Allocations for Heterogenous Distributed Storage

Size: px
Start display at page:

Download "Allocations for Heterogenous Distributed Storage"

Transcription

1 Allocatos fo Heteogeous Dstbuted Stoage Vasleos Ntaos Guseppe Cae Alexados G Dmaks dmaks@uscedu axv:0596v [csi] 8 Feb 0 Abstact We study the poblem of stog a data object a set of data odes that fal depedetly wth gve pobabltes Ou poblem s a atual geealzato of a homogeous stoage allocato poblem whee all the odes had the same elablty ad s atually motvated fo pee-to-pee ad cloud stoage systems wth dffeet types of odes Assumg optmal easue codg MDS), the goal s to fd a stoage allocato e, how much to stoe each ode) to maxmze the pobablty of successful ecovey hs poblem tus out to be a challegg combatoal optmzato poblem I ths wok we toduce a appoxmato famewok based o lage devato equaltes ad covex optmzato We popose two appoxmato algothms ad study the asymptotc pefomace of the esultg allocatos SUBMIED O ISI 0 I INRODUCION We ae teested heteogeous stoage systems whee stoage odes have dffeet elablty paametes hs poblem s elevat fo heteogeous pee-to-pee stoage etwoks ad cloud stoage systems that use multple types of stoage devces, eg sold state dves alog wth stadad had dsks We model ths poblem by cosdeg stoage odes ad a data collecto that accesses a adom subset of them he pobablty dstbuto of,, models adom ode falues ad we assume that ode fals depedetly wth pobablty p he pobablty of a set of odes beg accessed s theefoe: P) = p p j ) ) Assume ow that we have a sgle data fle of ut sze that we wsh to code ad stoe ove these odes to maxmze the pobablty of ecovey afte a adom set of odes fal he poblem becomes tval f we do ot put a costat o the maxmum sze of coded data ad hece, we wll wok wth a maxmum stoage budget of sze < : If x s the amout of coded data stoed ode, the x We futhe assume that ou fle s optmally coded, the sese that successful ecovey occus wheeve the total amout of data accessed by the data collecto s at least the sze of the ogal fle hs s possble pactce whe we use Maxmum Dstace Sepaable MDS) codes [] he pobablty of successful ecovey fo a allocato x,, x ) ca be wtte as j / [ ] P s = P x =,, P) x whee s the dcato fucto S = f the statemet S s tue ad zeo othewse A moe cocete way to see ths poblem s by toducg a Y Beoullp ) adom vaable fo each stoage ode: Y = whe ode s accessed by the data collecto ad Y = 0 whe ode has faled Defe the adom vaable Z = x Y ) whee x s the amout of data stoed ode he, obvously, we have P s = P[Z ] Ou goal s to fd a stoage allocato x,, x ), that maxmzes the pobablty of successful ecovey, o equvaletly, mmzes the pobablty of falue, P[Z < ] II OPIMIZAION PROBLEM Put optmzato fom, we would lke to fd a soluto to the followg poblem Q : mmze P) x x <,, x x 0, =,, Authos [] cosde a specal case of poblem Q whch p = p, Eve ths symmetc case the poblem appeas to be vey dffcult to solve due to ts o-covex ad combatoal atue I fact, eve fo a gve allocato x ad paamete p, computg the objectve fucto s computatoally tactable #P -had, See []) A vey teestg obsevato about ths poblem follows dectly fom Makov s Iequalty: P[Z ] E[Z] = p If p <, the the pobablty of successful ecovey s bouded away fom hs has motvated the defto of a ego of paametes fo whch hgh pobablty of ecovey s possble: R HP = p, ) : p he budget should be moe tha /p f we wat to am fo hgh elablty ad the authos [] showed that the above ego of paametes, maxmally speadg the budget to all odes e, x = /, ) s a asymptotcally optmal allocato as I the geeal case, whe the ode access pobabltes, p, ae ot equal, oe could follow smla steps to chaacteze

2 a ego of hgh pobablty of ecovey Makov s Iequalty yelds: P[Z ] E[Z] = x p = p x whee p = [p, p,, p ] ad x = [x, x,, x ] If we do t wat P[Z ] to be bouded away fom we have to eque ow that p x We see that ths case, hgh elablty s ot a matte of suffcet budget, as t depeds o the allocato x tself Let Sp, ) = x R + : p x, x be the set of all allocatos x wth a gve budget costat that satsfy p x fo a gve p We call these allocatos elable fo a system wth paametes p,, the sese that the esultg pobablty of successful ecovey s ot bouded away fom he the ego of hgh pobablty of ecovey ca be defed as the ego of paametes p,, such that the set Sp, ) s o-empty R HP = p, ) R + + : Sp, ) hs geealzes the ego descbed [] If all p s ae equal the the set Sp, ) s o-empty whe p x = p I the geeal case, the mmum budget such that Sp, ) s o-empty s = /p max, wth p max = maxp, ad Sp, /p max ) cotas oly oe allocato x p : x j = max p max, j = ag max p, x = 0, j Eve though R HP povdes a lowe boud o the mmum budget equed to allocate fo hgh elablty, t does t povde ay sghts o how to desg allocatos that acheve hgh pobablty of ecovey a dstbuted stoage system hs motvates us to move oe step futhe ad defe a ego of ɛ-optmal allocatos the ext secto III HE REGION OF ɛ-opimal ALLOCAIONS We say that a allocato x, x,, x ) s ɛ-optmal f the coespodg pobablty of successful ecovey, P[Z ], s geate tha ɛ Let E p,, ɛ) = x R + : P[Z < ] ɛ, x be the set of all ɛ-optmal allocatos Note that f we could effcetly chaacteze ths set fo all poblem paametes, we would be able to solve poblem Q exactly: Fd the smallest ɛ such that E p,, ɛ) s o-empty I ths secto we wll deve a suffcet codto fo a allocato to be ɛ-optmal ad povde a effcet chaactezato fo a ego H E p,, ɛ) We beg wth a vey useful lemma Lemma Hoeffdg s Iequalty [], [3]) Cosde the adom vaable W = V, whee V ae depedet almost suely bouded adom vaables wth P V [a, b ]) = he, [ ] δ P W E[W ] δ exp b a ) fo ay δ > 0 We ca use Lemma to uppe boud the pobablty of falue, P[Z < ] P[Z ], fo a abtay allocato, sce Z = x Y ca be see as the sum of depedet almost suely bouded adom vaables V = x Y, wth P V [0, x ] ) = Let δ = x p ) / ad eque δ > 0 x p > Lemma yelds: P[Z < ] exp x p ), x x p > 3) Notce that the costat x p > eques the allocato x, x,, x ) to be elable ad Sp, ) I vew of the above, a suffcet codto fo a stctly elable allocato to be ɛ-optmal s the followg exp x p ) x ɛ l /ɛ x p x, p x > We say that all allocatos satsfyg the above equato ae Hoeffdg ɛ-optmal, due to the use of Hoeffdg s Iequalty Lemma Defto he Rego of Hoeffdg ɛ-optmal allocatos H p,, ɛ) = x R + : p x >, x, x l /ɛ p x 4) 5) he above ego s stctly smalle E p,, ɛ) fo ay fte, because the boud 3) s ot geeally tght Howeve, H p,, ɛ) s a covex set: Equato 4) ca be see as a secod ode coe costat o the allocato x R + heoem he ego of Hoeffdg ɛ-optmal allocatos H p,, ɛ) s covex x hs teestg esult allows us to fomulate ad effcetly solve optmzato poblems ove H p,, ɛ) Fdg the smallest ɛ such that H p,, ɛ) s o-empty wll poduce a ɛ -optmal soluto to poblem Q A Hoeffdg Appoxmato of Q If we fx p,, as the poblem paametes, the the followg optmzato poblem ca be solved effcetly, to ay desed accuacy /α, by solvg a sequece of Olog α) covex feasblty poblems bsecto o ɛ) H : m x,ɛ ɛ st: x H p,, ɛ) We wll see ext that f s suffcetly lage, ɛ goes to zeo expoetally fast as gows, ad hece the soluto to the afoemetoed poblem s asymptotcally optmal

3 B Maxmal Speadg Allocatos ad the Asymptotc Optmalty of H Fst, we wll focus o maxmal speadg allocatos, x x R : x = /, ad deve the asymptotc optmalty fo Q, the sese that P[Z < ] 0, as Let p = p be the aveage access pobablty acoss all odes We have the followg lemma Lemma If > / p, fo ay ɛ > 0, ɛ : x H p,, ɛ), fo all ɛ Poof: hs follows dectly fom the defto of l /ɛ H p,, ɛ): ɛ = p/ ) he above lemma establshes the asymptotc optmalty of maxmal speadg allocatos though the followg coollay Coollay he pobablty of faled ecovey, P e P[Z < ], fo a maxmal speadg allocato s P e e p/ ) Whe > / p, P e 0, as he fact that H p,, ɛ) cotas maxmal speadg allocatos fo > / p, povdes a suffcet codto o the asymptotc optmalty of H heoem Let ɛ be the optmal value of H If > / p, the ɛ = Oexp)) Poof: Let > / p ad cosde the maxmal speadg allocato x he, ɛ ɛ s, whee ɛ s s the mmum ɛ such that x H p,, ɛ) hat s ɛ s = e p/ ), ad sce > / p, ɛ ɛ s = Oexp)) IV CHERNOFF RELAXAION I ths secto we take a dffeet appoach to obta a tactable covex elaxato fo Q by mmzg a appopate Cheoff uppe boud A Uppe Boudg the Objectve Fucto Lemma 3 Uppe Boud) Let Z = x Y, x 0, Y beoullp ) ad t 0 he pobablty of faled ecovey, P[Z < ], s uppe bouded by P[Z < ] g t x) = ) P) exp t x,, Poof: Fo ay t 0 we have: P[Z < ] P[Z ] = P [ e tz e t] e t E [ [ ] e tz] = e t E e txy = e t E [ e txy] = e t p + p e tx) 6) = e t =,,,, g t x) ) P) exp t x ) P) exp t x Note that g t x) s a weghted sum of covex fuctos wth lea agumets, ad hece covex x Equato 7) makes the covex elaxato of the objectve fucto appaet: x < α e txα), fo ay t 0 B he Relaxed Optmzato Poblem Befoe we move fowad ad state the elaxed optmzato poblem, we take a close look at the costat set S = x R + : x of the ogal poblem Q Fom a pactcal pespectve, t should be wasteful to allocate moe tha oe ut of data flesze) o a sgle ode If the ode suvves, the the data collecto ca always ecove the fle usg oly oe ut of data ad hece ay addtoal stoage does ot help Also, a allocato usg less tha the avalable budget caot have lage pobablty of successful ecovey I the followg lemma, we show that t s suffcet to cosde allocatos wth x [0, ] ad x = Lemma 4 Fo ay x S, x S = x R + : x =, x, =,, such that P [ x Y < ] P [ x Y < ] Poof: See the log veso of ths pape [4] he elaxed optmzato poblem ca be fomulated as follows R : mmze x g t x) x = x [0, ], =,, Note that, geeal, oe would lke to mmze f t 0 g t x) stead of g t x) fo some t 0 Howeve, fo ow, we wll let t be a fee paamete ad cay o wth the optmzato he mpotat dawback of the above fomulato hdes the objectve fucto: Although covex, g t x) has a expoetally log descpto the umbe of stoage odes: he sum s stll ove all subsets,, hs ca be ccumveted f we cosde mmzg log g t x) stead of g t x) ove the same set Lemma 5 log g t x) s covex x Poof: See the log veso of ths pape [4] 7)

4 Lemma 6 Fo ay t 0 ag m g tx) = ag m x S x S whee S = x R + : x, x log + p ) e tx, p Poof: Let x = ag m x S g t x) he g t x ) g t x), x S akg the logathm o both sdes peseves the equalty sce log ) s stctly ceasg Hece, log g t x ) log g t x), x S ad subtactg t + log p ) fom both sdes yelds the desed esult ad completes the poof I vew of Lemmas 5 ad 6, we ca solve R though the followg equvalet optmzato poblem R : mmze x t + x = log + p ) e tx p x [0, ], =,, R s a covex sepaable optmzato poblem wth polyomal sze descpto ad tems of complexty, t s ot much hade tha lea pogammg [5] Oe ca solve such poblems umecally a vey effcet way usg stadad, off-the-shelf algothms ad optmzato packages such as CVX [6], [7] C Isghts fom Optmalty Codtos fo R Hee, we move oe step futhe ad take the KK codtos fo R ode to take a close look at the stuctue of the optmal solutos Let p p he Lagaga fo R s: Lx, u, v, λ) = log ) + e tx) + λ x u x + v x ) whee λ R, u, v R + ae the coespodg Lagage multples he gadet s gve by x Lx, u, v, λ) = t + e +λu +v, ad the KK ecessay ad suffcet tx codtos fo optmalty yeld: t + λ u + v = 0, 8) + e tx x = 9) 0 x, 0) λ R, v, u 0, ) v x ) = 0, u x = 0, ) Usg the esults fom [8], the optmal soluto to R s gve by 0 f t x + λ = f λ t e t + t log ) 3) t λ f t e t + < λ < t + whee λ s chose such that Eq9) s satsfed, e, ) t log t λ λ t e t, + + λ t ) + t e t + = 4) Numecally, λ ca be computed va a teatve O ) algothm descbed [8], ad hece ths appoach gves a eve moe effcet way to solve R Howeve, the most mpotat aspect of the above esult s that we ca use equatos 3), 4) to obta closed fom solutos fo a ceta ego of poblem paametes ad aalyze the pefomace of the esultg allocatos D he choce of paamete t 0 It s clea that the optmal soluto to R depeds o ou choce of t 0 Fo example, t e t + 0, t +, as t ad x = lm t log t/λ ), Equato t 4) yelds x =, ad hece the maxmal speadg allocato becomes optmal fo R as t Eve though ths motvates the choce of maxmal speadg allocatos as appoxmate oe-shot solutos fo the ogal poblem Q, explctly tug the paamete t ca povde sgfcatly bette appoxmatos I ode to obta the tghtest boud fom Lemma 3, we have to jotly mmze the objectve R wth espect to t 0 ad x owads ths ed, oe ca teatvely optmze R by fxg the value of oe vaable t o x) at each step ad mmzg ove the othe Afte each teato the objectve fucto deceases ad hece the above pocedue coveges to a possbly local) mmum he above algothm teatvely tues the Cheoff boud toduced ths secto ad poduces a mmzg allocato that ca seve as a appoxmate soluto to the ogal poblem Q Fo aalytc puposes though, we ca choose a value fo t as follows Recall fom Lemma 3 that P[Z < ] g t x) fo ay t 0 Afte takg logathms, we would lke to fd a value fo t 0 that mmzes bt) t + log + e tx ) Notce that bt) s a covex fucto of t, wth bt) > 0, t 0, b0) = log + ) ad lm t bt) = he slope of bt) at zeo s b 0) = x + = p x, whch s egatve f the allocato s elable Whe t s lage, log + e tx ) 0, wheeas fo small values of t, log+ e tx ) tx +log ad hece bt) t + maxtx + log, 0 t + max tx + log, 0 Oe way to choose t that does ot deped o x s to make tx + log = 0 t = log

5 E A closed-fom allocato: ˆx I vew of the above esults we povde hee a closed fom allocato each x s gve as a fucto of p ad ) that ca be used to study the asymptotc pefomace of R ad seve as a bette oe-shot appoxmate soluto to Q Let E ) be a shothad otato fo the sample aveage such that Efx) = fx ), ode to smplfy the expessos Fo the above choce of t = log = Elog /, equato 3) becomes: x = 0 f f λ ) Elog log Elog λ Elog + λ Elog / e Elog / + othewse Elog / e Elog / +, 5) Lemma 7 If p > Elog, ad < log max, max = max, the x = Elog log, ) Poof: Assume that λ Elog + he fom Eq4), λ = Elog ad x = Elog log λ s deed the equed teval f Elog < >, p > /, ad Elog < e Elog /, < Elog log max Clealy, whe all p > /, ˆx : x = <, Elog / e Elog / +, Elog + Elog log,, s a feasble suboptmal allocato fo Q It s also suboptmal fo R geeal, sce solvg R va the poposed algothms ca oly acheve a smalle pobablty of faled ecovey We have P e Q P e R P Elog log Y < I the followg lemma we gve a uppe boud o the pobablty of faled ecovey fo ˆx ad establsh ts asymptotc optmalty Lemma 8 If p > Elog, ad > Ep log, the allocato ˆx : x = Elog log,, s stctly elable, ad the pobablty of faled ecovey, P e = P[Z < ], s uppe bouded by ) Ep log Elog P e exp Elog ad hece, whe > Elog Ep log, P e 0, as Poof: he poof follows dectly fom Lemma ad Equato 3) Notce that ˆx s elable fo values of fo whch a maxmal speadg allocato x Elog s ot, sce p Ep log, ad hece ts pobablty of faled ecovey P e goes to zeo expoetally fast fo smalle values of V NUMERICAL EXPERIMENS I ths secto we evaluate the pefomace of the poposed appoxmate dstbuted stoage allocatos tems of the pobablty of faled ecovey ad plot the coespodg Pobablty of faled ecovey Pe) Appoxmate DSA flesze =, N=00) 0 5 MaxSpead Pe) Cheoff CF Pe) Hoeffdg Pe) Cheoff I Pe) 0 6 MaxSpead Boud) Cheoff CF Boud) Hoeffdg Boud) Cheoff I Boud) Maxmum Avalable Stoage Budget ) Fg Pefomace of the poposed appoxmate dstbuted stoage allocatos ad the coespodg uppe bouds fo a system wth = 00 odes ad p U05, ) bouds I ou smulatos we cosde a esemble of dstbuted stoage systems wth = 00 odes, whch the coespodg access pobabltes, p U05, ), ae daw ufomly at adom fom the teval 05, ) We cosde the followg allocatos ) Maxmal speadg: x =, ) Cheoff closed-fom: x = /Elog ) log, 3) Hoeffdg ɛ-optmal: obtaed by solvg H 4) Cheoff teatve: obtaed by solvg R ad teatvely tug the paamete t Fg shows, sold les, the esemble aveage pobablty of faled ecovey of each allocato, P [ x Y < ], vesus the maxmum avalable budget I dashed les, Fg plots the coespodg bouds o P e obtaed fom Coollay, Lemma 8 ad the objectve fuctos of H, R REFERENCES [] D Leog, A Dmaks, ad Ho Dstbuted stoage allocatos CoRR, abs/0587, 00 [] W Hoeffdg Pobablty equaltes fo sums of bouded adom vaables Joual of the Ameca Stat Assocato, 5830):3 30, Mach 963 [3] M Mtzemache ad E Upfal Pobablty ad Computg: Radomzed Algothms ad Pobablstc Aalyss Cambdge Uvesty Pess, New Yok, NY, USA, 005 [4] V Ntaos, G Cae, ad A Dmaks Allocatos fo heteogeous dstbuted stoage log veso) taos/docs/ HDS-logpdf, Jauay 0 [5] D S Hochbaum ad J Geoge Shathkuma Covex sepaable optmzato s ot much hade tha lea optmzato J ACM, 37:843 86, Octobe 990 [6] M Gat ad S Boyd CVX: Matlab softwae fo dscpled covex pogammg, veso Apl 0 [7] M Gat ad S Boyd Gaph mplemetatos fo osmooth covex pogams I V Blodel, S Boyd, ad H Kmua, edtos, Recet Advaces Leag ad Cotol, Lectue Notes Cotol ad Ifomato Sceces, pages 95 0 Spge-Velag Lmted, 008 [8] S M Stefaov Covex sepaable mmzato subject to bouded vaables Comp Optmzato ad Applcatos, 8, 00

Professor Wei Zhu. 1. Sampling from the Normal Population

Professor Wei Zhu. 1. Sampling from the Normal Population AMS570 Pofesso We Zhu. Samplg fom the Nomal Populato *Example: We wsh to estmate the dstbuto of heghts of adult US male. It s beleved that the heght of adult US male follows a omal dstbuto N(, ) Def. Smple

More information

( m is the length of columns of A ) spanned by the columns of A : . Select those columns of B that contain a pivot; say those are Bi

( m is the length of columns of A ) spanned by the columns of A : . Select those columns of B that contain a pivot; say those are Bi Assgmet /MATH 47/Wte Due: Thusday Jauay The poblems to solve ae umbeed [] to [] below Fst some explaatoy otes Fdg a bass of the colum-space of a max ad povg that the colum ak (dmeso of the colum space)

More information

= y and Normed Linear Spaces

= y and Normed Linear Spaces 304-50 LINER SYSTEMS Lectue 8: Solutos to = ad Nomed Lea Spaces 73 Fdg N To fd N, we eed to chaacteze all solutos to = 0 Recall that ow opeatos peseve N, so that = 0 = 0 We ca solve = 0 ecusvel backwads

More information

Recent Advances in Computers, Communications, Applied Social Science and Mathematics

Recent Advances in Computers, Communications, Applied Social Science and Mathematics Recet Advaces Computes, Commucatos, Appled ocal cece ad athematcs Coutg Roots of Radom Polyomal Equatos mall Itevals EFRAI HERIG epatmet of Compute cece ad athematcs Ael Uvesty Cete of amaa cece Pa,Ael,4487

More information

RECAPITULATION & CONDITIONAL PROBABILITY. Number of favourable events n E Total number of elementary events n S

RECAPITULATION & CONDITIONAL PROBABILITY. Number of favourable events n E Total number of elementary events n S Fomulae Fo u Pobablty By OP Gupta [Ida Awad We, +91-9650 350 480] Impotat Tems, Deftos & Fomulae 01 Bascs Of Pobablty: Let S ad E be the sample space ad a evet a expemet espectvely Numbe of favouable evets

More information

XII. Addition of many identical spins

XII. Addition of many identical spins XII. Addto of may detcal sps XII.. ymmetc goup ymmetc goup s the goup of all possble pemutatos of obects. I total! elemets cludg detty opeato. Each pemutato s a poduct of a ceta fte umbe of pawse taspostos.

More information

Lecture 10: Condensed matter systems

Lecture 10: Condensed matter systems Lectue 0: Codesed matte systems Itoducg matte ts codesed state.! Ams: " Idstgushable patcles ad the quatum atue of matte: # Cosequeces # Revew of deal gas etopy # Femos ad Bosos " Quatum statstcs. # Occupato

More information

Minimizing spherical aberrations Exploiting the existence of conjugate points in spherical lenses

Minimizing spherical aberrations Exploiting the existence of conjugate points in spherical lenses Mmzg sphecal abeatos Explotg the exstece of cojugate pots sphecal leses Let s ecall that whe usg asphecal leses, abeato fee magg occus oly fo a couple of, so called, cojugate pots ( ad the fgue below)

More information

Minimum Hyper-Wiener Index of Molecular Graph and Some Results on Szeged Related Index

Minimum Hyper-Wiener Index of Molecular Graph and Some Results on Szeged Related Index Joual of Multdscplay Egeeg Scece ad Techology (JMEST) ISSN: 359-0040 Vol Issue, Febuay - 05 Mmum Hype-Wee Idex of Molecula Gaph ad Some Results o eged Related Idex We Gao School of Ifomato Scece ad Techology,

More information

University of Pavia, Pavia, Italy. North Andover MA 01845, USA

University of Pavia, Pavia, Italy. North Andover MA 01845, USA Iteatoal Joual of Optmzato: heoy, Method ad Applcato 27-5565(Pt) 27-6839(Ole) wwwgph/otma 29 Global Ifomato Publhe (HK) Co, Ltd 29, Vol, No 2, 55-59 η -Peudoleaty ad Effcecy Gogo Gog, Noma G Rueda 2 *

More information

Lecture 9 Multiple Class Models

Lecture 9 Multiple Class Models Lectue 9 Multple Class Models Multclass MVA Appoxmate MVA 8.4.2002 Copyght Teemu Keola 2002 1 Aval Theoem fo Multple Classes Wth jobs the system, a job class avg to ay seve sees the seve as equlbum wth

More information

Inequalities for Dual Orlicz Mixed Quermassintegrals.

Inequalities for Dual Orlicz Mixed Quermassintegrals. Advaces Pue Mathematcs 206 6 894-902 http://wwwscpog/joual/apm IN Ole: 260-0384 IN Pt: 260-0368 Iequaltes fo Dual Olcz Mxed Quemasstegals jua u chool of Mathematcs ad Computatoal cece Hua Uvesty of cece

More information

The Linear Probability Density Function of Continuous Random Variables in the Real Number Field and Its Existence Proof

The Linear Probability Density Function of Continuous Random Variables in the Real Number Field and Its Existence Proof MATEC Web of Cofeeces ICIEA 06 600 (06) DOI: 0.05/mateccof/0668600 The ea Pobablty Desty Fucto of Cotuous Radom Vaables the Real Numbe Feld ad Its Estece Poof Yya Che ad Ye Collee of Softwae, Taj Uvesty,

More information

A DATA DRIVEN PARAMETER ESTIMATION FOR THE THREE- PARAMETER WEIBULL POPULATION FROM CENSORED SAMPLES

A DATA DRIVEN PARAMETER ESTIMATION FOR THE THREE- PARAMETER WEIBULL POPULATION FROM CENSORED SAMPLES Mathematcal ad Computatoal Applcatos, Vol. 3, No., pp. 9-36 008. Assocato fo Scetfc Reseach A DATA DRIVEN PARAMETER ESTIMATION FOR THE THREE- PARAMETER WEIBULL POPULATION FROM CENSORED SAMPLES Ahmed M.

More information

χ be any function of X and Y then

χ be any function of X and Y then We have show that whe we ae gve Y g(), the [ ] [ g() ] g() f () Y o all g ()() f d fo dscete case Ths ca be eteded to clude fuctos of ay ube of ado vaables. Fo eaple, suppose ad Y ae.v. wth jot desty fucto,

More information

Best Linear Unbiased Estimators of the Three Parameter Gamma Distribution using doubly Type-II censoring

Best Linear Unbiased Estimators of the Three Parameter Gamma Distribution using doubly Type-II censoring Best Lea Ubased Estmatos of the hee Paamete Gamma Dstbuto usg doubly ype-ii cesog Amal S. Hassa Salwa Abd El-Aty Abstact Recetly ode statstcs ad the momets have assumed cosdeable teest may applcatos volvg

More information

are positive, and the pair A, B is controllable. The uncertainty in is introduced to model control failures.

are positive, and the pair A, B is controllable. The uncertainty in is introduced to model control failures. Lectue 4 8. MRAC Desg fo Affe--Cotol MIMO Systes I ths secto, we cosde MRAC desg fo a class of ult-ut-ult-outut (MIMO) olea systes, whose lat dyacs ae lealy aaetezed, the ucetates satsfy the so-called

More information

On EPr Bimatrices II. ON EP BIMATRICES A1 A Hence x. is said to be EP if it satisfies the condition ABx

On EPr Bimatrices II. ON EP BIMATRICES A1 A Hence x. is said to be EP if it satisfies the condition ABx Iteatoal Joual of Mathematcs ad Statstcs Iveto (IJMSI) E-ISSN: 3 4767 P-ISSN: 3-4759 www.jms.og Volume Issue 5 May. 4 PP-44-5 O EP matces.ramesh, N.baas ssocate Pofesso of Mathematcs, ovt. ts College(utoomous),Kumbakoam.

More information

2.1.1 The Art of Estimation Examples of Estimators Properties of Estimators Deriving Estimators Interval Estimators

2.1.1 The Art of Estimation Examples of Estimators Properties of Estimators Deriving Estimators Interval Estimators . ploatoy Statstcs. Itoducto to stmato.. The At of stmato.. amples of stmatos..3 Popetes of stmatos..4 Devg stmatos..5 Iteval stmatos . Itoducto to stmato Samplg - The samplg eecse ca be epeseted by a

More information

The Exponentiated Lomax Distribution: Different Estimation Methods

The Exponentiated Lomax Distribution: Different Estimation Methods Ameca Joual of Appled Mathematcs ad Statstcs 4 Vol. No. 6 364-368 Avalable ole at http://pubs.scepub.com/ajams//6/ Scece ad Educato Publshg DOI:.69/ajams--6- The Expoetated Lomax Dstbuto: Dffeet Estmato

More information

Fairing of Parametric Quintic Splines

Fairing of Parametric Quintic Splines ISSN 46-69 Eglad UK Joual of Ifomato ad omputg Scece Vol No 6 pp -8 Fag of Paametc Qutc Sples Yuau Wag Shagha Isttute of Spots Shagha 48 ha School of Mathematcal Scece Fuda Uvesty Shagha 4 ha { P t )}

More information

Atomic units The atomic units have been chosen such that the fundamental electron properties are all equal to one atomic unit.

Atomic units The atomic units have been chosen such that the fundamental electron properties are all equal to one atomic unit. tomc uts The atomc uts have bee chose such that the fudametal electo popetes ae all equal to oe atomc ut. m e, e, h/, a o, ad the potetal eegy the hydoge atom e /a o. D3.33564 0-30 Cm The use of atomc

More information

Iterative Algorithm for a Split Equilibrium Problem and Fixed Problem for Finite Asymptotically Nonexpansive Mappings in Hilbert Space

Iterative Algorithm for a Split Equilibrium Problem and Fixed Problem for Finite Asymptotically Nonexpansive Mappings in Hilbert Space Flomat 31:5 (017), 143 1434 DOI 10.98/FIL170543W Publshed by Faculty of Sceces ad Mathematcs, Uvesty of Nš, Seba Avalable at: http://www.pmf..ac.s/flomat Iteatve Algothm fo a Splt Equlbum Poblem ad Fxed

More information

Chapter 7 Varying Probability Sampling

Chapter 7 Varying Probability Sampling Chapte 7 Vayg Pobablty Samplg The smple adom samplg scheme povdes a adom sample whee evey ut the populato has equal pobablty of selecto. Ude ceta ccumstaces, moe effcet estmatos ae obtaed by assgg uequal

More information

RANDOM SYSTEMS WITH COMPLETE CONNECTIONS AND THE GAUSS PROBLEM FOR THE REGULAR CONTINUED FRACTIONS

RANDOM SYSTEMS WITH COMPLETE CONNECTIONS AND THE GAUSS PROBLEM FOR THE REGULAR CONTINUED FRACTIONS RNDOM SYSTEMS WTH COMPETE CONNECTONS ND THE GUSS PROBEM FOR THE REGUR CONTNUED FRCTONS BSTRCT Da ascu o Coltescu Naval cademy Mcea cel Bata Costata lascuda@gmalcom coltescu@yahoocom Ths pape peset the

More information

Learning Bayesian belief networks

Learning Bayesian belief networks Lectue 6 Leag Bayesa belef etwoks Mlos Hauskecht mlos@cs.ptt.edu 5329 Seott Squae Admstato Mdtem: Wedesday, Mach 7, 2004 I class Closed book Mateal coveed by Spg beak, cludg ths lectue Last yea mdtem o

More information

Exponential Generating Functions - J. T. Butler

Exponential Generating Functions - J. T. Butler Epoetal Geeatg Fuctos - J. T. Butle Epoetal Geeatg Fuctos Geeatg fuctos fo pemutatos. Defto: a +a +a 2 2 + a + s the oday geeatg fucto fo the sequece of teges (a, a, a 2, a, ). Ep. Ge. Fuc.- J. T. Butle

More information

An Unconstrained Q - G Programming Problem and its Application

An Unconstrained Q - G Programming Problem and its Application Joual of Ifomato Egeeg ad Applcatos ISS 4-578 (pt) ISS 5-0506 (ole) Vol.5, o., 05 www.ste.og A Ucostaed Q - G Pogammg Poblem ad ts Applcato M. He Dosh D. Chag Tved.Assocate Pofesso, H L College of Commece,

More information

A New Approach to Moments Inequalities for NRBU and RNBU Classes With Hypothesis Testing Applications

A New Approach to Moments Inequalities for NRBU and RNBU Classes With Hypothesis Testing Applications Iteatoal Joual of Basc & Appled Sceces IJBAS-IJENS Vol: No:6 7 A New Appoach to Momets Iequaltes fo NRBU ad RNBU Classes Wth Hypothess Testg Applcatos L S Dab Depatmet of Mathematcs aculty of Scece Al-Azha

More information

GREEN S FUNCTION FOR HEAT CONDUCTION PROBLEMS IN A MULTI-LAYERED HOLLOW CYLINDER

GREEN S FUNCTION FOR HEAT CONDUCTION PROBLEMS IN A MULTI-LAYERED HOLLOW CYLINDER Joual of ppled Mathematcs ad Computatoal Mechacs 4, 3(3), 5- GREE S FUCTIO FOR HET CODUCTIO PROBLEMS I MULTI-LYERED HOLLOW CYLIDER Stasław Kukla, Uszula Sedlecka Isttute of Mathematcs, Czestochowa Uvesty

More information

A Resource Allocation Algorithm for Users with Multiple Applications in 4G-LTE

A Resource Allocation Algorithm for Users with Multiple Applications in 4G-LTE A esouce Allocato Algothm fo Uses wth Multple Applcatos 4G-LTE Ahmed Abdel-Had Electcal ad Compute Egeeg Vga Tech Algto, Vga 2223 aabdelhad@vt.edu Chales Clacy Electcal ad Compute Egeeg Vga Tech Algto,

More information

Lecture 4 Sep 9, 2015

Lecture 4 Sep 9, 2015 CS 388R: Radomzed Algorthms Fall 205 Prof. Erc Prce Lecture 4 Sep 9, 205 Scrbe: Xagru Huag & Chad Voegele Overvew I prevous lectures, we troduced some basc probablty, the Cheroff boud, the coupo collector

More information

Feature Selection: Part 2. 1 Greedy Algorithms (continued from the last lecture)

Feature Selection: Part 2. 1 Greedy Algorithms (continued from the last lecture) CSE 546: Mache Learg Lecture 6 Feature Selecto: Part 2 Istructor: Sham Kakade Greedy Algorthms (cotued from the last lecture) There are varety of greedy algorthms ad umerous amg covetos for these algorthms.

More information

ˆ SSE SSE q SST R SST R q R R q R R q

ˆ SSE SSE q SST R SST R q R R q R R q Bll Evas Spg 06 Sggested Aswes, Poblem Set 5 ECON 3033. a) The R meases the facto of the vaato Y eplaed by the model. I ths case, R =SSM/SST. Yo ae gve that SSM = 3.059 bt ot SST. Howeve, ote that SST=SSM+SSE

More information

CIS 800/002 The Algorithmic Foundations of Data Privacy October 13, Lecture 9. Database Update Algorithms: Multiplicative Weights

CIS 800/002 The Algorithmic Foundations of Data Privacy October 13, Lecture 9. Database Update Algorithms: Multiplicative Weights CIS 800/002 The Algorthmc Foudatos of Data Prvacy October 13, 2011 Lecturer: Aaro Roth Lecture 9 Scrbe: Aaro Roth Database Update Algorthms: Multplcatve Weghts We ll recall aga) some deftos from last tme:

More information

Stability Analysis for Linear Time-Delay Systems. Described by Fractional Parameterized. Models Possessing Multiple Internal. Constant Discrete Delays

Stability Analysis for Linear Time-Delay Systems. Described by Fractional Parameterized. Models Possessing Multiple Internal. Constant Discrete Delays Appled Mathematcal Sceces, Vol. 3, 29, o. 23, 5-25 Stablty Aalyss fo Lea me-delay Systems Descbed by Factoal Paametezed Models Possessg Multple Iteal Costat Dscete Delays Mauel De la Se Isttuto de Ivestgacó

More information

such that for 1 From the definition of the k-fibonacci numbers, the firsts of them are presented in Table 1. Table 1: First k-fibonacci numbers F 1

such that for 1 From the definition of the k-fibonacci numbers, the firsts of them are presented in Table 1. Table 1: First k-fibonacci numbers F 1 Scholas Joual of Egeeg ad Techology (SJET) Sch. J. Eg. Tech. 0; (C):669-67 Scholas Academc ad Scetfc Publshe (A Iteatoal Publshe fo Academc ad Scetfc Resouces) www.saspublshe.com ISSN -X (Ole) ISSN 7-9

More information

Rademacher Complexity. Examples

Rademacher Complexity. Examples Algorthmc Foudatos of Learg Lecture 3 Rademacher Complexty. Examples Lecturer: Patrck Rebesch Verso: October 16th 018 3.1 Itroducto I the last lecture we troduced the oto of Rademacher complexty ad showed

More information

Sandwich Theorems for Mcshane Integration

Sandwich Theorems for Mcshane Integration It Joual of Math alyss, Vol 5, 20, o, 23-34 adwch Theoems fo Mcshae Itegato Ismet Temaj Pshta Uvesty Educato Faculty, Pshta, Kosovo temaj63@yahoocom go Tato Taa Polytechc Uvesty Mathematcs Egeeg Faculty,

More information

APPROXIMATE ANALYTIC WAVE FUNCTION METHOD IN ELECTRON ATOM SCATTERING CALCULATIONS. Budi Santoso

APPROXIMATE ANALYTIC WAVE FUNCTION METHOD IN ELECTRON ATOM SCATTERING CALCULATIONS. Budi Santoso APPROXIMATE ANALYTIC WAVE FUNCTION METHOD IN ELECTRON ATOM SCATTERING CALCULATIONS Bud Satoso ABSTRACT APPROXIMATE ANALYTIC WAVE FUNCTION METHOD IN ELECTRON ATOM SCATTERING CALCULATIONS. Appoxmate aalytc

More information

Solving Constrained Flow-Shop Scheduling. Problems with Three Machines

Solving Constrained Flow-Shop Scheduling. Problems with Three Machines It J Cotemp Math Sceces, Vol 5, 2010, o 19, 921-929 Solvg Costraed Flow-Shop Schedulg Problems wth Three Maches P Pada ad P Rajedra Departmet of Mathematcs, School of Advaced Sceces, VIT Uversty, Vellore-632

More information

Detection and Estimation Theory

Detection and Estimation Theory ESE 54 Detecto ad Etmato Theoy Joeph A. O Sullva Samuel C. Sach Pofeo Electoc Sytem ad Sgal Reeach Laboatoy Electcal ad Sytem Egeeg Wahgto Uvety Ubaue Hall 34-935-473 (Lyda awe) jao@wutl.edu J. A. O'S.

More information

Chapter Linear Regression

Chapter Linear Regression Chpte 6.3 Le Regesso Afte edg ths chpte, ou should be ble to. defe egesso,. use sevel mmzg of esdul cte to choose the ght cteo, 3. deve the costts of le egesso model bsed o lest sques method cteo,. use

More information

Lecture 12: Spiral: Domain Specific HLS. Housekeeping

Lecture 12: Spiral: Domain Specific HLS. Housekeeping 8 643 ectue : Spal: Doma Specfc HS James C. Hoe Depatmet of ECE Caege Mello Uvesty 8 643 F7 S, James C. Hoe, CMU/ECE/CACM, 7 Houseeepg You goal today: see a eample of eally hghlevel sythess (ths lectue

More information

Trace of Positive Integer Power of Adjacency Matrix

Trace of Positive Integer Power of Adjacency Matrix Global Joual of Pue ad Appled Mathematcs. IN 097-78 Volume, Numbe 07), pp. 079-087 Reseach Ida Publcatos http://www.publcato.com Tace of Postve Itege Powe of Adacecy Matx Jagdsh Kuma Pahade * ad Mao Jha

More information

ON THE CONVERGENCE THEOREMS OF THE McSHANE INTEGRAL FOR RIESZ-SPACES-VALUED FUNCTIONS DEFINED ON REAL LINE

ON THE CONVERGENCE THEOREMS OF THE McSHANE INTEGRAL FOR RIESZ-SPACES-VALUED FUNCTIONS DEFINED ON REAL LINE O The Covegece Theoems... (Muslm Aso) ON THE CONVERGENCE THEOREMS OF THE McSHANE INTEGRAL FOR RIESZ-SPACES-VALUED FUNCTIONS DEFINED ON REAL LINE Muslm Aso, Yosephus D. Sumato, Nov Rustaa Dew 3 ) Mathematcs

More information

X ε ) = 0, or equivalently, lim

X ε ) = 0, or equivalently, lim Revew for the prevous lecture Cocepts: order statstcs Theorems: Dstrbutos of order statstcs Examples: How to get the dstrbuto of order statstcs Chapter 5 Propertes of a Radom Sample Secto 55 Covergece

More information

Suppose we have observed values t 1, t 2, t n of a random variable T.

Suppose we have observed values t 1, t 2, t n of a random variable T. Sppose we have obseved vales, 2, of a adom vaable T. The dsbo of T s ow o belog o a cea ype (e.g., expoeal, omal, ec.) b he veco θ ( θ, θ2, θp ) of ow paamees assocaed wh s ow (whee p s he mbe of ow paamees).

More information

CISC 203: Discrete Mathematics for Computing II Lecture 2, Winter 2019 Page 9

CISC 203: Discrete Mathematics for Computing II Lecture 2, Winter 2019 Page 9 Lectue, Wte 9 Page 9 Combatos I ou dscusso o pemutatos wth dstgushable elemets, we aved at a geeal fomula by dvdg the total umbe of pemutatos by the umbe of ways we could pemute oly the dstgushable elemets.

More information

UNIQUENESS IN SEALED HIGH BID AUCTIONS. Eric Maskin and John Riley. Last Revision. December 14, 1996**

UNIQUENESS IN SEALED HIGH BID AUCTIONS. Eric Maskin and John Riley. Last Revision. December 14, 1996** u9d.doc Uqueess u9a/d.doc UNIQUENESS IN SEALED HIGH BID AUCTIONS by Ec Mas ad Joh Rley Last Revso Decembe 4, 996 Depatmet of Ecoomcs, Havad Uvesty ad UCLA A much eale veso of ths pape focussed o the symmetc

More information

Lecture 9: Tolerant Testing

Lecture 9: Tolerant Testing Lecture 9: Tolerat Testg Dael Kae Scrbe: Sakeerth Rao Aprl 4, 07 Abstract I ths lecture we prove a quas lear lower boud o the umber of samples eeded to do tolerat testg for L dstace. Tolerat Testg We have

More information

Chapter 5 Properties of a Random Sample

Chapter 5 Properties of a Random Sample Lecture 6 o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for the prevous lecture Cocepts: t-dstrbuto, F-dstrbuto Theorems: Dstrbutos of sample mea ad sample varace, relatoshp betwee sample mea ad sample

More information

Question 1. Typical Cellular System. Some geometry TELE4353. About cellular system. About cellular system (2)

Question 1. Typical Cellular System. Some geometry TELE4353. About cellular system. About cellular system (2) TELE4353 Moble a atellte Commucato ystems Tutoal 1 (week 3-4 4 Questo 1 ove that fo a hexagoal geomety, the co-chael euse ato s gve by: Q (3 N Whee N + j + j 1/ 1 Typcal Cellula ystem j cells up cells

More information

Legendre-coefficients Comparison Methods for the Numerical Solution of a Class of Ordinary Differential Equations

Legendre-coefficients Comparison Methods for the Numerical Solution of a Class of Ordinary Differential Equations IOSR Joual of Mathematcs (IOSRJM) ISS: 78-578 Volume, Issue (July-Aug 01), PP 14-19 Legede-coeffcets Compaso Methods fo the umecal Soluto of a Class of Oday Dffeetal Equatos Olaguju, A. S. ad Olaegu, D.G.

More information

Non-axial symmetric loading on axial symmetric. Final Report of AFEM

Non-axial symmetric loading on axial symmetric. Final Report of AFEM No-axal symmetc loadg o axal symmetc body Fal Repot of AFEM Ths poject does hamoc aalyss of o-axal symmetc loadg o axal symmetc body. Shuagxg Da, Musket Kamtokat 5//009 No-axal symmetc loadg o axal symmetc

More information

arxiv:math/ v1 [math.gm] 8 Dec 2005

arxiv:math/ v1 [math.gm] 8 Dec 2005 arxv:math/05272v [math.gm] 8 Dec 2005 A GENERALIZATION OF AN INEQUALITY FROM IMO 2005 NIKOLAI NIKOLOV The preset paper was spred by the thrd problem from the IMO 2005. A specal award was gve to Yure Boreko

More information

The Mathematical Appendix

The Mathematical Appendix The Mathematcal Appedx Defto A: If ( Λ, Ω, where ( λ λ λ whch the probablty dstrbutos,,..., Defto A. uppose that ( Λ,,..., s a expermet type, the σ-algebra o λ λ λ are defed s deoted by ( (,,...,, σ Ω.

More information

CE 561 Lecture Notes. Optimal Timing of Investment. Set 3. Case A- C is const. cost in 1 st yr, benefits start at the end of 1 st yr

CE 561 Lecture Notes. Optimal Timing of Investment. Set 3. Case A- C is const. cost in 1 st yr, benefits start at the end of 1 st yr CE 56 Letue otes Set 3 Optmal Tmg of Ivestmet Case A- C s ost. ost st y, beefts stat at the ed of st y C b b b3 0 3 Case B- Cost. s postpoed by oe yea C b b3 0 3 (B-A C s saved st yea C C, b b 0 3 Savg

More information

Decentralized Algorithms for Sequential Network Time Synchronization

Decentralized Algorithms for Sequential Network Time Synchronization Decetalzed Algothms fo Sequetal etwok me Sychozato Maxme Cohe Depatmet of Electcal Egeeg echo Hafa 32, Isael maxcohe@tx.techo.ac.l Abstact Accuate clock sychozato s mpotat may dstbuted applcatos. Stadad

More information

Part 4b Asymptotic Results for MRR2 using PRESS. Recall that the PRESS statistic is a special type of cross validation procedure (see Allen (1971))

Part 4b Asymptotic Results for MRR2 using PRESS. Recall that the PRESS statistic is a special type of cross validation procedure (see Allen (1971)) art 4b Asymptotc Results for MRR usg RESS Recall that the RESS statstc s a specal type of cross valdato procedure (see Alle (97)) partcular to the regresso problem ad volves fdg Y $,, the estmate at the

More information

An Algorithm of a Longest of Runs Test for Very Long. Sequences of Bernoulli Trials

An Algorithm of a Longest of Runs Test for Very Long. Sequences of Bernoulli Trials A Algothm of a Logest of Rus Test fo Vey Log equeces of Beoull Tals Alexade I. KOZYNCHENKO Faculty of cece, Techology, ad Meda, Md wede Uvesty, E-857, udsvall, wede alexade_kozycheko@yahoo.se Abstact A

More information

Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand DIS 10b

Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand DIS 10b CS 70 Dscrete Mathematcs ad Probablty Theory Fall 206 Sesha ad Walrad DIS 0b. Wll I Get My Package? Seaky delvery guy of some compay s out delverg packages to customers. Not oly does he had a radom package

More information

A tighter lower bound on the circuit size of the hardest Boolean functions

A tighter lower bound on the circuit size of the hardest Boolean functions Electroc Colloquum o Computatoal Complexty, Report No. 86 2011) A tghter lower boud o the crcut sze of the hardest Boolea fuctos Masak Yamamoto Abstract I [IPL2005], Fradse ad Mlterse mproved bouds o the

More information

UNIT 2 SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS

UNIT 2 SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS Numercal Computg -I UNIT SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS Structure Page Nos..0 Itroducto 6. Objectves 7. Ital Approxmato to a Root 7. Bsecto Method 8.. Error Aalyss 9.4 Regula Fals Method

More information

NUMERICAL SIMULATION OF TSUNAMI CURRENTS AROUND MOVING STRUCTURES

NUMERICAL SIMULATION OF TSUNAMI CURRENTS AROUND MOVING STRUCTURES NUMERICAL SIMULATION OF TSUNAMI CURRENTS AROUND MOVING STRUCTURES Ezo Nakaza 1, Tsuakyo Ibe ad Muhammad Abdu Rouf 1 The pape ams to smulate Tsuam cuets aoud movg ad fxed stuctues usg the movg-patcle semmplct

More information

Robust Regression Analysis for Non-Normal Situations under Symmetric Distributions Arising In Medical Research

Robust Regression Analysis for Non-Normal Situations under Symmetric Distributions Arising In Medical Research Joual of Mode Appled Statstcal Methods Volume 3 Issue Atcle 9 5--04 Robust Regesso Aalyss fo No-Nomal Stuatos ude Symmetc Dstbutos Asg I Medcal Reseach S S. Gaguly Sulta Qaboos Uvesty, Muscat, Oma, gaguly@squ.edu.om

More information

18.657: Mathematics of Machine Learning

18.657: Mathematics of Machine Learning 8.657: Mathematcs of Mache Learg Lecturer: Phlppe Rgollet Lecture 3 Scrbe: James Hrst Sep. 6, 205.5 Learg wth a fte dctoary Recall from the ed of last lecture our setup: We are workg wth a fte dctoary

More information

FIBONACCI-LIKE SEQUENCE ASSOCIATED WITH K-PELL, K-PELL-LUCAS AND MODIFIED K-PELL SEQUENCES

FIBONACCI-LIKE SEQUENCE ASSOCIATED WITH K-PELL, K-PELL-LUCAS AND MODIFIED K-PELL SEQUENCES Joual of Appled Matheatcs ad Coputatoal Mechacs 7, 6(), 59-7 www.ac.pcz.pl p-issn 99-9965 DOI:.75/jac.7..3 e-issn 353-588 FIBONACCI-LIKE SEQUENCE ASSOCIATED WITH K-PELL, K-PELL-LUCAS AND MODIFIED K-PELL

More information

8.1 Hashing Algorithms

8.1 Hashing Algorithms CS787: Advaced Algorthms Scrbe: Mayak Maheshwar, Chrs Hrchs Lecturer: Shuch Chawla Topc: Hashg ad NP-Completeess Date: September 21 2007 Prevously we looked at applcatos of radomzed algorthms, ad bega

More information

Bounds on the expected entropy and KL-divergence of sampled multinomial distributions. Brandon C. Roy

Bounds on the expected entropy and KL-divergence of sampled multinomial distributions. Brandon C. Roy Bouds o the expected etropy ad KL-dvergece of sampled multomal dstrbutos Brado C. Roy bcroy@meda.mt.edu Orgal: May 18, 2011 Revsed: Jue 6, 2011 Abstract Iformato theoretc quattes calculated from a sampled

More information

9 U-STATISTICS. Eh =(m!) 1 Eh(X (1),..., X (m ) ) i.i.d

9 U-STATISTICS. Eh =(m!) 1 Eh(X (1),..., X (m ) ) i.i.d 9 U-STATISTICS Suppose,,..., are P P..d. wth CDF F. Our goal s to estmate the expectato t (P)=Eh(,,..., m ). Note that ths expectato requres more tha oe cotrast to E, E, or Eh( ). Oe example s E or P((,

More information

10.1 Approximation Algorithms

10.1 Approximation Algorithms 290 0. Approxmato Algorthms Let us exame a problem, where we are gve A groud set U wth m elemets A collecto of subsets of the groud set = {,, } s.t. t s a cover of U: = U The am s to fd a subcover, = U,

More information

Investigation of Partially Conditional RP Model with Response Error. Ed Stanek

Investigation of Partially Conditional RP Model with Response Error. Ed Stanek Partally Codtoal Radom Permutato Model 7- vestgato of Partally Codtoal RP Model wth Respose Error TRODUCTO Ed Staek We explore the predctor that wll result a smple radom sample wth respose error whe a

More information

Chapter 9 Jordan Block Matrices

Chapter 9 Jordan Block Matrices Chapter 9 Jorda Block atrces I ths chapter we wll solve the followg problem. Gve a lear operator T fd a bass R of F such that the matrx R (T) s as smple as possble. f course smple s a matter of taste.

More information

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution:

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution: Chapter 4 Exercses Samplg Theory Exercse (Smple radom samplg: Let there be two correlated radom varables X ad A sample of sze s draw from a populato by smple radom samplg wthout replacemet The observed

More information

MATH 247/Winter Notes on the adjoint and on normal operators.

MATH 247/Winter Notes on the adjoint and on normal operators. MATH 47/Wter 00 Notes o the adjot ad o ormal operators I these otes, V s a fte dmesoal er product space over, wth gve er * product uv, T, S, T, are lear operators o V U, W are subspaces of V Whe we say

More information

ESS Line Fitting

ESS Line Fitting ESS 5 014 17. Le Fttg A very commo problem data aalyss s lookg for relatoshpetwee dfferet parameters ad fttg les or surfaces to data. The smplest example s fttg a straght le ad we wll dscuss that here

More information

Estimation of Parameters of the Exponential Geometric Distribution with Presence of Outliers Generated from Uniform Distribution

Estimation of Parameters of the Exponential Geometric Distribution with Presence of Outliers Generated from Uniform Distribution ustala Joual of Basc ad ppled Sceces, 6(: 98-6, ISSN 99-878 Estmato of Paametes of the Epoetal Geometc Dstbuto wth Pesece of Outles Geeated fom Ufom Dstbuto Pavz Nas, l Shadoh ad Hassa Paza Depatmet of

More information

1 Solution to Problem 6.40

1 Solution to Problem 6.40 1 Soluto to Problem 6.40 (a We wll wrte T τ (X 1,...,X where the X s are..d. wth PDF f(x µ, σ 1 ( x µ σ g, σ where the locato parameter µ s ay real umber ad the scale parameter σ s > 0. Lettg Z X µ σ we

More information

L-MOMENTS EVALUATION FOR IDENTICALLY AND NONIDENTICALLY WEIBULL DISTRIBUTED RANDOM VARIABLES

L-MOMENTS EVALUATION FOR IDENTICALLY AND NONIDENTICALLY WEIBULL DISTRIBUTED RANDOM VARIABLES THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Sees A, OF THE ROMANIAN ACADEMY Volume 8, Numbe 3/27,. - L-MOMENTS EVALUATION FOR IDENTICALLY AND NONIDENTICALLY WEIBULL DISTRIBUTED RANDOM VARIABLES

More information

Lecture 16: Backpropogation Algorithm Neural Networks with smooth activation functions

Lecture 16: Backpropogation Algorithm Neural Networks with smooth activation functions CO-511: Learg Theory prg 2017 Lecturer: Ro Lv Lecture 16: Bacpropogato Algorthm Dsclamer: These otes have ot bee subected to the usual scruty reserved for formal publcatos. They may be dstrbuted outsde

More information

Distributed Nonlinear Model Predictive Control by Sequential Linearization and Accelerated Gradient Method

Distributed Nonlinear Model Predictive Control by Sequential Linearization and Accelerated Gradient Method Dstbuted Nolea odel Pedctve Cotol by Sequetal Leazato ad cceleated Gadet ethod lexada Gachaova, o. Johase, Valea Petova Depatmet of Idustal utomato, Uvesty of Chemcal echology ad etallugy, Bul. Kl. Ohdsk

More information

Hyper-wiener index of gear fan and gear wheel related graph

Hyper-wiener index of gear fan and gear wheel related graph Iteatoal Joual of Chemcal Studes 015; (5): 5-58 P-ISSN 49 858 E-ISSN 1 490 IJCS 015; (5): 5-58 014 JEZS Receed: 1-0-015 Accepted: 15-0-015 We Gao School of Ifomato Scece ad Techology, Yua Nomal Uesty,

More information

CS286.2 Lecture 4: Dinur s Proof of the PCP Theorem

CS286.2 Lecture 4: Dinur s Proof of the PCP Theorem CS86. Lecture 4: Dur s Proof of the PCP Theorem Scrbe: Thom Bohdaowcz Prevously, we have prove a weak verso of the PCP theorem: NP PCP 1,1/ (r = poly, q = O(1)). Wth ths result we have the desred costat

More information

Econometric Methods. Review of Estimation

Econometric Methods. Review of Estimation Ecoometrc Methods Revew of Estmato Estmatg the populato mea Radom samplg Pot ad terval estmators Lear estmators Ubased estmators Lear Ubased Estmators (LUEs) Effcecy (mmum varace) ad Best Lear Ubased Estmators

More information

An Expanded Method to Robustly Practically. Output Tracking Control. for Uncertain Nonlinear Systems

An Expanded Method to Robustly Practically. Output Tracking Control. for Uncertain Nonlinear Systems It Joual of Math Aalyss, Vol 8, 04, o 8, 865-879 HIKARI Ltd, wwwm-hacom http://ddoog/0988/jma044368 A Epaded Method to Robustly Pactcally Output Tacg Cotol fo Uceta Nolea Systems Keyla Almha, Naohsa Otsua,

More information

A conic cutting surface method for linear-quadraticsemidefinite

A conic cutting surface method for linear-quadraticsemidefinite A coc cuttg surface method for lear-quadratcsemdefte programmg Mohammad R. Osoorouch Calfora State Uversty Sa Marcos Sa Marcos, CA Jot wor wth Joh E. Mtchell RPI July 3, 2008 Outle: Secod-order coe: defto

More information

Collocation Method for Ninth order Boundary Value Problems Using Quintic B-Splines

Collocation Method for Ninth order Boundary Value Problems Using Quintic B-Splines Iteatoal Joual of Egeeg Ivetos e-issn: 78-7461, p-issn: 19-6491 Volume 5, Issue 7 [Aug. 16] PP: 8-47 Collocato Metod fo Nt ode Bouday Value Poblems Usg Qutc B-Sples S. M. Reddy Depatmet of Scece ad Humates,

More information

CHAPTER 4 RADICAL EXPRESSIONS

CHAPTER 4 RADICAL EXPRESSIONS 6 CHAPTER RADICAL EXPRESSIONS. The th Root of a Real Number A real umber a s called the th root of a real umber b f Thus, for example: s a square root of sce. s also a square root of sce ( ). s a cube

More information

( ) 2 2. Multi-Layer Refraction Problem Rafael Espericueta, Bakersfield College, November, 2006

( ) 2 2. Multi-Layer Refraction Problem Rafael Espericueta, Bakersfield College, November, 2006 Mult-Layer Refracto Problem Rafael Espercueta, Bakersfeld College, November, 006 Lght travels at dfferet speeds through dfferet meda, but refracts at layer boudares order to traverse the least-tme path.

More information

FUZZY MULTINOMIAL CONTROL CHART WITH VARIABLE SAMPLE SIZE

FUZZY MULTINOMIAL CONTROL CHART WITH VARIABLE SAMPLE SIZE A. Paduaga et al. / Iteatoal Joual of Egeeg Scece ad Techology (IJEST) FUZZY MUTINOMIA CONTRO CHART WITH VARIABE SAMPE SIZE A. PANDURANGAN Pofesso ad Head Depatmet of Compute Applcatos Vallamma Egeeg College,

More information

PTAS for Bin-Packing

PTAS for Bin-Packing CS 663: Patter Matchg Algorthms Scrbe: Che Jag /9/00. Itroducto PTAS for B-Packg The B-Packg problem s NP-hard. If we use approxmato algorthms, the B-Packg problem could be solved polyomal tme. For example,

More information

Numerical Solution of Non-equilibrium Hypersonic Flows of Diatomic Gases Using the Generalized Boltzmann Equation

Numerical Solution of Non-equilibrium Hypersonic Flows of Diatomic Gases Using the Generalized Boltzmann Equation Recet Advaces Flud Mechacs, Heat & Mass asfe ad Bology Numecal Soluto of No-equlbum Hypesoc Flows of Datomc Gases Usg the Geealzed Boltzma Equato RAMESH K. AGARWAL Depatmet of Mechacal Egeeg ad Mateals

More information

Council for Innovative Research

Council for Innovative Research Geometc-athmetc Idex ad Zageb Idces of Ceta Specal Molecula Gaphs efe X, e Gao School of Tousm ad Geogaphc Sceces, Yua Nomal Uesty Kumg 650500, Cha School of Ifomato Scece ad Techology, Yua Nomal Uesty

More information

1 Onto functions and bijections Applications to Counting

1 Onto functions and bijections Applications to Counting 1 Oto fuctos ad bectos Applcatos to Coutg Now we move o to a ew topc. Defto 1.1 (Surecto. A fucto f : A B s sad to be surectve or oto f for each b B there s some a A so that f(a B. What are examples of

More information

Generalized Linear Regression with Regularization

Generalized Linear Regression with Regularization Geeralze Lear Regresso wth Regularzato Zoya Bylsk March 3, 05 BASIC REGRESSION PROBLEM Note: I the followg otes I wll make explct what s a vector a what s a scalar usg vec t or otato, to avo cofuso betwee

More information

Counting pairs of lattice paths by intersections

Counting pairs of lattice paths by intersections Coutg pas of lattce paths by tesectos Ia Gessel 1, Bades Uvesty, Waltham, MA 02254-9110, USA Waye Goddad 2, Uvesty of Natal, Duba 4000, South Afca Walte Shu, New Yo Lfe Isuace Co., New Yo, NY 10010, USA

More information

FULLY RIGHT PURE GROUP RINGS (Gelanggang Kumpulan Tulen Kanan Penuh)

FULLY RIGHT PURE GROUP RINGS (Gelanggang Kumpulan Tulen Kanan Penuh) Joual of Qualty Measuemet ad Aalyss JQMA 3(), 07, 5-34 Jual Pegukua Kualt da Aalss FULLY IGHT PUE GOUP INGS (Gelaggag Kumpula Tule Kaa Peuh) MIKHLED ALSAAHEAD & MOHAMED KHEI AHMAD ABSTACT I ths pape, we

More information

Special Instructions / Useful Data

Special Instructions / Useful Data JAM 6 Set of all real umbers P A..d. B, p Posso Specal Istructos / Useful Data x,, :,,, x x Probablty of a evet A Idepedetly ad detcally dstrbuted Bomal dstrbuto wth parameters ad p Posso dstrbuto wth

More information

Probability. Stochastic Processes

Probability. Stochastic Processes Pobablty ad Stochastc Pocesses Weless Ifomato Tasmsso System Lab. Isttute of Commucatos Egeeg g Natoal Su Yat-se Uvesty Table of Cotets Pobablty Radom Vaables, Pobablty Dstbutos, ad Pobablty Destes Statstcal

More information