Underlying Event measurements with first LHC data

Size: px
Start display at page:

Download "Underlying Event measurements with first LHC data"

Transcription

1 Underlying Event measurements with first LHC data Holger Schulz Graduiertenkolleg Masse, Spektrum, Symmetrie Berlin, Septemer 29, 2009

2 Holger Schulz Underlying Event measurements with first LHC data 1 / 13 Introduction LHC is a QCD machine hard to find interesting signals QCD perturatively calculale in hard processes Need models for soft physics (α s 1) to understand ackground Large ackground at LHC is Underlying Event (UE) UE everything except the hard scattering of interest Have different models/generators: Herwig, Pythia, Phojet, Sherpa... LHC-predictions differ vastly need measurements to tune generators

3 Holger Schulz Underlying Event measurements with first LHC data 2 / 13 Hadron collisions (orrowed from Leif Lönnlad) Incoming eams, parton density functions (pdfs) & primordial k

4 Holger Schulz Underlying Event measurements with first LHC data 2 / 13 Hadron collisions (orrowed from Leif Lönnlad) The hard su-process, the matrix element

5 Holger Schulz Underlying Event measurements with first LHC data 2 / 13 Hadron collisions (orrowed from Leif Lönnlad) Resonance decays correlated with the hard su-process

6 Holger Schulz Underlying Event measurements with first LHC data 2 / 13 Hadron collisions (orrowed from Leif Lönnlad) Initial-state radiation (ISR), parton shower (ackward evolution)

7 Holger Schulz Underlying Event measurements with first LHC data 2 / 13 Hadron collisions (orrowed from Leif Lönnlad) Final-state radiation (FSR), parton shower (forward evolution)

8 Holger Schulz Underlying Event measurements with first LHC data 2 / 13 Hadron collisions (orrowed from Leif Lönnlad) Multiple parton-parton interactions soft, semi-hard or hard scatterings

9 Holger Schulz Underlying Event measurements with first LHC data 2 / 13 Hadron collisions (orrowed from Leif Lönnlad) Initial-/Final state showers of ISR-particles

10 Holger Schulz Underlying Event measurements with first LHC data 2 / 13 Hadron collisions (orrowed from Leif Lönnlad) Formation of colour strings, outgoing partons & eam remnants

11 Holger Schulz Underlying Event measurements with first LHC data 2 / 13 Hadron collisions (orrowed from Leif Lönnlad) Hadronisation

12 Holger Schulz Underlying Event measurements with first LHC data 2 / 13 Hadron collisions (orrowed from Leif Lönnlad) Decay of unstale particles, this is what hits the detector

13 Holger Schulz Underlying Event measurements with first LHC data 3 / 13 Extrapolations to the LHC Drastically different predictions for LHC Different UE energy-scaling: Phojet ln s Pythia ln 2 s Generators were tuned to data at different s Will need retuning of UE-parameters to LHC data plot y A. Moraes

14 UE measurements at the Tevatron Z p from q q Z: α S in ISR, primordial k Multiplicity distriutions: numer of particles produced p vs. N ch : numer and p of particles produced Exploiting the event topology - p sum, N ch vs. p,leading jet in jet events: almost everything 2π Transverse Toward Φ Transverse Φ 0 Leading jet direction Φ Toward TransMIN TransMAX Away Away Third jet 0 η 1 1 Second hardest jet Holger Schulz Underlying Event measurements with first LHC data 4 / 13

15 Holger Schulz Underlying Event measurements with first LHC data 5 / 13 Disadvantages of first LHC data Jet-energy caliration not very precise in the eginning rather use tracks and lepton-id Cross-section at s = 7 TeV smaller than at 10 or 14 TeV Expect integrated luminosity of O(100 p 1 )

16 Advantages of first LHC data Measurements at s = 7 TeV give another energy point for extrapolations to 10, 14 TeV Lower luminosity means reduced pile-up L = 1033 cm 2 s 1 Holger Schulz L = 1034 cm 2 s 1 Underlying Event measurements with first LHC data 6 / 13

17 Holger Schulz Underlying Event measurements with first LHC data 7 / 13 Measurement strategy with ATLAS Use inner detector for track-p measurements + electron-id from ECAL + muon-id from muon chamers

18 Holger Schulz Underlying Event measurements with first LHC data 8 / 13 Measuring p of Z-Bosons Use only tracks from leptonic Z-decays Clean signal, look for two leptons of opposite sign within a Z-mass window dσ/dp Z p ( η < 2.5, p > 1.0 GeV) Z e + e & Z µ + µ 100 p 1 after detector cuts: events remain on generator level Statistics might e too low for a tuning p /GeV

19 Holger Schulz Underlying Event measurements with first LHC data 9 / 13 Leading track Measure track-p using only inner detector Identify leading track = largest p in event defines φ 0 Define transverse region, measure N tracks, scalar p -sum as function of p, leading track 2π Transverse Direction of leading track Φ Toward Φ Transverse Φ 0 TransMIN Toward TransMAX Away 0 η Away

20 Holger Schulz Underlying Event measurements with first LHC data 10 / 13 N ch /dηdφ Transverse region charged pt sum density Pythia p T (leading track) / GeV p track T / GeV Transverse region charged particle density Pythia p T (leading track) / GeV Plateau is a measure for Underlying Event activity Data will e taken with Minimum Bias trigger no statistics prolem

21 Does early data improve generator tuning? Tool for systematic generator tuning: Professor (arxiv: ) Professor in three lines 1 Parameterisation of generator response to shifts in parameter space 2 Add experimental data construct goodness of fit (g.o.f.) 3 Minimise g.o.f. to get est parameter setting (tuning) Question: If we add data corresponding to 50, 60, p 1 does this improve the tuning? need meaningful error-definition on tuned parameters use covariance matrix (work in progress) to get error-ands measurement worthwile, if error decreases Holger Schulz Underlying Event measurements with first LHC data 11 / 13

22 Holger Schulz Underlying Event measurements with first LHC data 12 / 13 Errorands for generator tuning Sample points from contour of hyper (error) ellipsis Run generator with these points, construct envelope Add fake Monte Carlo data see if e.g. plateau is constrained p Transverse region charged particle density LHC, 7TeV Bin-heights Bin-errors p 1 p T(leading track) / GeV

23 Holger Schulz Underlying Event measurements with first LHC data 13 / 13 Summary and Outlook UE measurements at LHC essential for proper generator tuning Need to identify reasonale oservales for first data UE as function of leading track p looks promising Proaly not enough statistics for Z-osons W-osons might e an option ATLAS CMS co-operation on Minimum Bias & UE Include UA5 data at s = 200 and 900 GeV Thank you!

24 Backup

25 Tuning procedure in Professor 1 random sampling: N parameter points in n-dimensional space 2 run generator and fill histograms 3 for each in: use N points to fit interpolation (2 nd or 3 rd order polynomial) 4 construct overall (now trivial) χ 2 (interpolation data) = 2 ins 5 and numerically minimize pyminuit, SciPy error 2

26 Tuning procedure in Professor 1 random sampling: N parameter points in n-dimensional space 2 run generator and fill histograms 3 for each in: use N points to fit interpolation (2 nd or 3 rd order polynomial) 4 construct overall (now trivial) χ 2 (interpolation data) = 2 ins 5 and numerically minimize pyminuit, SciPy error 2 p

27 Tuning procedure in Professor 1 random sampling: N parameter points in n-dimensional space 2 run generator and fill histograms 3 for each in: use N points to fit interpolation (2 nd or 3 rd order polynomial) 4 construct overall (now trivial) χ 2 (interpolation data) = 2 ins 5 and numerically minimize pyminuit, SciPy error 2 p

28 Tuning procedure in Professor 1 random sampling: N parameter points in n-dimensional space 2 run generator and fill histograms 3 for each in: use N points to fit interpolation (2 nd or 3 rd order polynomial) 4 construct overall (now trivial) χ 2 (interpolation data) = 2 ins 5 and numerically minimize pyminuit, SciPy error 2 p

29 Tuning procedure in Professor 1 random sampling: N parameter points in n-dimensional space 2 run generator and fill histograms 3 for each in: use N points to fit interpolation (2 nd or 3 rd order polynomial) 4 construct overall (now trivial) χ 2 (interpolation data) = 2 ins 5 and numerically minimize pyminuit, SciPy error 2 p

30 Tuning procedure in Professor 1 random sampling: N parameter points in n-dimensional space 2 run generator and fill histograms 3 for each in: use N points to fit interpolation (2 nd or 3 rd order polynomial) 4 construct overall (now trivial) χ 2 (interpolation data) = 2 ins 5 and numerically minimize pyminuit, SciPy error 2 p

31 Tuning procedure in Professor 1 random sampling: N parameter points in n-dimensional space 2 run generator and fill histograms 3 for each in: use N points to fit interpolation (2 nd or 3 rd order polynomial) 4 construct overall (now trivial) χ 2 (interpolation data) = 2 ins 5 and numerically minimize pyminuit, SciPy error 2 p

32 Tuning procedure in Professor 1 random sampling: N parameter points in n-dimensional space 2 run generator and fill histograms 3 for each in: use N points to fit interpolation (2 nd or 3 rd order polynomial) 4 construct overall (now trivial) χ 2 (interpolation data) = 2 ins 5 and numerically minimize pyminuit, SciPy error 2 p

33 Tuning procedure in Professor 1 random sampling: N parameter points in n-dimensional space 2 run generator and fill histograms 3 for each in: use N points to fit interpolation (2 nd or 3 rd order polynomial) 4 construct overall (now trivial) χ 2 (interpolation data) = 2 ins 5 and numerically minimize pyminuit, SciPy error 2 in interpolation p

34 Tuning procedure in Professor 1 random sampling: N parameter points in n-dimensional space 2 run generator and fill histograms 3 for each in: use N points to fit interpolation (2 nd or 3 rd order polynomial) 4 construct overall (now trivial) χ 2 (interpolation data) = 2 ins 5 and numerically minimize pyminuit, SciPy error 2 data in in interpolation p

35 Tuning procedure in Professor 1 random sampling: N parameter points in n-dimensional space 2 run generator and fill histograms 3 for each in: use N points to fit interpolation (2 nd or 3 rd order polynomial) 4 construct overall (now trivial) χ 2 (interpolation data) = 2 ins 5 and numerically minimize pyminuit, SciPy error 2 data in in interpolation p

36 Tuning procedure in Professor 1 random sampling: N parameter points in n-dimensional space 2 run generator and fill histograms 3 for each in: use N points to fit interpolation (2 nd or 3 rd order polynomial) 4 construct overall (now trivial) χ 2 (interpolation data) = 2 ins 5 and numerically minimize pyminuit, SciPy error 2 data in in interpolation est p p

37 2nd order polynomial includes lowest-order correlations etween parameters MC ( p ) f () ( p ) = α () 0 + i β () i p i + i j γ () ij p i p j Now use N generator runs, i.e. N different parameter sets x,y: v 1 v N v 2. }{{} v (N values, i.e. N in contents) = 1 x 1 y 1 x1 2 x 1 y 1 y x 2 y 2 x2 2 x 2 y 2 y x N y N xn 2 x Ny N yn 2 } {{ } P (N sampled parameter sets) α 0 β x β y γ xx γ xy γ yy }{{} c (coeffs) Therefore: c = Ĩ[ P] v where Ĩ is the pseudoinverse operator.

38 c = Ĩ[ P] v Use Singular Value Decomposition (SVD), a general diagonalisation for all normal matrices M:M = UΣV Method availale in SciPy.linalg Minimal numer of runs = numer of coefficients in c : N (n) min = 1 + n + n(n + 1)/2 + (n + 1)(n + 2)/6 }{{} cuic only Oversampling y a factor of three has proven to e much etter Num params, P N (P) 2 (2nd order) N (P) 3 (3rd order)

39 c = Ĩ[ P] v Use Singular Value Decomposition (SVD), a general diagonalisation for all normal matrices M:M = UΣV Method availale in SciPy.linalg Minimal numer of runs = numer of coefficients in c : N (n) min = 1 + n + n(n + 1)/2 + (n + 1)(n + 2)/6 }{{} cuic only Oversampling y a factor of three has proven to e much etter Num params, P N (P) 2 (2nd order) N (P) 3 (3rd order)

40 c = Ĩ[ P] v Use Singular Value Decomposition (SVD), a general diagonalisation for all normal matrices M:M = UΣV Method availale in SciPy.linalg Minimal numer of runs = numer of coefficients in c : N (n) min = 1 + n + n(n + 1)/2 + (n + 1)(n + 2)/6 }{{} cuic only Oversampling y a factor of three has proven to e much etter Num params, P N (P) 2 (2nd order) N (P) 3 (3rd order)

Double Parton Scattering in CMS. Deniz SUNAR CERCI Adiyaman University On behalf of the CMS Collaboration Low-x th June 2017 Bari, Italy

Double Parton Scattering in CMS. Deniz SUNAR CERCI Adiyaman University On behalf of the CMS Collaboration Low-x th June 2017 Bari, Italy Double Parton Scattering in CMS Deniz SUNAR CERCI Adiyaman University On behalf of the CMS Collaboration Low-x 2017 17th June 2017 Bari, Italy Outline Introduction to DPS DPS measurements with CMS 2b +

More information

Mini-Bias and Underlying Event Studies at CMS

Mini-Bias and Underlying Event Studies at CMS Yuan Chao Department of Physics National Taiwan University 1617 Taipei, TAIWAN 1 Introduction The Tevatron experiments provide us very good information for the quantum chromodynamics (QCD) modelings of

More information

Underlying Event Measurements at the LHC

Underlying Event Measurements at the LHC 14th EDS Blois Workshop Underlying Event Measurements at the LHC Michael Heinrich for the ATLAS and CMS collaborations INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (EKP) PHYSICS FACULTY KIT University of

More information

Using Drell-Yan to Probe the

Using Drell-Yan to Probe the Using Drell-Yan to Probe the Underlying Event in Run 2 at CDF Deepak Kar University of Florida (On behalf of the CDF Collaboration) Experimental Particle Physics Seminar 30 th October 2008 Prologue: We

More information

Physics at Hadron Colliders Part II

Physics at Hadron Colliders Part II Physics at Hadron Colliders Part II Marina Cobal Università di Udine 1 The structure of an event One incoming parton from each of the protons enters the hard process, where then a number of outgoing particles

More information

Tests of Pythia8 Rescattering Model

Tests of Pythia8 Rescattering Model Tests of Pythia8 Rescattering Model arxiv:5.325v [hep-ph] Nov 25 Tasnuva Chowdhury Shahjalal University of Science and Technology Sylhet, Bangladesh. Deepak Kar University of Witwatersrand Johannesburg,

More information

Early physics with Atlas at LHC

Early physics with Atlas at LHC Early physics with Atlas at LHC Bellisario Esposito (INFN-Frascati) On behalf of the Atlas Collaboration Outline Atlas Experiment Physics goals Next LHC run conditions Physics processes observable with

More information

Proton anti proton collisions at 1.96 TeV currently highest centre of mass energy

Proton anti proton collisions at 1.96 TeV currently highest centre of mass energy Tevatron & Experiments 2 Proton anti proton collisions at 1.96 TeV currently highest centre of mass energy Tevatron performing very well 6.5 fb 1 delivered (per experiment) 2 fb 1 recorded in 2008 alone

More information

Recent results on soft QCD topics from ATLAS

Recent results on soft QCD topics from ATLAS Recent results on soft QCD topics from ATLAS Roman Lysák Institute of Physics, Prague on behalf of the ATLAS collaboration Bormio 2016 Overview Understanding of soft-qcd interactions has direct impact

More information

Tevatron Energy Scan. Energy Dependence of the Underlying Event. Rick Field Craig Group & David Wilson University of Florida

Tevatron Energy Scan. Energy Dependence of the Underlying Event. Rick Field Craig Group & David Wilson University of Florida Rick Field Craig Group & David Wilson University of Florida Tevatron Energy Scan Energy Dependence of the Underlying Event Outline of Talk Wine & Cheese talk, October 4, 2002. Studying the underlying event

More information

Some studies for ALICE

Some studies for ALICE Some studies for ALICE Motivations for a p-p programme in ALICE Special features of the ALICE detector Preliminary studies of Physics Performances of ALICE for the measurement of some global properties

More information

LHCP QCD at the Tevatron. Rick Field University of Florida (for the CDF & D0 Collaborations) Outline of Talk. with help from Christina Mesropian

LHCP QCD at the Tevatron. Rick Field University of Florida (for the CDF & D0 Collaborations) Outline of Talk. with help from Christina Mesropian with help from Christina Mesropian QCD at the Tevatron Rick Field University of Florida (for the CDF & D0 Collaborations) Outline of Talk D0 Photon + Jet Measurements. CDF W/Z + Upsilon Search. CDF Measurements

More information

QCD Studies at LHC with the Atlas detector

QCD Studies at LHC with the Atlas detector QCD Studies at LHC with the Atlas detector Introduction Sebastian Eckweiler - University of Mainz (on behalf of the ATLAS Collaboration) Examples of QCD studies Minimum bias & underlying event Jet-physics

More information

Transverse momentum and pseudorapidity distributions with minimum bias events in CMS at the LHC

Transverse momentum and pseudorapidity distributions with minimum bias events in CMS at the LHC Transverse momentum and pseudorapidity distributions with minimum bias events in CMS at the LHC Christof Roland/ MIT For the CMS Collaboration Rencontres de Moriond QCD Session 14 th March, 2010 Moriond

More information

SOFT QCD AT ATLAS AND CMS

SOFT QCD AT ATLAS AND CMS SAHAL YACOOB UNIVERSITY OF CAPE TOWN ON BEHALF OF THE ATLAS AND CMS COLLABORATIONS SOFT QCD AT ATLAS AND CMS 28th Rencontres de Blois INTRODUCTION IN 15 MINUTES 2 Inelastic cross section ATLAS and CMS

More information

LHC MPI and underlying event results

LHC MPI and underlying event results LHC MPI and underlying event results Marianna Testa (ATLAS) for the ALICE, ATLAS, CMS & LHCb collaborations SM@LHC 2012, Copenhagen, 10-13 April 2012 The Underlying Event Everything in hadron collisions

More information

Recent QCD results from ATLAS

Recent QCD results from ATLAS Recent QCD results from ATLAS PASCOS 2013 Vojtech Pleskot Charles University in Prague 21.11.2013 Introduction / Outline Soft QCD: Underlying event in jet events @7TeV (2010 data) Hard double parton interactions

More information

51 st Cracow School of Theoretical Physics The Soft Side of the LHC Min-Bias and the Underlying Event at the LHC Rick Field University of Florida

51 st Cracow School of Theoretical Physics The Soft Side of the LHC Min-Bias and the Underlying Event at the LHC Rick Field University of Florida 5 st Cracow School of Theoretical Physics The Soft Side of the LHC Min-Bias and the Underlying Event at the LHC Rick Field University of Florida Lecture : Outline Review: The CDF Tevatron underlying event

More information

The LHC Physics Environment

The LHC Physics Environment The LHC Physics Environment Talk : What We Have Learned at the Tevatron Rick Field University of Florida Outline of Talk The old days of Feynman-Field Phenomenology. Review what we learned about minbias,

More information

Jet Energy Calibration. Beate Heinemann University of Liverpool

Jet Energy Calibration. Beate Heinemann University of Liverpool Jet Energy Calibration Beate Heinemann University of Liverpool Fermilab, August 14th 2006 1 Outline Introduction CDF and D0 calorimeters Response corrections Multiple interactions η-dependent corrections

More information

Measurement of W-boson Mass in ATLAS

Measurement of W-boson Mass in ATLAS Measurement of W-boson Mass in ATLAS Tai-Hua Lin on behalf of the ATLAS collaboration Blois 2017, France Outline Motivation for W mass measurement Measurement Strategy Method: Monte Carlo Templates Fits

More information

Toward an Understanding of Hadron-Hadron. Collisions From Feynman-Field to the LHC

Toward an Understanding of Hadron-Hadron. Collisions From Feynman-Field to the LHC Toward an Understanding of Hadron-Hadron Collisions From Feynman-Field to the LHC Rick Field University of Florida Outline of Talk The old days of Feynman-Field Phenomenology. XXIèmes Rencontres de Blois

More information

HEP Seminar. Studying the Energy Dependence of the Underlying Event at the Tevatron and the LHC Rick Field University of Florida.

HEP Seminar. Studying the Energy Dependence of the Underlying Event at the Tevatron and the LHC Rick Field University of Florida. Studying the Energy Dependence of the Underlying Event at the Tevatron and the LHC Rick Field University of Florida HEP Seminar Outline Early studies the underlying event (UE) at CDF and PYTHIA Tune A.

More information

QCD and jets physics at the LHC with CMS during the first year of data taking. Pavel Demin UCL/FYNU Louvain-la-Neuve

QCD and jets physics at the LHC with CMS during the first year of data taking. Pavel Demin UCL/FYNU Louvain-la-Neuve QCD and jets physics at the LHC with CMS during the first year of data taking Pavel Demin UCL/FYNU Louvain-la-Neuve February 8, 2006 Bon appétit! February 8, 2006 Pavel Demin UCL/FYNU 1 Why this seminar?

More information

University of Glasgow Tevatron Energy Scan: Findings & Surprises

University of Glasgow Tevatron Energy Scan: Findings & Surprises Outline of Talk University of Glasgow Tevatron Energy Scan: Findings & Surprises Rick Field University of Florida Simulating hadron-hadron collisions: The early days of Feynman-Field Phenomenology. The

More information

QCD at LHC in pp. Department of Theoretical Physics, Lund University

QCD at LHC in pp. Department of Theoretical Physics, Lund University 3rd Nordic LHC and Beyond Workshop 2-3 February 2009 Lund, Sweden QCD at LHC in pp Torbjörn Sjöstrand Department of Theoretical Physics, Lund University Introduction: the structure of an event Multiple

More information

Minimum Bias at CDF and CMS

Minimum Bias at CDF and CMS Minimum Bias at CDF and CMS Minumum Bias Collisions Proton AntiProton CDF Run 2 CMS Outline of Talk Review the CDF Run 2 minimum bias tune (i.e. PYTHIA Tune A). UE&MB@CMS Show the minimum bias predictions

More information

Feasibility of a cross-section measurement for J/ψ->ee with the ATLAS detector

Feasibility of a cross-section measurement for J/ψ->ee with the ATLAS detector Feasibility of a cross-section measurement for J/ψ->ee with the ATLAS detector ATLAS Geneva physics meeting Andrée Robichaud-Véronneau Outline Motivation Theoretical background for J/ψ hadroproduction

More information

Charged Particle Multiplicity in pp Collisions at s = 13 TeV

Charged Particle Multiplicity in pp Collisions at s = 13 TeV Charged Particle Multiplicity in pp Collisions at s = 13 TeV Khadeejah ALGhadeer PhD in Engineering, Physics The Workshop of the APS Topical Group on Hadronic Physics Charged Particle Multiplicity IN PP

More information

Min-Bias Data: Jet Evolution and Event Shapes

Min-Bias Data: Jet Evolution and Event Shapes Min-Bias Data: Jet Evolution and Event Shapes Rick Field and David Stuart July 1, 1999 Abstract The Min-Bias data are used to study the transition between soft and hard collisions. We study this transition

More information

Minimum Bias and Underlying Event Studies at CDF

Minimum Bias and Underlying Event Studies at CDF FERMILAB-CONF--531-E Minimum Bias and Underlying Event Studies at CDF INFN, Bologna E-mail: moggi@bo.infn.it Soft, non-perturbative, interactions are poorly understood from the theoretical point of view

More information

arxiv: v1 [hep-ex] 17 Aug 2016

arxiv: v1 [hep-ex] 17 Aug 2016 arxiv:8.95v [hep-ex] 7 Aug Measurement of the underlying-event properties with the detector Yuri Kulchitsky, on behalf of the collaboration Institute of Physics, National Academy of ciences, Minsk, Belarus

More information

QCD Jets at the LHC. Leonard Apanasevich University of Illinois at Chicago. on behalf of the ATLAS and CMS collaborations

QCD Jets at the LHC. Leonard Apanasevich University of Illinois at Chicago. on behalf of the ATLAS and CMS collaborations QCD Jets at the LHC Leonard Apanasevich University of Illinois at Chicago on behalf of the ATLAS and CMS collaborations Outline Physics at the LHC Jet Reconstruction and Performance Clustering Algorithms

More information

FYST17 Lecture 6 LHC Physics II

FYST17 Lecture 6 LHC Physics II FYST17 Lecture 6 LHC Physics II 1 Today & Monday The LHC accelerator Challenges The experiments (mainly CMS and ATLAS) Important variables Preparations Soft physics EWK physics Some recent results Focus

More information

FYST17 Lecture 6 LHC Physics II

FYST17 Lecture 6 LHC Physics II FYST17 Lecture 6 LHC Physics II 1 Today, (tomorrow) & Next week The LHC accelerator Challenges The experiments (mainly CMS and ATLAS) Important variables Preparations Soft physics minímum bias, underlying

More information

Physics at Hadron Colliders

Physics at Hadron Colliders Physics at Hadron Colliders Part 2 Standard Model Physics Test of Quantum Chromodynamics - Jet production - W/Z production - Production of Top quarks Precision measurements -W mass - Top-quark mass QCD

More information

Luminosity measurement and K-short production with first LHCb data. Sophie Redford University of Oxford for the LHCb collaboration

Luminosity measurement and K-short production with first LHCb data. Sophie Redford University of Oxford for the LHCb collaboration Luminosity measurement and K-short production with first LHCb data Sophie Redford University of Oxford for the LHCb collaboration 1 Introduction Measurement of the prompt Ks production Using data collected

More information

MPI in PYTHIA. 1. Brief overview 2. Color reconnection and the top mass

MPI in PYTHIA. 1. Brief overview 2. Color reconnection and the top mass MPI in PYTHIA 1. Brief overview 2. Color reconnection and the top mass Torbjörn Sjöstrand Department of Astronomy and Theoretical Physics Lund University Sölvegatan 14A, SE-223 62 Lund, Sweden MPI@LHC

More information

Multiple Parton-Parton Interactions: from pp to A-A

Multiple Parton-Parton Interactions: from pp to A-A Multiple Parton-Parton Interactions: from pp to A-A Andreas Morsch CERN QCD Challenges at LHC Taxco, Mexico, Jan 18-22 (2016) Multiple Parton-Parton Interactions Phys. Lett. B 167 (1986) 476 Q i 2 Λ QCD

More information

PDFs for Event Generators: Why? Stephen Mrenna CD/CMS Fermilab

PDFs for Event Generators: Why? Stephen Mrenna CD/CMS Fermilab PDFs for Event Generators: Why? Stephen Mrenna CD/CMS Fermilab 1 Understanding Cross Sections @ LHC: many pieces to the puzzle LO, NLO and NNLO calculations K-factors Benchmark cross sections and pdf correlations

More information

Atlas results on diffraction

Atlas results on diffraction Atlas results on diffraction Alessia Bruni INFN Bologna, Italy for the ATLAS collaboration Rencontres du Viet Nam 14th Workshop on Elastic and Diffractive Scattering Qui Nhon, 16/12/2011 EDS 2011 Alessia

More information

Tim Martin - University of Birmingham

Tim Martin - University of Birmingham Tim Martin - University of Birmingham 1 2 Overview Modeling Inelastic Diffraction Diffractive Events in ATLAS Large Rapidity Gaps Interpreting the Data 3 pp Cross Section Double Diff. Central Exclusive

More information

Measurement of Quenched Energy Flow for Dijets in PbPb collisions with CMS

Measurement of Quenched Energy Flow for Dijets in PbPb collisions with CMS Measurement of Quenched Energy Flow for Dijets in PbPb collisions with CMS For the CMS Collaboration NPA Seminar Yale, USA 15 October, 2015 Relativistic Heavy Ion Collisions Trying to answer two important

More information

Minimum-Bias and Underlying-Event Physics

Minimum-Bias and Underlying-Event Physics 2008 CTEQ MCnet Summer School on QCD Phenomenology and Monte Carlo Event Generators 8 16 August 2008 Debrecen, Hungary Minimum-Bias and Underlying-Event Physics Torbjörn Sjöstrand Department of Theoretical

More information

Recent LHCb measurements of Electroweak Boson Production in Run-1

Recent LHCb measurements of Electroweak Boson Production in Run-1 Recent LHCb measurements of Electroweak Boson Production in Run-1 William Barter European Organisation for Nuclear Research (CERN) UCL Seminar 5 th February 2016 W. Barter (CERN) Electroweak Production

More information

Tests of QCD Using Jets at CMS. Salim CERCI Adiyaman University On behalf of the CMS Collaboration IPM /10/2017

Tests of QCD Using Jets at CMS. Salim CERCI Adiyaman University On behalf of the CMS Collaboration IPM /10/2017 Tests of QCD Using Jets at CMS Salim CERCI Adiyaman University On behalf of the CMS Collaboration IPM-2017 24/10/2017 2/25 Outline Introduction QCD at LHC QCD measurements on the LHC data Jets The strong

More information

Charged particle multiplicity in proton-proton collisions with ALICE

Charged particle multiplicity in proton-proton collisions with ALICE Charged particle multiplicity in proton-proton collisions with ALICE Introduction on the motivations for a pp physics programme with ALICE A short review on the detectors used to reconstruct charged particle

More information

QCD at Cosmic Energies - VII May 16-20, 2016 Chalkida, Greece Multiparton interactions in Herwig

QCD at Cosmic Energies - VII May 16-20, 2016 Chalkida, Greece Multiparton interactions in Herwig QCD at Cosmic Energies - VII May 6-20, 206 Chalkida, Greece Multiparton interactions in Herwig Frashër Loshaj Table of Contents Introduction 2 MPI and the Underlying event 3 Soft interactions 4 Diffraction

More information

Colin Jessop. University of Notre Dame

Colin Jessop. University of Notre Dame Colin Jessop University of Notre Dame Test the evolution of QCD to higher energies ( and lower x) Search for new particles with Quarks, gluons and photons in Final state Jet production is dominant process

More information

QCD at CDF. Régis Lefèvre IFAE Barcelona On behalf of the CDF Collaboration

QCD at CDF. Régis Lefèvre IFAE Barcelona On behalf of the CDF Collaboration QCD at CDF Régis Lefèvre IFAE Barcelona On behalf of the CDF Collaboration Jet Inclusive Cross-Section Underlying event studies Jet Shapes Specific processes _ W+Jets, γ + γ, γ + b/c, b-jet / bb jet Diffraction

More information

Testing QCD at the LHC and the Implications of HERA DIS 2004

Testing QCD at the LHC and the Implications of HERA DIS 2004 Testing QCD at the LHC and the Implications of HERA DIS 2004 Jon Butterworth Impact of the LHC on QCD Impact of QCD (and HERA data) at the LHC Impact of the LHC on QCD The LHC will have something to say

More information

Searching for Confining Hidden Valleys at the LHC(b)

Searching for Confining Hidden Valleys at the LHC(b) Searching for Confining Hidden Valleys at the LHC(b) Yue Zhao University of Michigan Jan. 2018 with Aaron Pierce, Bibhushan Shakya,Yuhsin Tsai arxiv:1708.05389 [hep-ph] Current Status of Particle Physics

More information

Lecture 3 Cross Section Measurements. Ingredients to a Cross Section

Lecture 3 Cross Section Measurements. Ingredients to a Cross Section Lecture 3 Cross Section Measurements Ingredients to a Cross Section Prerequisites and Reminders... Natural Units Four-Vector Kinematics Lorentz Transformation Lorentz Boost Lorentz Invariance Rapidity

More information

Azimuthal Correlations for Inclusive 2-jet, 3-jet and 4-jet events in pp collisions at s = 13 TeV with CMS

Azimuthal Correlations for Inclusive 2-jet, 3-jet and 4-jet events in pp collisions at s = 13 TeV with CMS Azimuthal Correlations for Inclusive 2-jet, 3-jet and 4-jet events in pp collisions at s = 13 TeV with CMS Paris Gianneios University of Ioannina 29 th March 2018, HEP Athens Outline 1 2 3 4 5 CMS Detector

More information

Measurement of distributions sensitive to the underlying event in inclusive Z-boson production in pp collisions at s = 7TeV with the ATLAS detector

Measurement of distributions sensitive to the underlying event in inclusive Z-boson production in pp collisions at s = 7TeV with the ATLAS detector Eur. Phys. J. C (204) 74:395 DOI.40/epjc/s052-0495-6 Regular Article - Experimental Physics Measurement of distributions sensitive to the underlying event in inclusive -boson production in pp collisions

More information

Higgs and Z τ + τ in CMS

Higgs and Z τ + τ in CMS Higgs and Z τ + τ in CMS Christian Veelken for the CMS Collaboration Moriond EWK Conference, March 14 th 2011 Z τ + τ - Production @ 7 TeV τ + Z τ - CMS Measurement of Z/γ* l + l -, l = e/µ: σ BR(Z/γ*

More information

Two Early Exotic searches with dijet events at ATLAS

Two Early Exotic searches with dijet events at ATLAS ATL-PHYS-PROC-2011-022 01/06/2011 Two Early Exotic searches with dijet events at ATLAS University of Toronto, Department of Physics E-mail: rrezvani@physics.utoronto.ca This document summarises two exotic

More information

arxiv: v1 [hep-ex] 15 Jan 2019

arxiv: v1 [hep-ex] 15 Jan 2019 CMS-CR-8/37 January 7, 9 Top Quark Modelling and Tuning at CMS arxiv:9.559v [hep-ex] 5 Jan 9 Emyr Clement on behalf of the CMS Collaboration University of Bristol Recent measurements dedicated to improving

More information

Underlying Event Studies Using Calorimeter Jets with the ATLAS Detector at LHC

Underlying Event Studies Using Calorimeter Jets with the ATLAS Detector at LHC Underlying Event Studies Using Calorimeter Jets with the ALAS Detector at LHC Sebastian Wahrmund supervised by Deepak Kar, Arno Straessner DPG Frühjahrstagung Karlsruhe Introduction Motivation 2 / 2 Introduction

More information

MC ATLAS Stephen Jiggins on behalf of the ATLAS Collaboration University College London (UCL)

MC ATLAS Stephen Jiggins on behalf of the ATLAS Collaboration University College London (UCL) MC Tuning @ ATLAS Stephen Jiggins on behalf of the ATLAS Collaboration University College London (UCL) Contents Contents: 1) Monte Carlo models/event generation 2) Basic Tuning Methodology 3) A2 tune series

More information

Measurement of jet production in association with a Z boson at the LHC & Jet energy correction & calibration at HLT in CMS

Measurement of jet production in association with a Z boson at the LHC & Jet energy correction & calibration at HLT in CMS Measurement of jet production in association with a Z boson at the LHC & Jet energy correction & calibration at HLT in CMS Fengwangdong Zhang Peking University (PKU) & Université Libre de Bruxelles (ULB)

More information

Measurement of the Inclusive Isolated Prompt Photon Cross Section at CDF

Measurement of the Inclusive Isolated Prompt Photon Cross Section at CDF of the Inclusive Isolated Cross at IFAE Barcelona HEP Seminar University of Virginia Outline Theoretical introduction Prompt photon production The The Photon detection prediction The pqcd NLO prediction

More information

CDF top quark " $ )(! # % & '

CDF top quark  $ )(! # % & ' $% CDF quark 7 3 5 ( "#! Tevatron Run II Started Spring 1. proton-antiproton collider with (Run I :. antiproton recycler commissioning electron cooling operational by Summer 5. increase in luminosity.

More information

Jet energy measurement in the ATLAS detector

Jet energy measurement in the ATLAS detector Jet energy measurement in the ATLAS detector Jet energy scale uncertainties are usually among largest experimental uncertainties Need precise jet energy measurements and provide uncertainties and theit

More information

Introduction. The LHC environment. What do we expect to do first? W/Z production (L 1-10 pb -1 ). W/Z + jets, multi-boson production. Top production.

Introduction. The LHC environment. What do we expect to do first? W/Z production (L 1-10 pb -1 ). W/Z + jets, multi-boson production. Top production. Introduction. The LHC environment. What do we expect to do first? W/Z production (L 1-10 pb -1 ). W/Z + jets, multi-boson production. Top production. Early discoveries? Conclusions. 2 First collisions

More information

How to Measure Top Quark Mass with CMS Detector??? Ijaz Ahmed Comsats Institute of Information Technology, Islamabad

How to Measure Top Quark Mass with CMS Detector??? Ijaz Ahmed Comsats Institute of Information Technology, Islamabad How to Measure Top Quark Mass with CMS Detector??? Ijaz Ahmed Comsats Institute of Information Technology, Islamabad Outlines o o o o o o o High Pt top basic idea Methods for jets selection Top quark mass

More information

PANIC August 28, Katharina Müller on behalf of the LHCb collaboration

PANIC August 28, Katharina Müller on behalf of the LHCb collaboration Measurements with electroweak bosons at LHCb PANIC August 28, 2014 on behalf of the LHCb collaboration Outline LHCb detector Measurements with electroweak bosons Motivation Z production Z plus jets, Z

More information

Measurement of the associated production of direct photons and jets with the Atlas experiment at LHC. Michele Cascella

Measurement of the associated production of direct photons and jets with the Atlas experiment at LHC. Michele Cascella Measurement of the associated production of direct photons and jets with the Atlas experiment at LHC Michele Cascella Graduate Course in Physics University of Pisa The School of Graduate Studies in Basic

More information

Determination of the strong coupling constant from multi-jet production with the ATLAS detector

Determination of the strong coupling constant from multi-jet production with the ATLAS detector Determination of the strong coupling constant from multi-jet production with the ATLAS detector WNPPC 22 Marc-André Dufour McGill University February 22 Marc-André Dufour February 22 Determination of strong

More information

How to find a Higgs boson. Jonathan Hays QMUL 12 th October 2012

How to find a Higgs boson. Jonathan Hays QMUL 12 th October 2012 How to find a Higgs boson Jonathan Hays QMUL 12 th October 2012 Outline Introducing the scalar boson Experimental overview Where and how to search Higgs properties Prospects and summary 12/10/2012 2 The

More information

High p T physics at the LHC Lecture III Standard Model Physics

High p T physics at the LHC Lecture III Standard Model Physics High p T physics at the LHC Lecture III Standard Model Physics Miriam Watson, Juraj Bracinik (University of Birmingham) Warwick Week, April 2011 1. LHC machine 2. High PT experiments Atlas and CMS 3. Standard

More information

Review of LHCb results on MPI, soft QCD and diffraction

Review of LHCb results on MPI, soft QCD and diffraction Review of LHCb results on MPI, soft QCD and diffraction Marcin Kucharczyk on behalf of LHCb collaboration HNI Krakow EDS Blois 2015, Borgo (Corse), 30.06.2015 Outline LHCb - general purpose forward experiment

More information

Top Quark Production at the LHC. Masato Aoki (Nagoya University, Japan) For the ATLAS, CMS Collaborations

Top Quark Production at the LHC. Masato Aoki (Nagoya University, Japan) For the ATLAS, CMS Collaborations Top Quark Production at the LHC Masato Aoki (Nagoya University, Japan) For the ATLAS, CMS Collaborations Phys. Rev. D 83 (2011) 091503, Phys. Rev. D 82 (2010) 054018, Phys. Rev. D 81 (2010) 054028, Comput.

More information

Searching for New High Mass Phenomena Decaying to Muon Pairs using Proton-Proton Collisions at s = 13 TeV with the ATLAS Detector at the LHC

Searching for New High Mass Phenomena Decaying to Muon Pairs using Proton-Proton Collisions at s = 13 TeV with the ATLAS Detector at the LHC Proceedings of the Fifth Annual LHCP ATL-PHYS-PROC-07-089 August 9, 07 Searching for New High Mass Phenomena Decaying to Muon Pairs using Proton-Proton Collisions at s = TeV with the Detector at the LHC

More information

Dilepton Forward-Backward Asymmetry and electroweak mixing angle at ATLAS and CMS

Dilepton Forward-Backward Asymmetry and electroweak mixing angle at ATLAS and CMS Dilepton Forward-Backward Asymmetry and electroweak mixing angle at ATLAS and CMS University of Rochester E-mail: jyhan@fnal.gov We present measurements of the forward-backward asymmetry in Drell-Yan dilepton

More information

Hard And Soft QCD Physics In ATLAS

Hard And Soft QCD Physics In ATLAS Hard And Soft QCD Physics In ALAS Stefanie Adomeit on behalf of the ALAS collaboration International Conference on New Frontiers in Physics - Crete, June -6, QCD Measurements in ALAS at LHC every kind

More information

Measurement of the baryon number transport with LHCb

Measurement of the baryon number transport with LHCb Measurement of the baryon number transport with LHCb Marco Adinolfi University of Bristol On behalf of the LHCb Collaboration 13 April 2011 / DIS 2011 Marco Adinolfi DIS 2011-13 April 2011 - Newport News

More information

Transverse Energy-Energy Correlation on Hadron Collider. Deutsches Elektronen-Synchrotron

Transverse Energy-Energy Correlation on Hadron Collider. Deutsches Elektronen-Synchrotron Transverse Energy-Energy Correlation on Hadron Collider Wei Wang ( 王伟 ) Deutsches Elektronen-Synchrotron Work with Ahmed Ali, Fernando Barreiro, Javier Llorente arxiv: 1205.1689, Phys.Rev. D86, 114017(2012)

More information

Forward QCD studies and prospects at the LHC

Forward QCD studies and prospects at the LHC Forward QCD studies and prospects at the LHC Pierre.VanMechelen@ua.ac.be (*) INT Workshop on Perturbative and Non-Perturbative Aspects of QCD at Collider Energies 1 Seattle, September 13-18, 2010 (*) As

More information

JET FRAGMENTATION DENNIS WEISER

JET FRAGMENTATION DENNIS WEISER JET FRAGMENTATION DENNIS WEISER OUTLINE Physics introduction Introduction to jet physics Jets in heavy-ion-collisions Jet reconstruction Paper discussion The CMS experiment Data selection and track/jet

More information

Discovery of the W and Z 0 Bosons

Discovery of the W and Z 0 Bosons Discovery of the W and Z 0 Bosons Status of the Standard Model ~1980 Planning the Search for W ± and Z 0 SppS, UA1 and UA2 The analyses and the observed events First measurements of W ± and Z 0 masses

More information

Results on QCD and Heavy Flavors Production at the Tevatron

Results on QCD and Heavy Flavors Production at the Tevatron Results on QCD and Heavy Flavors Production at the Tevatron Donatella Lucchesi INFN and University of Padova October 21 Padova Outline: Machine and detector description Latest results on QCD Heavy Flavor:

More information

Ridge correlation structure in high multiplicity pp collisions with CMS

Ridge correlation structure in high multiplicity pp collisions with CMS Ridge correlation structure in high multiplicity pp collisions with CMS Dragos Velicanu for the CMS Collaboration MBUEWG CERN, Geneva, June 17 2011 Results from High Multiplicity pp Dragos Velicanu (MIT)

More information

Electroweak Physics at the Tevatron

Electroweak Physics at the Tevatron Electroweak Physics at the Tevatron Adam Lyon / Fermilab for the DØ and CDF collaborations 15 th Topical Conference on Hadron Collider Physics June 2004 Outline Importance Methodology Single Boson Measurements

More information

QCD Jet Physics with CMS LHC

QCD Jet Physics with CMS LHC QCD Jet Physics with CMS Detector @ LHC Y.Chao for the CMS Collaboration (National Taiwan University, Taipei, Taiwan) QCD10 (25th annivervary) 2010/06/28-07/03 The Large Hadron Collider Four major experiments

More information

Rivet overview Robust Independent Validation of Experiment and Theory. David Grellscheid

Rivet overview Robust Independent Validation of Experiment and Theory. David Grellscheid Rivet overview Robust Independent Validation of Experiment and Theory David Grellscheid 2015-04-28 Rivet Andy Buckley, Jon Butterworth, David Grellscheid, Hendrik Hoeth, Leif Lönnblad, James Monk, Holger

More information

Results from D0: dijet angular distributions, dijet mass cross section and dijet azimuthal decorrelations

Results from D0: dijet angular distributions, dijet mass cross section and dijet azimuthal decorrelations Results from D: dijet angular distributions, dijet mass cross section and dijet azimuthal decorrelations Zdenek Hubacek Czech Technical University in Prague E-mail: zdenek.hubacek@cern.ch on behalf of

More information

George Bakas For the NTUA CMS Group

George Bakas For the NTUA CMS Group George Bakas For the NTUA CMS Group Top quark CMS Experiment Boosted Jets Analysis Overview 2 Mass : 172.44 ± 0.13 GeV c 2 Top Quark decay W + + b ( ҧ t W - + തb) Top pair production q + തq t + tҧ g +

More information

Studies of top pair production in the fully hadronic channel at LHC with CMS

Studies of top pair production in the fully hadronic channel at LHC with CMS Studies of top pair production in the fully hadronic channel at LHC with CMS Claudia Ciocca University of Bologna CMS Collaboration DIS 2006 XIV International Workshop on Deep Inelastic Scattering Tsukuba,

More information

Introduction to Monte Carlo generators - II

Introduction to Monte Carlo generators - II Introduction to Monte Carlo generators - II (Fully exclusive modeling of high-energy collisions) Andrzej Siódmok CTEQ School - University of Pittsburgh, USA 18-28 July 2017 Thanks to: S. Gieseke, S.Höche,

More information

Dark matter searches and prospects at the ATLAS experiment

Dark matter searches and prospects at the ATLAS experiment Dark matter searches and prospects at the ATLAS experiment Wendy Taylor (York University) for the ATLAS Collaboration TeVPA 2017 Columbus, Ohio, USA August 7-11, 2017 Dark Matter at ATLAS Use 13 TeV proton-proton

More information

First studies towards top-quark pair. dilepton channel at s = 13 TeV with the CMS detector

First studies towards top-quark pair. dilepton channel at s = 13 TeV with the CMS detector First studies towards topquark pair differential cross section measurement in the dilepton channel at s = 13 TeV with the CMS detector Mykola Savitskyi, Maria Aldaya, Carmen Diez Pardos et al. DESYCMS

More information

Standard Model of Particle Physics SS 2012

Standard Model of Particle Physics SS 2012 Lecture: Standard Model of Particle Physics Heidelberg SS 2012 W- and Z-Bosons 1 2 Contents Discovery of real W- and Z-bosons Intermezzo: QCD at Hadron Colliders LEP + Detectors W- and Z- Physics at LEP

More information

Physics at Tevatron. Koji Sato KEK Theory Meeting 2005 Particle Physics Phenomenology March 3, Contents

Physics at Tevatron. Koji Sato KEK Theory Meeting 2005 Particle Physics Phenomenology March 3, Contents Physics at Tevatron Contents Koji Sato KEK Theory Meeting 5 Particle Physics Phenomenology March 3, 5 mass measurement Top physics cross section Top mass measurement SM Higgs search Tevatron Run II Started

More information

W/Z + jets and W/Z + heavy flavor production at the LHC

W/Z + jets and W/Z + heavy flavor production at the LHC W/Z + jets and W/Z + heavy flavor production at the LHC A. Paramonov (ANL) on behalf of the ATLAS and CMS collaborations Moriond QCD 2012 Motivation for studies of jets produced with a W or Z boson Standard

More information

Conference Report Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

Conference Report Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland Available on the CMS information server CMS CR 212/178 The Compact Muon Solenoid Experiment Conference Report Mailing address: CMS CERN, CH211 GENEVA 23, Switzerland 212//9 Measurement of isolated photon

More information

Study of observables for measurement of MPI using Z+jets process

Study of observables for measurement of MPI using Z+jets process Study of observables for measurement of MPI using Z+jets process PANJAB University, IN Email: ramandeep.kumar@cern.ch AKAL University, IN 7th International Workshop on Multiple Parton Interactions at the

More information

October 4, :33 ws-rv9x6 Book Title main page 1. Chapter 1. Measurement of Minimum Bias Observables with ATLAS

October 4, :33 ws-rv9x6 Book Title main page 1. Chapter 1. Measurement of Minimum Bias Observables with ATLAS October 4, 2018 3:33 ws-rv9x6 Book Title main page 1 Chapter 1 Measurement of Minimum Bias Observables with ATLAS arxiv:1706.06151v2 [hep-ex] 23 Jun 2017 Jiri Kvita Joint Laboratory for Optics, Palacky

More information

Jet Physics with ALICE

Jet Physics with ALICE Jet Physics with ALICE Oliver Busch for the ALICE collaboration Oliver Busch Tsukuba 2014 /03/13 1 Outline introduction results from pp jets in heavy-ion collisions results from Pb-Pb collisions jets in

More information

Search for a heavy gauge boson W e

Search for a heavy gauge boson W e Search for a heavy gauge boson W e Cornell University LEPP Journal Club Seminar April 1, 2011 The LHC Machine 2 The beginning of the LHC era First collisions at 7 TeV confirmed on March 30, 2010 There

More information