Rough paths methods 1: Introduction

Size: px
Start display at page:

Download "Rough paths methods 1: Introduction"

Transcription

1 Rough paths methods 1: Introduction Samy Tindel Purdue University University of Aarhus 216 Samy T. (Purdue) Rough Paths 1 Aarhus / 16

2 Outline 1 Motivations for rough paths techniques 2 Summary of rough paths theory Samy T. (Purdue) Rough Paths 1 Aarhus / 16

3 Outline 1 Motivations for rough paths techniques 2 Summary of rough paths theory Samy T. (Purdue) Rough Paths 1 Aarhus / 16

4 Equation under consideration Equation: Standard differential equation driven by fbm, R n -valued with t [, 1]. d Y t = a + V (Y s ) ds + V j (Y s ) dbs, j (1) j=1 Vector fields V,..., V d in C b. A d-dimensional fbm B with 1/3 < H < 1. Note: some results will be extended to H > 1/4. Samy T. (Purdue) Rough Paths 1 Aarhus / 16

5 Fractional Brownian motion B = (B 1,..., B d ) B j centered Gaussian process, independence of coordinates Variance of the increments: E[ Bt j Bs j 2 ] = t s 2H H Hölder-continuity exponent of B If H = 1/2, B = Brownian motion If H 1/2 natural generalization of BM Remark: FBm widely used in applications Samy T. (Purdue) Rough Paths 1 Aarhus / 16

6 Examples of fbm paths H =.3 H =.5 H =.7 Samy T. (Purdue) Rough Paths 1 Aarhus / 16

7 Paths for a linear SDE driven by fbm dyt =.5Yt dt + 2Yt dbt, H =.5 Blue: (Bt )t [,1] Samy T. (Purdue) Y = 1 H =.7 Red: (Yt )t [,1] Rough Paths 1 Aarhus / 16

8 Some applications of fbm driven systems Biophysics, fluctuations of a protein: New experiments at molecule scale Anomalous fluctuations recorded Model: Volterra equation driven by fbm Samuel Kou Statistical estimation needed Finance: Stochastic volatility driven by fbm (Sun et al. 28) Captures long range dependences between transactions Samy T. (Purdue) Rough Paths 1 Aarhus / 16

9 Outline 1 Motivations for rough paths techniques 2 Summary of rough paths theory Samy T. (Purdue) Rough Paths 1 Aarhus / 16

10 Rough paths assumptions Context: Consider a Hölder path x and For n 1, x n linearization of x with mesh 1/n x n piecewise linear. For s < t 1, set x 2,n,i,j st Rough paths assumption 1: s<u<v<t x is a C γ function with γ > 1/3. dx n,i u dx n,j v The process x 2,n converges to a process x 2 as n in a C 2γ space. Rough paths assumption 2: Vector fields V,..., V j in C b. Samy T. (Purdue) Rough Paths 1 Aarhus / 16

11 Brief summary of rough paths theory Main rough paths theorem (Lyons): Under previous assumptions Consider y n solution to equation Then y n t = a + V (y n u ) du + d j=1 y n converges to a function Y in C γ. V j (y n u ) dx n,j u. Y can be seen as solution to Y t = a + V (Y u ) du + d j=1 V j(y u ) dx j u. Samy T. (Purdue) Rough Paths 1 Aarhus / 16

12 Brief summary of rough paths theory Main rough paths theorem (Lyons): Under previous assumptions Consider y n solution to equation Then y n t = a + V (y n u ) du + d j=1 y n converges to a function Y in C γ. V j (y n u ) dx n,j u. Y can be seen as solution to Y t = a + V (Y u ) du + d j=1 V j(y u ) dx j u. Rough paths theory Samy T. (Purdue) Rough Paths 1 Aarhus / 16

13 Brief summary of rough paths theory Main rough paths theorem (Lyons): Under previous assumptions Consider y n solution to equation Then y n t = a + V (y n u ) du + d j=1 y n converges to a function Y in C γ. V j (y n u ) dx n,j u. Y can be seen as solution to Y t = a + V (Y u ) du + d j=1 V j(y u ) dx j u. dx, dxdx Smooth V,..., V d Rough paths theory Samy T. (Purdue) Rough Paths 1 Aarhus / 16

14 Brief summary of rough paths theory Main rough paths theorem (Lyons): Under previous assumptions Consider y n solution to equation Then y n t = a + V (y n u ) du + d j=1 y n converges to a function Y in C γ. V j (y n u ) dx n,j u. Y can be seen as solution to Y t = a + V (Y u ) du + d j=1 V j(y u ) dx j u. dx, dxdx Vj (x) dx j Smooth V,..., V d Rough paths theory dy = V j (y)dx j Samy T. (Purdue) Rough Paths 1 Aarhus / 16

15 Iterated integrals and fbm Nice situation: H > 1/4 2 possible constructions for geometric iterated integrals of B. Malliavin calculus tools Ferreiro-Utzet Regularization or linearization of the fbm path Coutin-Qian, Friz-Gess-Gulisashvili-Riedel Conclusion: for H > 1/4, one can solve equation in the rough paths sense. dy t = V (Y t ) dt + V j (Y t ) db j t, Remark: Extensions to H 1/4 (Unterberger, Nualart-T). Samy T. (Purdue) Rough Paths 1 Aarhus / 16

16 Study of equations driven by fbm Basic properties: 1 Moments of the solution 2 Continuity w.r.t initial condition, noise More advanced natural problems: 1 Density estimates Hu-Nualart + Lots of people 2 Numerical schemes Neuenkirch-T, Friz-Riedel 3 Invariant measures, ergodicity Hairer-Pillai, Deya-Panloup-T 4 Statistical estimation (H, coeff. V j ) Berzin-León, Hu-Nualart, Neuenkirch-T Samy T. (Purdue) Rough Paths 1 Aarhus / 16

17 Extensions of the rough paths formalism Stochastic PDEs: Equation: t Y t (ξ) = Y t (ξ) + σ(y t (ξ)) ẋ t (ξ) (t, ξ) [, 1] R d Easiest case: x finite-dimensional noise Methods: viscosity solutions or adaptation of rough paths methods KPZ equation: Equation: t Y t (ξ) = Y t (ξ) + ( ξ Y t (ξ)) 2 + ẋ t (ξ) (t, ξ) [, 1] R ẋ space-time white noise Methods: Extension of rough paths to define ( x Y t (ξ)) 2 Renormalization techniques to remove Samy T. (Purdue) Rough Paths 1 Aarhus / 16

18 Aim 1 Definition and properties of fractional Brownian motion 2 Some estimates for Young s integral, case H > 1/2 3 Extension to 1/3 < H 1/2 Samy T. (Purdue) Rough Paths 1 Aarhus / 16

19 General strategy 1 In order to solve our equation, we shall go through the following steps: Young integral for H > 1/2 Case 1/3 < H < 1/2, with a semi-pathwise method 2 For each case, 2 main steps: Definition of a stochastic integral us db s for a reasonable class of processes u Resolution of the equation by means of a fixed point method Samy T. (Purdue) Rough Paths 1 Aarhus / 16

Rough paths methods 4: Application to fbm

Rough paths methods 4: Application to fbm Rough paths methods 4: Application to fbm Samy Tindel Purdue University University of Aarhus 2016 Samy T. (Purdue) Rough Paths 4 Aarhus 2016 1 / 67 Outline 1 Main result 2 Construction of the Levy area:

More information

On rough PDEs. Samy Tindel. University of Nancy. Rough Paths Analysis and Related Topics - Nagoya 2012

On rough PDEs. Samy Tindel. University of Nancy. Rough Paths Analysis and Related Topics - Nagoya 2012 On rough PDEs Samy Tindel University of Nancy Rough Paths Analysis and Related Topics - Nagoya 2012 Joint work with: Aurélien Deya and Massimiliano Gubinelli Samy T. (Nancy) On rough PDEs Nagoya 2012 1

More information

Convergence to equilibrium for rough differential equations

Convergence to equilibrium for rough differential equations Convergence to equilibrium for rough differential equations Samy Tindel Purdue University Barcelona GSE Summer Forum 2017 Joint work with Aurélien Deya (Nancy) and Fabien Panloup (Angers) Samy T. (Purdue)

More information

LAN property for sde s with additive fractional noise and continuous time observation

LAN property for sde s with additive fractional noise and continuous time observation LAN property for sde s with additive fractional noise and continuous time observation Eulalia Nualart (Universitat Pompeu Fabra, Barcelona) joint work with Samy Tindel (Purdue University) Vlad s 6th birthday,

More information

An adaptive numerical scheme for fractional differential equations with explosions

An adaptive numerical scheme for fractional differential equations with explosions An adaptive numerical scheme for fractional differential equations with explosions Johanna Garzón Departamento de Matemáticas, Universidad Nacional de Colombia Seminario de procesos estocásticos Jointly

More information

Introduction to numerical simulations for Stochastic ODEs

Introduction to numerical simulations for Stochastic ODEs Introduction to numerical simulations for Stochastic ODEs Xingye Kan Illinois Institute of Technology Department of Applied Mathematics Chicago, IL 60616 August 9, 2010 Outline 1 Preliminaries 2 Numerical

More information

Rough Burgers-like equations with multiplicative noise

Rough Burgers-like equations with multiplicative noise Rough Burgers-like equations with multiplicative noise Martin Hairer Hendrik Weber Mathematics Institute University of Warwick Bielefeld, 3.11.21 Burgers-like equation Aim: Existence/Uniqueness for du

More information

Stochastic optimal control with rough paths

Stochastic optimal control with rough paths Stochastic optimal control with rough paths Paul Gassiat TU Berlin Stochastic processes and their statistics in Finance, Okinawa, October 28, 2013 Joint work with Joscha Diehl and Peter Friz Introduction

More information

Mathematisches Forschungsinstitut Oberwolfach. Rough Paths, Regularity Structures and Related Topics

Mathematisches Forschungsinstitut Oberwolfach. Rough Paths, Regularity Structures and Related Topics Mathematisches Forschungsinstitut Oberwolfach Report No. 24/2016 DOI: 10.4171/OWR/2016/24 Rough Paths, Regularity Structures and Related Topics Organised by Thomas Cass, London Peter Friz, Berlin Massimilliano

More information

Homogenization for chaotic dynamical systems

Homogenization for chaotic dynamical systems Homogenization for chaotic dynamical systems David Kelly Ian Melbourne Department of Mathematics / Renci UNC Chapel Hill Mathematics Institute University of Warwick November 3, 2013 Duke/UNC Probability

More information

A Class of Fractional Stochastic Differential Equations

A Class of Fractional Stochastic Differential Equations Vietnam Journal of Mathematics 36:38) 71 79 Vietnam Journal of MATHEMATICS VAST 8 A Class of Fractional Stochastic Differential Equations Nguyen Tien Dung Department of Mathematics, Vietnam National University,

More information

Hairer /Gubinelli-Imkeller-Perkowski

Hairer /Gubinelli-Imkeller-Perkowski Hairer /Gubinelli-Imkeller-Perkowski Φ 4 3 I The 3D dynamic Φ 4 -model driven by space-time white noise Let us study the following real-valued stochastic PDE on (0, ) T 3, where ξ is the space-time white

More information

Bessel-like SPDEs. Lorenzo Zambotti, Sorbonne Université (joint work with Henri Elad-Altman) 15th May 2018, Luminy

Bessel-like SPDEs. Lorenzo Zambotti, Sorbonne Université (joint work with Henri Elad-Altman) 15th May 2018, Luminy Bessel-like SPDEs, Sorbonne Université (joint work with Henri Elad-Altman) Squared Bessel processes Let δ, y, and (B t ) t a BM. By Yamada-Watanabe s Theorem, there exists a unique (strong) solution (Y

More information

Fast-slow systems with chaotic noise

Fast-slow systems with chaotic noise Fast-slow systems with chaotic noise David Kelly Ian Melbourne Courant Institute New York University New York NY www.dtbkelly.com May 12, 215 Averaging and homogenization workshop, Luminy. Fast-slow systems

More information

Applications of controlled paths

Applications of controlled paths Applications of controlled paths Massimiliano Gubinelli CEREMADE Université Paris Dauphine OxPDE conference. Oxford. September 1th 212 ( 1 / 16 ) Outline I will exhibith various applications of the idea

More information

Pathwise volatility in a long-memory pricing model: estimation and asymptotic behavior

Pathwise volatility in a long-memory pricing model: estimation and asymptotic behavior Pathwise volatility in a long-memory pricing model: estimation and asymptotic behavior Ehsan Azmoodeh University of Vaasa Finland 7th General AMaMeF and Swissquote Conference September 7 1, 215 Outline

More information

-variation of the divergence integral w.r.t. fbm with Hurst parameter H < 1 2

-variation of the divergence integral w.r.t. fbm with Hurst parameter H < 1 2 /4 On the -variation of the divergence integral w.r.t. fbm with urst parameter < 2 EL ASSAN ESSAKY joint work with : David Nualart Cadi Ayyad University Poly-disciplinary Faculty, Safi Colloque Franco-Maghrébin

More information

Malliavin Calculus in Finance

Malliavin Calculus in Finance Malliavin Calculus in Finance Peter K. Friz 1 Greeks and the logarithmic derivative trick Model an underlying assent by a Markov process with values in R m with dynamics described by the SDE dx t = b(x

More information

Bernardo D Auria Stochastic Processes /12. Notes. March 29 th, 2012

Bernardo D Auria Stochastic Processes /12. Notes. March 29 th, 2012 1 Stochastic Calculus Notes March 9 th, 1 In 19, Bachelier proposed for the Paris stock exchange a model for the fluctuations affecting the price X(t) of an asset that was given by the Brownian motion.

More information

The dynamical Sine-Gordon equation

The dynamical Sine-Gordon equation The dynamical Sine-Gordon equation Hao Shen (University of Warwick) Joint work with Martin Hairer October 9, 2014 Dynamical Sine-Gordon Equation Space dimension d = 2. Equation depends on parameter >0.

More information

High order Cubature on Wiener space applied to derivative pricing and sensitivity estimations

High order Cubature on Wiener space applied to derivative pricing and sensitivity estimations 1/25 High order applied to derivative pricing and sensitivity estimations University of Oxford 28 June 2010 2/25 Outline 1 2 3 4 3/25 Assume that a set of underlying processes satisfies the Stratonovich

More information

Topics in Gaussian rough paths theory

Topics in Gaussian rough paths theory Topics in Gaussian rough paths theory vorgelegt von Diplom-Mathematiker Sebastian Riedel Hannover Von der Fakultät II - Mathematik und Naturwissenschaften der Technischen Universität Berlin zur Erlangung

More information

ROUGH PATH THEORY AND STOCHASTIC CALCULUS

ROUGH PATH THEORY AND STOCHASTIC CALCULUS Unspecified Journal Volume 00, Number 0, Pages 000 000 S????-????(XX)0000-0 ROUGH PATH THEORY AND STOCHASTIC CALCULUS YUZURU INAHAMA Abstract. T. Lyons rough path theory is something like a deterministic

More information

p 1 ( Y p dp) 1/p ( X p dp) 1 1 p

p 1 ( Y p dp) 1/p ( X p dp) 1 1 p Doob s inequality Let X(t) be a right continuous submartingale with respect to F(t), t 1 P(sup s t X(s) λ) 1 λ {sup s t X(s) λ} X + (t)dp 2 For 1 < p

More information

Integral representations in models with long memory

Integral representations in models with long memory Integral representations in models with long memory Georgiy Shevchenko, Yuliya Mishura, Esko Valkeila, Lauri Viitasaari, Taras Shalaiko Taras Shevchenko National University of Kyiv 29 September 215, Ulm

More information

FRACTAL DIMENSIONS OF ROUGH DIFFERENTIAL EQUATIONS DRIVEN BY FRACTIONAL BROWNIAN MOTIONS

FRACTAL DIMENSIONS OF ROUGH DIFFERENTIAL EQUATIONS DRIVEN BY FRACTIONAL BROWNIAN MOTIONS FRACTAL DIMENSIONS OF ROUGH DIFFERENTIAL EQUATIONS DRIVEN BY FRACTIONAL BROWNIAN MOTIONS SHUWEN LOU AND CHENG OUYANG ABSTRACT. In this work we study fractal properties of a d-dimensional rough differential

More information

Stochastic Differential Equations.

Stochastic Differential Equations. Chapter 3 Stochastic Differential Equations. 3.1 Existence and Uniqueness. One of the ways of constructing a Diffusion process is to solve the stochastic differential equation dx(t) = σ(t, x(t)) dβ(t)

More information

Mean-field SDE driven by a fractional BM. A related stochastic control problem

Mean-field SDE driven by a fractional BM. A related stochastic control problem Mean-field SDE driven by a fractional BM. A related stochastic control problem Rainer Buckdahn, Université de Bretagne Occidentale, Brest Durham Symposium on Stochastic Analysis, July 1th to July 2th,

More information

Bernardo D Auria Stochastic Processes /10. Notes. Abril 13 th, 2010

Bernardo D Auria Stochastic Processes /10. Notes. Abril 13 th, 2010 1 Stochastic Calculus Notes Abril 13 th, 1 As we have seen in previous lessons, the stochastic integral with respect to the Brownian motion shows a behavior different from the classical Riemann-Stieltjes

More information

Topics in fractional Brownian motion

Topics in fractional Brownian motion Topics in fractional Brownian motion Esko Valkeila Spring School, Jena 25.3. 2011 We plan to discuss the following items during these lectures: Fractional Brownian motion and its properties. Topics in

More information

From Fractional Brownian Motion to Multifractional Brownian Motion

From Fractional Brownian Motion to Multifractional Brownian Motion From Fractional Brownian Motion to Multifractional Brownian Motion Antoine Ayache USTL (Lille) Antoine.Ayache@math.univ-lille1.fr Cassino December 2010 A.Ayache (USTL) From FBM to MBM Cassino December

More information

Taming infinities. M. Hairer. 2nd Heidelberg Laureate Forum. University of Warwick

Taming infinities. M. Hairer. 2nd Heidelberg Laureate Forum. University of Warwick Taming infinities M. Hairer University of Warwick 2nd Heidelberg Laureate Forum Infinities and infinitesimals Bonaventura Cavalieri (1635): Computes areas by adding infinitesimals. (Even much earlier:

More information

I forgot to mention last time: in the Ito formula for two standard processes, putting

I forgot to mention last time: in the Ito formula for two standard processes, putting I forgot to mention last time: in the Ito formula for two standard processes, putting dx t = a t dt + b t db t dy t = α t dt + β t db t, and taking f(x, y = xy, one has f x = y, f y = x, and f xx = f yy

More information

Joint Parameter Estimation of the Ornstein-Uhlenbeck SDE driven by Fractional Brownian Motion

Joint Parameter Estimation of the Ornstein-Uhlenbeck SDE driven by Fractional Brownian Motion Joint Parameter Estimation of the Ornstein-Uhlenbeck SDE driven by Fractional Brownian Motion Luis Barboza October 23, 2012 Department of Statistics, Purdue University () Probability Seminar 1 / 59 Introduction

More information

Brownian motion. Samy Tindel. Purdue University. Probability Theory 2 - MA 539

Brownian motion. Samy Tindel. Purdue University. Probability Theory 2 - MA 539 Brownian motion Samy Tindel Purdue University Probability Theory 2 - MA 539 Mostly taken from Brownian Motion and Stochastic Calculus by I. Karatzas and S. Shreve Samy T. Brownian motion Probability Theory

More information

The concentration of a drug in blood. Exponential decay. Different realizations. Exponential decay with noise. dc(t) dt.

The concentration of a drug in blood. Exponential decay. Different realizations. Exponential decay with noise. dc(t) dt. The concentration of a drug in blood Exponential decay C12 concentration 2 4 6 8 1 C12 concentration 2 4 6 8 1 dc(t) dt = µc(t) C(t) = C()e µt 2 4 6 8 1 12 time in minutes 2 4 6 8 1 12 time in minutes

More information

Stochastic Volatility and Correction to the Heat Equation

Stochastic Volatility and Correction to the Heat Equation Stochastic Volatility and Correction to the Heat Equation Jean-Pierre Fouque, George Papanicolaou and Ronnie Sircar Abstract. From a probabilist s point of view the Twentieth Century has been a century

More information

Anomalous diffusion in biology: fractional Brownian motion, Lévy flights

Anomalous diffusion in biology: fractional Brownian motion, Lévy flights Anomalous diffusion in biology: fractional Brownian motion, Lévy flights Jan Korbel Faculty of Nuclear Sciences and Physical Engineering, CTU, Prague Minisymposium on fundamental aspects behind cell systems

More information

Stochastic Modelling in Climate Science

Stochastic Modelling in Climate Science Stochastic Modelling in Climate Science David Kelly Mathematics Department UNC Chapel Hill dtbkelly@gmail.com November 16, 2013 David Kelly (UNC) Stochastic Climate November 16, 2013 1 / 36 Why use stochastic

More information

Strong Solutions and a Bismut-Elworthy-Li Formula for Mean-F. Formula for Mean-Field SDE s with Irregular Drift

Strong Solutions and a Bismut-Elworthy-Li Formula for Mean-F. Formula for Mean-Field SDE s with Irregular Drift Strong Solutions and a Bismut-Elworthy-Li Formula for Mean-Field SDE s with Irregular Drift Thilo Meyer-Brandis University of Munich joint with M. Bauer, University of Munich Conference for the 1th Anniversary

More information

Some Topics in Stochastic Partial Differential Equations

Some Topics in Stochastic Partial Differential Equations Some Topics in Stochastic Partial Differential Equations November 26, 2015 L Héritage de Kiyosi Itô en perspective Franco-Japonaise, Ambassade de France au Japon Plan of talk 1 Itô s SPDE 2 TDGL equation

More information

Stochastic Differential Equations

Stochastic Differential Equations Chapter 5 Stochastic Differential Equations We would like to introduce stochastic ODE s without going first through the machinery of stochastic integrals. 5.1 Itô Integrals and Itô Differential Equations

More information

The multidimensional Ito Integral and the multidimensional Ito Formula. Eric Mu ller June 1, 2015 Seminar on Stochastic Geometry and its applications

The multidimensional Ito Integral and the multidimensional Ito Formula. Eric Mu ller June 1, 2015 Seminar on Stochastic Geometry and its applications The multidimensional Ito Integral and the multidimensional Ito Formula Eric Mu ller June 1, 215 Seminar on Stochastic Geometry and its applications page 2 Seminar on Stochastic Geometry and its applications

More information

Theoretical Tutorial Session 2

Theoretical Tutorial Session 2 1 / 36 Theoretical Tutorial Session 2 Xiaoming Song Department of Mathematics Drexel University July 27, 216 Outline 2 / 36 Itô s formula Martingale representation theorem Stochastic differential equations

More information

Malliavin calculus and central limit theorems

Malliavin calculus and central limit theorems Malliavin calculus and central limit theorems David Nualart Department of Mathematics Kansas University Seminar on Stochastic Processes 2017 University of Virginia March 8-11 2017 David Nualart (Kansas

More information

Stochastic Calculus (Lecture #3)

Stochastic Calculus (Lecture #3) Stochastic Calculus (Lecture #3) Siegfried Hörmann Université libre de Bruxelles (ULB) Spring 2014 Outline of the course 1. Stochastic processes in continuous time. 2. Brownian motion. 3. Itô integral:

More information

Itô s formula. Samy Tindel. Purdue University. Probability Theory 2 - MA 539

Itô s formula. Samy Tindel. Purdue University. Probability Theory 2 - MA 539 Itô s formula Samy Tindel Purdue University Probability Theory 2 - MA 539 Mostly taken from Brownian Motion and Stochastic Calculus by I. Karatzas and S. Shreve Samy T. Itô s formula Probability Theory

More information

Infinite-dimensional methods for path-dependent equations

Infinite-dimensional methods for path-dependent equations Infinite-dimensional methods for path-dependent equations (Università di Pisa) 7th General AMaMeF and Swissquote Conference EPFL, Lausanne, 8 September 215 Based on Flandoli F., Zanco G. - An infinite-dimensional

More information

Fast-slow systems with chaotic noise

Fast-slow systems with chaotic noise Fast-slow systems with chaotic noise David Kelly Ian Melbourne Courant Institute New York University New York NY www.dtbkelly.com May 1, 216 Statistical properties of dynamical systems, ESI Vienna. David

More information

Varieties of Signature Tensors Lecture #1

Varieties of Signature Tensors Lecture #1 Lecture #1 Carlos Enrique Améndola Cerón (TU Munich) Summer School in Algebraic Statistics Tromsø, September 218 Setup: Signatures Let X : [, 1] R d be a piecewise differentiable path. Coordinate functions:

More information

Least Squares Estimators for Stochastic Differential Equations Driven by Small Lévy Noises

Least Squares Estimators for Stochastic Differential Equations Driven by Small Lévy Noises Least Squares Estimators for Stochastic Differential Equations Driven by Small Lévy Noises Hongwei Long* Department of Mathematical Sciences, Florida Atlantic University, Boca Raton Florida 33431-991,

More information

Solution of Stochastic Nonlinear PDEs Using Wiener-Hermite Expansion of High Orders

Solution of Stochastic Nonlinear PDEs Using Wiener-Hermite Expansion of High Orders Solution of Stochastic Nonlinear PDEs Using Wiener-Hermite Expansion of High Orders Dr. Mohamed El-Beltagy 1,2 Joint Wor with Late Prof. Magdy El-Tawil 2 1 Effat University, Engineering College, Electrical

More information

Bridging the Gap between Center and Tail for Multiscale Processes

Bridging the Gap between Center and Tail for Multiscale Processes Bridging the Gap between Center and Tail for Multiscale Processes Matthew R. Morse Department of Mathematics and Statistics Boston University BU-Keio 2016, August 16 Matthew R. Morse (BU) Moderate Deviations

More information

Adaptive wavelet decompositions of stochastic processes and some applications

Adaptive wavelet decompositions of stochastic processes and some applications Adaptive wavelet decompositions of stochastic processes and some applications Vladas Pipiras University of North Carolina at Chapel Hill SCAM meeting, June 1, 2012 (joint work with G. Didier, P. Abry)

More information

Stochastic Calculus February 11, / 33

Stochastic Calculus February 11, / 33 Martingale Transform M n martingale with respect to F n, n =, 1, 2,... σ n F n (σ M) n = n 1 i= σ i(m i+1 M i ) is a Martingale E[(σ M) n F n 1 ] n 1 = E[ σ i (M i+1 M i ) F n 1 ] i= n 2 = σ i (M i+1 M

More information

Multi-Factor Lévy Models I: Symmetric alpha-stable (SαS) Lévy Processes

Multi-Factor Lévy Models I: Symmetric alpha-stable (SαS) Lévy Processes Multi-Factor Lévy Models I: Symmetric alpha-stable (SαS) Lévy Processes Anatoliy Swishchuk Department of Mathematics and Statistics University of Calgary Calgary, Alberta, Canada Lunch at the Lab Talk

More information

Introduction to Diffusion Processes.

Introduction to Diffusion Processes. Introduction to Diffusion Processes. Arka P. Ghosh Department of Statistics Iowa State University Ames, IA 511-121 apghosh@iastate.edu (515) 294-7851. February 1, 21 Abstract In this section we describe

More information

DOOB S DECOMPOSITION THEOREM FOR NEAR-SUBMARTINGALES

DOOB S DECOMPOSITION THEOREM FOR NEAR-SUBMARTINGALES Communications on Stochastic Analysis Vol. 9, No. 4 (215) 467-476 Serials Publications www.serialspublications.com DOOB S DECOMPOSITION THEOREM FOR NEAR-SUBMARTINGALES HUI-HSIUNG KUO AND KIMIAKI SAITÔ*

More information

arxiv: v1 [math.pr] 11 Jan 2019

arxiv: v1 [math.pr] 11 Jan 2019 Concentration inequalities for Stochastic Differential Equations with additive fractional noise Maylis Varvenne January 4, 9 arxiv:9.35v math.pr] Jan 9 Abstract In this paper, we establish concentration

More information

What s more chaotic than chaos itself? Brownian Motion - before, after, and beyond.

What s more chaotic than chaos itself? Brownian Motion - before, after, and beyond. Include Only If Paper Has a Subtitle Department of Mathematics and Statistics What s more chaotic than chaos itself? Brownian Motion - before, after, and beyond. Math Graduate Seminar March 2, 2011 Outline

More information

Singular Stochastic PDEs and Theory of Regularity Structures

Singular Stochastic PDEs and Theory of Regularity Structures Page 1/19 Singular Stochastic PDEs and Theory of Regularity Structures Hao Shen (Warwick / Columbia) (Based on joint works with Martin Hairer) July 6, 2015 Page 2/19 Outline of talk 1. M.Hairer s theory

More information

Man Kyu Im*, Un Cig Ji **, and Jae Hee Kim ***

Man Kyu Im*, Un Cig Ji **, and Jae Hee Kim *** JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 19, No. 4, December 26 GIRSANOV THEOREM FOR GAUSSIAN PROCESS WITH INDEPENDENT INCREMENTS Man Kyu Im*, Un Cig Ji **, and Jae Hee Kim *** Abstract.

More information

Stochastic contraction BACS Workshop Chamonix, January 14, 2008

Stochastic contraction BACS Workshop Chamonix, January 14, 2008 Stochastic contraction BACS Workshop Chamonix, January 14, 2008 Q.-C. Pham N. Tabareau J.-J. Slotine Q.-C. Pham, N. Tabareau, J.-J. Slotine () Stochastic contraction 1 / 19 Why stochastic contraction?

More information

Densities for the Navier Stokes equations with noise

Densities for the Navier Stokes equations with noise Densities for the Navier Stokes equations with noise Marco Romito Università di Pisa Universitat de Barcelona March 25, 2015 Summary 1 Introduction & motivations 2 Malliavin calculus 3 Besov bounds 4 Other

More information

Regularity of the density for the stochastic heat equation

Regularity of the density for the stochastic heat equation Regularity of the density for the stochastic heat equation Carl Mueller 1 Department of Mathematics University of Rochester Rochester, NY 15627 USA email: cmlr@math.rochester.edu David Nualart 2 Department

More information

SPDEs, criticality, and renormalisation

SPDEs, criticality, and renormalisation SPDEs, criticality, and renormalisation Hendrik Weber Mathematics Institute University of Warwick Potsdam, 06.11.2013 An interesting model from Physics I Ising model Spin configurations: Energy: Inverse

More information

Weak universality of the KPZ equation

Weak universality of the KPZ equation Weak universality of the KPZ equation M. Hairer, joint with J. Quastel University of Warwick Buenos Aires, July 29, 2014 KPZ equation Introduced by Kardar, Parisi and Zhang in 1986. Stochastic partial

More information

RESEARCH STATEMENT. Shuwen Lou November 1, 2016

RESEARCH STATEMENT. Shuwen Lou November 1, 2016 RESEARCH STATEMENT Shuwen Lou (slou@uic.edu) November 1, 2016 1 Summary Broadly speaking, my current research interest lies in probability. My research plan consists of two parallel branches. One branch

More information

Estimates for the density of functionals of SDE s with irregular drift

Estimates for the density of functionals of SDE s with irregular drift Estimates for the density of functionals of SDE s with irregular drift Arturo KOHATSU-HIGA a, Azmi MAKHLOUF a, a Ritsumeikan University and Japan Science and Technology Agency, Japan Abstract We obtain

More information

Stochastic Calculus Made Easy

Stochastic Calculus Made Easy Stochastic Calculus Made Easy Most of us know how standard Calculus works. We know how to differentiate, how to integrate etc. But stochastic calculus is a totally different beast to tackle; we are trying

More information

Harnack Inequalities and Applications for Stochastic Equations

Harnack Inequalities and Applications for Stochastic Equations p. 1/32 Harnack Inequalities and Applications for Stochastic Equations PhD Thesis Defense Shun-Xiang Ouyang Under the Supervision of Prof. Michael Röckner & Prof. Feng-Yu Wang March 6, 29 p. 2/32 Outline

More information

MA 8101 Stokastiske metoder i systemteori

MA 8101 Stokastiske metoder i systemteori MA 811 Stokastiske metoder i systemteori AUTUMN TRM 3 Suggested solution with some extra comments The exam had a list of useful formulae attached. This list has been added here as well. 1 Problem In this

More information

An Introduction to Malliavin Calculus. Denis Bell University of North Florida

An Introduction to Malliavin Calculus. Denis Bell University of North Florida An Introduction to Malliavin Calculus Denis Bell University of North Florida Motivation - the hypoellipticity problem Definition. A differential operator G is hypoelliptic if, whenever the equation Gu

More information

Short-time expansions for close-to-the-money options under a Lévy jump model with stochastic volatility

Short-time expansions for close-to-the-money options under a Lévy jump model with stochastic volatility Short-time expansions for close-to-the-money options under a Lévy jump model with stochastic volatility José Enrique Figueroa-López 1 1 Department of Statistics Purdue University Statistics, Jump Processes,

More information

Affine Processes. Econometric specifications. Eduardo Rossi. University of Pavia. March 17, 2009

Affine Processes. Econometric specifications. Eduardo Rossi. University of Pavia. March 17, 2009 Affine Processes Econometric specifications Eduardo Rossi University of Pavia March 17, 2009 Eduardo Rossi (University of Pavia) Affine Processes March 17, 2009 1 / 40 Outline 1 Affine Processes 2 Affine

More information

Short dated option pricing under rough volatility

Short dated option pricing under rough volatility Department of Mathematics, Imperial College London Mathematics of Quantitative Finance Oberwolfach, February 2017 Based on joint works with P. Harms, A. Jacquier, C. Lacombe and with C. Bayer, P. Friz,

More information

Numerical methods for conservation laws with a stochastically driven flux

Numerical methods for conservation laws with a stochastically driven flux Numerical methods for conservation laws with a stochastically driven flux Håkon Hoel, Kenneth Karlsen, Nils Henrik Risebro, Erlend Briseid Storrøsten Department of Mathematics, University of Oslo, Norway

More information

Evaluation of the HJM equation by cubature methods for SPDE

Evaluation of the HJM equation by cubature methods for SPDE Evaluation of the HJM equation by cubature methods for SPDEs TU Wien, Institute for mathematical methods in Economics Kyoto, September 2008 Motivation Arbitrage-free simulation of non-gaussian bond markets

More information

Controlled Diffusions and Hamilton-Jacobi Bellman Equations

Controlled Diffusions and Hamilton-Jacobi Bellman Equations Controlled Diffusions and Hamilton-Jacobi Bellman Equations Emo Todorov Applied Mathematics and Computer Science & Engineering University of Washington Winter 2014 Emo Todorov (UW) AMATH/CSE 579, Winter

More information

Homogeneous Stochastic Differential Equations

Homogeneous Stochastic Differential Equations WDS'1 Proceedings of Contributed Papers, Part I, 195 2, 21. ISBN 978-8-7378-139-2 MATFYZPRESS Homogeneous Stochastic Differential Equations J. Bártek Charles University, Faculty of Mathematics and Physics,

More information

SDE Coefficients. March 4, 2008

SDE Coefficients. March 4, 2008 SDE Coefficients March 4, 2008 The following is a summary of GARD sections 3.3 and 6., mainly as an overview of the two main approaches to creating a SDE model. Stochastic Differential Equations (SDE)

More information

A path integral approach to the Langevin equation

A path integral approach to the Langevin equation A path integral approach to the Langevin equation - Ashok Das Reference: A path integral approach to the Langevin equation, A. Das, S. Panda and J. R. L. Santos, arxiv:1411.0256 (to be published in Int.

More information

Stochastic differential equation models in biology Susanne Ditlevsen

Stochastic differential equation models in biology Susanne Ditlevsen Stochastic differential equation models in biology Susanne Ditlevsen Introduction This chapter is concerned with continuous time processes, which are often modeled as a system of ordinary differential

More information

Regularization by noise in infinite dimensions

Regularization by noise in infinite dimensions Regularization by noise in infinite dimensions Franco Flandoli, University of Pisa King s College 2017 Franco Flandoli, University of Pisa () Regularization by noise King s College 2017 1 / 33 Plan of

More information

Approximation of BSDEs using least-squares regression and Malliavin weights

Approximation of BSDEs using least-squares regression and Malliavin weights Approximation of BSDEs using least-squares regression and Malliavin weights Plamen Turkedjiev (turkedji@math.hu-berlin.de) 3rd July, 2012 Joint work with Prof. Emmanuel Gobet (E cole Polytechnique) Plamen

More information

Mean-Field optimization problems and non-anticipative optimal transport. Beatrice Acciaio

Mean-Field optimization problems and non-anticipative optimal transport. Beatrice Acciaio Mean-Field optimization problems and non-anticipative optimal transport Beatrice Acciaio London School of Economics based on ongoing projects with J. Backhoff, R. Carmona and P. Wang Robust Methods in

More information

Numerical methods for solving stochastic differential equations

Numerical methods for solving stochastic differential equations Mathematical Communications 4(1999), 251-256 251 Numerical methods for solving stochastic differential equations Rózsa Horváth Bokor Abstract. This paper provides an introduction to stochastic calculus

More information

DUBLIN CITY UNIVERSITY

DUBLIN CITY UNIVERSITY DUBLIN CITY UNIVERSITY SAMPLE EXAMINATIONS 2017/2018 MODULE: QUALIFICATIONS: Simulation for Finance MS455 B.Sc. Actuarial Mathematics ACM B.Sc. Financial Mathematics FIM YEAR OF STUDY: 4 EXAMINERS: Mr

More information

Multivariate Generalized Ornstein-Uhlenbeck Processes

Multivariate Generalized Ornstein-Uhlenbeck Processes Multivariate Generalized Ornstein-Uhlenbeck Processes Anita Behme TU München Alexander Lindner TU Braunschweig 7th International Conference on Lévy Processes: Theory and Applications Wroclaw, July 15 19,

More information

Random Fields: Skorohod integral and Malliavin derivative

Random Fields: Skorohod integral and Malliavin derivative Dept. of Math. University of Oslo Pure Mathematics No. 36 ISSN 0806 2439 November 2004 Random Fields: Skorohod integral and Malliavin derivative Giulia Di Nunno 1 Oslo, 15th November 2004. Abstract We

More information

The Chaotic Character of the Stochastic Heat Equation

The Chaotic Character of the Stochastic Heat Equation The Chaotic Character of the Stochastic Heat Equation March 11, 2011 Intermittency The Stochastic Heat Equation Blowup of the solution Intermittency-Example ξ j, j = 1, 2,, 10 i.i.d. random variables Taking

More information

Lecture 4: Ito s Stochastic Calculus and SDE. Seung Yeal Ha Dept of Mathematical Sciences Seoul National University

Lecture 4: Ito s Stochastic Calculus and SDE. Seung Yeal Ha Dept of Mathematical Sciences Seoul National University Lecture 4: Ito s Stochastic Calculus and SDE Seung Yeal Ha Dept of Mathematical Sciences Seoul National University 1 Preliminaries What is Calculus? Integral, Differentiation. Differentiation 2 Integral

More information

CNH3C3 Persamaan Diferensial Parsial (The art of Modeling PDEs) DR. PUTU HARRY GUNAWAN

CNH3C3 Persamaan Diferensial Parsial (The art of Modeling PDEs) DR. PUTU HARRY GUNAWAN CNH3C3 Persamaan Diferensial Parsial (The art of Modeling PDEs) DR. PUTU HARRY GUNAWAN Partial Differential Equations Content 1. Part II: Derivation of PDE in Brownian Motion PART II DERIVATION OF PDE

More information

An introduction to rough paths

An introduction to rough paths An introduction to rough paths Antoine LEJAY INRIA, Nancy, France From works from T. Lyons, Z. Qian, P. Friz, N. Victoir, M. Gubinelli, D. Feyel, A. de la Pradelle, A.M. Davie,... SPDE semester Isaac Newton

More information

Some Tools From Stochastic Analysis

Some Tools From Stochastic Analysis W H I T E Some Tools From Stochastic Analysis J. Potthoff Lehrstuhl für Mathematik V Universität Mannheim email: potthoff@math.uni-mannheim.de url: http://ls5.math.uni-mannheim.de To close the file, click

More information

An Introduction to Stochastic Partial Dierential Equations

An Introduction to Stochastic Partial Dierential Equations An Introduction to Stochastic Partial Dierential Equations Herry Pribawanto Suryawan Dept. of Mathematics, Sanata Dharma University, Yogyakarta 29. August 2014 Herry Pribawanto Suryawan (Math USD) SNAMA

More information

arxiv: v1 [math.pr] 23 Jan 2018

arxiv: v1 [math.pr] 23 Jan 2018 TRANSFER PRINCIPLE FOR nt ORDER FRACTIONAL BROWNIAN MOTION WIT APPLICATIONS TO PREDICTION AND EQUIVALENCE IN LAW TOMMI SOTTINEN arxiv:181.7574v1 [math.pr 3 Jan 18 Department of Mathematics and Statistics,

More information

REGULARITY OF THE ITÔ-LYONS MAP I. BAILLEUL

REGULARITY OF THE ITÔ-LYONS MAP I. BAILLEUL REGULARITY OF THE ITÔ-LYONS MAP I. BAILLEUL arxiv:1401.1147v3 [math.pr] 29 Apr 2015 Abstract. We show in this note that the Itô-Lyons solution map associated to a rough differential equation is Fréchet

More information

Stochastic Calculus for Finance II - some Solutions to Chapter VII

Stochastic Calculus for Finance II - some Solutions to Chapter VII Stochastic Calculus for Finance II - some Solutions to Chapter VII Matthias hul Last Update: June 9, 25 Exercise 7 Black-Scholes-Merton Equation for the up-and-out Call) i) We have ii) We first compute

More information

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS PROBABILITY: LIMIT THEOREMS II, SPRING 218. HOMEWORK PROBLEMS PROF. YURI BAKHTIN Instructions. You are allowed to work on solutions in groups, but you are required to write up solutions on your own. Please

More information