Matrices and Determinants

Size: px
Start display at page:

Download "Matrices and Determinants"

Transcription

1 Math Assignment Eperts is a leading provider of online Math help. Our eperts have prepared sample assignments to demonstrate the quality of solution we provide. If you are looking for mathematics help then share your requirements at info@mathassignmenteperts.com Matrices and Determinants Question : Solve for, y and z Augmented Matri: y 6 4z z 6 y 6y z or y 4z 6 y z 6 6y z Multiply row by and add with row and get your new row ; R R R 6 Multiply with row and add with row and get your new row ; R R R 0 7 Multiply row by / gives you following ; R R 0 7 Multiply by - with row and add with row and get your row R R R ; Now by backward substitution to solve for variables: z, y () 0 ( 6) 4() 6

2 y 04 Now practice: Write the system of equations and solve. Ans (, -, ) Question : Below are three row-reduced echelon forms for matrices of certain linear systems. For each matri, tell how many solutions the system has. Eplain. If there are any, find the solutions. If there are infinitely many solutions, find the general formula and two particular solutions. [ 0 0 ] a. 0 0 The system has unique solution with =, y=-, z= 0 0 [ 0 0 ] b The system does not have solution [ 0 0 0] c. 0 0 The system has many solutions, it is dependent and consistent yz 0 The general solutions are and y z z 0 z Question : Sarrus Rule. In order to compute Note: Sarrus rule is only applicable if the determinant is of order by. Eample: Use Sarrus rule to find the value of = A A 4 4 4

3 4 + + = 9 Question 4: Finding inverse of a matri: Now let s learn how to find inverse of a matri. There are different methods to find inverse matri. Method. Use Shortcut for by matri a b d b Let A c d then A ad bc c a Eample: A then A 9 9 ( ) () 9 9 Method (Optional). Use Gauss-Jordan elimination to transform [ A I ] into [ I A - ]. Eample: Consider a matri A 4 and write the following Method : Adjoint method A - = (adjoint of A) or A - = (cofactor matri of A) T Let 4 A 4, then A and A Now we know how to find inverse, let s go back to solution of system of equations:

4 Eample : (continued) given system is y y If we write in matri form then we get the following, A X y B If we do AX B, we get the given system and we can rewrite AX B X A B We have seen that A then A 9 9 ( ) () 9 9 Now 9 9 y 9 9 so and y Question : Use Cramer s Rule to solve the system: 4 - y + z = - + y + z = 0 y + 6z = Solution. We begin by setting up four determinants: D consists of the coefficients of, y, and z from the three equations :

5 is obtained by replacing the -coefficients in the first column of D with the constants from the right sides of the equations. is obtained by replacing the y-coefficients in the second column of D with the constants from the right sides of the equations. is obtained by replacing the z-coefficients in the third column of D with the constants from the right sides of the equations. Net, we evaluate the four determinants: = 4( (-6)) + ( ) + (-4 0) = 4(8) + (-) + (-4) = 7 4 = = -( (-6)) + (60 ) + (-0 ) = -(8)+(7) + (-) = = - = 4(60 ) + ( ) + ( 0) = 4(7) + (-) + (-48) = 8-48 = 6

6 = 4( (-0)) + ( 0) (-4 0) = 4() + (-48) (-4) = = 0 Substitute these four values into the formula from Cramer s Rule: So, the solution is (-,, ). Question 6: Solve the system Solution: Now applying the operation r r R we have the following 6 Applying / r R we have 6.. And by r r R.... Finally we the following by applying /. r R..

7 We now have that, and other unknowns can easily be found by backward substitution into second and first equations. We have the solution,, ) (,, ). This method is called the Gaussian Elimination method. Question 7: A B 0 C ( 6 D E 4 F G Order of above matrices: A is a matri by, B is by, C is by, D is by, E is by, F and G are by matrices. Find the following if possible. -B,. A-C,. F+G, 4. B-C Answers: B A-C F G B-C is not possible

CHAPTER 8: Matrices and Determinants

CHAPTER 8: Matrices and Determinants (Exercises for Chapter 8: Matrices and Determinants) E.8.1 CHAPTER 8: Matrices and Determinants (A) means refer to Part A, (B) means refer to Part B, etc. Most of these exercises can be done without a

More information

Methods for Solving Linear Systems Part 2

Methods for Solving Linear Systems Part 2 Methods for Solving Linear Systems Part 2 We have studied the properties of matrices and found out that there are more ways that we can solve Linear Systems. In Section 7.3, we learned that we can use

More information

Elimination Method Streamlined

Elimination Method Streamlined Elimination Method Streamlined There is a more streamlined version of elimination method where we do not have to write all of the steps in such an elaborate way. We use matrices. The system of n equations

More information

Math 1314 Week #14 Notes

Math 1314 Week #14 Notes Math 3 Week # Notes Section 5.: A system of equations consists of two or more equations. A solution to a system of equations is a point that satisfies all the equations in the system. In this chapter,

More information

4.3 Row operations. As we have seen in Section 4.1 we can simplify a system of equations by either:

4.3 Row operations. As we have seen in Section 4.1 we can simplify a system of equations by either: 4.3 Row operations As we have seen in Section 4.1 we can simplify a system of equations by either: 1. Swapping the order of the equations around. For example: can become 3x 1 + 7x 2 = 9 x 1 2x 1 = 2 x

More information

CHAPTER 7: Systems and Inequalities

CHAPTER 7: Systems and Inequalities (Exercises for Chapter 7: Systems and Inequalities) E.7.1 CHAPTER 7: Systems and Inequalities (A) means refer to Part A, (B) means refer to Part B, etc. (Calculator) means use a calculator. Otherwise,

More information

Section 1.1 System of Linear Equations. Dr. Abdulla Eid. College of Science. MATHS 211: Linear Algebra

Section 1.1 System of Linear Equations. Dr. Abdulla Eid. College of Science. MATHS 211: Linear Algebra Section 1.1 System of Linear Equations College of Science MATHS 211: Linear Algebra (University of Bahrain) Linear System 1 / 33 Goals:. 1 Define system of linear equations and their solutions. 2 To represent

More information

7.5 Operations with Matrices. Copyright Cengage Learning. All rights reserved.

7.5 Operations with Matrices. Copyright Cengage Learning. All rights reserved. 7.5 Operations with Matrices Copyright Cengage Learning. All rights reserved. What You Should Learn Decide whether two matrices are equal. Add and subtract matrices and multiply matrices by scalars. Multiply

More information

Linear Equations in Linear Algebra

Linear Equations in Linear Algebra 1 Linear Equations in Linear Algebra 1.1 SYSTEMS OF LINEAR EQUATIONS LINEAR EQUATION,, 1 n A linear equation in the variables equation that can be written in the form a a a b 1 1 2 2 n n a a is an where

More information

Matrix Solutions to Linear Equations

Matrix Solutions to Linear Equations Matrix Solutions to Linear Equations Augmented matrices can be used as a simplified way of writing a system of linear equations. In an augmented matrix, a vertical line is placed inside the matrix to represent

More information

MAC Module 3 Determinants. Learning Objectives. Upon completing this module, you should be able to:

MAC Module 3 Determinants. Learning Objectives. Upon completing this module, you should be able to: MAC 2 Module Determinants Learning Objectives Upon completing this module, you should be able to:. Determine the minor, cofactor, and adjoint of a matrix. 2. Evaluate the determinant of a matrix by cofactor

More information

Solving Systems of Linear Equations Using Matrices

Solving Systems of Linear Equations Using Matrices Solving Systems of Linear Equations Using Matrices What is a Matrix? A matrix is a compact grid or array of numbers. It can be created from a system of equations and used to solve the system of equations.

More information

1 - Systems of Linear Equations

1 - Systems of Linear Equations 1 - Systems of Linear Equations 1.1 Introduction to Systems of Linear Equations Almost every problem in linear algebra will involve solving a system of equations. ü LINEAR EQUATIONS IN n VARIABLES We are

More information

EXAM. Exam #1. Math 2360, Second Summer Session, April 24, 2001 ANSWERS

EXAM. Exam #1. Math 2360, Second Summer Session, April 24, 2001 ANSWERS i i EXAM Exam #1 Math 2360, Second Summer Session, 2002 April 24, 2001 ANSWERS i 50 pts. Problem 1. In each part you are given the augmented matrix of a system of linear equations, with the coefficent

More information

MAC Learning Objectives. Learning Objectives (Cont.) Module 10 System of Equations and Inequalities II

MAC Learning Objectives. Learning Objectives (Cont.) Module 10 System of Equations and Inequalities II MAC 1140 Module 10 System of Equations and Inequalities II Learning Objectives Upon completing this module, you should be able to 1. represent systems of linear equations with matrices. 2. transform a

More information

Linear System Equations

Linear System Equations King Saud University September 24, 2018 Table of contents 1 2 3 4 Definition A linear system of equations with m equations and n unknowns is defined as follows: a 1,1 x 1 + a 1,2 x 2 + + a 1,n x n = b

More information

MATH 2050 Assignment 6 Fall 2018 Due: Thursday, November 1. x + y + 2z = 2 x + y + z = c 4x + 2z = 2

MATH 2050 Assignment 6 Fall 2018 Due: Thursday, November 1. x + y + 2z = 2 x + y + z = c 4x + 2z = 2 MATH 5 Assignment 6 Fall 8 Due: Thursday, November [5]. For what value of c does have a solution? Is it unique? x + y + z = x + y + z = c 4x + z = Writing the system as an augmented matrix, we have c R

More information

Notes on Row Reduction

Notes on Row Reduction Notes on Row Reduction Francis J. Narcowich Department of Mathematics Texas A&M University September The Row-Reduction Algorithm The row-reduced form of a matrix contains a great deal of information, both

More information

7.6 The Inverse of a Square Matrix

7.6 The Inverse of a Square Matrix 7.6 The Inverse of a Square Matrix Copyright Cengage Learning. All rights reserved. What You Should Learn Verify that two matrices are inverses of each other. Use Gauss-Jordan elimination to find inverses

More information

MAC1105-College Algebra. Chapter 5-Systems of Equations & Matrices

MAC1105-College Algebra. Chapter 5-Systems of Equations & Matrices MAC05-College Algebra Chapter 5-Systems of Equations & Matrices 5. Systems of Equations in Two Variables Solving Systems of Two Linear Equations/ Two-Variable Linear Equations A system of equations is

More information

Midterm 1 Review. Written by Victoria Kala SH 6432u Office Hours: R 12:30 1:30 pm Last updated 10/10/2015

Midterm 1 Review. Written by Victoria Kala SH 6432u Office Hours: R 12:30 1:30 pm Last updated 10/10/2015 Midterm 1 Review Written by Victoria Kala vtkala@math.ucsb.edu SH 6432u Office Hours: R 12:30 1:30 pm Last updated 10/10/2015 Summary This Midterm Review contains notes on sections 1.1 1.5 and 1.7 in your

More information

Section 5.3 Systems of Linear Equations: Determinants

Section 5.3 Systems of Linear Equations: Determinants Section 5. Systems of Linear Equations: Determinants In this section, we will explore another technique for solving systems called Cramer's Rule. Cramer's rule can only be used if the number of equations

More information

If A is a 4 6 matrix and B is a 6 3 matrix then the dimension of AB is A. 4 6 B. 6 6 C. 4 3 D. 3 4 E. Undefined

If A is a 4 6 matrix and B is a 6 3 matrix then the dimension of AB is A. 4 6 B. 6 6 C. 4 3 D. 3 4 E. Undefined Question 1 If A is a 4 6 matrix and B is a 6 3 matrix then the dimension of AB is A. 4 6 B. 6 6 C. 4 3 D. 3 4 E. Undefined Quang T. Bach Math 18 October 18, 2017 1 / 17 Question 2 1 2 Let A = 3 4 1 2 3

More information

Review for Exam Find all a for which the following linear system has no solutions, one solution, and infinitely many solutions.

Review for Exam Find all a for which the following linear system has no solutions, one solution, and infinitely many solutions. Review for Exam. Find all a for which the following linear system has no solutions, one solution, and infinitely many solutions. x + y z = 2 x + 2y + z = 3 x + y + (a 2 5)z = a 2 The augmented matrix for

More information

Section Gaussian Elimination

Section Gaussian Elimination Section. - Gaussian Elimination A matrix is said to be in row echelon form (REF) if it has the following properties:. The first nonzero entry in any row is a. We call this a leading one or pivot one..

More information

Recall, we solved the system below in a previous section. Here, we learn another method. x + 4y = 14 5x + 3y = 2

Recall, we solved the system below in a previous section. Here, we learn another method. x + 4y = 14 5x + 3y = 2 We will learn how to use a matrix to solve a system of equations. College algebra Class notes Matrices and Systems of Equations (section 6.) Recall, we solved the system below in a previous section. Here,

More information

is a 3 4 matrix. It has 3 rows and 4 columns. The first row is the horizontal row [ ]

is a 3 4 matrix. It has 3 rows and 4 columns. The first row is the horizontal row [ ] Matrices: Definition: An m n matrix, A m n is a rectangular array of numbers with m rows and n columns: a, a, a,n a, a, a,n A m,n =...... a m, a m, a m,n Each a i,j is the entry at the i th row, j th column.

More information

Linear Equations in Linear Algebra

Linear Equations in Linear Algebra 1 Linear Equations in Linear Algebra 1.1 SYSTEMS OF LINEAR EQUATIONS LINEAR EQUATION x 1,, x n A linear equation in the variables equation that can be written in the form a 1 x 1 + a 2 x 2 + + a n x n

More information

6.3. MULTIVARIABLE LINEAR SYSTEMS

6.3. MULTIVARIABLE LINEAR SYSTEMS 6.3. MULTIVARIABLE LINEAR SYSTEMS What You Should Learn Use back-substitution to solve linear systems in row-echelon form. Use Gaussian elimination to solve systems of linear equations. Solve nonsquare

More information

9.1 - Systems of Linear Equations: Two Variables

9.1 - Systems of Linear Equations: Two Variables 9.1 - Systems of Linear Equations: Two Variables Recall that a system of equations consists of two or more equations each with two or more variables. A solution to a system in two variables is an ordered

More information

Chapter 6 Page 1 of 10. Lecture Guide. Math College Algebra Chapter 6. to accompany. College Algebra by Julie Miller

Chapter 6 Page 1 of 10. Lecture Guide. Math College Algebra Chapter 6. to accompany. College Algebra by Julie Miller Chapter 6 Page 1 of 10 Lecture Guide Math 105 - College Algebra Chapter 6 to accompany College Algebra by Julie Miller Corresponding Lecture Videos can be found at Prepared by Stephen Toner & Nichole DuBal

More information

Systems of Linear Equations

Systems of Linear Equations Systems of Linear Equations Linear Equation Definition Any equation that is equivalent to the following format a a ann b (.) where,,, n are unknown variables and a, a,, an, b are known numbers (the so

More information

Section 6.2 Larger Systems of Linear Equations

Section 6.2 Larger Systems of Linear Equations Section 6.2 Larger Systems of Linear Equations Gaussian Elimination In general, to solve a system of linear equations using its augmented matrix, we use elementary row operations to arrive at a matrix

More information

Gauss-Jordan Row Reduction and Reduced Row Echelon Form

Gauss-Jordan Row Reduction and Reduced Row Echelon Form Gauss-Jordan Row Reduction and Reduced Row Echelon Form If we put the augmented matrix of a linear system in reduced row-echelon form, then we don t need to back-substitute to solve the system. To put

More information

8-15. Stop by or call (630)

8-15. Stop by or call (630) To review the basics Matrices, what they represent, and how to find sum, scalar product, product, inverse, and determinant of matrices, watch the following set of YouTube videos. They are followed by several

More information

Lecture 2 Systems of Linear Equations and Matrices, Continued

Lecture 2 Systems of Linear Equations and Matrices, Continued Lecture 2 Systems of Linear Equations and Matrices, Continued Math 19620 Outline of Lecture Algorithm for putting a matrix in row reduced echelon form - i.e. Gauss-Jordan Elimination Number of Solutions

More information

Calculus for Engineers II - Sample problems on Matrices. Manuela Kulaxizi

Calculus for Engineers II - Sample problems on Matrices. Manuela Kulaxizi Calculus for Engineers II - Sample problems on Matrices. Manuela Kulaxizi Exercise 1: Find the determinant of the following matrices: 1. 2. 3. 4. 0 1 2 1 0 3 4 3 8 0 1 2 0 1 0 3 9 1 3 1 2 0 1 1 2 1 1 0

More information

MATH 213 Linear Algebra and ODEs Spring 2015 Study Sheet for Midterm Exam. Topics

MATH 213 Linear Algebra and ODEs Spring 2015 Study Sheet for Midterm Exam. Topics MATH 213 Linear Algebra and ODEs Spring 2015 Study Sheet for Midterm Exam This study sheet will not be allowed during the test Books and notes will not be allowed during the test Calculators and cell phones

More information

MIDTERM 1 - SOLUTIONS

MIDTERM 1 - SOLUTIONS MIDTERM - SOLUTIONS MATH 254 - SUMMER 2002 - KUNIYUKI CHAPTERS, 2, GRADED OUT OF 75 POINTS 2 50 POINTS TOTAL ) Use either Gaussian elimination with back-substitution or Gauss-Jordan elimination to solve

More information

Math x + 3y 5z = 14 3x 2y + 3z = 17 4x + 3y 2z = 1

Math x + 3y 5z = 14 3x 2y + 3z = 17 4x + 3y 2z = 1 Math 210 1. Solve the system: x + y + z = 1 2x + 3y + 4z = 5 (a z = 2, y = 1 and x = 0 (b z =any value, y = 3 2z and x = z 2 (c z =any value, y = 3 2z and x = z + 2 (d z =any value, y = 3 + 2z and x =

More information

1. Solve each linear system using Gaussian elimination or Gauss-Jordan reduction. The augmented matrix of this linear system is

1. Solve each linear system using Gaussian elimination or Gauss-Jordan reduction. The augmented matrix of this linear system is Solutions to Homework Additional Problems. Solve each linear system using Gaussian elimination or Gauss-Jordan reduction. (a) x + y = 8 3x + 4y = 7 x + y = 3 The augmented matrix of this linear system

More information

4 Elementary matrices, continued

4 Elementary matrices, continued 4 Elementary matrices, continued We have identified 3 types of row operations and their corresponding elementary matrices. If you check the previous examples, you ll find that these matrices are constructed

More information

6-1 Study Guide and Intervention Multivariable Linear Systems and Row Operations

6-1 Study Guide and Intervention Multivariable Linear Systems and Row Operations 6-1 Study Guide and Intervention Multivariable Linear Systems and Row Operations Gaussian Elimination You can solve a system of linear equations using matrices. Solving a system by transforming it into

More information

5.7 Cramer's Rule 1. Using Determinants to Solve Systems Assumes the system of two equations in two unknowns

5.7 Cramer's Rule 1. Using Determinants to Solve Systems Assumes the system of two equations in two unknowns 5.7 Cramer's Rule 1. Using Determinants to Solve Systems Assumes the system of two equations in two unknowns (1) possesses the solution and provided that.. The numerators and denominators are recognized

More information

Solutions to Homework 5 - Math 3410

Solutions to Homework 5 - Math 3410 Solutions to Homework 5 - Math 34 (Page 57: # 489) Determine whether the following vectors in R 4 are linearly dependent or independent: (a) (, 2, 3, ), (3, 7,, 2), (, 3, 7, 4) Solution From x(, 2, 3,

More information

System of Linear Equations

System of Linear Equations Chapter 7 - S&B Gaussian and Gauss-Jordan Elimination We will study systems of linear equations by describing techniques for solving such systems. The preferred solution technique- Gaussian elimination-

More information

Elementary maths for GMT

Elementary maths for GMT Elementary maths for GMT Linear Algebra Part 2: Matrices, Elimination and Determinant m n matrices The system of m linear equations in n variables x 1, x 2,, x n a 11 x 1 + a 12 x 2 + + a 1n x n = b 1

More information

4 Elementary matrices, continued

4 Elementary matrices, continued 4 Elementary matrices, continued We have identified 3 types of row operations and their corresponding elementary matrices. To repeat the recipe: These matrices are constructed by performing the given row

More information

Linear Algebra I Lecture 8

Linear Algebra I Lecture 8 Linear Algebra I Lecture 8 Xi Chen 1 1 University of Alberta January 25, 2019 Outline 1 2 Gauss-Jordan Elimination Given a system of linear equations f 1 (x 1, x 2,..., x n ) = 0 f 2 (x 1, x 2,..., x n

More information

Lecture 10: Determinants and Cramer s Rule

Lecture 10: Determinants and Cramer s Rule Lecture 0: Determinants and Cramer s Rule The determinant and its applications. Definition The determinant of a square matrix A, denoted by det(a) or A, is a real number, which is defined as follows. -by-

More information

FINAL (CHAPTERS 7-9) MATH 141 SPRING 2018 KUNIYUKI 250 POINTS TOTAL

FINAL (CHAPTERS 7-9) MATH 141 SPRING 2018 KUNIYUKI 250 POINTS TOTAL Math 141 Name: FINAL (CHAPTERS 7-9) MATH 141 SPRING 2018 KUNIYUKI 250 POINTS TOTAL Show all work, simplify as appropriate, and use good form and procedure (as in class). Box in your final answers! No notes

More information

Algebra & Trig. I. For example, the system. x y 2 z. may be represented by the augmented matrix

Algebra & Trig. I. For example, the system. x y 2 z. may be represented by the augmented matrix Algebra & Trig. I 8.1 Matrix Solutions to Linear Systems A matrix is a rectangular array of elements. o An array is a systematic arrangement of numbers or symbols in rows and columns. Matrices (the plural

More information

Chapter Practice Test Name: Period: Date:

Chapter Practice Test Name: Period: Date: Name: Period: Date: 1. Draw the graph of the following system: 3 x+ 5 y+ 13 = 0 29 x 11 y 7 = 0 3 13 y = x 3x+ 5y+ 13= 0 5 5 29x 11y 7 = 0 29 7 y = x 11 11 Practice Test Page 1 2. Determine the ordered

More information

Math 313 Chapter 1 Review

Math 313 Chapter 1 Review Math 313 Chapter 1 Review Howard Anton, 9th Edition May 2010 Do NOT write on me! Contents 1 1.1 Introduction to Systems of Linear Equations 2 2 1.2 Gaussian Elimination 3 3 1.3 Matrices and Matrix Operations

More information

ECON 186 Class Notes: Linear Algebra

ECON 186 Class Notes: Linear Algebra ECON 86 Class Notes: Linear Algebra Jijian Fan Jijian Fan ECON 86 / 27 Singularity and Rank As discussed previously, squareness is a necessary condition for a matrix to be nonsingular (have an inverse).

More information

SOLVING Ax = b: GAUSS-JORDAN ELIMINATION [LARSON 1.2]

SOLVING Ax = b: GAUSS-JORDAN ELIMINATION [LARSON 1.2] SOLVING Ax = b: GAUSS-JORDAN ELIMINATION [LARSON.2 EQUIVALENT LINEAR SYSTEMS: Two m n linear systems are equivalent both systems have the exact same solution sets. When solving a linear system Ax = b,

More information

Algebra 2 Matrices. Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Find.

Algebra 2 Matrices. Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Find. Algebra 2 Matrices Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Find. Evaluate the determinant of the matrix. 2. 3. A matrix contains 48 elements.

More information

MATH 1003 Review: Part 2. Matrices. MATH 1003 Review: Part 2. Matrices

MATH 1003 Review: Part 2. Matrices. MATH 1003 Review: Part 2. Matrices Matrices (Ch.4) (i) System of linear equations in 2 variables (L.5, Ch4.1) Find solutions by graphing Supply and demand curve (ii) Basic ideas about Matrices (L.6, Ch4.2) To know a matrix Row operation

More information

MATH 2050 Assignment 8 Fall [10] 1. Find the determinant by reducing to triangular form for the following matrices.

MATH 2050 Assignment 8 Fall [10] 1. Find the determinant by reducing to triangular form for the following matrices. MATH 2050 Assignment 8 Fall 2016 [10] 1. Find the determinant by reducing to triangular form for the following matrices. 0 1 2 (a) A = 2 1 4. ANS: We perform the Gaussian Elimination on A by the following

More information

Chapter 2. Systems of Equations and Augmented Matrices. Creighton University

Chapter 2. Systems of Equations and Augmented Matrices. Creighton University Chapter Section - Systems of Equations and Augmented Matrices D.S. Malik Creighton University Systems of Linear Equations Common ways to solve a system of equations: Eliminationi Substitution Elimination

More information

Exercise Sketch these lines and find their intersection.

Exercise Sketch these lines and find their intersection. These are brief notes for the lecture on Friday August 21, 2009: they are not complete, but they are a guide to what I want to say today. They are not guaranteed to be correct. 1. Solving systems of linear

More information

Relationships Between Planes

Relationships Between Planes Relationships Between Planes Definition: consistent (system of equations) A system of equations is consistent if there exists one (or more than one) solution that satisfies the system. System 1: {, System

More information

Lecture 1 Systems of Linear Equations and Matrices

Lecture 1 Systems of Linear Equations and Matrices Lecture 1 Systems of Linear Equations and Matrices Math 19620 Outline of Course Linear Equations and Matrices Linear Transformations, Inverses Bases, Linear Independence, Subspaces Abstract Vector Spaces

More information

MAC Module 1 Systems of Linear Equations and Matrices I

MAC Module 1 Systems of Linear Equations and Matrices I MAC 2103 Module 1 Systems of Linear Equations and Matrices I 1 Learning Objectives Upon completing this module, you should be able to: 1. Represent a system of linear equations as an augmented matrix.

More information

Linear Algebra Practice Problems

Linear Algebra Practice Problems Math 7, Professor Ramras Linear Algebra Practice Problems () Consider the following system of linear equations in the variables x, y, and z, in which the constants a and b are real numbers. x y + z = a

More information

The matrix will only be consistent if the last entry of row three is 0, meaning 2b 3 + b 2 b 1 = 0.

The matrix will only be consistent if the last entry of row three is 0, meaning 2b 3 + b 2 b 1 = 0. ) Find all solutions of the linear system. Express the answer in vector form. x + 2x + x + x 5 = 2 2x 2 + 2x + 2x + x 5 = 8 x + 2x + x + 9x 5 = 2 2 Solution: Reduce the augmented matrix [ 2 2 2 8 ] to

More information

Miller Objectives Alignment Math

Miller Objectives Alignment Math Miller Objectives Alignment Math 1050 1 College Algebra Course Objectives Spring Semester 2016 1. Use algebraic methods to solve a variety of problems involving exponential, logarithmic, polynomial, and

More information

Lectures on Linear Algebra for IT

Lectures on Linear Algebra for IT Lectures on Linear Algebra for IT by Mgr. Tereza Kovářová, Ph.D. following content of lectures by Ing. Petr Beremlijski, Ph.D. Department of Applied Mathematics, VSB - TU Ostrava Czech Republic 2. Systems

More information

Name: MATH 3195 :: Fall 2011 :: Exam 2. No document, no calculator, 1h00. Explanations and justifications are expected for full credit.

Name: MATH 3195 :: Fall 2011 :: Exam 2. No document, no calculator, 1h00. Explanations and justifications are expected for full credit. Name: MATH 3195 :: Fall 2011 :: Exam 2 No document, no calculator, 1h00. Explanations and justifications are expected for full credit. 1. ( 4 pts) Say which matrix is in row echelon form and which is not.

More information

Last lecture: linear combinations and spanning sets. Let X = {x 1, x 2,..., x k } be a set of vectors in a vector

Last lecture: linear combinations and spanning sets. Let X = {x 1, x 2,..., x k } be a set of vectors in a vector Last lecture: linear combinations and spanning sets Let X = { k } be a set of vectors in a vector space V A linear combination of k is any vector of the form r + r + + r k k V for r + r + + r k k for scalars

More information

Matrices and systems of linear equations

Matrices and systems of linear equations Matrices and systems of linear equations Samy Tindel Purdue University Differential equations and linear algebra - MA 262 Taken from Differential equations and linear algebra by Goode and Annin Samy T.

More information

Linear Algebra. Matrices Operations. Consider, for example, a system of equations such as x + 2y z + 4w = 0, 3x 4y + 2z 6w = 0, x 3y 2z + w = 0.

Linear Algebra. Matrices Operations. Consider, for example, a system of equations such as x + 2y z + 4w = 0, 3x 4y + 2z 6w = 0, x 3y 2z + w = 0. Matrices Operations Linear Algebra Consider, for example, a system of equations such as x + 2y z + 4w = 0, 3x 4y + 2z 6w = 0, x 3y 2z + w = 0 The rectangular array 1 2 1 4 3 4 2 6 1 3 2 1 in which the

More information

Lemma 8: Suppose the N by N matrix A has the following block upper triangular form:

Lemma 8: Suppose the N by N matrix A has the following block upper triangular form: 17 4 Determinants and the Inverse of a Square Matrix In this section, we are going to use our knowledge of determinants and their properties to derive an explicit formula for the inverse of a square matrix

More information

Linear Algebra (2009 Fall) Chapter 1 Matrices and Systems of Equations

Linear Algebra (2009 Fall) Chapter 1 Matrices and Systems of Equations (9 Fall) Chapter Matrices and Sstems of Equations Chih-Wei Yi Dept. of Computer Science National Chiao Tung Universit October 9, 9 Linear Sstems Linear Sstems Linear Sstems Linear Equations De nition (Linear

More information

MathQuest: Linear Algebra. 1. Which of the following operations on an augmented matrix could change the solution set of a system?

MathQuest: Linear Algebra. 1. Which of the following operations on an augmented matrix could change the solution set of a system? MathQuest: Linear Algebra Gaussian Elimination 1. Which of the following operations on an augmented matrix could change the solution set of a system? (a) Interchanging two rows (b) Multiplying one row

More information

FINAL (CHAPTERS 7-10) MATH 141 FALL 2018 KUNIYUKI 250 POINTS TOTAL

FINAL (CHAPTERS 7-10) MATH 141 FALL 2018 KUNIYUKI 250 POINTS TOTAL Math 141 Name: FINAL (CHAPTERS 7-10) MATH 141 FALL 2018 KUNIYUKI 250 POINTS TOTAL Show all work, simplify as appropriate, and use good form and procedure (as in class). Box in your final answers! No notes

More information

Tin Ka Ping Secondary School F.5 Mathematics Module 2 Teaching Syllabus

Tin Ka Ping Secondary School F.5 Mathematics Module 2 Teaching Syllabus Tin Ka Ping Secondary School 01-016 F. Mathematics Module Teaching Syllabus Chapter 11 Indefinite Integration (I) Time 1 11.1 To recognise the concept of Concept of indefinite integration. Concept of Indefinite

More information

Example: 2x y + 3z = 1 5y 6z = 0 x + 4z = 7. Definition: Elementary Row Operations. Example: Type I swap rows 1 and 3

Example: 2x y + 3z = 1 5y 6z = 0 x + 4z = 7. Definition: Elementary Row Operations. Example: Type I swap rows 1 and 3 Math 0 Row Reduced Echelon Form Techniques for solving systems of linear equations lie at the heart of linear algebra. In high school we learn to solve systems with or variables using elimination and substitution

More information

Properties of the Determinant Function

Properties of the Determinant Function Properties of the Determinant Function MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Overview Today s discussion will illuminate some of the properties of the determinant:

More information

Math 301 Test I. M. Randall Holmes. September 8, 2008

Math 301 Test I. M. Randall Holmes. September 8, 2008 Math 0 Test I M. Randall Holmes September 8, 008 This exam will begin at 9:40 am and end at 0:5 am. You may use your writing instrument, a calculator, and your test paper; books, notes and neighbors to

More information

M 340L CS Homework Set 1

M 340L CS Homework Set 1 M 340L CS Homework Set 1 Solve each system in Problems 1 6 by using elementary row operations on the equations or on the augmented matri. Follow the systematic elimination procedure described in Lay, Section

More information

Solutions to Exam I MATH 304, section 6

Solutions to Exam I MATH 304, section 6 Solutions to Exam I MATH 304, section 6 YOU MUST SHOW ALL WORK TO GET CREDIT. Problem 1. Let A = 1 2 5 6 1 2 5 6 3 2 0 0 1 3 1 1 2 0 1 3, B =, C =, I = I 0 0 0 1 1 3 4 = 4 4 identity matrix. 3 1 2 6 0

More information

Department of Aerospace Engineering AE602 Mathematics for Aerospace Engineers Assignment No. 4

Department of Aerospace Engineering AE602 Mathematics for Aerospace Engineers Assignment No. 4 Department of Aerospace Engineering AE6 Mathematics for Aerospace Engineers Assignment No.. Decide whether or not the following vectors are linearly independent, by solving c v + c v + c 3 v 3 + c v :

More information

Lecture Notes: Solving Linear Systems with Gauss Elimination

Lecture Notes: Solving Linear Systems with Gauss Elimination Lecture Notes: Solving Linear Systems with Gauss Elimination Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk 1 Echelon Form and Elementary

More information

Pre-Calculus I. For example, the system. x y 2 z. may be represented by the augmented matrix

Pre-Calculus I. For example, the system. x y 2 z. may be represented by the augmented matrix Pre-Calculus I 8.1 Matrix Solutions to Linear Systems A matrix is a rectangular array of elements. o An array is a systematic arrangement of numbers or symbols in rows and columns. Matrices (the plural

More information

Chapter 9: Systems of Equations and Inequalities

Chapter 9: Systems of Equations and Inequalities Chapter 9: Systems of Equations and Inequalities 9. Systems of Equations Solve the system of equations below. By this we mean, find pair(s) of numbers (x, y) (if possible) that satisfy both equations.

More information

Unit 12 Study Notes 1 Systems of Equations

Unit 12 Study Notes 1 Systems of Equations You should learn to: Unit Stud Notes Sstems of Equations. Solve sstems of equations b substitution.. Solve sstems of equations b graphing (calculator). 3. Solve sstems of equations b elimination. 4. Solve

More information

Matrices and Systems of Equations

Matrices and Systems of Equations M CHAPTER 3 3 4 3 F 2 2 4 C 4 4 Matrices and Systems of Equations Probably the most important problem in mathematics is that of solving a system of linear equations. Well over 75 percent of all mathematical

More information

Lecture 12: Solving Systems of Linear Equations by Gaussian Elimination

Lecture 12: Solving Systems of Linear Equations by Gaussian Elimination Lecture 12: Solving Systems of Linear Equations by Gaussian Elimination Winfried Just, Ohio University September 22, 2017 Review: The coefficient matrix Consider a system of m linear equations in n variables.

More information

Solving Linear Systems Using Gaussian Elimination

Solving Linear Systems Using Gaussian Elimination Solving Linear Systems Using Gaussian Elimination DEFINITION: A linear equation in the variables x 1,..., x n is an equation that can be written in the form a 1 x 1 +...+a n x n = b, where a 1,...,a n

More information

Lecture 22: Section 4.7

Lecture 22: Section 4.7 Lecture 22: Section 47 Shuanglin Shao December 2, 213 Row Space, Column Space, and Null Space Definition For an m n, a 11 a 12 a 1n a 21 a 22 a 2n A = a m1 a m2 a mn, the vectors r 1 = [ a 11 a 12 a 1n

More information

Determinants Chapter 3 of Lay

Determinants Chapter 3 of Lay Determinants Chapter of Lay Dr. Doreen De Leon Math 152, Fall 201 1 Introduction to Determinants Section.1 of Lay Given a square matrix A = [a ij, the determinant of A is denoted by det A or a 11 a 1j

More information

Matrices (Ch.4) MATH 1003 Review: Part 2. Matrices. Matrices (Ch.4) Matrices (Ch.4)

Matrices (Ch.4) MATH 1003 Review: Part 2. Matrices. Matrices (Ch.4) Matrices (Ch.4) Matrices (Ch.4) Maosheng Xiong Department of Mathematics, HKUST (i) System of linear equations in 2 variables (L.5, Ch4.) Find solutions by graphing Supply and demand curve (ii) Basic ideas about Matrices

More information

MATH 54 - WORKSHEET 1 MONDAY 6/22

MATH 54 - WORKSHEET 1 MONDAY 6/22 MATH 54 - WORKSHEET 1 MONDAY 6/22 Row Operations: (1 (Replacement Add a multiple of one row to another row. (2 (Interchange Swap two rows. (3 (Scaling Multiply an entire row by a nonzero constant. A matrix

More information

Math 1324 Review 2(answers) x y 2z R R R

Math 1324 Review 2(answers) x y 2z R R R Math Review (answers). Solve the following system using Gauss-Jordan Elimination. y z 6 6 0 5 R R R R R R z 5 y z 6 0 0 0 0 0 0 R R R 0 5 0 0 0 0 0 0 z t Infinitely many solutions given by y 5t where t

More information

Problem Sheet 1 with Solutions GRA 6035 Mathematics

Problem Sheet 1 with Solutions GRA 6035 Mathematics Problem Sheet 1 with Solutions GRA 6035 Mathematics BI Norwegian Business School 2 Problems 1. From linear system to augmented matrix Write down the coefficient matrix and the augmented matrix of the following

More information

Chapter 4. Solving Systems of Equations. Chapter 4

Chapter 4. Solving Systems of Equations. Chapter 4 Solving Systems of Equations 3 Scenarios for Solutions There are three general situations we may find ourselves in when attempting to solve systems of equations: 1 The system could have one unique solution.

More information

Linear algebra in turn is built on two basic elements, MATRICES and VECTORS.

Linear algebra in turn is built on two basic elements, MATRICES and VECTORS. M-Lecture():.-. Linear algebra provides concepts that are crucial to man areas of information technolog and computing, including: Graphics Image processing Crptograph Machine learning Computer vision Optimiation

More information

Row Reduced Echelon Form

Row Reduced Echelon Form Math 40 Row Reduced Echelon Form Solving systems of linear equations lies at the heart of linear algebra. In high school we learn to solve systems in or variables using elimination and substitution of

More information

Chapter 3. Linear Equations. Josef Leydold Mathematical Methods WS 2018/19 3 Linear Equations 1 / 33

Chapter 3. Linear Equations. Josef Leydold Mathematical Methods WS 2018/19 3 Linear Equations 1 / 33 Chapter 3 Linear Equations Josef Leydold Mathematical Methods WS 2018/19 3 Linear Equations 1 / 33 Lineares Gleichungssystem System of m linear equations in n unknowns: a 11 x 1 + a 12 x 2 + + a 1n x n

More information