with N. Glatt-Holtz (IU) Asymptotical

More information

Loss of regularity for Kolmogorov equations

Loss of regularity for Kolmogorov equations Loss of regularity for Kolmogorov equations Martin Hairer, Martin Hutzenthaler and Arnulf Jentzen 3,4 Mathematics Department, The University of Warwick, Coventry, CV4 7AL, United Kingdom, e-mail: M.Hairer

More information

Stochastic Integration and Stochastic Differential Equations: a gentle introduction

Stochastic Integration and Stochastic Differential Equations: a gentle introduction Stochastic Integration and Stochastic Differential Equations: a gentle introduction Oleg Makhnin New Mexico Tech Dept. of Mathematics October 26, 27 Intro: why Stochastic? Brownian Motion/ Wiener process

More information

Numerical methods for conservation laws with a stochastically driven flux

Numerical methods for conservation laws with a stochastically driven flux Numerical methods for conservation laws with a stochastically driven flux Håkon Hoel, Kenneth Karlsen, Nils Henrik Risebro, Erlend Briseid Storrøsten Department of Mathematics, University of Oslo, Norway

More information

Powers of the Laplacian on PCF Fractals

Powers of the Laplacian on PCF Fractals Based on joint work with Luke Rogers and Robert S. Strichartz AMS Fall Meeting, Riverside November 8, 2009 PCF Fractals Definitions Let {F 1, F 2,..., F N } be an iterated function system of contractive

More information