Learning Bayesian belief networks

Size: px
Start display at page:

Download "Learning Bayesian belief networks"

Transcription

1 Lectue 6 Leag Bayesa belef etwoks Mlos Hauskecht mlos@cs.ptt.edu 5329 Seott Squae Admstato Mdtem: Wedesday, Mach 7, 2004 I class Closed book Mateal coveed by Spg beak, cludg ths lectue Last yea mdtem o the web No ew homewok

2 Leag pobablty dstbuto Basc settgs: A set of adom vaables = {, 2, K, } A model of the dstbuto ove vaables wth paametes Θ Data D = D, D,.., D } { 2 N Obectve: fd paametes Θˆ that descbe the data the best Leag Bayesa belef etwoks: paametezatos as defed by the stuctue of etwok Leag of BBN Leag. Leag of paametes of codtoal pobabltes Leag of the etwok stuctue Vaables: Obsevable values peset evey data sample Hdde they values ae eve obseved data Mssg values values sometmes peset, sometmes ot Next: All vaables ae obsevable. Leag of paametes of BBN 2. Leag of the model (BBN stuctue

3 Leag of paametes of BBN Idea: decompose the estmato poblem fo the full ot ove a lage umbe of vaables to a set of smalle estmato poblems coespodg to paet-vaable codtoals. Example: Assume A,E,B ae bay wth ue, False values B A 4 estmato poblems E P(A B=,E= P(A B=,E=F P(A B,E P(A B=F,E= P(A B=F,E=F Assumpto that eables the decomposto: paametes of codtoal dstbutos ae depedet Estmates of paametes of BBN wo assumptos that pemt the decomposto: Sample depedece P( D Θ, ξ = P( Θ, ξ u= Paamete depedece N D u p( Θ D, ξ = p( θ D, ξ q = = Paametes of each codtoal (oe fo evey assgmet of values to paet vaables ca be leaed depedetly

4 Leag of BBN paametes. Example. Example: P(Peumoa Peumoa F?? P(HWBC Peum P F?? F?? Paleess Feve Cough Hgh WBC P(Pale Peum P(Feve Peum P(Cough Peum??? Leag of BBN paametes. Example. Data D (dffeet patet cases: Pal Fev Cou HWB Peu F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F Paleess Feve Peumoa Cough Hgh WBC

5 Estmates of paametes of BBN Much lke multple co toss o oll of a dce poblems. A smalle leag poblem coespods to the leag of exactly oe codtoal dstbuto Example: P( Feve Peumoa = Poblem: How to pck the data to lea? Estmates of paametes of BBN Much lke multple co toss o oll of a dce poblems. A smalle leag poblem coespods to the leag of exactly oe codtoal dstbuto Example: P( Feve Peumoa = Poblem: How to pck the data to lea? Aswe:. Select data pots wth Peumoa= (goe the est 2. Focus o (select oly values of the adom vaable defg the dstbuto (Feve 3. Lea the paametes of the codtoal the same way as we leaed the paametes of the based co o dce

6 Leag of BBN paametes. Example. Lea: P( Feve Peumoa = Step : Select data pots wth Peumoa= Pal Fev Cou HWB Peu F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F Paleess Feve Peumoa Cough Hgh WBC Leag of BBN paametes. Example. Lea: Step : P( Feve Peumoa = Igoe the est Pal Fev Cou HWB Peu F F F F F F F F Paleess Feve Peumoa Cough Hgh WBC

7 Leag of BBN paametes. Example. Lea: P( Feve Peumoa = Step 2: Select values of the adom vaable defg the dstbuto of Feve Pal Fev Cou HWB Peu F F F F F F F F Paleess Feve Peumoa Cough Hgh WBC Leag of BBN paametes. Example. Lea: P( Feve Peumoa = Step 2: Igoe the est Fev F F Paleess Feve Peumoa Cough Hgh WBC

8 Leag of BBN paametes. Example. Lea: P( Feve Peumoa = Step 3a: Leag the ML estmate Fev F F Paleess Feve Peumoa Cough Hgh WBC P( Feve Peumoa = F Leag of BBN paametes. Bayesa leag. Lea: P( Feve Peumoa = Step 3b: Leag the Bayesa estmate Assume the po Fev F F θ Feve = Peumoa ~ Beta(3,4 Paleess Feve Peumoa Cough Hgh WBC Posteo: Peumoa ~ Beta(6,6 θ Feve =

9 Naïve Bayes model A specal (smple Bayesa belef etwok used as a geeatve classfe model Class vaable Y Attbutes ae depedet gve Y p( x Y =, Θ = p( x Leag: ML, Bayesa estmates of paametes Classfcato: gve x we eed to deteme the class Choose the class wth the maxmum posteo p( Y = x, Θ = k = = Y =, Θ p( Y = Θ p( x Y =, Θ p( Y = Θ p( x Y =, Θ Class Y 2.. Naïve Bayes wth Gaussas dstbutos Geeatve classfcato model p(, Y. Pos o classes Y p ( Y =, p ( Y = 2, p ( Y = 3,... p( Y Befoe: Jot class codtoal destes (fo x p ( x µ, Σ = exp ( x µ ( / 2 / 2 Σ x µ d 2 (2π Σ p (Y Now: Naïve Bayes - depedet class codtoal destes p(y 2 p( x µ, σ = exp ( x 2 µ Y (2π σ 2σ p( Y 2..

10 Naïve Bayes wth Gaussas dstbutos How to lea the geeatve model p(, Y. Pos o classes p ( Y =, p ( Y = 2, p ( Y = 3,...? 2. Class codtoal destes 2 p( x µ, σ = exp ( x 2 µ (2π σ 2σ p( Y 2.. Y Model selecto BBN has two compoets: Stuctue of the etwok (models codtoal depedeces A set of paametes (codtoal chld-paet dstbutos We aleady kow how to lea the paametes fo the fxed stuctue But how to lea the stuctue of the BBN? Alam? Buglay Alam Quake Buglay Quake Joh May Joh May

11 Leag the stuctue Ctea we ca choose to scoe the stuctue S Magal lkelhood maxmze P ( D S, ξ ξ - epesets the po kowledge Maxmum posteo pobablty maxmze P ( S D, ξ P ( S D, ξ = P ( D S, ξ P ( S P ( D ξ ξ How to compute magal lkelhood P ( D S, ξ? Leag of BBNs Notato: ages ove all possble vaables =,.., =,..,q ages ove all possble paet combatos k=,.., ages ove all possble vaable values Θ - paametes of the BBN Θ s a vecto of Θ epesetg paametes of the codtoal pobablty dstbuto; such that Θ = N N = - a umbe of staces the dataset whee paets of vaable take o values ad has value k = N - po couts (paametes of Beta ad Dchlet pos

12 Magal lkelhood Itegate ove all possble paamete settgs Θ P ( D S, ξ = P( D S, Θ, ξ p( Θ S, ξ dθ Usg the assumpto of paamete ad sample depedece P ( D S, ξ = q = = + N We ca use log-lkelhood scoe stead log P( D S, ξ = + N q + N log + log = = + N = Scoe s decomposable alog vaables!!! k Computg the magal lkelhood Fom the d assumpto: P( D S, Θ = N h= = h P( x paets, Θ Let = umbe of values that attbute x ca take q = umbe of possble paet combatos N = umbe of cases D whee x has value k ad paets wth values. = h x = k paets = q k = q k P (, Θ θ N N

13 Fom paamete depedece Pos fo p( Θ S, ξ Θ = ( Θ,..., Θ s a vecto of paametes; we use a Dchlet dstbuto wth paametes to epeset t P Computg the magal lkelhood ( Θ S, ξ = P( Θ,..., Θ S, ξ = Dchlet( Θ,..., Θ = p( Θ S, ξ = p( Θ S, ξ = = q Θ Computg the magal lkelhood Combe thgs togethe: P ( D S = P ( D S, Θ P ( Θ S dθ Θ Γ q ( N = Θ Θ k Γ q ( = = Θ N + dθ a + N k + N q = dθ

14 Leag the stuctue Lkelhood of data fo the BBN (stuctue ad paametes P( D S, Θ, ξ measues the goodess of ft of the BBN to data Magal lkelhood (fo the stuctue oly P ( D S, ξ Does ot measue oly a goodess of ft. It s: dffeet fo stuctues of dffeet complexty Icopoates pefeeces towads smple stuctues, mplemets Occam s azo!!!! Occam s Razo Why thee s a pefeece towads smple stuctues? Rewte magal lkelhood as P( D S, ξ = We kow that Θ Θ P( D S, Θ, ξ p( Θ S, ξ dθ Θ p( Θ S, ξ dθ p( Θ S, ξ dθ = Itepetato: moe complex stuctues thee ae moe ways how paametes ca be set badly he umeato: cout of good assgmets he deomato: cout of all assgmets

15 Appoxmatos of pobablstc scoes Appoxmatos of the magal lkelhood ad posteo scoes Ifomato based measues Akake cteo Bayesa fomato cteo (BIC Mmum descpto legth (MDL Reflect the tadeoff betwee the ft to data ad pefeece towads smple stuctues Example: Akake cteo. Maxmze: scoe( S = log P( D S, ΘML, ξ compl(s Bayesa fomato cteo (BIC Maxmze: scoe( S = log P( D S, ΘML, ξ compl(s logn 2 Optmzg the stuctue Fdg the best stuctue s a combatoal optmzato poblem A good featue: the scoe s decomposable alog vaables: q Γ Γ + = ( + ( N log P ( D S, ξ log log = = Γ ( + N Γ ( Algothm dea: Seach the space of stuctues usg local chages (addtos ad deletos of a lk Advatage: we do ot have to compute the whole scoe fom scatch Recompute the patal scoe fo the affected vaable

16 Optmzg the stuctue. Algothms Geedy seach Stat fom stuctue wth o lks Add a lk that yelds the best scoe mpovemet Metopols algothm (wth smulated aealg Local addtos ad deletos Avods beg tapped local optmal

Learning the structure of Bayesian belief networks

Learning the structure of Bayesian belief networks Lectue 17 Leanng the stuctue of Bayesan belef netwoks Mlos Hauskecht mlos@cs.ptt.edu 5329 Sennott Squae Leanng of BBN Leanng. Leanng of paametes of condtonal pobabltes Leanng of the netwok stuctue Vaables:

More information

Bayesian belief networks

Bayesian belief networks Lecture 14 ayesa belef etworks los Hauskrecht mlos@cs.ptt.edu 5329 Seott Square Desty estmato Data: D { D1 D2.. D} D x a vector of attrbute values ttrbutes: modeled by radom varables { 1 2 d} wth: otuous

More information

( m is the length of columns of A ) spanned by the columns of A : . Select those columns of B that contain a pivot; say those are Bi

( m is the length of columns of A ) spanned by the columns of A : . Select those columns of B that contain a pivot; say those are Bi Assgmet /MATH 47/Wte Due: Thusday Jauay The poblems to solve ae umbeed [] to [] below Fst some explaatoy otes Fdg a bass of the colum-space of a max ad povg that the colum ak (dmeso of the colum space)

More information

RECAPITULATION & CONDITIONAL PROBABILITY. Number of favourable events n E Total number of elementary events n S

RECAPITULATION & CONDITIONAL PROBABILITY. Number of favourable events n E Total number of elementary events n S Fomulae Fo u Pobablty By OP Gupta [Ida Awad We, +91-9650 350 480] Impotat Tems, Deftos & Fomulae 01 Bascs Of Pobablty: Let S ad E be the sample space ad a evet a expemet espectvely Numbe of favouable evets

More information

Learning Bayesian belief networks

Learning Bayesian belief networks Lecture 4 Learning Bayesian belief networks Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Administration Midterm: Monday, March 7, 2003 In class Closed book Material covered by Wednesday, March

More information

Generative classification models

Generative classification models CS 75 Mache Learg Lecture Geeratve classfcato models Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square Data: D { d, d,.., d} d, Classfcato represets a dscrete class value Goal: lear f : X Y Bar classfcato

More information

= y and Normed Linear Spaces

= y and Normed Linear Spaces 304-50 LINER SYSTEMS Lectue 8: Solutos to = ad Nomed Lea Spaces 73 Fdg N To fd N, we eed to chaacteze all solutos to = 0 Recall that ow opeatos peseve N, so that = 0 = 0 We ca solve = 0 ecusvel backwads

More information

Bayesian belief networks

Bayesian belief networks Lecture 19 ayesa belef etworks los Hauskrecht mlos@cs.ptt.edu 539 Seott Square Varous ferece tasks: robablstc ferece Dagostc task. from effect to cause eumoa Fever redcto task. from cause to effect Fever

More information

Professor Wei Zhu. 1. Sampling from the Normal Population

Professor Wei Zhu. 1. Sampling from the Normal Population AMS570 Pofesso We Zhu. Samplg fom the Nomal Populato *Example: We wsh to estmate the dstbuto of heghts of adult US male. It s beleved that the heght of adult US male follows a omal dstbuto N(, ) Def. Smple

More information

Bayes (Naïve or not) Classifiers: Generative Approach

Bayes (Naïve or not) Classifiers: Generative Approach Logstc regresso Bayes (Naïve or ot) Classfers: Geeratve Approach What do we mea by Geeratve approach: Lear p(y), p(x y) ad the apply bayes rule to compute p(y x) for makg predctos Ths s essetally makg

More information

Lecture 10: Condensed matter systems

Lecture 10: Condensed matter systems Lectue 0: Codesed matte systems Itoducg matte ts codesed state.! Ams: " Idstgushable patcles ad the quatum atue of matte: # Cosequeces # Revew of deal gas etopy # Femos ad Bosos " Quatum statstcs. # Occupato

More information

Machine learning: Density estimation

Machine learning: Density estimation CS 70 Foundatons of AI Lecture 3 Machne learnng: ensty estmaton Mlos Hauskrecht mlos@cs.ptt.edu 539 Sennott Square ata: ensty estmaton {.. n} x a vector of attrbute values Objectve: estmate the model of

More information

Atomic units The atomic units have been chosen such that the fundamental electron properties are all equal to one atomic unit.

Atomic units The atomic units have been chosen such that the fundamental electron properties are all equal to one atomic unit. tomc uts The atomc uts have bee chose such that the fudametal electo popetes ae all equal to oe atomc ut. m e, e, h/, a o, ad the potetal eegy the hydoge atom e /a o. D3.33564 0-30 Cm The use of atomc

More information

XII. Addition of many identical spins

XII. Addition of many identical spins XII. Addto of may detcal sps XII.. ymmetc goup ymmetc goup s the goup of all possble pemutatos of obects. I total! elemets cludg detty opeato. Each pemutato s a poduct of a ceta fte umbe of pawse taspostos.

More information

The Exponentiated Lomax Distribution: Different Estimation Methods

The Exponentiated Lomax Distribution: Different Estimation Methods Ameca Joual of Appled Mathematcs ad Statstcs 4 Vol. No. 6 364-368 Avalable ole at http://pubs.scepub.com/ajams//6/ Scece ad Educato Publshg DOI:.69/ajams--6- The Expoetated Lomax Dstbuto: Dffeet Estmato

More information

Minimum Hyper-Wiener Index of Molecular Graph and Some Results on Szeged Related Index

Minimum Hyper-Wiener Index of Molecular Graph and Some Results on Szeged Related Index Joual of Multdscplay Egeeg Scece ad Techology (JMEST) ISSN: 359-0040 Vol Issue, Febuay - 05 Mmum Hype-Wee Idex of Molecula Gaph ad Some Results o eged Related Idex We Gao School of Ifomato Scece ad Techology,

More information

A DATA DRIVEN PARAMETER ESTIMATION FOR THE THREE- PARAMETER WEIBULL POPULATION FROM CENSORED SAMPLES

A DATA DRIVEN PARAMETER ESTIMATION FOR THE THREE- PARAMETER WEIBULL POPULATION FROM CENSORED SAMPLES Mathematcal ad Computatoal Applcatos, Vol. 3, No., pp. 9-36 008. Assocato fo Scetfc Reseach A DATA DRIVEN PARAMETER ESTIMATION FOR THE THREE- PARAMETER WEIBULL POPULATION FROM CENSORED SAMPLES Ahmed M.

More information

Bayesian Classification. CS690L Data Mining: Classification(2) Bayesian Theorem: Basics. Bayesian Theorem. Training dataset. Naïve Bayes Classifier

Bayesian Classification. CS690L Data Mining: Classification(2) Bayesian Theorem: Basics. Bayesian Theorem. Training dataset. Naïve Bayes Classifier Baa Classfcato CS6L Data Mg: Classfcato() Referece: J. Ha ad M. Kamber, Data Mg: Cocepts ad Techques robablstc learg: Calculate explct probabltes for hypothess, amog the most practcal approaches to certa

More information

Point Estimation: definition of estimators

Point Estimation: definition of estimators Pot Estmato: defto of estmators Pot estmator: ay fucto W (X,..., X ) of a data sample. The exercse of pot estmato s to use partcular fuctos of the data order to estmate certa ukow populato parameters.

More information

Fairing of Parametric Quintic Splines

Fairing of Parametric Quintic Splines ISSN 46-69 Eglad UK Joual of Ifomato ad omputg Scece Vol No 6 pp -8 Fag of Paametc Qutc Sples Yuau Wag Shagha Isttute of Spots Shagha 48 ha School of Mathematcal Scece Fuda Uvesty Shagha 4 ha { P t )}

More information

Naïve Bayes MIT Course Notes Cynthia Rudin

Naïve Bayes MIT Course Notes Cynthia Rudin Thaks to Şeyda Ertek Credt: Ng, Mtchell Naïve Bayes MIT 5.097 Course Notes Cytha Rud The Naïve Bayes algorthm comes from a geeratve model. There s a mportat dstcto betwee geeratve ad dscrmatve models.

More information

Lecture 12: Spiral: Domain Specific HLS. Housekeeping

Lecture 12: Spiral: Domain Specific HLS. Housekeeping 8 643 ectue : Spal: Doma Specfc HS James C. Hoe Depatmet of ECE Caege Mello Uvesty 8 643 F7 S, James C. Hoe, CMU/ECE/CACM, 7 Houseeepg You goal today: see a eample of eally hghlevel sythess (ths lectue

More information

CS 2750 Machine Learning. Lecture 8. Linear regression. CS 2750 Machine Learning. Linear regression. is a linear combination of input components x

CS 2750 Machine Learning. Lecture 8. Linear regression. CS 2750 Machine Learning. Linear regression. is a linear combination of input components x CS 75 Mache Learg Lecture 8 Lear regresso Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square CS 75 Mache Learg Lear regresso Fucto f : X Y s a lear combato of put compoets f + + + K d d K k - parameters

More information

Detection and Estimation Theory

Detection and Estimation Theory ESE 54 Detecto ad Etmato Theoy Joeph A. O Sullva Samuel C. Sach Pofeo Electoc Sytem ad Sgal Reeach Laboatoy Electcal ad Sytem Egeeg Wahgto Uvety Ubaue Hall 34-935-473 (Lyda awe) jao@wutl.edu J. A. O'S.

More information

CE 561 Lecture Notes. Optimal Timing of Investment. Set 3. Case A- C is const. cost in 1 st yr, benefits start at the end of 1 st yr

CE 561 Lecture Notes. Optimal Timing of Investment. Set 3. Case A- C is const. cost in 1 st yr, benefits start at the end of 1 st yr CE 56 Letue otes Set 3 Optmal Tmg of Ivestmet Case A- C s ost. ost st y, beefts stat at the ed of st y C b b b3 0 3 Case B- Cost. s postpoed by oe yea C b b3 0 3 (B-A C s saved st yea C C, b b 0 3 Savg

More information

2.1.1 The Art of Estimation Examples of Estimators Properties of Estimators Deriving Estimators Interval Estimators

2.1.1 The Art of Estimation Examples of Estimators Properties of Estimators Deriving Estimators Interval Estimators . ploatoy Statstcs. Itoducto to stmato.. The At of stmato.. amples of stmatos..3 Popetes of stmatos..4 Devg stmatos..5 Iteval stmatos . Itoducto to stmato Samplg - The samplg eecse ca be epeseted by a

More information

Lecture 9 Multiple Class Models

Lecture 9 Multiple Class Models Lectue 9 Multple Class Models Multclass MVA Appoxmate MVA 8.4.2002 Copyght Teemu Keola 2002 1 Aval Theoem fo Multple Classes Wth jobs the system, a job class avg to ay seve sees the seve as equlbum wth

More information

Classification : Logistic regression. Generative classification model.

Classification : Logistic regression. Generative classification model. CS 75 Mache Lear Lecture 8 Classfcato : Lostc reresso. Geeratve classfcato model. Mlos Hausrecht mlos@cs.ptt.edu 539 Seott Square CS 75 Mache Lear Bar classfcato o classes Y {} Our oal s to lear to classf

More information

Supervised learning: Linear regression Logistic regression

Supervised learning: Linear regression Logistic regression CS 57 Itroducto to AI Lecture 4 Supervsed learg: Lear regresso Logstc regresso Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square CS 57 Itro to AI Data: D { D D.. D D Supervsed learg d a set of eamples s

More information

Chapter 7 Varying Probability Sampling

Chapter 7 Varying Probability Sampling Chapte 7 Vayg Pobablty Samplg The smple adom samplg scheme povdes a adom sample whee evey ut the populato has equal pobablty of selecto. Ude ceta ccumstaces, moe effcet estmatos ae obtaed by assgg uequal

More information

Multivariate Transformation of Variables and Maximum Likelihood Estimation

Multivariate Transformation of Variables and Maximum Likelihood Estimation Marquette Uversty Multvarate Trasformato of Varables ad Maxmum Lkelhood Estmato Dael B. Rowe, Ph.D. Assocate Professor Departmet of Mathematcs, Statstcs, ad Computer Scece Copyrght 03 by Marquette Uversty

More information

χ be any function of X and Y then

χ be any function of X and Y then We have show that whe we ae gve Y g(), the [ ] [ g() ] g() f () Y o all g ()() f d fo dscete case Ths ca be eteded to clude fuctos of ay ube of ado vaables. Fo eaple, suppose ad Y ae.v. wth jot desty fucto,

More information

CS 2750 Machine Learning. Lecture 5. Density estimation. CS 2750 Machine Learning. Announcements

CS 2750 Machine Learning. Lecture 5. Density estimation. CS 2750 Machine Learning. Announcements CS 750 Machne Learnng Lecture 5 Densty estmaton Mlos Hauskrecht mlos@cs.ptt.edu 539 Sennott Square CS 750 Machne Learnng Announcements Homework Due on Wednesday before the class Reports: hand n before

More information

CS 3710 Advanced Topics in AI Lecture 17. Density estimation. CS 3710 Probabilistic graphical models. Administration

CS 3710 Advanced Topics in AI Lecture 17. Density estimation. CS 3710 Probabilistic graphical models. Administration CS 37 Avace Topcs AI Lecture 7 esty estmato Mlos Hauskrecht mlos@cs.ptt.eu 539 Seott Square CS 37 robablstc graphcal moels Amstrato Mterm: A take-home exam week ue o Weesay ovember 5 before the class epes

More information

MATH Midterm Solutions

MATH Midterm Solutions MATH 2113 - Midtem Solutios Febuay 18 1. A bag of mables cotais 4 which ae ed, 4 which ae blue ad 4 which ae gee. a How may mables must be chose fom the bag to guaatee that thee ae the same colou? We ca

More information

Question 1. Typical Cellular System. Some geometry TELE4353. About cellular system. About cellular system (2)

Question 1. Typical Cellular System. Some geometry TELE4353. About cellular system. About cellular system (2) TELE4353 Moble a atellte Commucato ystems Tutoal 1 (week 3-4 4 Questo 1 ove that fo a hexagoal geomety, the co-chael euse ato s gve by: Q (3 N Whee N + j + j 1/ 1 Typcal Cellula ystem j cells up cells

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Marquette Uverst Maxmum Lkelhood Estmato Dael B. Rowe, Ph.D. Professor Departmet of Mathematcs, Statstcs, ad Computer Scece Coprght 08 b Marquette Uverst Maxmum Lkelhood Estmato We have bee sag that ~

More information

Introduction to local (nonparametric) density estimation. methods

Introduction to local (nonparametric) density estimation. methods Itroducto to local (oparametrc) desty estmato methods A slecture by Yu Lu for ECE 66 Sprg 014 1. Itroducto Ths slecture troduces two local desty estmato methods whch are Parze desty estmato ad k-earest

More information

FUZZY MULTINOMIAL CONTROL CHART WITH VARIABLE SAMPLE SIZE

FUZZY MULTINOMIAL CONTROL CHART WITH VARIABLE SAMPLE SIZE A. Paduaga et al. / Iteatoal Joual of Egeeg Scece ad Techology (IJEST) FUZZY MUTINOMIA CONTRO CHART WITH VARIABE SAMPE SIZE A. PANDURANGAN Pofesso ad Head Depatmet of Compute Applcatos Vallamma Egeeg College,

More information

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ " 1

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ  1 STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS Recall Assumpto E(Y x) η 0 + η x (lear codtoal mea fucto) Data (x, y ), (x 2, y 2 ),, (x, y ) Least squares estmator ˆ E (Y x) ˆ " 0 + ˆ " x, where ˆ

More information

Bayesian Nonlinear Regression Models based on Slash Skew-t Distribution

Bayesian Nonlinear Regression Models based on Slash Skew-t Distribution Euopea Ole Joual of Natual ad Socal Sceces 05; www.euopea-scece.com Vol.4, No. Specal Issue o New Dmesos Ecoomcs, Accoutg ad Maagemet ISSN 805-360 Bayesa Nolea Regesso Models based o Slash Skew-t Dstbuto

More information

CS 1675 Introduction to Machine Learning Lecture 12 Support vector machines

CS 1675 Introduction to Machine Learning Lecture 12 Support vector machines CS 675 Itroducto to Mache Learg Lecture Support vector maches Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square Mdterm eam October 9, 7 I-class eam Closed book Stud materal: Lecture otes Correspodg chapters

More information

Motion and Flow II. Structure from Motion. Passive Navigation and Structure from Motion. rot

Motion and Flow II. Structure from Motion. Passive Navigation and Structure from Motion. rot Moto ad Flow II Sce fom Moto Passve Navgato ad Sce fom Moto = + t, w F = zˆ t ( zˆ ( ([ ] =? hesystemmoveswth a gd moto wth aslat oal velocty t = ( U, V, W ad atoalvelocty w = ( α, β, γ. Scee pots R =

More information

Best Linear Unbiased Estimators of the Three Parameter Gamma Distribution using doubly Type-II censoring

Best Linear Unbiased Estimators of the Three Parameter Gamma Distribution using doubly Type-II censoring Best Lea Ubased Estmatos of the hee Paamete Gamma Dstbuto usg doubly ype-ii cesog Amal S. Hassa Salwa Abd El-Aty Abstact Recetly ode statstcs ad the momets have assumed cosdeable teest may applcatos volvg

More information

ρ < 1 be five real numbers. The

ρ < 1 be five real numbers. The Lecture o BST 63: Statstcal Theory I Ku Zhag, /0/006 Revew for the prevous lecture Deftos: covarace, correlato Examples: How to calculate covarace ad correlato Theorems: propertes of correlato ad covarace

More information

Allocations for Heterogenous Distributed Storage

Allocations for Heterogenous Distributed Storage Allocatos fo Heteogeous Dstbuted Stoage Vasleos Ntaos taos@uscedu Guseppe Cae cae@uscedu Alexados G Dmaks dmaks@uscedu axv:0596v [csi] 8 Feb 0 Abstact We study the poblem of stog a data object a set of

More information

Support vector machines

Support vector machines CS 75 Mache Learg Lecture Support vector maches Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square CS 75 Mache Learg Outle Outle: Algorthms for lear decso boudary Support vector maches Mamum marg hyperplae.

More information

Module Title: Business Mathematics and Statistics 2

Module Title: Business Mathematics and Statistics 2 CORK INSTITUTE OF TECHNOLOGY INSTITIÚID TEICNEOLAÍOCHTA CHORCAÍ Semeste Eamatos 009/00 Module Ttle: Busess Mathematcs ad Statstcs Module Code: STAT 6003 School: School of Busess ogamme Ttle: Bachelo of

More information

Chapter 4 (Part 1): Non-Parametric Classification (Sections ) Pattern Classification 4.3) Announcements

Chapter 4 (Part 1): Non-Parametric Classification (Sections ) Pattern Classification 4.3) Announcements Aoucemets No-Parametrc Desty Estmato Techques HW assged Most of ths lecture was o the blacboard. These sldes cover the same materal as preseted DHS Bometrcs CSE 90-a Lecture 7 CSE90a Fall 06 CSE90a Fall

More information

Bayes Decision Theory - II

Bayes Decision Theory - II Bayes Decso Theory - II Ke Kreutz-Delgado (Nuo Vascocelos) ECE 175 Wter 2012 - UCSD Nearest Neghbor Classfer We are cosderg supervsed classfcato Nearest Neghbor (NN) Classfer A trag set D = {(x 1,y 1 ),,

More information

Exponential Generating Functions - J. T. Butler

Exponential Generating Functions - J. T. Butler Epoetal Geeatg Fuctos - J. T. Butle Epoetal Geeatg Fuctos Geeatg fuctos fo pemutatos. Defto: a +a +a 2 2 + a + s the oday geeatg fucto fo the sequece of teges (a, a, a 2, a, ). Ep. Ge. Fuc.- J. T. Butle

More information

Model Fitting, RANSAC. Jana Kosecka

Model Fitting, RANSAC. Jana Kosecka Model Fttg, RANSAC Jaa Kosecka Fttg: Issues Prevous strateges Le detecto Hough trasform Smple parametrc model, two parameters m, b m + b Votg strateg Hard to geeralze to hgher dmesos a o + a + a 2 2 +

More information

Unsupervised Learning and Other Neural Networks

Unsupervised Learning and Other Neural Networks CSE 53 Soft Computg NOT PART OF THE FINAL Usupervsed Learg ad Other Neural Networs Itroducto Mture Destes ad Idetfablty ML Estmates Applcato to Normal Mtures Other Neural Networs Itroducto Prevously, all

More information

The Linear Probability Density Function of Continuous Random Variables in the Real Number Field and Its Existence Proof

The Linear Probability Density Function of Continuous Random Variables in the Real Number Field and Its Existence Proof MATEC Web of Cofeeces ICIEA 06 600 (06) DOI: 0.05/mateccof/0668600 The ea Pobablty Desty Fucto of Cotuous Radom Vaables the Real Numbe Feld ad Its Estece Poof Yya Che ad Ye Collee of Softwae, Taj Uvesty,

More information

1. A real number x is represented approximately by , and we are told that the relative error is 0.1 %. What is x? Note: There are two answers.

1. A real number x is represented approximately by , and we are told that the relative error is 0.1 %. What is x? Note: There are two answers. PROBLEMS A real umber s represeted appromately by 63, ad we are told that the relatve error s % What s? Note: There are two aswers Ht : Recall that % relatve error s What s the relatve error volved roudg

More information

CS 2750 Machine Learning Lecture 5. Density estimation. Density estimation

CS 2750 Machine Learning Lecture 5. Density estimation. Density estimation CS 750 Mache Learg Lecture 5 esty estmato Mlos Hausrecht mlos@tt.edu 539 Seott Square esty estmato esty estmato: s a usuervsed learg roblem Goal: Lear a model that rereset the relatos amog attrbutes the

More information

Detection and Estimation Theory

Detection and Estimation Theory ESE 54 Detecton and Etmaton Theoy Joeph A. O Sullvan Samuel C. Sach Pofeo Electonc Sytem and Sgnal Reeach Laboatoy Electcal and Sytem Engneeng Wahngton Unvety 411 Jolley Hall 314-935-4173 (Lnda anwe) jao@wutl.edu

More information

VECTOR MECHANICS FOR ENGINEERS: Vector Mechanics for Engineers: Dynamics. In the current chapter, you will study the motion of systems of particles.

VECTOR MECHANICS FOR ENGINEERS: Vector Mechanics for Engineers: Dynamics. In the current chapter, you will study the motion of systems of particles. Seeth Edto CHPTER 4 VECTOR MECHNICS FOR ENINEERS: DYNMICS Fedad P. ee E. Russell Johsto, J. Systems of Patcles Lectue Notes: J. Walt Ole Texas Tech Uesty 003 The Mcaw-Hll Compaes, Ic. ll ghts eseed. Seeth

More information

Recent Advances in Computers, Communications, Applied Social Science and Mathematics

Recent Advances in Computers, Communications, Applied Social Science and Mathematics Recet Advaces Computes, Commucatos, Appled ocal cece ad athematcs Coutg Roots of Radom Polyomal Equatos mall Itevals EFRAI HERIG epatmet of Compute cece ad athematcs Ael Uvesty Cete of amaa cece Pa,Ael,4487

More information

such that for 1 From the definition of the k-fibonacci numbers, the firsts of them are presented in Table 1. Table 1: First k-fibonacci numbers F 1

such that for 1 From the definition of the k-fibonacci numbers, the firsts of them are presented in Table 1. Table 1: First k-fibonacci numbers F 1 Scholas Joual of Egeeg ad Techology (SJET) Sch. J. Eg. Tech. 0; (C):669-67 Scholas Academc ad Scetfc Publshe (A Iteatoal Publshe fo Academc ad Scetfc Resouces) www.saspublshe.com ISSN -X (Ole) ISSN 7-9

More information

Feature Selection: Part 2. 1 Greedy Algorithms (continued from the last lecture)

Feature Selection: Part 2. 1 Greedy Algorithms (continued from the last lecture) CSE 546: Mache Learg Lecture 6 Feature Selecto: Part 2 Istructor: Sham Kakade Greedy Algorthms (cotued from the last lecture) There are varety of greedy algorthms ad umerous amg covetos for these algorthms.

More information

Trace of Positive Integer Power of Adjacency Matrix

Trace of Positive Integer Power of Adjacency Matrix Global Joual of Pue ad Appled Mathematcs. IN 097-78 Volume, Numbe 07), pp. 079-087 Reseach Ida Publcatos http://www.publcato.com Tace of Postve Itege Powe of Adacecy Matx Jagdsh Kuma Pahade * ad Mao Jha

More information

ECON 482 / WH Hong The Simple Regression Model 1. Definition of the Simple Regression Model

ECON 482 / WH Hong The Simple Regression Model 1. Definition of the Simple Regression Model ECON 48 / WH Hog The Smple Regresso Model. Defto of the Smple Regresso Model Smple Regresso Model Expla varable y terms of varable x y = β + β x+ u y : depedet varable, explaed varable, respose varable,

More information

THREE-PARAMETRIC LOGNORMAL DISTRIBUTION AND ESTIMATING ITS PARAMETERS USING THE METHOD OF L-MOMENTS

THREE-PARAMETRIC LOGNORMAL DISTRIBUTION AND ESTIMATING ITS PARAMETERS USING THE METHOD OF L-MOMENTS RELIK ; Paha 5. a 6.. THREE-PARAMETRIC LOGNORMAL DISTRIBUTION AND ESTIMATING ITS PARAMETERS USING THE METHOD OF L-MOMENTS Daa Bílová Abstact Commo statstcal methodology fo descpto of the statstcal samples

More information

Ordinary Least Squares Regression. Simple Regression. Algebra and Assumptions.

Ordinary Least Squares Regression. Simple Regression. Algebra and Assumptions. Ordary Least Squares egresso. Smple egresso. Algebra ad Assumptos. I ths part of the course we are gog to study a techque for aalysg the lear relatoshp betwee two varables Y ad X. We have pars of observatos

More information

Likelihood Ratio, Wald, and Lagrange Multiplier (Score) Tests. Soccer Goals in European Premier Leagues

Likelihood Ratio, Wald, and Lagrange Multiplier (Score) Tests. Soccer Goals in European Premier Leagues Lkelhood Rato, Wald, ad Lagrage Multpler (Score) Tests Soccer Goals Europea Premer Leagues - 4 Statstcal Testg Prcples Goal: Test a Hpothess cocerg parameter value(s) a larger populato (or ature), based

More information

Estimation of Parameters of the Exponential Geometric Distribution with Presence of Outliers Generated from Uniform Distribution

Estimation of Parameters of the Exponential Geometric Distribution with Presence of Outliers Generated from Uniform Distribution ustala Joual of Basc ad ppled Sceces, 6(: 98-6, ISSN 99-878 Estmato of Paametes of the Epoetal Geometc Dstbuto wth Pesece of Outles Geeated fom Ufom Dstbuto Pavz Nas, l Shadoh ad Hassa Paza Depatmet of

More information

Support vector machines II

Support vector machines II CS 75 Mache Learg Lecture Support vector maches II Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square Learl separable classes Learl separable classes: here s a hperplae that separates trag staces th o error

More information

MATH /19: problems for supervision in week 08 SOLUTIONS

MATH /19: problems for supervision in week 08 SOLUTIONS MATH10101 2018/19: poblems fo supevisio i week 08 Q1. Let A be a set. SOLUTIONS (i Pove that the fuctio c: P(A P(A, defied by c(x A \ X, is bijective. (ii Let ow A be fiite, A. Use (i to show that fo each

More information

STK4011 and STK9011 Autumn 2016

STK4011 and STK9011 Autumn 2016 STK4 ad STK9 Autum 6 Pot estmato Covers (most of the followg materal from chapter 7: Secto 7.: pages 3-3 Secto 7..: pages 3-33 Secto 7..: pages 35-3 Secto 7..3: pages 34-35 Secto 7.3.: pages 33-33 Secto

More information

By the end of this section you will be able to prove the Chinese Remainder Theorem apply this theorem to solve simultaneous linear congruences

By the end of this section you will be able to prove the Chinese Remainder Theorem apply this theorem to solve simultaneous linear congruences Chapte : Theoy of Modula Aithmetic 8 Sectio D Chiese Remaide Theoem By the ed of this sectio you will be able to pove the Chiese Remaide Theoem apply this theoem to solve simultaeous liea cogueces The

More information

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model Lecture 7. Cofdece Itervals ad Hypothess Tests the Smple CLR Model I lecture 6 we troduced the Classcal Lear Regresso (CLR) model that s the radom expermet of whch the data Y,,, K, are the outcomes. The

More information

Dimensionality Reduction and Learning

Dimensionality Reduction and Learning CMSC 35900 (Sprg 009) Large Scale Learg Lecture: 3 Dmesoalty Reducto ad Learg Istructors: Sham Kakade ad Greg Shakharovch L Supervsed Methods ad Dmesoalty Reducto The theme of these two lectures s that

More information

ENGI 4421 Propagation of Error Page 8-01

ENGI 4421 Propagation of Error Page 8-01 ENGI 441 Propagato of Error Page 8-01 Propagato of Error [Navd Chapter 3; ot Devore] Ay realstc measuremet procedure cotas error. Ay calculatos based o that measuremet wll therefore also cota a error.

More information

ENGI 4421 Joint Probability Distributions Page Joint Probability Distributions [Navidi sections 2.5 and 2.6; Devore sections

ENGI 4421 Joint Probability Distributions Page Joint Probability Distributions [Navidi sections 2.5 and 2.6; Devore sections ENGI 441 Jot Probablty Dstrbutos Page 7-01 Jot Probablty Dstrbutos [Navd sectos.5 ad.6; Devore sectos 5.1-5.] The jot probablty mass fucto of two dscrete radom quattes, s, P ad p x y x y The margal probablty

More information

Binary classification: Support Vector Machines

Binary classification: Support Vector Machines CS 57 Itroducto to AI Lecture 6 Bar classfcato: Support Vector Maches Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square CS 57 Itro to AI Supervsed learg Data: D { D, D,.., D} a set of eamples D, (,,,,,

More information

Investigation of Partially Conditional RP Model with Response Error. Ed Stanek

Investigation of Partially Conditional RP Model with Response Error. Ed Stanek Partally Codtoal Radom Permutato Model 7- vestgato of Partally Codtoal RP Model wth Respose Error TRODUCTO Ed Staek We explore the predctor that wll result a smple radom sample wth respose error whe a

More information

Point Estimation: definition of estimators

Point Estimation: definition of estimators Pot Estmato: defto of estmators Pot estmator: ay fucto W (X,..., X ) of a data sample. The exercse of pot estmato s to use partcular fuctos of the data order to estmate certa ukow populato parameters.

More information

3. Basic Concepts: Consequences and Properties

3. Basic Concepts: Consequences and Properties : 3. Basc Cocepts: Cosequeces ad Propertes Markku Jutt Overvew More advaced cosequeces ad propertes of the basc cocepts troduced the prevous lecture are derved. Source The materal s maly based o Sectos.6.8

More information

Chapter 4 Multiple Random Variables

Chapter 4 Multiple Random Variables Revew for the prevous lecture: Theorems ad Examples: How to obta the pmf (pdf) of U = g (, Y) ad V = g (, Y) Chapter 4 Multple Radom Varables Chapter 44 Herarchcal Models ad Mxture Dstrbutos Examples:

More information

8.1 Hashing Algorithms

8.1 Hashing Algorithms CS787: Advaced Algorthms Scrbe: Mayak Maheshwar, Chrs Hrchs Lecturer: Shuch Chawla Topc: Hashg ad NP-Completeess Date: September 21 2007 Prevously we looked at applcatos of radomzed algorthms, ad bega

More information

Consumer theory. A. The preference ordering B. The feasible set C. The consumption decision. A. The preference ordering. Consumption bundle

Consumer theory. A. The preference ordering B. The feasible set C. The consumption decision. A. The preference ordering. Consumption bundle Thomas Soesso Mcoecoomcs Lecte Cosme theoy A. The efeece odeg B. The feasble set C. The cosmto decso A. The efeece odeg Cosmto bdle x ( 2 x, x,... x ) x Assmtos: Comleteess 2 Tastvty 3 Reflexvty 4 No-satato

More information

6.867 Machine Learning

6.867 Machine Learning 6.867 Mache Learg Problem set Due Frday, September 9, rectato Please address all questos ad commets about ths problem set to 6.867-staff@a.mt.edu. You do ot eed to use MATLAB for ths problem set though

More information

Chapter 14 Logistic Regression Models

Chapter 14 Logistic Regression Models Chapter 4 Logstc Regresso Models I the lear regresso model X β + ε, there are two types of varables explaatory varables X, X,, X k ad study varable y These varables ca be measured o a cotuous scale as

More information

Dimensionality reduction Feature selection

Dimensionality reduction Feature selection CS 750 Mache Learg Lecture 3 Dmesoalty reducto Feature selecto Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square CS 750 Mache Learg Dmesoalty reducto. Motvato. Classfcato problem eample: We have a put data

More information

QR Factorization and Singular Value Decomposition COS 323

QR Factorization and Singular Value Decomposition COS 323 QR Factorzato ad Sgular Value Decomposto COS 33 Why Yet Aother Method? How do we solve least-squares wthout currg codto-squarg effect of ormal equatos (A T A A T b) whe A s sgular, fat, or otherwse poorly-specfed?

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Exam: ECON430 Statstcs Date of exam: Frday, December 8, 07 Grades are gve: Jauary 4, 08 Tme for exam: 0900 am 00 oo The problem set covers 5 pages Resources allowed:

More information

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then Secto 5 Vectors of Radom Varables Whe workg wth several radom varables,,..., to arrage them vector form x, t s ofte coveet We ca the make use of matrx algebra to help us orgaze ad mapulate large umbers

More information

This may involve sweep, revolution, deformation, expansion and forming joints with other curves.

This may involve sweep, revolution, deformation, expansion and forming joints with other curves. 5--8 Shapes ae ceated by cves that a sface sch as ooftop of a ca o fselage of a acaft ca be ceated by the moto of cves space a specfed mae. Ths may volve sweep, evolto, defomato, expaso ad fomg jots wth

More information

Lecture 3. Sampling, sampling distributions, and parameter estimation

Lecture 3. Sampling, sampling distributions, and parameter estimation Lecture 3 Samplg, samplg dstrbutos, ad parameter estmato Samplg Defto Populato s defed as the collecto of all the possble observatos of terest. The collecto of observatos we take from the populato s called

More information

TESTS BASED ON MAXIMUM LIKELIHOOD

TESTS BASED ON MAXIMUM LIKELIHOOD ESE 5 Toy E. Smth. The Basc Example. TESTS BASED ON MAXIMUM LIKELIHOOD To llustrate the propertes of maxmum lkelhood estmates ad tests, we cosder the smplest possble case of estmatg the mea of the ormal

More information

ˆ SSE SSE q SST R SST R q R R q R R q

ˆ SSE SSE q SST R SST R q R R q R R q Bll Evas Spg 06 Sggested Aswes, Poblem Set 5 ECON 3033. a) The R meases the facto of the vaato Y eplaed by the model. I ths case, R =SSM/SST. Yo ae gve that SSM = 3.059 bt ot SST. Howeve, ote that SST=SSM+SSE

More information

Objectives. Learning Outcome. 7.1 Centre of Gravity (C.G.) 7. Statics. Determine the C.G of a lamina (Experimental method)

Objectives. Learning Outcome. 7.1 Centre of Gravity (C.G.) 7. Statics. Determine the C.G of a lamina (Experimental method) Ojectves 7 Statcs 7. Cete of Gavty 7. Equlum of patcles 7.3 Equlum of g oes y Lew Sau oh Leag Outcome (a) efe cete of gavty () state the coto whch the cete of mass s the cete of gavty (c) state the coto

More information

18.413: Error Correcting Codes Lab March 2, Lecture 8

18.413: Error Correcting Codes Lab March 2, Lecture 8 18.413: Error Correctg Codes Lab March 2, 2004 Lecturer: Dael A. Spelma Lecture 8 8.1 Vector Spaces A set C {0, 1} s a vector space f for x all C ad y C, x + y C, where we take addto to be compoet wse

More information

1. Overview of basic probability

1. Overview of basic probability 13.42 Desg Prcples for Ocea Vehcles Prof. A.H. Techet Sprg 2005 1. Overvew of basc probablty Emprcally, probablty ca be defed as the umber of favorable outcomes dvded by the total umber of outcomes, other

More information

9 U-STATISTICS. Eh =(m!) 1 Eh(X (1),..., X (m ) ) i.i.d

9 U-STATISTICS. Eh =(m!) 1 Eh(X (1),..., X (m ) ) i.i.d 9 U-STATISTICS Suppose,,..., are P P..d. wth CDF F. Our goal s to estmate the expectato t (P)=Eh(,,..., m ). Note that ths expectato requres more tha oe cotrast to E, E, or Eh( ). Oe example s E or P((,

More information

Bayes method for low rank tensor estimation

Bayes method for low rank tensor estimation Joual of Physcs: Cofeece Sees PAPER OPEN ACCESS Bayes method fo low ak teso estmato To cte ths atcle: Taj Suzuk ad Hesho Kaagawa 2016 J. Phys.: Cof. Se. 699 012020 Vew the atcle ole fo updates ad ehacemets.

More information

1 Solution to Problem 6.40

1 Solution to Problem 6.40 1 Soluto to Problem 6.40 (a We wll wrte T τ (X 1,...,X where the X s are..d. wth PDF f(x µ, σ 1 ( x µ σ g, σ where the locato parameter µ s ay real umber ad the scale parameter σ s > 0. Lettg Z X µ σ we

More information

Suppose we have observed values t 1, t 2, t n of a random variable T.

Suppose we have observed values t 1, t 2, t n of a random variable T. Sppose we have obseved vales, 2, of a adom vaable T. The dsbo of T s ow o belog o a cea ype (e.g., expoeal, omal, ec.) b he veco θ ( θ, θ2, θp ) of ow paamees assocaed wh s ow (whee p s he mbe of ow paamees).

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Postpoed exam: ECON430 Statstcs Date of exam: Jauary 0, 0 Tme for exam: 09:00 a.m. :00 oo The problem set covers 5 pages Resources allowed: All wrtte ad prted

More information