Linear Algebra (2009 Fall) Chapter 1 Matrices and Systems of Equations

Size: px
Start display at page:

Download "Linear Algebra (2009 Fall) Chapter 1 Matrices and Systems of Equations"

Transcription

1 (9 Fall) Chapter Matrices and Sstems of Equations Chih-Wei Yi Dept. of Computer Science National Chiao Tung Universit October 9, 9

2 Linear Sstems Linear Sstems

3 Linear Sstems Linear Equations De nition (Linear Equations) A linear equation in n unknowns (variables),,..., n : a a a n n b. Eample,,, n : variables ( : leading varialbes) a, a,, a n : constants and called coe cients (a : leading coe cient) b: constant term 6 is a linear equation in unknowns, but sin and are not linear equations.

4 Linear Sstems Eamples Which are linear equations? sin (sin ) e log

5 Linear Sstems Solutions of Linear Equations De nition (Solutions) Assume s, s,..., s n are n real numbers. s, s,..., n s n is called a solution of linear equation a a a n n b if a s a s a n s n b is satis ed. Eample Consider the linear equation:. and is a solution. For an real number t, t and (Here t is called a parameter.) t is a solution.

6 Linear Sstems Eercise Problem Assume u (u, u,..., u n ) and v (v, v,..., v n ) are two solutions of a a... a n n b. Prove that for an real number c, u c(u v) is a solution of a a... a n n b. Solution (Hints) Show that (u v) is a solution of a a... a n n. Then, ou can prove u c(u v) is a solution of a a... a n n b.

7 Linear Sstems Linear Sstems De nition (Linear Sstems) A linear sstem of m equations in n unknows is a collection of m linear equations in n common unknowns. 8 a a... a n n b >< a a... a n n b.. >: a m a m... a mn n b m It is called an m n sstem. A solution to an m n sstem is an ordered n-tuple of real numbers (,,, n ) that satis es all m equations of the sstem. The set of all solutions to a linear sstem is called the solution set of the sstem. Here an (ordered) n-tuple of real numbers (,,, n ) is the same as a vector in R n space.

8 Linear Sstems Eample (, ) is a solution of set of the linear sstem.. f(, )g is the solutions Eample (,, ), (,, ), and (,, ) are solutions of. Actuall, this sstem has in nite solution, and its solution set is f( t,, t) j t Rg. Eample 8 < The sstem : is?. has no solution, so its solution set

9 Linear Sstems The Number of Solutions of A Linear Sstem 6

10 Linear Sstems Problem Prove the number of solutions of a linear sstem must be one of the following cases Eactl solution In nite number of solutions No solution (Hint: If u (u, u,, u n ) and v (v, v,, v n ) are solutions of a linear sstem in n variables, then for an c R, u c (u v) is also a solution of the sstem.) De nition (Consistent and Inconsistent) A linear sstem is inconsistent if its solution set is empt, otherwise it is consistent. Note: A consistent linear sstem has either eactl one solution or otherwise in nite solutions.

11 Gaussian Elimination Gaussian Elimination

12 Gaussian Elimination Row-Echelon Sstems De nition (Row-Echelon Form) A sstem is in row-echelon form if it follows a stair-step pattern and has leading coe cients of. All variables are aligned. In an equation, the leading coe cient is the coe cient of the rst variables. Eample not row echelon form row echelon form

13 Gaussian Elimination Solve a Row-Echelon Sstem A row-echelon sstem can be solved b back-substitution. 9 row-echelon sstem 9 9 ( ) back-substitution

14 Gaussian Elimination Gaussian Elimination De nition (Equivalent Sstems) Two sstems of linear equations are called equivalent if the have precisel the same solution set. Operations producing equivalent sstems Interchange two equations. Multipl an equation b a nonero constant. Add a multiple of an equation to another equation. Gaussian elimination: rewrite a sstem to an equivalent row-echelon sstem b a sequence of these three operations.

15 Gaussian Elimination Solve a Sstem of Linear Equations After appling backsubstitution, we have,,.

16 Gaussian Elimination An mn Matri n columns m rows a a M a m a a a M m L L O L a a a n n M mn st row nd row m st row st column n st column

17 Gaussian Elimination Represent a Linear Sstem b a Matri sstem coefficient matri augmented matri

18 Gaussian Elimination Elementar Row Operations Interchange two rows. Multipl a row b a nonero constant. Add a multiple of a row to another row. Remark: Note the elementar row operation performed in each step.

19 Gaussian Elimination Eample Notation R R ( ) Notation R R R ( ) Notation R R

20 Gaussian Elimination Row-Echelon Form Row-echelon form All rows consisting entirel of eros occur at the bottom of the matri. For each row that does not consist entirel of eros, the rst nonero entr is (called a leading ). For two successive (nonero) rows, the leading in the higher row is farther to the left than the leading in the lower row. Reduced row-echelon form Ever column that has a leading has eros in ever position ecepting the leading.

21 Gaussian Elimination Gaussian Elimination with Back-Substitution R R! R R R! R R R! R

22 Gaussian Elimination Gaussian Elimination with Back-Substitution 9 9 R! R 9 9 ( ) 9 ; Back-Substitution

23 Gaussian Elimination Practice w w 7 w Hint: Echange the st and nd equations.

24 Gaussian Elimination Solution ! 7! 7! ! 7!

25 Gaussian Elimination The Number of Solutions Inconsistent sstem: a row with eros ecept for the last entr (eample) Consistent sstem: not inconsistent sstems One solution: the number of not-ero rows is equal to the number of variables In nite solutions: the number of not-ero rows is less than the number of variables Qui: Homogeneous sstems in which each of the constant term is ero are consistent.

26 Gauss-Jordan Elimination Gauss-Jordan Elimination

27 Gauss-Jordan Elimination Gauss-Jordan Elimination Continues the procedure of Gaussian elimination until a reduced row-echelon form is obtained. For eample, !! 7 9 9!!!

28 Gauss-Jordan Elimination Eample w w 7 w 9

29 Gauss-Jordan Elimination Solution 6!! ! 7 7!!

30 Gauss-Jordan Elimination More Eamples 7 w w w t w t w t w t w Then,. Let t t t t w : Ans

31 Gauss-Jordan Elimination Eample 6w Solution!...! 6 Let s and w t, then, Ans: 6 w 7 w t w s t s t 6 s 7 t t

32 Gauss-Jordan Elimination Algorithm for Gaussian Elimination Input an mn matri A i ; j ; while i < m and j < n if all entries A(i, j), A(i, j),, A(m, j) are ero then j j and continue else if A(i, j) then 9k > i s.t. A(k, j) 6 and switch row(i) and row(k) //Here we have A(i, j) 6 divide row(i) b A(i, j) for k i to m if A(k, j) 6 then minus A(k, j) times of row(i) from row(k) i i ; j j ;

33 Applications of Linear Sstems Applications of Linear Sstems

34 Applications of Linear Sstems Polnomial Curve Fitting Given n points: (, ), (, ),, ( n, n ). Find a polnomial equation p() a a... a n n passing through all n points. FFF n points give n equations and therefore can solve n variables, a, a,, a n. Insert Figure.

35 Applications of Linear Sstems Eample Find the polnomial p() a a a that passes through the points (, ), (, ), and (, ). Solution From (, ), we have a a a. From (, ), we have a a a. From (, ), we have a a 9a. 9!...! Answer: p()

36 Applications of Linear Sstems Eercise Find the polnomial p() a a a a a passing through the points (, ), (, ), (, ), (, ), (, ). 6 ( ) ( ) ( ) ( ) ( ) ( ) Find a polnomial p() a a a a passing through the points (, ), (, ), (, ), (, ). 7

37 Applications of Linear Sstems Unit Review Linear equations and sstems of linear equations Solutions Number of solutions Gaussian elimination Equivalent sstems elementar row operation Row-echelon form Back-substitution Gauss-Jordan elimination Reduced row-echelon form Parametric solutions Matri representation

Linear algebra in turn is built on two basic elements, MATRICES and VECTORS.

Linear algebra in turn is built on two basic elements, MATRICES and VECTORS. M-Lecture():.-. Linear algebra provides concepts that are crucial to man areas of information technolog and computing, including: Graphics Image processing Crptograph Machine learning Computer vision Optimiation

More information

MTH 2530: Linear Algebra. Sec Systems of Linear Equations

MTH 2530: Linear Algebra. Sec Systems of Linear Equations MTH 0 Linear Algebra Professor Chao Huang Department of Mathematics and Statistics Wright State University Week # Section.,. Sec... Systems of Linear Equations... D examples Example Consider a system of

More information

1 - Systems of Linear Equations

1 - Systems of Linear Equations 1 - Systems of Linear Equations 1.1 Introduction to Systems of Linear Equations Almost every problem in linear algebra will involve solving a system of equations. ü LINEAR EQUATIONS IN n VARIABLES We are

More information

Gauss and Gauss Jordan Elimination

Gauss and Gauss Jordan Elimination Gauss and Gauss Jordan Elimination Row-echelon form: (,, ) A matri is said to be in row echelon form if it has the following three properties. () All row consisting entirel of zeros occur at the bottom

More information

System of Linear Equations

System of Linear Equations Chapter 7 - S&B Gaussian and Gauss-Jordan Elimination We will study systems of linear equations by describing techniques for solving such systems. The preferred solution technique- Gaussian elimination-

More information

Matrices and Determinants

Matrices and Determinants Math Assignment Eperts is a leading provider of online Math help. Our eperts have prepared sample assignments to demonstrate the quality of solution we provide. If you are looking for mathematics help

More information

Elimination Method Streamlined

Elimination Method Streamlined Elimination Method Streamlined There is a more streamlined version of elimination method where we do not have to write all of the steps in such an elaborate way. We use matrices. The system of n equations

More information

Section Gaussian Elimination

Section Gaussian Elimination Section. - Gaussian Elimination A matrix is said to be in row echelon form (REF) if it has the following properties:. The first nonzero entry in any row is a. We call this a leading one or pivot one..

More information

Math 1314 Week #14 Notes

Math 1314 Week #14 Notes Math 3 Week # Notes Section 5.: A system of equations consists of two or more equations. A solution to a system of equations is a point that satisfies all the equations in the system. In this chapter,

More information

Linear Algebra. Linear Algebra. Chih-Wei Yi. Dept. of Computer Science National Chiao Tung University. November 12, 2008

Linear Algebra. Linear Algebra. Chih-Wei Yi. Dept. of Computer Science National Chiao Tung University. November 12, 2008 Linear Algebra Chih-Wei Yi Dept. of Computer Science National Chiao Tung University November, 008 Section De nition and Examples Section De nition and Examples Section De nition and Examples De nition

More information

Licensed to: ichapters User

Licensed to: ichapters User Publisher: Richard Stratton Senior Sponsoring Editor: Cath Cantin Senior Marketing Manager: Jennifer Jones Discipline Product Manager: Gretchen Rice King Associate Editor: Janine Tangne Associate Editor:

More information

Linear System Equations

Linear System Equations King Saud University September 24, 2018 Table of contents 1 2 3 4 Definition A linear system of equations with m equations and n unknowns is defined as follows: a 1,1 x 1 + a 1,2 x 2 + + a 1,n x n = b

More information

Lecture 12: Solving Systems of Linear Equations by Gaussian Elimination

Lecture 12: Solving Systems of Linear Equations by Gaussian Elimination Lecture 12: Solving Systems of Linear Equations by Gaussian Elimination Winfried Just, Ohio University September 22, 2017 Review: The coefficient matrix Consider a system of m linear equations in n variables.

More information

MAC1105-College Algebra. Chapter 5-Systems of Equations & Matrices

MAC1105-College Algebra. Chapter 5-Systems of Equations & Matrices MAC05-College Algebra Chapter 5-Systems of Equations & Matrices 5. Systems of Equations in Two Variables Solving Systems of Two Linear Equations/ Two-Variable Linear Equations A system of equations is

More information

is a 3 4 matrix. It has 3 rows and 4 columns. The first row is the horizontal row [ ]

is a 3 4 matrix. It has 3 rows and 4 columns. The first row is the horizontal row [ ] Matrices: Definition: An m n matrix, A m n is a rectangular array of numbers with m rows and n columns: a, a, a,n a, a, a,n A m,n =...... a m, a m, a m,n Each a i,j is the entry at the i th row, j th column.

More information

Chapter 1. Vectors, Matrices, and Linear Spaces

Chapter 1. Vectors, Matrices, and Linear Spaces 1.4 Solving Systems of Linear Equations 1 Chapter 1. Vectors, Matrices, and Linear Spaces 1.4. Solving Systems of Linear Equations Note. We give an algorithm for solving a system of linear equations (called

More information

CHAPTER 9: Systems of Equations and Matrices

CHAPTER 9: Systems of Equations and Matrices MAT 171 Precalculus Algebra Dr. Claude Moore Cape Fear Community College CHAPTER 9: Systems of Equations and Matrices 9.1 Systems of Equations in Two Variables 9.2 Systems of Equations in Three Variables

More information

Problem Sheet 1 with Solutions GRA 6035 Mathematics

Problem Sheet 1 with Solutions GRA 6035 Mathematics Problem Sheet 1 with Solutions GRA 6035 Mathematics BI Norwegian Business School 2 Problems 1. From linear system to augmented matrix Write down the coefficient matrix and the augmented matrix of the following

More information

Section 1.1 System of Linear Equations. Dr. Abdulla Eid. College of Science. MATHS 211: Linear Algebra

Section 1.1 System of Linear Equations. Dr. Abdulla Eid. College of Science. MATHS 211: Linear Algebra Section 1.1 System of Linear Equations College of Science MATHS 211: Linear Algebra (University of Bahrain) Linear System 1 / 33 Goals:. 1 Define system of linear equations and their solutions. 2 To represent

More information

Chapter 3. Linear Equations. Josef Leydold Mathematical Methods WS 2018/19 3 Linear Equations 1 / 33

Chapter 3. Linear Equations. Josef Leydold Mathematical Methods WS 2018/19 3 Linear Equations 1 / 33 Chapter 3 Linear Equations Josef Leydold Mathematical Methods WS 2018/19 3 Linear Equations 1 / 33 Lineares Gleichungssystem System of m linear equations in n unknowns: a 11 x 1 + a 12 x 2 + + a 1n x n

More information

Matrix Solutions to Linear Equations

Matrix Solutions to Linear Equations Matrix Solutions to Linear Equations Augmented matrices can be used as a simplified way of writing a system of linear equations. In an augmented matrix, a vertical line is placed inside the matrix to represent

More information

Section 6.2 Larger Systems of Linear Equations

Section 6.2 Larger Systems of Linear Equations Section 6.2 Larger Systems of Linear Equations Gaussian Elimination In general, to solve a system of linear equations using its augmented matrix, we use elementary row operations to arrive at a matrix

More information

Solving Systems of Linear Equations Using Matrices

Solving Systems of Linear Equations Using Matrices Solving Systems of Linear Equations Using Matrices What is a Matrix? A matrix is a compact grid or array of numbers. It can be created from a system of equations and used to solve the system of equations.

More information

Exercise Sketch these lines and find their intersection.

Exercise Sketch these lines and find their intersection. These are brief notes for the lecture on Friday August 21, 2009: they are not complete, but they are a guide to what I want to say today. They are not guaranteed to be correct. 1. Solving systems of linear

More information

Gauss-Jordan Row Reduction and Reduced Row Echelon Form

Gauss-Jordan Row Reduction and Reduced Row Echelon Form Gauss-Jordan Row Reduction and Reduced Row Echelon Form If we put the augmented matrix of a linear system in reduced row-echelon form, then we don t need to back-substitute to solve the system. To put

More information

Methods for Solving Linear Systems Part 2

Methods for Solving Linear Systems Part 2 Methods for Solving Linear Systems Part 2 We have studied the properties of matrices and found out that there are more ways that we can solve Linear Systems. In Section 7.3, we learned that we can use

More information

Linear Equations in Linear Algebra

Linear Equations in Linear Algebra 1 Linear Equations in Linear Algebra 1.1 SYSTEMS OF LINEAR EQUATIONS LINEAR EQUATION,, 1 n A linear equation in the variables equation that can be written in the form a a a b 1 1 2 2 n n a a is an where

More information

CHAPTER 9: Systems of Equations and Matrices

CHAPTER 9: Systems of Equations and Matrices MAT 171 Precalculus Algebra Dr. Claude Moore Cape Fear Community College CHAPTER 9: Systems of Equations and Matrices 9.1 Systems of Equations in Two Variables 9.2 Systems of Equations in Three Variables

More information

Systems of Linear Equations. By: Tri Atmojo Kusmayadi and Mardiyana Mathematics Education Sebelas Maret University

Systems of Linear Equations. By: Tri Atmojo Kusmayadi and Mardiyana Mathematics Education Sebelas Maret University Systems of Linear Equations By: Tri Atmojo Kusmayadi and Mardiyana Mathematics Education Sebelas Maret University Standard of Competency: Understanding the properties of systems of linear equations, matrices,

More information

LECTURES 4/5: SYSTEMS OF LINEAR EQUATIONS

LECTURES 4/5: SYSTEMS OF LINEAR EQUATIONS LECTURES 4/5: SYSTEMS OF LINEAR EQUATIONS MA1111: LINEAR ALGEBRA I, MICHAELMAS 2016 1 Linear equations We now switch gears to discuss the topic of solving linear equations, and more interestingly, systems

More information

Section Matrices and Systems of Linear Eqns.

Section Matrices and Systems of Linear Eqns. QUIZ: strings Section 14.3 Matrices and Systems of Linear Eqns. Remembering matrices from Ch.2 How to test if 2 matrices are equal Assume equal until proved wrong! else? myflag = logical(1) How to test

More information

MTH 306 Spring Term 2007

MTH 306 Spring Term 2007 MTH 306 Spring Term 2007 Lesson 3 John Lee Oregon State University (Oregon State University) 1 / 27 Lesson 3 Goals: Be able to solve 2 2 and 3 3 linear systems by systematic elimination of unknowns without

More information

Systems of Linear Equations: Solving by Graphing

Systems of Linear Equations: Solving by Graphing 8.1 Sstems of Linear Equations: Solving b Graphing 8.1 OBJECTIVE 1. Find the solution(s) for a set of linear equations b graphing NOTE There is no other ordered pair that satisfies both equations. From

More information

Chapter 1: Systems of linear equations and matrices. Section 1.1: Introduction to systems of linear equations

Chapter 1: Systems of linear equations and matrices. Section 1.1: Introduction to systems of linear equations Chapter 1: Systems of linear equations and matrices Section 1.1: Introduction to systems of linear equations Definition: A linear equation in n variables can be expressed in the form a 1 x 1 + a 2 x 2

More information

Chapter Contents. A 1.6 Further Results on Systems of Equations and Invertibility 1.7 Diagonal, Triangular, and Symmetric Matrices

Chapter Contents. A 1.6 Further Results on Systems of Equations and Invertibility 1.7 Diagonal, Triangular, and Symmetric Matrices Chapter Contents. Introduction to System of Linear Equations. Gaussian Elimination.3 Matrices and Matri Operations.4 Inverses; Rules of Matri Arithmetic.5 Elementary Matrices and a Method for Finding A.6

More information

Midterm 1 Review. Written by Victoria Kala SH 6432u Office Hours: R 12:30 1:30 pm Last updated 10/10/2015

Midterm 1 Review. Written by Victoria Kala SH 6432u Office Hours: R 12:30 1:30 pm Last updated 10/10/2015 Midterm 1 Review Written by Victoria Kala vtkala@math.ucsb.edu SH 6432u Office Hours: R 12:30 1:30 pm Last updated 10/10/2015 Summary This Midterm Review contains notes on sections 1.1 1.5 and 1.7 in your

More information

Get Solution of These Packages & Learn by Video Tutorials on Matrices

Get Solution of These Packages & Learn by Video Tutorials on  Matrices FEE Download Stud Package from website: wwwtekoclassescom & wwwmathsbsuhagcom Get Solution of These Packages & Learn b Video Tutorials on wwwmathsbsuhagcom Matrices An rectangular arrangement of numbers

More information

Notes on Row Reduction

Notes on Row Reduction Notes on Row Reduction Francis J. Narcowich Department of Mathematics Texas A&M University September The Row-Reduction Algorithm The row-reduced form of a matrix contains a great deal of information, both

More information

Linear Equations in Linear Algebra

Linear Equations in Linear Algebra 1 Linear Equations in Linear Algebra 1.4 THE MATRIX EQUATION A = b MATRIX EQUATION A = b m n Definition: If A is an matri, with columns a 1, n, a n, and if is in, then the product of A and, denoted by

More information

Row Reducing Matrices

Row Reducing Matrices A Presentation on Procedures Used to Work with Matrices Prepared by David Morín MEnTe Program East Los Angeles College Topics Introduction Row Operations Row Echelon Form Reduced Row Echelon Form Check

More information

Linear Algebra I Lecture 8

Linear Algebra I Lecture 8 Linear Algebra I Lecture 8 Xi Chen 1 1 University of Alberta January 25, 2019 Outline 1 2 Gauss-Jordan Elimination Given a system of linear equations f 1 (x 1, x 2,..., x n ) = 0 f 2 (x 1, x 2,..., x n

More information

9.1 - Systems of Linear Equations: Two Variables

9.1 - Systems of Linear Equations: Two Variables 9.1 - Systems of Linear Equations: Two Variables Recall that a system of equations consists of two or more equations each with two or more variables. A solution to a system in two variables is an ordered

More information

MAC Module 1 Systems of Linear Equations and Matrices I

MAC Module 1 Systems of Linear Equations and Matrices I MAC 2103 Module 1 Systems of Linear Equations and Matrices I 1 Learning Objectives Upon completing this module, you should be able to: 1. Represent a system of linear equations as an augmented matrix.

More information

Chapter 2. Systems of Equations and Augmented Matrices. Creighton University

Chapter 2. Systems of Equations and Augmented Matrices. Creighton University Chapter Section - Systems of Equations and Augmented Matrices D.S. Malik Creighton University Systems of Linear Equations Common ways to solve a system of equations: Eliminationi Substitution Elimination

More information

SOLVING Ax = b: GAUSS-JORDAN ELIMINATION [LARSON 1.2]

SOLVING Ax = b: GAUSS-JORDAN ELIMINATION [LARSON 1.2] SOLVING Ax = b: GAUSS-JORDAN ELIMINATION [LARSON.2 EQUIVALENT LINEAR SYSTEMS: Two m n linear systems are equivalent both systems have the exact same solution sets. When solving a linear system Ax = b,

More information

CHAPTER 8: Matrices and Determinants

CHAPTER 8: Matrices and Determinants (Exercises for Chapter 8: Matrices and Determinants) E.8.1 CHAPTER 8: Matrices and Determinants (A) means refer to Part A, (B) means refer to Part B, etc. Most of these exercises can be done without a

More information

Linear Equations in Linear Algebra

Linear Equations in Linear Algebra 1 Linear Equations in Linear Algebra 1.1 SYSTEMS OF LINEAR EQUATIONS LINEAR EQUATION x 1,, x n A linear equation in the variables equation that can be written in the form a 1 x 1 + a 2 x 2 + + a n x n

More information

5x 2 = 10. x 1 + 7(2) = 4. x 1 3x 2 = 4. 3x 1 + 9x 2 = 8

5x 2 = 10. x 1 + 7(2) = 4. x 1 3x 2 = 4. 3x 1 + 9x 2 = 8 1 To solve the system x 1 + x 2 = 4 2x 1 9x 2 = 2 we find an (easier to solve) equivalent system as follows: Replace equation 2 with (2 times equation 1 + equation 2): x 1 + x 2 = 4 Solve equation 2 for

More information

7.5 Operations with Matrices. Copyright Cengage Learning. All rights reserved.

7.5 Operations with Matrices. Copyright Cengage Learning. All rights reserved. 7.5 Operations with Matrices Copyright Cengage Learning. All rights reserved. What You Should Learn Decide whether two matrices are equal. Add and subtract matrices and multiply matrices by scalars. Multiply

More information

Solution: a) Let us consider the matrix form of the system, focusing on the augmented matrix: 0 k k + 1. k 2 1 = 0. k = 1

Solution: a) Let us consider the matrix form of the system, focusing on the augmented matrix: 0 k k + 1. k 2 1 = 0. k = 1 Exercise. Given the system of equations 8 < : x + y + z x + y + z k x + k y + z k where k R. a) Study the system in terms of the values of k. b) Find the solutions when k, using the reduced row echelon

More information

1300 Linear Algebra and Vector Geometry Week 2: Jan , Gauss-Jordan, homogeneous matrices, intro matrix arithmetic

1300 Linear Algebra and Vector Geometry Week 2: Jan , Gauss-Jordan, homogeneous matrices, intro matrix arithmetic 1300 Linear Algebra and Vector Geometry Week 2: Jan 14 18 1.2, 1.3... Gauss-Jordan, homogeneous matrices, intro matrix arithmetic R. Craigen Office: MH 523 Email: craigenr@umanitoba.ca Winter 2019 What

More information

Topics. Vectors (column matrices): Vector addition and scalar multiplication The matrix of a linear function y Ax The elements of a matrix A : A ij

Topics. Vectors (column matrices): Vector addition and scalar multiplication The matrix of a linear function y Ax The elements of a matrix A : A ij Topics Vectors (column matrices): Vector addition and scalar multiplication The matrix of a linear function y Ax The elements of a matrix A : A ij or a ij lives in row i and column j Definition of a matrix

More information

Chapter 1 Linear Equations. 1.1 Systems of Linear Equations

Chapter 1 Linear Equations. 1.1 Systems of Linear Equations Chapter Linear Equations. Systems of Linear Equations A linear equation in the n variables x, x 2,..., x n is one that can be expressed in the form a x + a 2 x 2 + + a n x n = b where a, a 2,..., a n and

More information

CHAPTER 1 Systems of Linear Equations

CHAPTER 1 Systems of Linear Equations CHAPTER Systems of Linear Equations Section. Introduction to Systems of Linear Equations. Because the equation is in the form a x a y b, it is linear in the variables x and y. 0. Because the equation cannot

More information

Relationships Between Planes

Relationships Between Planes Relationships Between Planes Definition: consistent (system of equations) A system of equations is consistent if there exists one (or more than one) solution that satisfies the system. System 1: {, System

More information

Chapter 1: Systems of Linear Equations

Chapter 1: Systems of Linear Equations Chapter : Systems of Linear Equations February, 9 Systems of linear equations Linear systems Lecture A linear equation in variables x, x,, x n is an equation of the form a x + a x + + a n x n = b, where

More information

Lectures on Linear Algebra for IT

Lectures on Linear Algebra for IT Lectures on Linear Algebra for IT by Mgr. Tereza Kovářová, Ph.D. following content of lectures by Ing. Petr Beremlijski, Ph.D. Department of Applied Mathematics, VSB - TU Ostrava Czech Republic 2. Systems

More information

MIDTERM 1 - SOLUTIONS

MIDTERM 1 - SOLUTIONS MIDTERM - SOLUTIONS MATH 254 - SUMMER 2002 - KUNIYUKI CHAPTERS, 2, GRADED OUT OF 75 POINTS 2 50 POINTS TOTAL ) Use either Gaussian elimination with back-substitution or Gauss-Jordan elimination to solve

More information

Lecture 3: Gaussian Elimination, continued. Lecture 3: Gaussian Elimination, continued

Lecture 3: Gaussian Elimination, continued. Lecture 3: Gaussian Elimination, continued Definition The process of solving a system of linear equations by converting the system to an augmented matrix is called Gaussian Elimination. The general strategy is as follows: Convert the system of

More information

1300 Linear Algebra and Vector Geometry

1300 Linear Algebra and Vector Geometry 1300 Linear Algebra and Vector Geometry R. Craigen Office: MH 523 Email: craigenr@umanitoba.ca May-June 2017 Introduction: linear equations Read 1.1 (in the text that is!) Go to course, class webpages.

More information

In this chapter a student has to learn the Concept of adjoint of a matrix. Inverse of a matrix. Rank of a matrix and methods finding these.

In this chapter a student has to learn the Concept of adjoint of a matrix. Inverse of a matrix. Rank of a matrix and methods finding these. MATRICES UNIT STRUCTURE.0 Objectives. Introduction. Definitions. Illustrative eamples.4 Rank of matri.5 Canonical form or Normal form.6 Normal form PAQ.7 Let Us Sum Up.8 Unit End Eercise.0 OBJECTIVES In

More information

Fixed Point Theorem and Sequences in One or Two Dimensions

Fixed Point Theorem and Sequences in One or Two Dimensions Fied Point Theorem and Sequences in One or Two Dimensions Dr. Wei-Chi Yang Let us consider a recursive sequence of n+ = n + sin n and the initial value can be an real number. Then we would like to ask

More information

Solving Linear Systems Using Gaussian Elimination

Solving Linear Systems Using Gaussian Elimination Solving Linear Systems Using Gaussian Elimination DEFINITION: A linear equation in the variables x 1,..., x n is an equation that can be written in the form a 1 x 1 +...+a n x n = b, where a 1,...,a n

More information

Math x + 3y 5z = 14 3x 2y + 3z = 17 4x + 3y 2z = 1

Math x + 3y 5z = 14 3x 2y + 3z = 17 4x + 3y 2z = 1 Math 210 1. Solve the system: x + y + z = 1 2x + 3y + 4z = 5 (a z = 2, y = 1 and x = 0 (b z =any value, y = 3 2z and x = z 2 (c z =any value, y = 3 2z and x = z + 2 (d z =any value, y = 3 + 2z and x =

More information

Solving a system of linear equations Let A be a matrix, X a column vector, B a column vector then the system of linear equations is denoted by AX=B.

Solving a system of linear equations Let A be a matrix, X a column vector, B a column vector then the system of linear equations is denoted by AX=B. Matries and Vetors: Leture Solving a sstem of linear equations Let be a matri, X a olumn vetor, B a olumn vetor then the sstem of linear equations is denoted b XB. The augmented matri The solution to a

More information

M 340L CS Homework Set 1

M 340L CS Homework Set 1 M 340L CS Homework Set 1 Solve each system in Problems 1 6 by using elementary row operations on the equations or on the augmented matri. Follow the systematic elimination procedure described in Lay, Section

More information

Matrices and Systems of Equations

Matrices and Systems of Equations M CHAPTER 3 3 4 3 F 2 2 4 C 4 4 Matrices and Systems of Equations Probably the most important problem in mathematics is that of solving a system of linear equations. Well over 75 percent of all mathematical

More information

Lecture Notes: Solving Linear Systems with Gauss Elimination

Lecture Notes: Solving Linear Systems with Gauss Elimination Lecture Notes: Solving Linear Systems with Gauss Elimination Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk 1 Echelon Form and Elementary

More information

1. Solve each linear system using Gaussian elimination or Gauss-Jordan reduction. The augmented matrix of this linear system is

1. Solve each linear system using Gaussian elimination or Gauss-Jordan reduction. The augmented matrix of this linear system is Solutions to Homework Additional Problems. Solve each linear system using Gaussian elimination or Gauss-Jordan reduction. (a) x + y = 8 3x + 4y = 7 x + y = 3 The augmented matrix of this linear system

More information

Linear Algebra. James Je Heon Kim

Linear Algebra. James Je Heon Kim Linear lgebra James Je Heon Kim (jjk9columbia.edu) If you are unfamiliar with linear or matrix algebra, you will nd that it is very di erent from basic algebra or calculus. For the duration of this session,

More information

Review of Prerequisite Skills, p. 350 C( 2, 0, 1) B( 3, 2, 0) y A(0, 1, 0) D(0, 2, 3) j! k! 2k! Section 7.1, pp

Review of Prerequisite Skills, p. 350 C( 2, 0, 1) B( 3, 2, 0) y A(0, 1, 0) D(0, 2, 3) j! k! 2k! Section 7.1, pp . 5. a. a a b a a b. Case If and are collinear, then b is also collinear with both and. But is perpendicular to and c c c b 9 b c, so a a b b is perpendicular to. Case If b and c b c are not collinear,

More information

Unit 12 Study Notes 1 Systems of Equations

Unit 12 Study Notes 1 Systems of Equations You should learn to: Unit Stud Notes Sstems of Equations. Solve sstems of equations b substitution.. Solve sstems of equations b graphing (calculator). 3. Solve sstems of equations b elimination. 4. Solve

More information

Lecture 4: Gaussian Elimination and Homogeneous Equations

Lecture 4: Gaussian Elimination and Homogeneous Equations Lecture 4: Gaussian Elimination and Homogeneous Equations Reduced Row Echelon Form An augmented matrix associated to a system of linear equations is said to be in Reduced Row Echelon Form (RREF) if the

More information

CHAPTER 8: MATRICES and DETERMINANTS

CHAPTER 8: MATRICES and DETERMINANTS (Section 8.1: Matrices and Determinants) 8.01 CHAPTER 8: MATRICES and DETERMINANTS The material in this chapter will be covered in your Linear Algebra class (Math 254 at Mesa). SECTION 8.1: MATRICES and

More information

3. Replace any row by the sum of that row and a constant multiple of any other row.

3. Replace any row by the sum of that row and a constant multiple of any other row. Section. Solution of Linear Systems by Gauss-Jordan Method A matrix is an ordered rectangular array of numbers, letters, symbols or algebraic expressions. A matrix with m rows and n columns has size or

More information

Linear Algebra I Lecture 10

Linear Algebra I Lecture 10 Linear Algebra I Lecture 10 Xi Chen 1 1 University of Alberta January 30, 2019 Outline 1 Gauss-Jordan Algorithm ] Let A = [a ij m n be an m n matrix. To reduce A to a reduced row echelon form using elementary

More information

Systems of Linear Equations

Systems of Linear Equations Systems of Linear Equations Linear Equation Definition Any equation that is equivalent to the following format a a ann b (.) where,,, n are unknown variables and a, a,, an, b are known numbers (the so

More information

Solving Systems of Linear Equations

Solving Systems of Linear Equations LECTURE 5 Solving Systems of Linear Equations Recall that we introduced the notion of matrices as a way of standardizing the expression of systems of linear equations In today s lecture I shall show how

More information

Section 1.1: Systems of Linear Equations

Section 1.1: Systems of Linear Equations Section 1.1: Systems of Linear Equations Two Linear Equations in Two Unknowns Recall that the equation of a line in 2D can be written in standard form: a 1 x 1 + a 2 x 2 = b. Definition. A 2 2 system of

More information

MA 242 LINEAR ALGEBRA C1, Solutions to First Midterm Exam

MA 242 LINEAR ALGEBRA C1, Solutions to First Midterm Exam MA 242 LINEAR ALGEBRA C Solutions to First Midterm Exam Prof Nikola Popovic October 2 9:am - :am Problem ( points) Determine h and k such that the solution set of x + = k 4x + h = 8 (a) is empty (b) contains

More information

5.7 Cramer's Rule 1. Using Determinants to Solve Systems Assumes the system of two equations in two unknowns

5.7 Cramer's Rule 1. Using Determinants to Solve Systems Assumes the system of two equations in two unknowns 5.7 Cramer's Rule 1. Using Determinants to Solve Systems Assumes the system of two equations in two unknowns (1) possesses the solution and provided that.. The numerators and denominators are recognized

More information

CHAPTER 10 Matrices and Determinants

CHAPTER 10 Matrices and Determinants CHAPTER Matrices and Determinants Section. Matrices and Sstems of Equations............ Section. Operations with Matrices.................. Section. The Inverse of a Square Matri.............. Section.

More information

If A is a 4 6 matrix and B is a 6 3 matrix then the dimension of AB is A. 4 6 B. 6 6 C. 4 3 D. 3 4 E. Undefined

If A is a 4 6 matrix and B is a 6 3 matrix then the dimension of AB is A. 4 6 B. 6 6 C. 4 3 D. 3 4 E. Undefined Question 1 If A is a 4 6 matrix and B is a 6 3 matrix then the dimension of AB is A. 4 6 B. 6 6 C. 4 3 D. 3 4 E. Undefined Quang T. Bach Math 18 October 18, 2017 1 / 17 Question 2 1 2 Let A = 3 4 1 2 3

More information

4 Elementary matrices, continued

4 Elementary matrices, continued 4 Elementary matrices, continued We have identified 3 types of row operations and their corresponding elementary matrices. If you check the previous examples, you ll find that these matrices are constructed

More information

Matrices, Row Reduction of Matrices

Matrices, Row Reduction of Matrices Matrices, Row Reduction of Matrices October 9, 014 1 Row Reduction and Echelon Forms In the previous section, we saw a procedure for solving systems of equations It is simple in that it consists of only

More information

The matrix will only be consistent if the last entry of row three is 0, meaning 2b 3 + b 2 b 1 = 0.

The matrix will only be consistent if the last entry of row three is 0, meaning 2b 3 + b 2 b 1 = 0. ) Find all solutions of the linear system. Express the answer in vector form. x + 2x + x + x 5 = 2 2x 2 + 2x + 2x + x 5 = 8 x + 2x + x + 9x 5 = 2 2 Solution: Reduce the augmented matrix [ 2 2 2 8 ] to

More information

Math 369 Exam #1 Practice Problems

Math 369 Exam #1 Practice Problems Math 69 Exam # Practice Problems Find the set of solutions of the following sstem of linear equations Show enough work to make our steps clear x + + z + 4w x 4z 6w x + 5 + 7z + w Answer: We solve b forming

More information

Elementary matrices, continued. To summarize, we have identified 3 types of row operations and their corresponding

Elementary matrices, continued. To summarize, we have identified 3 types of row operations and their corresponding Elementary matrices, continued To summarize, we have identified 3 types of row operations and their corresponding elementary matrices. If you check the previous examples, you ll find that these matrices

More information

Linear Equation: a 1 x 1 + a 2 x a n x n = b. x 1, x 2,..., x n : variables or unknowns

Linear Equation: a 1 x 1 + a 2 x a n x n = b. x 1, x 2,..., x n : variables or unknowns Linear Equation: a x + a 2 x 2 +... + a n x n = b. x, x 2,..., x n : variables or unknowns a, a 2,..., a n : coefficients b: constant term Examples: x + 4 2 y + (2 5)z = is linear. x 2 + y + yz = 2 is

More information

4 Elementary matrices, continued

4 Elementary matrices, continued 4 Elementary matrices, continued We have identified 3 types of row operations and their corresponding elementary matrices. To repeat the recipe: These matrices are constructed by performing the given row

More information

Chapter 5 Linear Programming (LP)

Chapter 5 Linear Programming (LP) Chapter 5 Linear Programming (LP) General constrained optimization problem: minimize f(x) subject to x R n is called the constraint set or feasible set. any point x is called a feasible point We consider

More information

Elementary Linear Algebra

Elementary Linear Algebra Elementary Linear Algebra Linear algebra is the study of; linear sets of equations and their transformation properties. Linear algebra allows the analysis of; rotations in space, least squares fitting,

More information

1 HOMOGENEOUS TRANSFORMATIONS

1 HOMOGENEOUS TRANSFORMATIONS HOMOGENEOUS TRANSFORMATIONS Purpose: The purpose of this chapter is to introduce ou to the Homogeneous Transformation. This simple 4 4 transformation is used in the geometr engines of CAD sstems and in

More information

March 19 - Solving Linear Systems

March 19 - Solving Linear Systems March 19 - Solving Linear Systems Welcome to linear algebra! Linear algebra is the study of vectors, vector spaces, and maps between vector spaces. It has applications across data analysis, computer graphics,

More information

Linear equations in linear algebra

Linear equations in linear algebra Linear equations in linear algebra Samy Tindel Purdue University Differential equations and linear algebra - MA 262 Taken from Differential equations and linear algebra Pearson Collections Samy T. Linear

More information

Pre-Calculus I. For example, the system. x y 2 z. may be represented by the augmented matrix

Pre-Calculus I. For example, the system. x y 2 z. may be represented by the augmented matrix Pre-Calculus I 8.1 Matrix Solutions to Linear Systems A matrix is a rectangular array of elements. o An array is a systematic arrangement of numbers or symbols in rows and columns. Matrices (the plural

More information

DM559 Linear and Integer Programming. Lecture 2 Systems of Linear Equations. Marco Chiarandini

DM559 Linear and Integer Programming. Lecture 2 Systems of Linear Equations. Marco Chiarandini DM559 Linear and Integer Programming Lecture Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1. Outline 1. 3 A Motivating Example You are organizing

More information

EXERCISES FOR SECTION 3.1

EXERCISES FOR SECTION 3.1 174 CHAPTER 3 LINEAR SYSTEMS EXERCISES FOR SECTION 31 1 Since a > 0, Paul s making a pro t > 0 has a bene cial effect on Paul s pro ts in the future because the a term makes a positive contribution to

More information

EBG # 3 Using Gaussian Elimination (Echelon Form) Gaussian Elimination: 0s below the main diagonal

EBG # 3 Using Gaussian Elimination (Echelon Form) Gaussian Elimination: 0s below the main diagonal EBG # 3 Using Gaussian Elimination (Echelon Form) Gaussian Elimination: 0s below the main diagonal [ x y Augmented matrix: 1 1 17 4 2 48 (Replacement) Replace a row by the sum of itself and a multiple

More information

a11 a A = : a 21 a 22

a11 a A = : a 21 a 22 Matrices The study of linear systems is facilitated by introducing matrices. Matrix theory provides a convenient language and notation to express many of the ideas concisely, and complicated formulas are

More information