Probability. Stochastic Processes

Size: px
Start display at page:

Download "Probability. Stochastic Processes"

Transcription

1 Pobablty ad Stochastc Pocesses Weless Ifomato Tasmsso System Lab. Isttute of Commucatos Egeeg g Natoal Su Yat-se Uvesty

2 Table of Cotets Pobablty Radom Vaables, Pobablty Dstbutos, ad Pobablty Destes Statstcal Aveages of Radom Vaables Some Useful Pobablty Dstbutos Uppe Bouds o the Tal Pobablty blt Sums of Radom Vaables ad the Cetal Lmt Theoem Stochastc Pocesses Statstcal Aveages Powe Desty Spectum Respose of a Lea Tme-Ivaat System to a Radom Iput Sgal Dscete-Tme Stochastc Sgals ad Systems Cyclostatoay Pocesses

3 Pobablty Sample space o ceta evet of a de epemet: S,,3,4,5,6 The s outcomes ae the sample pots of the epemet. A evet s a subset of S, ad may cosst of ay umbe of sample pots. Fo eample: A,4 The complemet of the evet A, deoted by A, cossts of all the sample pots S that ae ot A: A,3,5,6 3

4 Pobablty Two evets ae sad to be mutually eclusve f they have o sample pots commo that s, f the occuece of oe evet ecludes the occuece of the othe. Fo eample:,4;,3,6 A B A ad A ae mutually eclusve evets. The uo sum of two evets a evet that cossts of all the sample pots the two evets. Fo eample: C,,3 D A B C,,3, 6 A S 4

5 Pobablty The tesecto of two evets s a evet that cossts of the pots that ae commo to the two evets. Fo eample: E B C,3 Whe the evets ae mutually eclusve, the tesecto s the ull evet, deoted as φ. Fo eample: A A 5

6 Pobablty Assocated wth each evet A cotaed S s ts pobablty PA. Thee postulatos: PA0. The pobablty of the sample space s PS=. Suppose that A, =,,, ae a possbly fte umbe of evets the sample space S such that A A ;,,... The the pobablty of the uo of these mutually eclusve evets satsfes the codto: P A P A 6

7 Pobablty Jot evets ad ot pobabltes two epemets If oe epemet has the possble outcomes A, =,,,, ad the secod epemet has the possble outcomes B, =,,,m, the the combed epemet has the possble ot outcomes A,B, =,,,, =,,,m. Assocated wth each ot outcome A,B s the ot pobablty P A,B whch satsfes the codto: 0 P A, B Assumg that the outcomes B, =,,,m, ae mutually eclusve, t follows that: m P A, B P A If all the outcomes of the two epemets ae mutually eclusve, the: m P A, B P A 7

8 Pobablty Codtoal pobabltes The codtoal pobablty of the evet A gve the occuece of the evet B s defed as: P A, B P A B P B povded PB>0. P A, B P A B P B P B A P A P A, B s t tepetedt as the pobablty blt of A B. That s, P A, B deotes the smultaeous occuece of A ad B. If two evets A ad B ae mutually eclusve, A B, the PAB 0. If B s a subset of A, we have A B B ad P A B. 8

9 Pobablty Bayes theoem: If A,,,...,, ae mutually eclusve evets such that A S ad B s a abtay evet wth ozeo pobablty, the PA B PAB, PB P B A P A PB A PA, P B P B A P B A P A PA epesets the a po pobabltes ad PA B s the a posteo pobablty of A codtoed o havg obseved the eceved sgal B. 9

10 Pobablty Pobablty Statstcal depedece. the, of occuece o the ot deped does of occuece the If A P B A P B A Whe the evets A ad B satsfy the elato, B P A P B P B A P B A P PA,B=PAPB, they ae sad to be statstcally depedet. Thee statstcally depedet evets A, A, ad A 3 must satsfy the followg codtos:, A P A P A A P,, A P A P A A P A P A P A A P 0,, 3 3 A P A P A P A A A P

11 Radom Vaables, Pobablty Dstbutos, ad Pobablty Destes es Gve a epemet havg a sample space S ad elemets s S, we defe a fucto X s whose doma s S ad whose age s a set of umbes o the eal le. The fucto Xs s called a adom vaable. Eample : If we flp a co, the possble outcomes ae head H ad tal T, so S cotas two pots labeled H ad T. Suppose we defe a fucto Xs such that: s H X s - s T Thus we have mapped the two possble outcomes of the co-flppg epemet to the two pots +,- o the eal le. Eample : Tossg a de wth possble outcomes S={,,3,4,5,6}. A adom vaable defed o ths sample space may be Xs=s, whch case the outcomes of the epemet ae mapped to the teges,,6, o, pehaps, Xs=s, whch case the possble outcomes ae mapped to the teges {,4,9,6,5,36}.

12 Radom Vaables, Pobablty Dstbutos, ad Pobablty Destes es Gve a adom vaable X, let us cosde the evet {X } whee s ay eal umbe the teval -,. We wte the pobablty of ths evet as PX ad deote t smply by F,.e., F P X, - The fucto F s called the pobablty dstbuto fucto of the adom vaable X. It s also called the cumulatve lt dstbuto dtbt fucto CDF. 0 F F 0 ad F.

13 Radom Vaables, Pobablty Dstbutos, ad Pobablty Destes es Eamples of the cumulatve dstbuto fuctos of two dscete adom vaables. 3

14 Radom Vaables, Pobablty Dstbutos, ad Pobablty Destes es A eample of the cumulatve dstbuto fucto of a cotuous adom vaable. 4

15 Radom Vaables, Pobablty Dstbutos, ad Pobablty Destes es A eample of the cumulatve dstbuto fucto of a adom vaable of a med type. 5

16 Radom Vaables, Pobablty Dstbutos, ad Pobablty Destes es The devatve of the CDF F, deoted as p, s called the pobablty desty fucto PDF of the adom vaable X. p F df, d p u du, Whe the adom vaable s dscete o of a med type, the PDF cotas mpulses at the pots of dscotuty of F: p P X 6

17 Radom Vaables, Pobablty Dstbutos, ad Pobablty Destes es Detemg the pobablty that a adom vaable X falls a teval,, whee. P X P X P X F F P X P X F F p d The pobablty of the evet X s smply the aea ude the PDF the age X. 7

18 Radom Vaables, Pobablty Dstbutos, ad Pobablty Destes es Multple adom vaables, ot pobablty dstbutos, ad ot pobablty destes: two adom vaables Jot CDF : F, P X, X p u, u dudu Jot PDF : p, F, - - p, d p p, d p The PDFs p ad p obtaed of the vaables ae called - - p, dd magal, fom tegat g ove oe PDFs., F, F, 0. Note that : F F 8

19 Radom Vaables, Pobablty Dstbutos, ad Pobablty Destes es Multple adom vaables, ot pobablty dstbutos, ad ot pobablty destes: multdmesoal adom vaables Suppose that Jot CDF Jot PDF F F X F p,,,...,, ae adom vaables.,, p,...,,...,,,,...,, P X d d,,, 4,..., F,,,..., 0., 4 3, 4, X p p u, 5, u F, 4,...,,,...,,..., u,...,,. X,...,, du du... du 9

20 Statstcal Aveages of Radom Vaables The mea o epected value of X, whch chaactezed by ts PDF p, s defed as: E X m p d Ths s the fst momet of adom vaable X. The -th momet s defed as: E X p d Defe Y=gX, the epected value of Y s: g X E Y E g p d 0

21 Statstcal Aveages of Radom Vaables The -th cetal momet of the adom vaable X s: E Y E X m m p d Whe =, the cetal momet s called the vaace of the adom vaable ad deoted as : E m p d E X E X m X I the case of two adom vaables, X ad X, wth ot PDF p,, we defe the ot momet as: k k X p, E X d d

22 Statstcal Aveages of Radom Vaables The ot cetal momet s defed as: E k X m X m k m m p, dd If k==, the ot momet ad ot cetal momet ae called the coelato ad the covaace of the adom vaables X ad X, espectvely. The coelato betwee X ad X s gve by the ot momet: E X X p, d d

23 Statstcal Aveages of Radom Vaables The covaace betwee X ad X s gve by the ot cetal momet: E[ X m X m ] m m E X X m m p, p, m d m d d d p, m m d m m m m d p, m m d d m m The mat wth elemets μ s called the covaace mat of the adom vaables, X, =,,,. 3

24 Statstcal Aveages of Radom Vaables Two adom vaables ae sad to be ucoelated f EX X =EX EX =m m. Ucoelated Covaace μ = 0. If X ad X ae statstcally depedet, they ae ucoelated. If X ad X ae ucoelated, they ae ot ecessay statstcally ttt depedetly. d d Two adom vaables ae sad to be othogoal f EX X =0. Two adom vaables ae othogoal f they ae ucoelated ad ethe oe o both of them have zeo mea. 4

25 Statstcal Aveages of Radom Vaables Chaactestc fuctos The chaactestc fucto of a adom vaable X s defed as the statstcal aveage: vx E e v e v p d Ψv may be descbed as the Foue tasfom of p. The vese Foue tasfom s: p v e v Fst devatve of the above equato wth espect to v: d v v e p d dv 5 dv

26 Statstcal Aveages of Radom Vaables Chaactestc fuctos cot. Fst momet mea ca be obtaed by: E X m d v dv v 0 Sce the dffeetato pocess ca be epeated, -th momet ca be calculated by: E X d v dv v0 6

27 Statstcal Aveages of Radom Vaables Chaactestc fuctos cot. Detemg the PDF of a sum of statstcally depedet adom vaables: vy Y X Y v E e Eep v X E Sce the adom vaables ae statstcally depedet, vx v e... e p,,..., d d... d p If,,...,, p p... p Y v X X ae d depedet ad detcally dstbuted v v Y X v 7

28 Statstcal Aveages of Radom Vaables Chaactestc fuctos cot. The PDF of Y s detemed fom the vese Foue tasfom of Ψ Y v. Sce the chaactestc fucto of the sum of statstcally depedet adom vaables s equal to the poduct of the chaactestc fuctos of the dvdual adom vaables, t follows that, the tasfom doma, the PDF of Y s the - fold covoluto of the PDFs of the X. Usually, the -fold covoluto s moe dffcult to pefom tha the chaactestc fucto method detemg the PDF of Y. 8

29 Some Useful Pobablty Dstbutos Some Useful Pobablty Dstbutos Bomal dstbuto dscete: Let p X P X P 0 whee the ae statstcally d Y X X what s the pobablty dstbuto fucto of Y? whee the,,,..., ae statstcally d, Y X X!!! k k k p p k k Y P k k : s of PDF 0 k y k Y P y p Y k 0 k y p p k k k k 9 0 k k

30 Some Useful Pobablty Dstbutos Bomal dstbuto: The CDF of Y s: y k k F y P Y y p p k 0 k whee [y] deotes the lagest tege m such that m y. The fst two momets of Y ae: E Y p E Y p p The chaactestc fucto s: p p p v p pe 30

31 Some Useful Pobablty Dstbutos Some Useful Pobablty Dstbutos Ufom Dstbuto The fst two momets of X ae: b a X E 3 b ab b a X E The chaactestc fucto s: a b The chaactestc fucto s: e e va vb 3 a b v

32 Some Useful Pobablty Dstbutos Gaussa Nomal Dstbuto The PDF of a Gaussa o omal dstbuted adom vaable s: m / p e whee m s the mea ad σ s the vaace of fthe adom vaable. u m du t, dt The CDF s: F e du m m ef efc m um / / 3 e t dt

33 Some Useful Pobablty Dstbutos Gaussa Nomal Dstbuto ef ad efc deote the eo fucto ad complemetay eo fucto, espectvely, ad ae defed as: ef t t e dt ad efc e dt ef 0 ef-=-ef, efc-=-efc, ef0=efc =0, ad ef =efc0=. efc0 Fo >m, the complemetay eo fuctos s popotoal to the aea ude the tal of the Gaussa PDF. 33

34 Some Useful Pobablty Dstbutos Gaussa Nomal Dstbuto The fucto that s fequetly used fo the aea ude the tal of the Gaussa PDF s deoted by Q ad s defed as: t / Q e dt efc 0 34

35 Some Useful Pobablty Dstbutos Gaussa Nomal Dstbuto The chaactestc fucto of a Gaussa adom vaable wth mea m ad vaace σ s: v m / vm / v v e e d e The cetal momets of a Gaussa adom vaable ae: E k 3 X m k k k eve k 0 odd k The oday momets may be epessed tems of the cetal momets as: k k k E X m k 0 35

36 Some Useful Pobablty Dstbutos Gaussa Nomal Dstbuto The sum of statstcally depedet Gaussa adom vaables s also a Gaussa adom vaable. whee Y X Y m Theefoe, v v y m Y s ad vaace. X ad Gaussa y y e vm v / vm y v - dstbuted wth mea e m y y / 36

37 Some Useful Pobablty Dstbutos Ch-squae dstbuto If Y=X, whee X s a Gaussa adom vaable, Y has a chsquae dstbuto. Y s a tasfomato of X. Thee ae two type of ch-squae dstbuto: Cetal ch-squae dstbuto: X has zeo mea. No-cetal ch-squae dstbuto: X has o-zeo mea. Assumg X be Gaussa dstbuted wth zeo mea ad vaace σ, we ca apply.-47 to obta the PDF of Y wth a= ad b=0; p Y y p y b / a ] p X [ y b / ] y b/ a ] g[ y b / a ] X [ a g[ 37

38 Some Useful Pobablty Dstbutos Cetal ch-squae dstbuto The PDF of Y s: p Y y / y e, y y 0 The CDF of Y s: F Y y y u p du Y 0 0 y e u u / du The chaactestc fucto of Y s: v Y v / 38

39 Some Useful Pobablty Dstbutos Ch-squae Gamma dstbuto wth degees of feedom. Y X, X,,,...,, ae statstcally depedet ad detcally dstbuted d Gaussa adom vaables wth zeo mea ad vaace. The chaactestc fucto s: Y v / v The vese tasfom of ths chaactestc fucto yelds the PDF: / -y/ σ py y y e, y 0 / σ 39

40 Some Useful Pobablty Dstbutos Ch-squae Gamma dstbuto wth degees of feedom cot.. p s the gamma fucto, defed as : p p t e p 0 t dt, p p -! p a tege 0 3 Whe =, the dstbuto yelds the epoetal dstbuto. 0 40

41 Some Useful Pobablty Dstbutos Ch-squae Gamma dstbuto wth degees of feedom cot.. The PDF of a ch-squae dstbuted adom vaable fo seveal degees of feedom. 4

42 Some Useful Pobablty Dstbutos Some Useful Pobablty Dstbutos Ch-squae Gamma dstbuto wth degees of feedom cot.. The fst two momets of Y ae: 4 4 Y E Y E Th CDF f Y 4 y The CDF of Y s: y u y du e u y F / / 0 Y y du e u y F 0 / 0, 4

43 Some Useful Pobablty Dstbutos Ch-squae Gamma dstbuto wth degees of feedom cot.. The tegal CDF of Y ca be easly mapulated to the fom of the complete gamma fucto, whch hs tabulated by Peaso 965. Whe s eve, the tegal ca be epessed closed fom. Let m=/, whee m s a tege, we ca obta: F Y m y / y y e k! k 0 k, y 0 43

44 Some Useful Pobablty Dstbutos No-cetal ch-squae dstbuto If X s Gaussa wth mea m ad vaace σ, the adom vaable Y=X has the PDF: p Y / ym ym y e cosh y, y 0 The chaactestc fucto coespodg to ths PDF s: Y v v / e m v / v 44

45 Some Useful Pobablty Dstbutos No-cetal ch-squae dstbuto wth degees of feedom Y X, X,,,...,, ae statstcally depedet ad detcally dstbuted d Gaussa adom vaables wth mea m,,,...,, ad detcal vaace equal The chaactestc fucto s: v Y v / v ep m v to. 45

46 Some Useful Pobablty Dstbutos No-cetal ch-squae dstbuto wth degees of feedom The chaactestc fucto ca be vese Foue tasfomed to yeld the PDF: y /4 s y/ s py y e I / y, y 0 s whee, s s called the o-cetalty paamete: s m ad I s the th-ode modfed Bessel fucto of the fst kd, whch may be epeseted by the fte sees: k / I, 0 k 0 k! k 46

47 Some Useful Pobablty Dstbutos Some Useful Pobablty Dstbutos No-cetal ch-squae dstbuto wth degees of feedom The CDF s: y u s Y du s u I e s u y F 0 / / 4 / The fst two momets of a o-cetal ch-squaedstbuted adom vaable ae: s dstbuted adom vaable ae: s Y E s s s Y E 47 4 s y

48 Some Useful Pobablty Dstbutos Some Useful Pobablty Dstbutos No-cetal ch-squae dstbuto wth degees of feedom Whe m=/ s a tege, the CDF ca be epessed tems of the geealzed Macum s Q fucto: /, m a m m b k m Q a b e I a d a b / 0 /, m a b k k k a b b Q a b e I ab a b / 0 whee,, 0 By usg ad let t s easly show: a b k k b Q a b e I ab b a a u s a By usg ad let, t s easly show: a, Y m y s F y Q 48

49 Some Useful Pobablty Dstbutos Raylegh dstbuto Raylegh dstbuto s fequetly used to model the statstcs of sgals tasmtted though ado chaels such as cellula ado. Cosde a cae sgal s at a fequecy ω 0 ad wth a ampltude a: s a ep 0t The eceved sgal s s the sum of waves: t ep t s a ep 0 0 whee ep 0 a ep 49

50 Some Useful Pobablty Dstbutos Raylegh dstbuto Defe : ep a cos a s y We have : a cos ad y a s whee : y cos y s Because s usually vey lage, the dvdual ampltudes a ae adom, ad 3 the phases θ have a ufom dstbuto, t ca be assumed that fom the cetal lmt theoem ad y ae both Gaussa vaables wth meas equal to zeo ad vaace: y 50

51 Some Useful Pobablty Dstbutos Some Useful Pobablty Dstbutos Raylegh dstbuto Raylegh dstbuto Because ad y ae depedet adom vaables, the ot dstbuto p,y s p,y ep, y y p p y p The dstbuto p,θ ca be wtte as a fucto of p,y : y p J p s cos / /,, J y p J p ep cos s / / p y y 5 ep, p

52 Some Useful Pobablty Dstbutos Raylegh dstbuto Thus, the Raylegh dstbuto has a PDF gve by: / e 0 p, R p d 0 0 othewse The pobablty that the evelope of the eceved sgal does ot eceed a specfed value R s gve by the coespodg cumulatve dstbuto fucto CDF: F R 0 u u / / e du ep, 0 5

53 Some Useful Pobablty Dstbutos Raylegh dstbuto Mea: mea E[ R] p d. 533 Vaace: E[ R 0 ] E [ R] 0 p d 0.49 meda p d 0.77 k k / k E[ R ] Meda value of s foud by solvg: meda Moets of R ae: Most lkely value:= ma { p R } =σ. 53

54 Some Useful Pobablty Dstbutos Raylegh dstbuto 54

55 Some Useful Pobablty Dstbutos Raylegh dstbuto Pobablty That Receved Sgal Does t Eceed A Ceta Level R FR p u du u 0 0 ep ep u u 0 ep du 55

56 Some Useful Pobablty Dstbutos Raylegh dstbuto 0-0=0 Mea value: E[ R] p d mea 0 ep d d ep 0 0 ep ep d 0 0 ep d

57 Some Useful Pobablty Dstbutos Some Useful Pobablty Dstbutos Raylegh dstbuto: y g Mea squae value: 3 0 ] [ d p R E 0 0 ep ep d d 0-0=0 0 0 ep ep d 0-0=0 ep 57 0

58 Some Useful Pobablty Dstbutos Some Useful Pobablty Dstbutos Raylegh dstbuto y g Vaace: ] [ ] [ R E R E

59 Some Useful Pobablty Dstbutos Some Useful Pobablty Dstbutos Raylegh dstbuto y g Most lkely value Most Lkely Value happes whe: dp / d = 0 0 dp 0 ep ep 4 d p ep ep p 59

60 Some Useful Pobablty Dstbutos Raylegh dstbuto Chaactestc fucto / R v e 0 e 0 whee F / F, ; v e v cos d / v d e s v 0 v e v F, ; a s the cofluet hyupegeometc yp fucto : ; ; k 0 k k k, k! / 0,,,... d 60

61 Some Useful Pobablty Dstbutos Raylegh dstbuto Chaactestc fucto cot. Beauleu epessed 990 as : has show that k a a F, ; a e k 0 k k! F, ; a may be 6

62 Some Useful Pobablty Dstbutos Rce dstbuto Whe thee s a domat statoay o-fadg sgal compoet peset, such as a le-of-sght LOS popagato path, the small-scale fadg evelope dstbuto s Rce. s scatteed waves dect waves ' ep[ 0t ] Aep 0 [ A y s A A cos y ]ep y t 0 t ep[ t 0 ] 6

63 Some Useful Pobablty Dstbutos Rce dstbuto By followg smla steps descbed Raylegh dstbuto, we obta: A A ep I0 fo A 0, 0 p 0 fo 0 whee A A cos I0 ep d 0 s the modfed zeoth-ode Bessel fucto. I 0 0! 63

64 Some Useful Pobablty Dstbutos Rce dstbuto The Rce dstbuto s ofte descbed tems of a paamete K whch s defed as the ato betwee the detemstc sgal powe ad the vaace of the mult-path. It s gve by K=A /σ o tems of db: A KdB 0log [db] The paamete K s kow as the Rce facto ad completely ltl specfes the Rce dstbuto. As A0, K- db, ad as the domat path deceases ampltude, the Rce dstbuto degeeates to a Raylegh dstbuto. 64

65 Some Useful Pobablty Dstbutos Rce dstbuto 65

66 Some Useful Pobablty Dstbutos Some Useful Pobablty Dstbutos Rce dstbuto t A t a s 0 0 ep ep t A t a 0 0 ep ep t A t 0 0 ep ep ep ' t t y A t A t ep ep ep ep ' a y 0 0 ep ep ' whee ep ep 66

67 Some Useful Pobablty Dstbutos Rce dstbuto Defe : ' ep We have : ad A a a cos a s cos ad y a s y A cos y s y Because s usually vey lage, the dvdual ampltudes a ae adom, ad 3 the phases θ have a ufom dstbuto, t ca be assumed that fom the cetal lmt theoem ad y ae both Gaussa vaables wth meas equal to zeo ad vaace: 67 y

68 Some Useful Pobablty Dstbutos Some Useful Pobablty Dstbutos Rce dstbuto Because ad y ae depedet adom vaables, the ot dstbuto p,y s ep, y y p p y p The dstbuto p,θ ca be wtte as a fucto of p,y : y p J p,, y y J cos s s cos / / / / 68 y y cos s / /

69 Some Useful Pobablty Dstbutos Some Useful Pobablty Dstbutos Rce dstbuto ep, y p s cos ep A cos ep A A cos ep ep ep A A ep ep 69

70 Some Useful Pobablty Dstbutos Some Useful Pobablty Dstbutos Rce dstbuto pobablty desty fucto pdf a dstbut o has Rce The gve by : d p p cos, 0 A A d p p othewse 0 0 cos ep ep 0 d A A 70

71 Some Useful Pobablty Dstbutos Nakagam m-dstbuto Fequetly used to chaacteze the statstcs of sgals tasmtted though mult-path fadg chaels. PDF s gve by Nakagam 960 as: p R The m m m m / m m E R e R ] E [ paamete m s the fadg fgue., defed as m the ato of momets, called 7

72 Some Useful Pobablty Dstbutos Nakagam m-dstbuto The -th momet of R s: E m / R m m / By settg m=, the PDF educes to a Raylegh PDF. 7

73 Some Useful Pobablty Dstbutos Logomal dstbuto: Let X l R, whee X s omally dstbuted wth mea m ad vaace. The PDF of R s gve by: p l m / e The logomal dstbuto s sutable fo modelg the effect of shadowg of the sgal due to lage obstuctos, such as tall buldgs, moble ado commucatos. 73

74 Some Useful Pobablty Dstbutos Multvaate Gaussa dstbuto Assume that X, =,,,, ae Gaussa adom vaables wth meas m, =,,,; vaaces σ, =,,,; ad covaaces μ,,=,,,. The ot PDF of the Gaussa adom vaables X, =,,,, s defed as p,,..., / / det M ep m M m M deotes the covaace mat wth elemets {μ }; deotes the colum vecto of the adom vaables; m deote the colum vecto of mea values m, =,,,. M - deotes the vese of M. deotes the taspose of. 74

75 Some Useful Pobablty Dstbutos Multvaate Gaussa dstbuto cot. Gve v the -dmesoal vecto wth elemets υ, =,,,, the chaactestc fucto coespodg to the - dmetoal ot PDF s: v v E e ep m v v X Mv 75

76 Some Useful Pobablty Dstbutos B-vaate o two-dmesoal Gaussa The bvaate Gaussa PDF s gve by: p, ep m m X,, E m m m M,, 0 M m m m m, M 76

77 Some Useful Pobablty Dstbutos B-vaate o two-dmesoal Gaussa ρ s a measue of the coelato betwee X ad X. Whe ρ=0,, the ot PDF p, factos to the poduct p p, whee p,=,, ae the magal PDFs. Whe the Gaussa adom vaables X ad X ae ucoelated, they ae also statstcally depedet. Ths popety does ot hold geeal fo othe dstbutos. Ths popety ca be eteded to -dmesoal Gaussa adom vaables: f ρ =0 fo, the the adom vaables X, =,,,, ae ucoelated ad, hece, statstcally depedet. 77

78 Uppe Bouds o the Tal Pobablty Chebyshev equalty Suppose X s a abtay adom vaable wth fte mea m ad fte vaace σ. Fo ay postve umbe δ: Poof: P X m d m m p d m p d p d P X m m 78

79 Uppe Bouds o the Tal Pobablty Chebyshev equalty Aothe way to vew the Chebyshev boud s wokg wth the zeo mea adom vaable Y=X-m. Defe a fucto gy as: g Y E Y g Y 0 Y g y p y dy p y dy p y dy P Y Y Uppe-boud gy by the quadatc Y/δ,.e. The tal pobablty E gy Y E Y E g Y y 79

80 Uppe Bouds o the Tal Pobablty Chebychev equalty A quadatc uppe boud o gy used obtag the tal pobablty Chebyshev boud Fo may ypactcal applcatos, the Chebyshev boud s etemely loose. 80

81 Uppe Bouds o the Tal Pobablty Cheoff boud The Chebyshev boud gve above volves the aea ude the two tals of the PDF. I some applcatos we ae teested oly the aea ude oe tal, ethe the teval δ, o the teval -, δ. I such a case, we ca obta a etemely tght uppe boud by ove-boudg the fucto gy by a epoetal havg a paamete that ca be optmzed to yeld as tght a uppe boud as possble. Cosde the tal pobablty the teval δ,. vy Y δ gye ad gy s defed as gy 0 Y δ whee v 0 s the paamete to be optmzed. 8

82 Uppe Bouds o the Tal Pobablty Cheoff boud The epected value of gy s E v Y g y P Y E e Ths boud s vald fo ay υ 0. 8

83 Uppe Bouds o the Tal Pobablty Cheoff boud The tghtest uppe boud s obtaed by selectg the value that mmzes Ee υy-δ. A ecessay codto fo a mmum s: d vy E e dv 0 d dv vy d vy E e E e dv vy E[ Y e ] v vy vy e [ E Ye E e ] 0 vy vy Ye E e 0 E Fd 83

84 Uppe Bouds o the Tal Pobablty Cheoff boud Let vˆ be the soluto, the uppe boud o the oe -sded tal pobablty s : vˆ vy ˆ e E e P Y A uppe boud o the lowe tal pobablty ca be obtaed a smla mae, wth the esult that vˆ vˆ Y e E e 0 P Y 84

85 Uppe Bouds o the Tal Pobablty Cheoff boud Eample: Cosde the Laplace PDF py=e - y /. The tue tal pobablty s: y e dy e P Y 85

86 Uppe Bouds o the Tal Pobablty Cheoff boud Eample cot. vy v E Ye v v vy E e Sce E Ye vˆ P Y v v vy E vy e 0, we obta v v fo : vˆ must be postve e e fo Chebyshev boud P Y 0 86

87 Sums of Radom Vaables ad the Cetal Lmt Theoem Sum of adom vaables Suppose that X, =,,,, ae statstcally depedet ad detcally dstbuted d adom vaables, each havg a fte mea m ad a fte vaace σ. Let Y be defed as the omalzed sum, called the sample mea: The mea of Y s E Y X Y m E X m y X 87

88 Sums of Radom Vaables ad the Cetal Lmt Sums of Radom Vaables ad the Cetal Lmt Theoem Theoem Sum of adom vaables The vaace of Y s: The vaace of Y s: m X X E m E Y m E Y σ m X E X E X E m X X E m E Y m E Y σ y y m X E X E X E σ m m m σ A estmate of a paamete ths case the mea m that satsfes the codtos that ts epected value coveges to the tue value of the paamete ad the vaace coveges to 88 the tue value of the paamete ad the vaace coveges to zeo as s sad to be a cosstet estmate.

89 Stochastc Pocesses May of adom pheomea that occu atue ae fuctos of tme. I dgtal commucatos, we ecoute stochastc pocesses : The chaactezato ad modelg of sgals geeated by fomato souces; The chaactezato of commucato chaels used to tasmt the fomato; The chaactezato of ose geeated a eceve; The desg of the optmum eceve fo pocessg the eceved adom sgal. 89

90 Stochastc Pocesses Itoducto At ay gve tme stat, the value of a stochastc pocess s a adom vaable deed by the paamete t. We deote such a pocess by Xt. I geeal, the paamete t s cotuous, wheeas X may be ethe cotuous o dscete, depedg o the chaactestcs of the souce that geeates the stochastc pocess. The ose voltage geeated by a sgle essto o a sgle fomato souce epesets a sgle ealzato of the stochastc pocess. It s called a sample fucto. 90

91 Stochastc Pocesses Itoducto cot. The set of all possble sample fuctos costtutes a esemble of sample fuctos o, equvaletly, the stochastc pocess Xt. I geeal, the umbe of sample fuctos the esemble s assumed to be etemely lage; ofte t s fte. Havg defed a stochastc pocess Xt as a esemble of sample fuctos, we may cosde the values of the pocess at ay set of tme stats t >t >t 3 > >t, whee s ay postve tege. geeal, the adom vaables X X t,,,...,, ae I t chaactezed statstcally by the ot PDF p,,...,. t t t 9

92 Stochastc Pocesses Statoay stochastc pocesses X X t t Cosde aothe set of adom vaables t t,,,...,, whee t s a abtay tme shft. These adom vaables ae chaactezed by the ot PDF p,,...,. t t t t t t The ot PDFs of the adom vaables X ad X,,,...,, t t t may o may ot be detcal. Whe they ae detcal,.e., whe,,...,,,..., t t t t t t t t t p p fo all t ad all, t s sad to be statoay the stct sese. Whe the ot PDFs ae dffeet, the stochastc pocess s o-statoay. 9

93 Stochastc Pocesses Aveages fo a stochastc pocess ae called esemble aveages. The th momet of the adom vaable X s defed as : E X p t t I geeal, the value of the th momet wll deped o the tme stat Whe the cosequece, t f the PDF of X pocess s statoay, p t t d depeds t t o p fo all Theefoe, the PDF s depede t of tme, ad, as a t t the th momet s depede t of tme. t t. t. 93

94 Stochastc Pocesses Two adom vaables: X X t,,. The coelato s measued by the ot momet: p, t E X X t p d d t t t t t t t Sce ths ot momet depeds o the tme stats t ad t, t s deoted by φt, t., φt, t s called the autocoelato fucto of the stochastc pocess. Fo a statoay stochastc pocess, the ot momet s: E X X t, t t t t t EX X EX X EX X t t t t t t ' ' Aveage powe the pocess Xt: φ0=ex t. Eve Fucto 94

95 Stochastc Pocesses Wde-sese statoay WSS A wde-sese statoay pocess has the popety that the mea value of the pocess s depedet of tme a costat ad whee the autocoelato fucto satsfes the codto that φt,t =φt -t. Wde-sese statoaty s a less stget codto tha stct-sese statoaty. If ot othewse specfed, ay subsequet dscusso whch coelato fuctos ae volved, the less stget codto wde-sese statoaty s mpled. 95

96 Stochastc Pocesses Auto-covaace fucto The auto-covaace fucto of a stochastc pocess s defed as: t, t E Xt m t Xt m t t, t m t m t Whe the pocess s statoay, the auto-covaace fucto smplfes to: t, t t t m fucto of tme dffeece Fo a Gaussa adom pocess, hghe-ode momets ca be epessed tems of fst ad secod momets. Cosequetly, a Gaussa adom pocess s completely chaactezed by ts fst two momets. 96

97 Stochastc Pocesses Aveages fo a Gaussa pocess Suppose that Xt s a Gaussa adom pocess. At tme stats t=t, =,,,, the adom vaables X t, =,,,, ae otly Gaussa wth mea values mt, =,,,, ad auto-covaaces: t, t E Xt m t,,,,...,. Xt m t If we deote the covaace mat wth elemets μt,t by M ad the vecto of mea values by m,, the ot PDF of the adom vaables X t, =,,,, s gve by: p If the Gaussa pocess s wde-sese statoay, t s also stct-sese statoay.,,..., ep m M m / / det M 97

98 Stochastc Pocesses Aveages fo ot stochastc pocesses Let Xt ad Yt deote two stochastc pocesses ad let X t Xt, =,,,, Y t Yt, =,,,m, epeset the adom vaables at tmes t >t >t 3 > >t, ad t >t >t 3 > >t m, espectvely. The two pocesses ae chaactezed statstcally ttt by the thtpdf ot PDF: p t, t,..., t, y, y,..., y t t t Th l f f X dy d t db ' ' ' m The coss-coelato fucto of Xt ad Yt, deoted by φ y t,t, s defed as the ot momet: y t, t E X t Y, t t y t p t y t d t dy The coss-covaace s: t, t t, t m t m t t y y y t 98

99 Stochastc Pocesses Aveages fo ot stochastc pocesses Whe the pocess ae otly ad dvdually statoay, we have φ y t,t =φ y t -t, ad μ y t,t = μ y t -t : E X Y E X Y E Y X y t t y ' ' ' ' t t t t The stochastc pocesses XtadYt ae sad to be statstcally depedet f ad oly f : p,,...,, y ', y ',..., y ' p,,..., p y ', y ',..., y ' t t t t t t m m fo all choces of t ad t ad fo all postve teges ad m. The pocesses ae sad to be ucoelated f t t t t t t t, t E X E Y t, t 0 y t t y 99

100 Stochastc Pocesses Comple-valued stochastc pocess A comple-valued stochastc pocess Zt s defed as: Z t X t Y t whee XtadYt ae stochastc pocesses. The ot PDF of the adom vaables Z t Zt, =,,,, s gve by the ot PDF of the compoets X t, Y t, =,,,. Thus, the PDF that chaactezes Z t, =,,,, s: p,,...,,, y, y,...,, y t t t t t t The autocoelato fucto s defed as: zz t, t E Zt Z t E X t Y t X t Y t t, t yy t, t y t, t y t, t ** 00

101 Stochastc Pocesses Aveages fo ot stochastc pocesses: Whe the pocesses Xt ad Yt ae otly ad dvdually statoay, the autocoelato fucto of Zt becomes: zz t, t zz t t zz φ ZZ τ= φ * ZZ-τ because fom **: zz t, t E Zt Z t zz EZZ t ' ' ' ' t EZ Z EZZ t zz t t t 0

102 Stochastc Pocesses Aveages fo ot stochastc pocesses: Suppose that Zt=Xt+Yt ad Wt=Ut+Vt ae two comple-valued stochastc pocesses. The coss-coelato fuctos of Zt adwt s defed as: t, t E Z W E X t Y t U t V t u t, t yv t, t yu t, t v t, t zw t t Whe Xt, Yt,Ut ad Vt ae pawse-statoay, the coss-coelato fucto become fuctos of the tme dffeece. EZ W zw t t EZ W EWZ t t t t wz ' ' ' ' 0

103 Powe Desty Spectum A sgal ca be classfed as havg ethe a fte ozeo aveage powe fte eegy o fte eegy. The fequecy cotet of a fte eegy sgal s obtaed as the Foue tasfom of the coespodg tme fucto. If the sgal s peodc, ts eegy s fte ad, cosequetly, ts Foue tasfom does ot est. The mechasm fo dealg wth peodc sgals s to epeset them a Foue sees. 03

104 Powe Desty Spectum A statoay stochastc pocess s a fte eegy sgal, ad, hece, ts Foue tasfom does ot est. The spectal chaactestc of a stochastc sgal s obtaed by computg the Foue tasfom of the autocoelato fucto. The dstbuto of powe wth fequecy s gve by the fucto: f e f d The vese Foue tasfom elatoshp s: f e f df 04

105 Powe Desty Spectum 0 f df E X 0 t Sce φ0 epesets the aveage powe of the stochastc sgal, whch s the aea ude Φf, Φf s the dstbuto of powe as a fucto of fequecy. Φ f s called the powe desty spectum of the stochastc pocess. fom defto If the stochastc pocess s eal, φτ s eal ad eve, ad, hece P.94 Φ f s eal ad eve. e e easy to pove fom defto t If the stochastc pocess s comple, φτ=φ*-τ ad Φ f s P.0 eal because: * * f * ' f f e d e ' d ' eal because: f e d f 05

106 Powe Desty Spectum Coss-powe desty spectum Fo two otly statoay stochastc pocesses Xt ad Yt, whch have a coss-coelato fucto φ y τ, the Foue tasfom s: f e f d y y Φ y f s called the coss-powe desty spectum. * * f * f f e d e d y y y e f d y y f If Xt ad Yt ae eal stochastc pocesses f f e d f y f y f * y y y 06

107 Respose of a Lea Tme-Ivaat System to a Radom Iput Sgal Cosde a lea tme-vaat system flte that s chaactezed by ts mpulse espose ht o equvaletly, by ts fequecy espose H f, whee ht ad H f ae a Foue tasfom pa. Let t be the put sgal to the system ad let yt deote the output sgal. y t h t d Suppose that t s a sample fucto of a statoay stochastc pocess Xt. Sce covoluto s a lea opeato pefomed o the put sgal t, the epected value of the tegal s equal to the tegal of the epected value. m y E Y t h E X t d m h d m H 07 0 statoay The mea value of the output pocess s a costat.

108 Respose of a Lea Tme-Ivaat System to a Radom Iput Sgal The autocoelato fucto of the output s: yy * t t E Y Y, t t h EX t X t * * h * h t t h dd dd If the put pocess s statoay, the output s also statoay: * yy h h dd 08

109 Respose of a Lea Tme-Ivaat System to a Radom Iput Sgal The powe desty spectum of the output pocess s: f yy f yy e d h h e ddd * f f H f by ymakg τ 0 =τ+α-β The powe desty spectum of the output sgal s the poduct of the powe desty spectum of the put multpled by the magtude squaed of the fequecy espose of the system. 09

110 Respose of a Lea Tme-Ivaat System to a Radom Iput Sgal Whe the autocoelato fucto φ yyτ s desed, t s usually ease to deteme the powe desty spectum Φ yy f ad the to compute the vese tasfom. f yy yy f e df f f H f e df The aveage powe the output sgal s: 0 yy f H f df Sce φ yy 0=E Y t, we have: f H f df 0 0 vald fo ay H f. 0

111 Respose of a Lea Tme-Ivaat System to a Radom Iput Sgal Suppose we let H f = fo ay abtaly small teval f f f, ad H f =0 outsde ths teval. The, we have: f f f df 0 Ths s possble f a oly f Φ f 0 fo all f. Cocluso: Φ f 0 fo all f.

112 Respose of a Lea Tme-Ivaat System to a Radom Iput Sgal Coss-coelato fucto betwee yt ad t y Fucto of t -t The * * t t E Y X h E X t X t, t t d h stochastc t pocesses t t d y t t X t ad Y t ae tl otly statoay tt. Wth t -t =τ, we have:, y h I the fequecy doma, we have: y f f H f d

113 Dscete-Tme Stochastc Sgals ad Systems Dscete-tme stochastc pocess X cosstg of a esemble of sample sequeces {} ae usually obtaed by ufomly samplg a cotuous-tme stochastc pocess. The mth momet of X s defed as: E m m X X p X dx The autocoelato sequece s: * *, k E X X k X X k p X, X The auto-covaace sequeces s: k, k * EX EX, k k dx dx k 3

114 Dscete-Tme Stochastc Sgals ad Systems Fo a statoay pocess, we have φ,k φ-k, μ,k μ-k, ad k k m whee m =EX s the mea value. A dscete-tme tme statoay pocess has fte eegy but a fte aveage powe, whch s gve as: 0 E X The powe desty spectum fo the dscete-tme pocess s obtaed by computg the Foue tasfom of φ. f e f 4

115 Dscete-Tme Stochastc Sgals ad Systems The vese tasfom elatoshp s: f f e df The powe desty spectum Φ f s peodc wth a peod f p =. I othe wods, Φ f+k=φ f fo k=0,±,±,. The peodc popety s a chaactestc of the Foue tasfom of ay dscete-tme sequece. 5

116 Dscete-Tme Stochastc Sgals ad Systems Respose of a dscete-tme, lea tme-vaat system to a statoay stochastc put sgal. The system s chaactezed the tme doma by ts ut sample espose h ad the fequecy doma by the fequecy espose H f. H f h e f The espose of the system to the statoay stochastc put sgal X s gve by the covoluto sum: y hk k k 6

117 Dscete-Tme Stochastc Sgals ad Systems Respose of a dscete-tme, lea tme-vaat system to a statoay stochastc put sgal. The mea value of the output of the system s: my E y h k E k k 0 P. 07 k m h k m H whee H0 s the zeo fequecy [dect cuet DC] ga of the system. 7

118 Dscete-Tme Stochastc Sgals ad Systems The autocoelato sequece fo the output pocess s: k E k yy k Ey y k h h E k h h k By takg the Foue tasfom of φ yy k, we obta the coespodg fequecy doma elatoshp: f f H f P. 09 yy Φ yy f, Φ f, ad H f ae peodc fuctos of fequecy wth peod f p =. 8

119 Cyclostatoay Pocesses Fo sgals that cay dgtal fomato, we ecoute stochastc pocesses wth statstcal aveages that ae peodc. Cosde a stochastc pocess of the fom: X t a g t T whee {a } s a dscete-tme sequece of adom vaables wth mea m a =Ea fo all ad autocoelato sequece φ aa k=ea* a +k /. The sgal gt s detemstc. The sequece {a } epesets the dgtal fomato sequece that s tasmtted ove the commucato chael ad /T epesets ese the ate of tasmsso ss of the fomato o symbols. s. 9

120 Cyclostatoay Pocesses The mea value s: EX t E a g t T m g t T a The mea s tme-vayg ad t s peodc wth peod T. The autocoelato fucto of Xt s:, t t EX t X t m m E aa g tt gt mt m g tt gt mt m aa 0

121 Cyclostatoay Pocesses We obseve that t kt, tkt t, t fo k=±,±,. Hece, the autocoelato fucto of Xt s also peodc wth peod T. Such a stochastc pocess s called cyclostatoay o peodcally statoay. Sce the autocoelato fucto depeds o both the vaables t ad τ, ts fequecy doma epesetato eques the use of a two-dmesoal Foue tasfom. The tme-aveage autocoelato t fucto ove a sgle peod s defed as: T, T t t dt T T

122 Cyclostatoay Pocesses Thus, we elmate the te depedece by dealg wth the aveage autocoelato fucto. The Foue tasfom of φ τ yelds the aveage powe desty spectum of the cyclostatoay stochastc pocess. Ths appoach allows us to smply chaacteze cyclostatoay pocess the fequecy doma tems of fthe powe spectum. The powe desty spectum s: f f e d

Probability and Stochastic Processes

Probability and Stochastic Processes Pobablty ad Stochastc Pocesses Weless Ifomato Tasmsso System Lab. Isttute of Commucatos Egeeg Natoal Su Yat-se Uvesty Table of Cotets Pobablty Radom Vaables, Pobablty Dstbutos, ad Pobablty Destes Statstcal

More information

Chapter 2 Probability and Stochastic Processes

Chapter 2 Probability and Stochastic Processes Chapte Pobablty ad Stochastc Pocesses Table of Cotets Pobablty Radom Vaables, Pobablty Dstbutos, ad Pobablty Destes Fuctos of Radom Vaables Statstcal Aveages of Radom Vaables Some Useful Pobablty Dstbutos

More information

Professor Wei Zhu. 1. Sampling from the Normal Population

Professor Wei Zhu. 1. Sampling from the Normal Population AMS570 Pofesso We Zhu. Samplg fom the Nomal Populato *Example: We wsh to estmate the dstbuto of heghts of adult US male. It s beleved that the heght of adult US male follows a omal dstbuto N(, ) Def. Smple

More information

RECAPITULATION & CONDITIONAL PROBABILITY. Number of favourable events n E Total number of elementary events n S

RECAPITULATION & CONDITIONAL PROBABILITY. Number of favourable events n E Total number of elementary events n S Fomulae Fo u Pobablty By OP Gupta [Ida Awad We, +91-9650 350 480] Impotat Tems, Deftos & Fomulae 01 Bascs Of Pobablty: Let S ad E be the sample space ad a evet a expemet espectvely Numbe of favouable evets

More information

2.1.1 The Art of Estimation Examples of Estimators Properties of Estimators Deriving Estimators Interval Estimators

2.1.1 The Art of Estimation Examples of Estimators Properties of Estimators Deriving Estimators Interval Estimators . ploatoy Statstcs. Itoducto to stmato.. The At of stmato.. amples of stmatos..3 Popetes of stmatos..4 Devg stmatos..5 Iteval stmatos . Itoducto to stmato Samplg - The samplg eecse ca be epeseted by a

More information

χ be any function of X and Y then

χ be any function of X and Y then We have show that whe we ae gve Y g(), the [ ] [ g() ] g() f () Y o all g ()() f d fo dscete case Ths ca be eteded to clude fuctos of ay ube of ado vaables. Fo eaple, suppose ad Y ae.v. wth jot desty fucto,

More information

= y and Normed Linear Spaces

= y and Normed Linear Spaces 304-50 LINER SYSTEMS Lectue 8: Solutos to = ad Nomed Lea Spaces 73 Fdg N To fd N, we eed to chaacteze all solutos to = 0 Recall that ow opeatos peseve N, so that = 0 = 0 We ca solve = 0 ecusvel backwads

More information

The Linear Probability Density Function of Continuous Random Variables in the Real Number Field and Its Existence Proof

The Linear Probability Density Function of Continuous Random Variables in the Real Number Field and Its Existence Proof MATEC Web of Cofeeces ICIEA 06 600 (06) DOI: 0.05/mateccof/0668600 The ea Pobablty Desty Fucto of Cotuous Radom Vaables the Real Numbe Feld ad Its Estece Poof Yya Che ad Ye Collee of Softwae, Taj Uvesty,

More information

XII. Addition of many identical spins

XII. Addition of many identical spins XII. Addto of may detcal sps XII.. ymmetc goup ymmetc goup s the goup of all possble pemutatos of obects. I total! elemets cludg detty opeato. Each pemutato s a poduct of a ceta fte umbe of pawse taspostos.

More information

( m is the length of columns of A ) spanned by the columns of A : . Select those columns of B that contain a pivot; say those are Bi

( m is the length of columns of A ) spanned by the columns of A : . Select those columns of B that contain a pivot; say those are Bi Assgmet /MATH 47/Wte Due: Thusday Jauay The poblems to solve ae umbeed [] to [] below Fst some explaatoy otes Fdg a bass of the colum-space of a max ad povg that the colum ak (dmeso of the colum space)

More information

CODING & MODULATION Prof. Ing. Anton Čižmár, PhD.

CODING & MODULATION Prof. Ing. Anton Čižmár, PhD. CODING & MODULATION Prof. Ig. Ato Čžmár, PhD. also from Dgtal Commucatos 4th Ed., J. G. Proaks, McGraw-Hll It. Ed. 00 CONTENT. PROBABILITY. STOCHASTIC PROCESSES Probablty ad Stochastc Processes The theory

More information

Recent Advances in Computers, Communications, Applied Social Science and Mathematics

Recent Advances in Computers, Communications, Applied Social Science and Mathematics Recet Advaces Computes, Commucatos, Appled ocal cece ad athematcs Coutg Roots of Radom Polyomal Equatos mall Itevals EFRAI HERIG epatmet of Compute cece ad athematcs Ael Uvesty Cete of amaa cece Pa,Ael,4487

More information

Chapter 7 Varying Probability Sampling

Chapter 7 Varying Probability Sampling Chapte 7 Vayg Pobablty Samplg The smple adom samplg scheme povdes a adom sample whee evey ut the populato has equal pobablty of selecto. Ude ceta ccumstaces, moe effcet estmatos ae obtaed by assgg uequal

More information

Fairing of Parametric Quintic Splines

Fairing of Parametric Quintic Splines ISSN 46-69 Eglad UK Joual of Ifomato ad omputg Scece Vol No 6 pp -8 Fag of Paametc Qutc Sples Yuau Wag Shagha Isttute of Spots Shagha 48 ha School of Mathematcal Scece Fuda Uvesty Shagha 4 ha { P t )}

More information

Question 1. Typical Cellular System. Some geometry TELE4353. About cellular system. About cellular system (2)

Question 1. Typical Cellular System. Some geometry TELE4353. About cellular system. About cellular system (2) TELE4353 Moble a atellte Commucato ystems Tutoal 1 (week 3-4 4 Questo 1 ove that fo a hexagoal geomety, the co-chael euse ato s gve by: Q (3 N Whee N + j + j 1/ 1 Typcal Cellula ystem j cells up cells

More information

Lecture 10: Condensed matter systems

Lecture 10: Condensed matter systems Lectue 0: Codesed matte systems Itoducg matte ts codesed state.! Ams: " Idstgushable patcles ad the quatum atue of matte: # Cosequeces # Revew of deal gas etopy # Femos ad Bosos " Quatum statstcs. # Occupato

More information

Chapter 5 Properties of a Random Sample

Chapter 5 Properties of a Random Sample Lecture 6 o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for the prevous lecture Cocepts: t-dstrbuto, F-dstrbuto Theorems: Dstrbutos of sample mea ad sample varace, relatoshp betwee sample mea ad sample

More information

On EPr Bimatrices II. ON EP BIMATRICES A1 A Hence x. is said to be EP if it satisfies the condition ABx

On EPr Bimatrices II. ON EP BIMATRICES A1 A Hence x. is said to be EP if it satisfies the condition ABx Iteatoal Joual of Mathematcs ad Statstcs Iveto (IJMSI) E-ISSN: 3 4767 P-ISSN: 3-4759 www.jms.og Volume Issue 5 May. 4 PP-44-5 O EP matces.ramesh, N.baas ssocate Pofesso of Mathematcs, ovt. ts College(utoomous),Kumbakoam.

More information

RANDOM SYSTEMS WITH COMPLETE CONNECTIONS AND THE GAUSS PROBLEM FOR THE REGULAR CONTINUED FRACTIONS

RANDOM SYSTEMS WITH COMPLETE CONNECTIONS AND THE GAUSS PROBLEM FOR THE REGULAR CONTINUED FRACTIONS RNDOM SYSTEMS WTH COMPETE CONNECTONS ND THE GUSS PROBEM FOR THE REGUR CONTNUED FRCTONS BSTRCT Da ascu o Coltescu Naval cademy Mcea cel Bata Costata lascuda@gmalcom coltescu@yahoocom Ths pape peset the

More information

The Exponentiated Lomax Distribution: Different Estimation Methods

The Exponentiated Lomax Distribution: Different Estimation Methods Ameca Joual of Appled Mathematcs ad Statstcs 4 Vol. No. 6 364-368 Avalable ole at http://pubs.scepub.com/ajams//6/ Scece ad Educato Publshg DOI:.69/ajams--6- The Expoetated Lomax Dstbuto: Dffeet Estmato

More information

Best Linear Unbiased Estimators of the Three Parameter Gamma Distribution using doubly Type-II censoring

Best Linear Unbiased Estimators of the Three Parameter Gamma Distribution using doubly Type-II censoring Best Lea Ubased Estmatos of the hee Paamete Gamma Dstbuto usg doubly ype-ii cesog Amal S. Hassa Salwa Abd El-Aty Abstact Recetly ode statstcs ad the momets have assumed cosdeable teest may applcatos volvg

More information

Exponential Generating Functions - J. T. Butler

Exponential Generating Functions - J. T. Butler Epoetal Geeatg Fuctos - J. T. Butle Epoetal Geeatg Fuctos Geeatg fuctos fo pemutatos. Defto: a +a +a 2 2 + a + s the oday geeatg fucto fo the sequece of teges (a, a, a 2, a, ). Ep. Ge. Fuc.- J. T. Butle

More information

A DATA DRIVEN PARAMETER ESTIMATION FOR THE THREE- PARAMETER WEIBULL POPULATION FROM CENSORED SAMPLES

A DATA DRIVEN PARAMETER ESTIMATION FOR THE THREE- PARAMETER WEIBULL POPULATION FROM CENSORED SAMPLES Mathematcal ad Computatoal Applcatos, Vol. 3, No., pp. 9-36 008. Assocato fo Scetfc Reseach A DATA DRIVEN PARAMETER ESTIMATION FOR THE THREE- PARAMETER WEIBULL POPULATION FROM CENSORED SAMPLES Ahmed M.

More information

Lecture 3 Probability review (cont d)

Lecture 3 Probability review (cont d) STATS 00: Itroducto to Statstcal Iferece Autum 06 Lecture 3 Probablty revew (cot d) 3. Jot dstrbutos If radom varables X,..., X k are depedet, the ther dstrbuto may be specfed by specfyg the dvdual dstrbuto

More information

such that for 1 From the definition of the k-fibonacci numbers, the firsts of them are presented in Table 1. Table 1: First k-fibonacci numbers F 1

such that for 1 From the definition of the k-fibonacci numbers, the firsts of them are presented in Table 1. Table 1: First k-fibonacci numbers F 1 Scholas Joual of Egeeg ad Techology (SJET) Sch. J. Eg. Tech. 0; (C):669-67 Scholas Academc ad Scetfc Publshe (A Iteatoal Publshe fo Academc ad Scetfc Resouces) www.saspublshe.com ISSN -X (Ole) ISSN 7-9

More information

Atomic units The atomic units have been chosen such that the fundamental electron properties are all equal to one atomic unit.

Atomic units The atomic units have been chosen such that the fundamental electron properties are all equal to one atomic unit. tomc uts The atomc uts have bee chose such that the fudametal electo popetes ae all equal to oe atomc ut. m e, e, h/, a o, ad the potetal eegy the hydoge atom e /a o. D3.33564 0-30 Cm The use of atomc

More information

Detection and Estimation Theory

Detection and Estimation Theory ESE 54 Detecto ad Etmato Theoy Joeph A. O Sullva Samuel C. Sach Pofeo Electoc Sytem ad Sgal Reeach Laboatoy Electcal ad Sytem Egeeg Wahgto Uvety Ubaue Hall 34-935-473 (Lyda awe) jao@wutl.edu J. A. O'S.

More information

Special Instructions / Useful Data

Special Instructions / Useful Data JAM 6 Set of all real umbers P A..d. B, p Posso Specal Istructos / Useful Data x,, :,,, x x Probablty of a evet A Idepedetly ad detcally dstrbuted Bomal dstrbuto wth parameters ad p Posso dstrbuto wth

More information

THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA

THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA THE ROYAL STATISTICAL SOCIETY 3 EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA PAPER I STATISTICAL THEORY & METHODS The Socety provdes these solutos to assst caddates preparg for the examatos future years ad

More information

The Mathematical Appendix

The Mathematical Appendix The Mathematcal Appedx Defto A: If ( Λ, Ω, where ( λ λ λ whch the probablty dstrbutos,,..., Defto A. uppose that ( Λ,,..., s a expermet type, the σ-algebra o λ λ λ are defed s deoted by ( (,,...,, σ Ω.

More information

Randomly Weighted Averages on Order Statistics

Randomly Weighted Averages on Order Statistics Apple Mathematcs 3 4 34-346 http://oog/436/am3498 Publshe Ole Septembe 3 (http://wwwscpog/joual/am Raomly Weghte Aveages o Oe Statstcs Home Haj Hasaaeh Lela Ma Ghasem Depatmet of Statstcs aculty of Mathematcal

More information

X ε ) = 0, or equivalently, lim

X ε ) = 0, or equivalently, lim Revew for the prevous lecture Cocepts: order statstcs Theorems: Dstrbutos of order statstcs Examples: How to get the dstrbuto of order statstcs Chapter 5 Propertes of a Radom Sample Secto 55 Covergece

More information

are positive, and the pair A, B is controllable. The uncertainty in is introduced to model control failures.

are positive, and the pair A, B is controllable. The uncertainty in is introduced to model control failures. Lectue 4 8. MRAC Desg fo Affe--Cotol MIMO Systes I ths secto, we cosde MRAC desg fo a class of ult-ut-ult-outut (MIMO) olea systes, whose lat dyacs ae lealy aaetezed, the ucetates satsfy the so-called

More information

GREEN S FUNCTION FOR HEAT CONDUCTION PROBLEMS IN A MULTI-LAYERED HOLLOW CYLINDER

GREEN S FUNCTION FOR HEAT CONDUCTION PROBLEMS IN A MULTI-LAYERED HOLLOW CYLINDER Joual of ppled Mathematcs ad Computatoal Mechacs 4, 3(3), 5- GREE S FUCTIO FOR HET CODUCTIO PROBLEMS I MULTI-LYERED HOLLOW CYLIDER Stasław Kukla, Uszula Sedlecka Isttute of Mathematcs, Czestochowa Uvesty

More information

FIBONACCI-LIKE SEQUENCE ASSOCIATED WITH K-PELL, K-PELL-LUCAS AND MODIFIED K-PELL SEQUENCES

FIBONACCI-LIKE SEQUENCE ASSOCIATED WITH K-PELL, K-PELL-LUCAS AND MODIFIED K-PELL SEQUENCES Joual of Appled Matheatcs ad Coputatoal Mechacs 7, 6(), 59-7 www.ac.pcz.pl p-issn 99-9965 DOI:.75/jac.7..3 e-issn 353-588 FIBONACCI-LIKE SEQUENCE ASSOCIATED WITH K-PELL, K-PELL-LUCAS AND MODIFIED K-PELL

More information

Lecture Notes Types of economic variables

Lecture Notes Types of economic variables Lecture Notes 3 1. Types of ecoomc varables () Cotuous varable takes o a cotuum the sample space, such as all pots o a le or all real umbers Example: GDP, Polluto cocetrato, etc. () Dscrete varables fte

More information

Distribution of Geometrically Weighted Sum of Bernoulli Random Variables

Distribution of Geometrically Weighted Sum of Bernoulli Random Variables Appled Mathematc, 0,, 8-86 do:046/am095 Publhed Ole Novembe 0 (http://wwwscrpog/oual/am) Dtbuto of Geometcally Weghted Sum of Beoull Radom Vaable Abtact Deepeh Bhat, Phazamle Kgo, Ragaath Naayaachaya Ratthall

More information

Chapter 14 Logistic Regression Models

Chapter 14 Logistic Regression Models Chapter 4 Logstc Regresso Models I the lear regresso model X β + ε, there are two types of varables explaatory varables X, X,, X k ad study varable y These varables ca be measured o a cotuous scale as

More information

Learning Bayesian belief networks

Learning Bayesian belief networks Lectue 6 Leag Bayesa belef etwoks Mlos Hauskecht mlos@cs.ptt.edu 5329 Seott Squae Admstato Mdtem: Wedesday, Mach 7, 2004 I class Closed book Mateal coveed by Spg beak, cludg ths lectue Last yea mdtem o

More information

Kinematics. Redundancy. Task Redundancy. Operational Coordinates. Generalized Coordinates. m task. Manipulator. Operational point

Kinematics. Redundancy. Task Redundancy. Operational Coordinates. Generalized Coordinates. m task. Manipulator. Operational point Mapulato smatc Jot Revolute Jot Kematcs Base Lks: movg lk fed lk Ed-Effecto Jots: Revolute ( DOF) smatc ( DOF) Geealzed Coodates Opeatoal Coodates O : Opeatoal pot 5 costats 6 paametes { postos oetatos

More information

Module 7. Lecture 7: Statistical parameter estimation

Module 7. Lecture 7: Statistical parameter estimation Lecture 7: Statstcal parameter estmato Parameter Estmato Methods of Parameter Estmato 1) Method of Matchg Pots ) Method of Momets 3) Mamum Lkelhood method Populato Parameter Sample Parameter Ubased estmato

More information

( ) = ( ) ( ) Chapter 13 Asymptotic Theory and Stochastic Regressors. Stochastic regressors model

( ) = ( ) ( ) Chapter 13 Asymptotic Theory and Stochastic Regressors. Stochastic regressors model Chapter 3 Asmptotc Theor ad Stochastc Regressors The ature of eplaator varable s assumed to be o-stochastc or fed repeated samples a regresso aalss Such a assumpto s approprate for those epermets whch

More information

VECTOR MECHANICS FOR ENGINEERS: Vector Mechanics for Engineers: Dynamics. In the current chapter, you will study the motion of systems of particles.

VECTOR MECHANICS FOR ENGINEERS: Vector Mechanics for Engineers: Dynamics. In the current chapter, you will study the motion of systems of particles. Seeth Edto CHPTER 4 VECTOR MECHNICS FOR ENINEERS: DYNMICS Fedad P. ee E. Russell Johsto, J. Systems of Patcles Lectue Notes: J. Walt Ole Texas Tech Uesty 003 The Mcaw-Hll Compaes, Ic. ll ghts eseed. Seeth

More information

Chapter 2: Descriptive Statistics

Chapter 2: Descriptive Statistics Chapte : Decptve Stattc Peequte: Chapte. Revew of Uvaate Stattc The cetal teecy of a oe o le yetc tbuto of a et of teval, o hghe, cale coe, ofte uaze by the athetc ea, whch efe a We ca ue the ea to ceate

More information

Chapter 4 Multiple Random Variables

Chapter 4 Multiple Random Variables Revew for the prevous lecture: Theorems ad Examples: How to obta the pmf (pdf) of U = g (, Y) ad V = g (, Y) Chapter 4 Multple Radom Varables Chapter 44 Herarchcal Models ad Mxture Dstrbutos Examples:

More information

Functions of Random Variables

Functions of Random Variables Fuctos of Radom Varables Chapter Fve Fuctos of Radom Varables 5. Itroducto A geeral egeerg aalyss model s show Fg. 5.. The model output (respose) cotas the performaces of a system or product, such as weght,

More information

FUZZY MULTINOMIAL CONTROL CHART WITH VARIABLE SAMPLE SIZE

FUZZY MULTINOMIAL CONTROL CHART WITH VARIABLE SAMPLE SIZE A. Paduaga et al. / Iteatoal Joual of Egeeg Scece ad Techology (IJEST) FUZZY MUTINOMIA CONTRO CHART WITH VARIABE SAMPE SIZE A. PANDURANGAN Pofesso ad Head Depatmet of Compute Applcatos Vallamma Egeeg College,

More information

ENGI 4421 Joint Probability Distributions Page Joint Probability Distributions [Navidi sections 2.5 and 2.6; Devore sections

ENGI 4421 Joint Probability Distributions Page Joint Probability Distributions [Navidi sections 2.5 and 2.6; Devore sections ENGI 441 Jot Probablty Dstrbutos Page 7-01 Jot Probablty Dstrbutos [Navd sectos.5 ad.6; Devore sectos 5.1-5.] The jot probablty mass fucto of two dscrete radom quattes, s, P ad p x y x y The margal probablty

More information

Numerical Solution of Non-equilibrium Hypersonic Flows of Diatomic Gases Using the Generalized Boltzmann Equation

Numerical Solution of Non-equilibrium Hypersonic Flows of Diatomic Gases Using the Generalized Boltzmann Equation Recet Advaces Flud Mechacs, Heat & Mass asfe ad Bology Numecal Soluto of No-equlbum Hypesoc Flows of Datomc Gases Usg the Geealzed Boltzma Equato RAMESH K. AGARWAL Depatmet of Mechacal Egeeg ad Mateals

More information

Estimation of Parameters of the Exponential Geometric Distribution with Presence of Outliers Generated from Uniform Distribution

Estimation of Parameters of the Exponential Geometric Distribution with Presence of Outliers Generated from Uniform Distribution ustala Joual of Basc ad ppled Sceces, 6(: 98-6, ISSN 99-878 Estmato of Paametes of the Epoetal Geometc Dstbuto wth Pesece of Outles Geeated fom Ufom Dstbuto Pavz Nas, l Shadoh ad Hassa Paza Depatmet of

More information

Econometric Methods. Review of Estimation

Econometric Methods. Review of Estimation Ecoometrc Methods Revew of Estmato Estmatg the populato mea Radom samplg Pot ad terval estmators Lear estmators Ubased estmators Lear Ubased Estmators (LUEs) Effcecy (mmum varace) ad Best Lear Ubased Estmators

More information

Allocations for Heterogenous Distributed Storage

Allocations for Heterogenous Distributed Storage Allocatos fo Heteogeous Dstbuted Stoage Vasleos Ntaos taos@uscedu Guseppe Cae cae@uscedu Alexados G Dmaks dmaks@uscedu axv:0596v [csi] 8 Feb 0 Abstact We study the poblem of stog a data object a set of

More information

Non-axial symmetric loading on axial symmetric. Final Report of AFEM

Non-axial symmetric loading on axial symmetric. Final Report of AFEM No-axal symmetc loadg o axal symmetc body Fal Repot of AFEM Ths poject does hamoc aalyss of o-axal symmetc loadg o axal symmetc body. Shuagxg Da, Musket Kamtokat 5//009 No-axal symmetc loadg o axal symmetc

More information

Point Estimation: definition of estimators

Point Estimation: definition of estimators Pot Estmato: defto of estmators Pot estmator: ay fucto W (X,..., X ) of a data sample. The exercse of pot estmato s to use partcular fuctos of the data order to estmate certa ukow populato parameters.

More information

ˆ SSE SSE q SST R SST R q R R q R R q

ˆ SSE SSE q SST R SST R q R R q R R q Bll Evas Spg 06 Sggested Aswes, Poblem Set 5 ECON 3033. a) The R meases the facto of the vaato Y eplaed by the model. I ths case, R =SSM/SST. Yo ae gve that SSM = 3.059 bt ot SST. Howeve, ote that SST=SSM+SSE

More information

Lecture 3. Sampling, sampling distributions, and parameter estimation

Lecture 3. Sampling, sampling distributions, and parameter estimation Lecture 3 Samplg, samplg dstrbutos, ad parameter estmato Samplg Defto Populato s defed as the collecto of all the possble observatos of terest. The collecto of observatos we take from the populato s called

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Postpoed exam: ECON430 Statstcs Date of exam: Jauary 0, 0 Tme for exam: 09:00 a.m. :00 oo The problem set covers 5 pages Resources allowed: All wrtte ad prted

More information

L-MOMENTS EVALUATION FOR IDENTICALLY AND NONIDENTICALLY WEIBULL DISTRIBUTED RANDOM VARIABLES

L-MOMENTS EVALUATION FOR IDENTICALLY AND NONIDENTICALLY WEIBULL DISTRIBUTED RANDOM VARIABLES THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Sees A, OF THE ROMANIAN ACADEMY Volume 8, Numbe 3/27,. - L-MOMENTS EVALUATION FOR IDENTICALLY AND NONIDENTICALLY WEIBULL DISTRIBUTED RANDOM VARIABLES

More information

University of Pavia, Pavia, Italy. North Andover MA 01845, USA

University of Pavia, Pavia, Italy. North Andover MA 01845, USA Iteatoal Joual of Optmzato: heoy, Method ad Applcato 27-5565(Pt) 27-6839(Ole) wwwgph/otma 29 Global Ifomato Publhe (HK) Co, Ltd 29, Vol, No 2, 55-59 η -Peudoleaty ad Effcecy Gogo Gog, Noma G Rueda 2 *

More information

Lecture 24: Observability and Constructibility

Lecture 24: Observability and Constructibility ectue 24: Obsevability ad Costuctibility 7 Obsevability ad Costuctibility Motivatio: State feedback laws deped o a kowledge of the cuet state. I some systems, xt () ca be measued diectly, e.g., positio

More information

ON THE CONVERGENCE THEOREMS OF THE McSHANE INTEGRAL FOR RIESZ-SPACES-VALUED FUNCTIONS DEFINED ON REAL LINE

ON THE CONVERGENCE THEOREMS OF THE McSHANE INTEGRAL FOR RIESZ-SPACES-VALUED FUNCTIONS DEFINED ON REAL LINE O The Covegece Theoems... (Muslm Aso) ON THE CONVERGENCE THEOREMS OF THE McSHANE INTEGRAL FOR RIESZ-SPACES-VALUED FUNCTIONS DEFINED ON REAL LINE Muslm Aso, Yosephus D. Sumato, Nov Rustaa Dew 3 ) Mathematcs

More information

Midterm Exam 1, section 1 (Solution) Thursday, February hour, 15 minutes

Midterm Exam 1, section 1 (Solution) Thursday, February hour, 15 minutes coometrcs, CON Sa Fracsco State Uversty Mchael Bar Sprg 5 Mdterm am, secto Soluto Thursday, February 6 hour, 5 mutes Name: Istructos. Ths s closed book, closed otes eam.. No calculators of ay kd are allowed..

More information

Minimum Hyper-Wiener Index of Molecular Graph and Some Results on Szeged Related Index

Minimum Hyper-Wiener Index of Molecular Graph and Some Results on Szeged Related Index Joual of Multdscplay Egeeg Scece ad Techology (JMEST) ISSN: 359-0040 Vol Issue, Febuay - 05 Mmum Hype-Wee Idex of Molecula Gaph ad Some Results o eged Related Idex We Gao School of Ifomato Scece ad Techology,

More information

Minimizing spherical aberrations Exploiting the existence of conjugate points in spherical lenses

Minimizing spherical aberrations Exploiting the existence of conjugate points in spherical lenses Mmzg sphecal abeatos Explotg the exstece of cojugate pots sphecal leses Let s ecall that whe usg asphecal leses, abeato fee magg occus oly fo a couple of, so called, cojugate pots ( ad the fgue below)

More information

SUBSEQUENCE CHARACTERIZAT ION OF UNIFORM STATISTICAL CONVERGENCE OF DOUBLE SEQUENCE

SUBSEQUENCE CHARACTERIZAT ION OF UNIFORM STATISTICAL CONVERGENCE OF DOUBLE SEQUENCE Reseach ad Coucatos atheatcs ad atheatcal ceces Vol 9 Issue 7 Pages 37-5 IN 39-6939 Publshed Ole o Novebe 9 7 7 Jyot cadec Pess htt//yotacadecessog UBEQUENCE CHRCTERIZT ION OF UNIFOR TTITIC CONVERGENCE

More information

Summary of the lecture in Biostatistics

Summary of the lecture in Biostatistics Summary of the lecture Bostatstcs Probablty Desty Fucto For a cotuos radom varable, a probablty desty fucto s a fucto such that: 0 dx a b) b a dx A probablty desty fucto provdes a smple descrpto of the

More information

Multivariate Transformation of Variables and Maximum Likelihood Estimation

Multivariate Transformation of Variables and Maximum Likelihood Estimation Marquette Uversty Multvarate Trasformato of Varables ad Maxmum Lkelhood Estmato Dael B. Rowe, Ph.D. Assocate Professor Departmet of Mathematcs, Statstcs, ad Computer Scece Copyrght 03 by Marquette Uversty

More information

2. Sample Space: The set of all possible outcomes of a random experiment is called the sample space. It is usually denoted by S or Ω.

2. Sample Space: The set of all possible outcomes of a random experiment is called the sample space. It is usually denoted by S or Ω. Ut: Rado expeet saple space evets classcal defto of pobablty ad the theoes of total ad copoud pobablty based o ths defto axoatc appoach to the oto of pobablty potat theoes based o ths appoach codtoal pobablty

More information

ρ < 1 be five real numbers. The

ρ < 1 be five real numbers. The Lecture o BST 63: Statstcal Theory I Ku Zhag, /0/006 Revew for the prevous lecture Deftos: covarace, correlato Examples: How to calculate covarace ad correlato Theorems: propertes of correlato ad covarace

More information

CHAPTER VI Statistical Analysis of Experimental Data

CHAPTER VI Statistical Analysis of Experimental Data Chapter VI Statstcal Aalyss of Expermetal Data CHAPTER VI Statstcal Aalyss of Expermetal Data Measuremets do ot lead to a uque value. Ths s a result of the multtude of errors (maly radom errors) that ca

More information

Bayes (Naïve or not) Classifiers: Generative Approach

Bayes (Naïve or not) Classifiers: Generative Approach Logstc regresso Bayes (Naïve or ot) Classfers: Geeratve Approach What do we mea by Geeratve approach: Lear p(y), p(x y) ad the apply bayes rule to compute p(y x) for makg predctos Ths s essetally makg

More information

Robust Regression Analysis for Non-Normal Situations under Symmetric Distributions Arising In Medical Research

Robust Regression Analysis for Non-Normal Situations under Symmetric Distributions Arising In Medical Research Joual of Mode Appled Statstcal Methods Volume 3 Issue Atcle 9 5--04 Robust Regesso Aalyss fo No-Nomal Stuatos ude Symmetc Dstbutos Asg I Medcal Reseach S S. Gaguly Sulta Qaboos Uvesty, Muscat, Oma, gaguly@squ.edu.om

More information

Counting pairs of lattice paths by intersections

Counting pairs of lattice paths by intersections Coutg pas of lattce paths by tesectos Ia Gessel 1, Bades Uvesty, Waltham, MA 02254-9110, USA Waye Goddad 2, Uvesty of Natal, Duba 4000, South Afca Walte Shu, New Yo Lfe Isuace Co., New Yo, NY 10010, USA

More information

Introduction to Probability

Introduction to Probability Itroducto to Probablty Nader H Bshouty Departmet of Computer Scece Techo 32000 Israel e-mal: bshouty@cstechoacl 1 Combatorcs 11 Smple Rules I Combatorcs The rule of sum says that the umber of ways to choose

More information

Lecture 9 Multiple Class Models

Lecture 9 Multiple Class Models Lectue 9 Multple Class Models Multclass MVA Appoxmate MVA 8.4.2002 Copyght Teemu Keola 2002 1 Aval Theoem fo Multple Classes Wth jobs the system, a job class avg to ay seve sees the seve as equlbum wth

More information

Trace of Positive Integer Power of Adjacency Matrix

Trace of Positive Integer Power of Adjacency Matrix Global Joual of Pue ad Appled Mathematcs. IN 097-78 Volume, Numbe 07), pp. 079-087 Reseach Ida Publcatos http://www.publcato.com Tace of Postve Itege Powe of Adacecy Matx Jagdsh Kuma Pahade * ad Mao Jha

More information

1 Solution to Problem 6.40

1 Solution to Problem 6.40 1 Soluto to Problem 6.40 (a We wll wrte T τ (X 1,...,X where the X s are..d. wth PDF f(x µ, σ 1 ( x µ σ g, σ where the locato parameter µ s ay real umber ad the scale parameter σ s > 0. Lettg Z X µ σ we

More information

VIII Dynamics of Systems of Particles

VIII Dynamics of Systems of Particles VIII Dyacs of Systes of Patcles Cete of ass: Cete of ass Lea oetu of a Syste Agula oetu of a syste Ketc & Potetal Eegy of a Syste oto of Two Iteactg Bodes: The Reduced ass Collsos: o Elastc Collsos R whee:

More information

Mu Sequences/Series Solutions National Convention 2014

Mu Sequences/Series Solutions National Convention 2014 Mu Sequeces/Seres Solutos Natoal Coveto 04 C 6 E A 6C A 6 B B 7 A D 7 D C 7 A B 8 A B 8 A C 8 E 4 B 9 B 4 E 9 B 4 C 9 E C 0 A A 0 D B 0 C C Usg basc propertes of arthmetc sequeces, we fd a ad bm m We eed

More information

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then Secto 5 Vectors of Radom Varables Whe workg wth several radom varables,,..., to arrage them vector form x, t s ofte coveet We ca the make use of matrx algebra to help us orgaze ad mapulate large umbers

More information

Objectives. Learning Outcome. 7.1 Centre of Gravity (C.G.) 7. Statics. Determine the C.G of a lamina (Experimental method)

Objectives. Learning Outcome. 7.1 Centre of Gravity (C.G.) 7. Statics. Determine the C.G of a lamina (Experimental method) Ojectves 7 Statcs 7. Cete of Gavty 7. Equlum of patcles 7.3 Equlum of g oes y Lew Sau oh Leag Outcome (a) efe cete of gavty () state the coto whch the cete of mass s the cete of gavty (c) state the coto

More information

THE ROYAL STATISTICAL SOCIETY HIGHER CERTIFICATE

THE ROYAL STATISTICAL SOCIETY HIGHER CERTIFICATE THE ROYAL STATISTICAL SOCIETY 00 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE PAPER I STATISTICAL THEORY The Socety provdes these solutos to assst caddates preparg for the examatos future years ad for the

More information

Inequalities for Dual Orlicz Mixed Quermassintegrals.

Inequalities for Dual Orlicz Mixed Quermassintegrals. Advaces Pue Mathematcs 206 6 894-902 http://wwwscpog/joual/apm IN Ole: 260-0384 IN Pt: 260-0368 Iequaltes fo Dual Olcz Mxed Quemasstegals jua u chool of Mathematcs ad Computatoal cece Hua Uvesty of cece

More information

Record Values from Size-Biased Pareto Distribution and a Characterization

Record Values from Size-Biased Pareto Distribution and a Characterization Iteatoal Joual o Egeeg Reseach ad Geeal Scece Volume, Issue 4, Jue-July, 4 ISSN 9-73 Recod Values om Sze-Based Paeto Dtbuto ad a Chaactezato Shakla Bash, Mu Ahmad Asstat Poesso, Kad College o Wome, Lahoe

More information

Random Variables and Probability Distributions

Random Variables and Probability Distributions Radom Varables ad Probablty Dstrbutos * If X : S R s a dscrete radom varable wth rage {x, x, x 3,. } the r = P (X = xr ) = * Let X : S R be a dscrete radom varable wth rage {x, x, x 3,.}.If x r P(X = x

More information

This may involve sweep, revolution, deformation, expansion and forming joints with other curves.

This may involve sweep, revolution, deformation, expansion and forming joints with other curves. 5--8 Shapes ae ceated by cves that a sface sch as ooftop of a ca o fselage of a acaft ca be ceated by the moto of cves space a specfed mae. Ths may volve sweep, evolto, defomato, expaso ad fomg jots wth

More information

ASYMPTOTICS OF THE GENERALIZED STATISTICS FOR TESTING THE HYPOTHESIS UNDER RANDOM CENSORING

ASYMPTOTICS OF THE GENERALIZED STATISTICS FOR TESTING THE HYPOTHESIS UNDER RANDOM CENSORING IJRRAS 3 () Novembe www.apape.com/volume/vol3iue/ijrras_3.pdf ASYMPOICS OF HE GENERALIZE SAISICS FOR ESING HE HYPOHESIS UNER RANOM CENSORING A.A. Abduhukuov & N.S. Numuhamedova Natoal Uvety of Uzbekta

More information

APPROXIMATE ANALYTIC WAVE FUNCTION METHOD IN ELECTRON ATOM SCATTERING CALCULATIONS. Budi Santoso

APPROXIMATE ANALYTIC WAVE FUNCTION METHOD IN ELECTRON ATOM SCATTERING CALCULATIONS. Budi Santoso APPROXIMATE ANALYTIC WAVE FUNCTION METHOD IN ELECTRON ATOM SCATTERING CALCULATIONS Bud Satoso ABSTRACT APPROXIMATE ANALYTIC WAVE FUNCTION METHOD IN ELECTRON ATOM SCATTERING CALCULATIONS. Appoxmate aalytc

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Exam: ECON430 Statstcs Date of exam: Frday, December 8, 07 Grades are gve: Jauary 4, 08 Tme for exam: 0900 am 00 oo The problem set covers 5 pages Resources allowed:

More information

A GENERAL CLASS OF ESTIMATORS UNDER MULTI PHASE SAMPLING

A GENERAL CLASS OF ESTIMATORS UNDER MULTI PHASE SAMPLING TATITIC IN TRANITION-ew sees Octobe 9 83 TATITIC IN TRANITION-ew sees Octobe 9 Vol. No. pp. 83 9 A GENERAL CLA OF ETIMATOR UNDER MULTI PHAE AMPLING M.. Ahed & Atsu.. Dovlo ABTRACT Ths pape deves the geeal

More information

An Unconstrained Q - G Programming Problem and its Application

An Unconstrained Q - G Programming Problem and its Application Joual of Ifomato Egeeg ad Applcatos ISS 4-578 (pt) ISS 5-0506 (ole) Vol.5, o., 05 www.ste.og A Ucostaed Q - G Pogammg Poblem ad ts Applcato M. He Dosh D. Chag Tved.Assocate Pofesso, H L College of Commece,

More information

Signal,autocorrelation -0.6

Signal,autocorrelation -0.6 Sgal,autocorrelato Phase ose p/.9.3.7. -.5 5 5 5 Tme Sgal,autocorrelato Phase ose p/.5..7.3 -. -.5 5 5 5 Tme Sgal,autocorrelato. Phase ose p/.9.3.7. -.5 5 5 5 Tme Sgal,autocorrelato. Phase ose p/.8..6.

More information

Stability Analysis for Linear Time-Delay Systems. Described by Fractional Parameterized. Models Possessing Multiple Internal. Constant Discrete Delays

Stability Analysis for Linear Time-Delay Systems. Described by Fractional Parameterized. Models Possessing Multiple Internal. Constant Discrete Delays Appled Mathematcal Sceces, Vol. 3, 29, o. 23, 5-25 Stablty Aalyss fo Lea me-delay Systems Descbed by Factoal Paametezed Models Possessg Multple Iteal Costat Dscete Delays Mauel De la Se Isttuto de Ivestgacó

More information

Sandwich Theorems for Mcshane Integration

Sandwich Theorems for Mcshane Integration It Joual of Math alyss, Vol 5, 20, o, 23-34 adwch Theoems fo Mcshae Itegato Ismet Temaj Pshta Uvesty Educato Faculty, Pshta, Kosovo temaj63@yahoocom go Tato Taa Polytechc Uvesty Mathematcs Egeeg Faculty,

More information

Motion and Flow II. Structure from Motion. Passive Navigation and Structure from Motion. rot

Motion and Flow II. Structure from Motion. Passive Navigation and Structure from Motion. rot Moto ad Flow II Sce fom Moto Passve Navgato ad Sce fom Moto = + t, w F = zˆ t ( zˆ ( ([ ] =? hesystemmoveswth a gd moto wth aslat oal velocty t = ( U, V, W ad atoalvelocty w = ( α, β, γ. Scee pots R =

More information

THREE-PARAMETRIC LOGNORMAL DISTRIBUTION AND ESTIMATING ITS PARAMETERS USING THE METHOD OF L-MOMENTS

THREE-PARAMETRIC LOGNORMAL DISTRIBUTION AND ESTIMATING ITS PARAMETERS USING THE METHOD OF L-MOMENTS RELIK ; Paha 5. a 6.. THREE-PARAMETRIC LOGNORMAL DISTRIBUTION AND ESTIMATING ITS PARAMETERS USING THE METHOD OF L-MOMENTS Daa Bílová Abstact Commo statstcal methodology fo descpto of the statstcal samples

More information

STK4011 and STK9011 Autumn 2016

STK4011 and STK9011 Autumn 2016 STK4 ad STK9 Autum 6 Pot estmato Covers (most of the followg materal from chapter 7: Secto 7.: pages 3-3 Secto 7..: pages 3-33 Secto 7..: pages 35-3 Secto 7..3: pages 34-35 Secto 7.3.: pages 33-33 Secto

More information

Simulation Output Analysis

Simulation Output Analysis Smulato Output Aalyss Summary Examples Parameter Estmato Sample Mea ad Varace Pot ad Iterval Estmato ermatg ad o-ermatg Smulato Mea Square Errors Example: Sgle Server Queueg System x(t) S 4 S 4 S 3 S 5

More information

Random Variables. ECE 313 Probability with Engineering Applications Lecture 8 Professor Ravi K. Iyer University of Illinois

Random Variables. ECE 313 Probability with Engineering Applications Lecture 8 Professor Ravi K. Iyer University of Illinois Radom Varables ECE 313 Probablty wth Egeerg Alcatos Lecture 8 Professor Rav K. Iyer Uversty of Illos Iyer - Lecture 8 ECE 313 Fall 013 Today s Tocs Revew o Radom Varables Cumulatve Dstrbuto Fucto (CDF

More information

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution:

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution: Chapter 4 Exercses Samplg Theory Exercse (Smple radom samplg: Let there be two correlated radom varables X ad A sample of sze s draw from a populato by smple radom samplg wthout replacemet The observed

More information