Copyright 1978, by the author(s). All rights reserved.

Size: px
Start display at page:

Download "Copyright 1978, by the author(s). All rights reserved."

Transcription

1 Cpyright 1978, by the authr(s). All rights reserved. Permissi t make digital r hard cpies f all r part f this wrk fr persal r classrm use is grated withut fee prvided that cpies are t made r distributed fr prfit r cmmercial advatage ad that cpies bear this tice ad the full citati the first page. T cpy therwise, t republish, t pst servers r t redistribute t lists, requires prir specific permissi.

2 STABILIZATION, TRACKING AND DISTURBANCE REJECTION IN MULTIVARIABLE CONVOLUTION SYSTEMS by F. M. Callier ad C. A. Deser Memradum N. UCB/ERL M78/83 7 December 1978 ELECTRONICS RESEARCH LABORATORY Cllege f Egieerig Uiversity f Califria, Berkeley 94720

3 STABILIZATION, TRACKING AND DISTURBANCE REJECTION IN MULTIVARIABLE CONVOLUTION SYSTEMS F. M. Callier, Departmet f Mathematics, Facultes Uiversitaires, Namur, Belgium C. A. Deser, Departmet f Electrical Egieerig ad Cmputer Scieces, ad the Electrics Research Labratry Uiversity f Califria, Berkeley, Califria ABSTRACT.x This paper describes the algebra &(q) x f trasfer fuctis f multivariable distributed systems; f the algebra this is a multivariable extesi &( ) f scalar trasfer fuctis studied i previus papers [1], [2]: a detailed study f s called alright- ad -left-represetatis is de: this is a geeralizati f cprime factrizati thery fr prper ratial trasfer matrices. The paper studies ext feedback system stability f systems with trasfer matrices with elemets i >(a ): a clsed-lp characteristic fucti is defied ad its imprtace discussed. Frthcmig applicatis are precditied by studyig a geeral prblem which is ecutered i cmpesatr desig: this geeralizes t the distributed case a techique used by Yula et al. [3], [4]. Fially the prblem f desigig a feedback cmpesatr fr rbust stabilizati, trackig ad disturbace rejecti f a plat is defied ad slved usig the techiques f the paper. Research spsred by the Natial Sciece Fudati Grat ENG

4 Sme f the results ctaied i this memradum have r will be auced at three cfereces: 1) At the 761st America Mathematical Sciety Meetig i Charlest, S.C., Nv. 3, 1978 uder the title, "Dyamic Output Stabilizati f a Ctrl System". 2) At the 17th IEEE Cferece Decisi ad Ctrl, Sa Dieg, Ca., Ja. 10, 1979, uder the title, "Stabilizati, Trackig ad Distur bace Rejecti i Liear Multivariable Distributed Systems". 3) At the 4th Iteratial Sympsium Mathematical Thery fr Netwrks ad Systems (MTNS 1979) Delft, Hllad (July 3-6, 1979) uder the title, "Matrix Fracti Represetati Thery fr Cvluti Systems" -2-

5 1. itrducti: Mathematical Defiiti ad Facts; Perspective ad Orgaizati f the Paper I previus papers [1], [2] we were ccered with the fllwig mathematical defiitis ad facts ccerig scalar systems. (LTD)+ detes the set f cmplex-valued Laplace trasfrmable distributis with supprt ]R,. Fr a em, ad elemet f e (LTD), is said t belg t CL(gJ O ^ iff, fr t<0,f(t) =0ad, fr t>0,f(t) =f(t) + f± «(t-t.),where i=0» -a t i)f(.)6l (mj:-{f; fim.-hcf f(t) e dt <»}, (ii) tq = a l,a + JQ ad t > 0 fr i = 1,2,..., (iii) fr all i, f <E ad 6(-t ) is the -at. Dirac delta distributi applied at t., (iv) f. e < «>. It is 1 i=l well kw, [7, p. 248] that CL( ) is a cmmutative cvluti Baach algebra with rm defied by iifil,,=c f (t) e"v dt+ f. e"vi (l.d ^ ) J0 a i=0 1 ad with uit elemet 6(0, the Dirac delta distributi; mrever this algebra has divisrs f zer [5, Therem ;38]. Observe als that, fr a = 0, Oj(0) is idetical t the algebra fl. described i [7, p ]; mrever, fr a1 >_ ajj, <X( 0) D<&a") Fr a Gl.a elemet f G (LTD), is said t belg t #_(a ) iff "*" there exists a a, e m, a < a, such that f belgs t #(co. With the 1 ± * <X( )-rm (1.1), <&Ja ) is a rmed cvluti subalgebra f #(c*0) with uit elemet 6 ad with divisrs f zer. Let * dete Laplace trasfrms: i.e., f is the Laplace trasfrm f f. &((J ), < _(<* ) dete cmmutative algebras with pitwise prduct f the ffs where f &(a ),& (a ), respectively: divisrs f zer. "" their uit is 1 ad they have -3-

6 Let <E, := {s ^ <E;Res > }, C, := {s G (C;Res > a } a + a + ad <E := {s (C;Res < a }. a - The fllwig are imprtat prperties f d( ) ad & (a ): (i) f belgs t the cvluti algebra (Xk )» id (<? )resp.), iff f belgs ^^~ t the algebra 4(a ), (tf (a )); (ii) f is a ivertible elemet f (Xk$ ), (tf_(tfq)resp.) iff i bth cases if{ f(s) ;s e (Ea +} > 0; (iiia) if f G 0(1$ ) the is f is buded i <E,, ideed O O T O sup{ f(s) ;s <Ca +} <_ ifh 0fa, ad f is aalytic i «a +; (iiib) if f ^Ql ) the there exists a a. 3R, a., < a, such that f is O X J. O buded i (D, ad aalytic i 3 (D,: as a csequece f has a fiite al+ al + umber f zers i ay cmpact set i <C +; (iv) if f ad g belg t#_(a ) the the pair (f,g) is aq-cprime iff there exist elemets u,v i #_(a ) such that uf + vg = 1 r equivaletly iff 2 if{ (f(s)~, g(s)) ;s e «a +} >0where (-,«) is ay rm i C. A - Let fifca ): = {f; f ^(X (cr ) such that f is buded away frm zer at ifiity «-*--x - A ^ i (C,}: BT( ) is a multiplicative system, [6, p. 46], f d( ) ad each a + - 4» elemet f f a. (a ) has a fiite umber f zers i (D^ +. fi(a ) is the cvluti algebra crrespdig t the pitwise -1 prduct algebra fi(cq) = [(l.c^)] tflzc^)]" i.e. 6(aQ) is the algebra f qutiets f = /d with ^ 6c (a ), d *=CL (. ) ad where, withut lss f - - geerality, the pair (,d) is a -cprime, i.e., ((s),d(s))j ^ 0 fr all s S <c : a pair (,d) which satisfies these cditis is a a -represetati a + ^ f f G )( ): there exists a bijecti betwee the elemets f (O ad the equivalece classes f a -represetatis {(,d)> i which elemets A are equal mdul a multiplicative factr ivertible i < _(a ). ia -4-

7 Imprtat prperties f V(q) are: a A A * i) if f S 6(a ) ad (,d) is a a -represetati f f the: a) there exists. > a such that f is mermrphic i <E, -> <C +, 10 1 is buded at ifiity i (E ad has a fiite umber f ples i (E^ +; b) p (E 0 A,(respectively z (Da +),is a ple, (zer), f f iff d(p) = 0, ((z) = 0); (ii) f is a ivertible elemet f $(a ) iff f is buded away frm zer at ifiity i (E +. Let (E (s) dete the algebra f prper ratial fuctis i s with P A cmplex cefficiets ad let fr a E ]R: &(a ):= <E (s) ^ U ( ) r p = {f; f e (C (s) such that f has ples i G,),IC(a ) := {f;f ^ &(a ) p O T r such that f is zer at ifiity}. H ( ) is a multiplicative system [6,p.46] f the algebra fcq) ad <E (s) =[faj] [(C(aQ) l"1 i.e. Cp(s) is a algebra f qutiets f = /d with Ua0) aru* d tf\. (a ) It fllws that 4_(),4Z(a0), $(a) =[4.^a0^ ^(a^]"1 are extesis f dkq),(j\t(aq),<ep(s) = [#.(aq)] [4C(a)]~ 1-1 fr represetig trasfer fuctis f distributed liear time ivariat systems Nte als that if f 6i( ) the f = f, f«where f. *~ 1 z 1 is a ivertible >* A aoo AOO /\CO elemet f ( (a ) ad f0 belgs t v (a ) : "# (a ) ad (K. (a ) are O 2. OO O essetially the same": i particular tt)(a ) = [# (0 )][# (a )] =[?_<%> ha^)]"1. We shall w be ccered with trasfer matrices f multivariable distributed systems i.e., with matrices with elemets i (LTD)+, d(aq), fi_(a), 0(q). (LTD)^X, A,(a)X, 6(aQ)X are all algebras with a -cmmutative pitwise prduct ad uit I. F =&Xa )x,,*, Nx x.. ^.._.?., Nx,*, xx».,.,.. (fl._(" ) resp.), is ivertible i tt(a ), (# (a ) resp.), iff i x bth cases if{ det F(s) I;s <C,}, i > 0. u. Fa G *= (a ^a )X j is ivertible i ^ vti ^ 1 ' a + r O ( )( ) iff det F is buded away/ frm zer at ifiity i C,. -5-

8 It is the purpse f this paper t establish a prcedure which fr a x. a give plat P 6(a ) 1,-(see Fig. 3.1), fids a utput feedback x cmpesatr C 6(a ) such that the resultig feedback system S, a) is ^-stable while havig a prescribed set f clsed-lp ples i «0 + ' b) tracks asympttically a class f referece sigals ad c) rejects asympttically a class f disturbace sigals. This task is realized as fllws: i secti 2 we establish fr matrices with elemets i &( ) a represetati thery i terms f matrix fractis: A the results 6(a ) f [1], [2] are hereby exteded t multivariable systems; i secti 3 we study feedback system stability f systems with lp matrices with elemets i $(a ): we adpt hereby results f [18], [32] ad defie a clsed lp system characteristic fucti; i secti 4 we study a prelimiary algebraic prblem fr cmpesatr desig which exteds t matrices with elemets i S._{q) a techique used by Yula et al. [3], [4] ivlvig plymials r plymial matrices; i secti 5 we search fr ad fid a cmpesatr desig fr stabilizati, trackig ad disturbace rejecti, usig a set up ispired by [3]-[4] ad [31]-[34]: A. we hadle here a plat with trasfer matrix with elemets i (B(q). The paper is therefre rgaized as fllws: 1. the preset itrducti; 2. matrix fracti represetati thery; 3. feedback system stability; 4. prelimiary algebraic prblem fr cmpesatr desig; 5. cmpesatr desig fr stabilizati, trackig ad disturbace rejecti. Befre startig we shall meti the fllwig cveti i rder t avid the multiple use f the superscript * t idicate Laplace trasfrmed quatities: quatities represeted by script letters are Laplace trasfrmed -6-

9 uless specifically metied. We eed als the fllwig defiitis. Defiiti l.lr. Let fte Aj^ "1 ad # tf_(a)x. We say that the pair (1\Jd) is a -right cprime (a -r.c.) iff there exist elemets He & (a )xm ad Ve<2 (a )X such that 2tfl+2/# = I. Defiiti 1.1&. Let 8^CL (a )x ad H # (a )xm. We say that the - - pair (0,TO is a -left cprime (a -Jt.c.) iff there exist elemets U<=a(c )mx ad Ve 0. (c )x such that^+m^ I Matrix Fracti Represetati Thery. _x± l2 Defiiti 2.1r. Let F (LTD)^ ; the pair (-ft,ft ) is said t be _i_ &r ^r a -right represetati (a -r.r.) f F if 71 e #_(<* ) ad a -x. #r G#_(<>0> such that (i) F=^ /gr1 (ii) the pair (ft,0) is a -right cprime (a -r.c), i.e., there exist a -sx a ^xelemets # ^ (Xj ) 1 ad^g^_() x 1 such that - x (iii)»^c + M? = I.1 det^ G#>Q). a A a -left represetati (a -.r.) f F, F (LTD),is by defiiti a pair (J&,7L) which is similarly defied as (7?,^)') i defiiti 2.1r: chage subscripts r fr A, iterchage the rder f the factrs abve, chse apprpriate dimesis with Jj ad Tf f dimesi X* AJ x : refer t this as Defiiti 2.1&. Remark R2.1 Observe that if =. = 1 the a -represetatis (left ad : i right) reduce t a a -represetati f F = f, [1], [2]. a x. Lemma 2.1 If F G &( ) 1, the F = R + G (2.1) -7-

10 where A x, (i) G<Zd( ) X - (ii) R is a strictly prper elemet f C(s) 1 which is zer if ad A x. Lauret expasis f F at its ples i (C a m-th rder ple at p G <c p e % + x., where i particular F has if ad ly if R has a m-th rder ple at Prf: F = [f..].,--..,=- where fr all i = l,2,...,, fr all ij i,j 3i * * * * j = l,2,...,., f.. = (5(a ), i.e. accrdig t therem 3.3 f [1], f±j =^±j + 8±:j where (i) g±. = &_ (q),(ii) r±.. is astrictly prper ratial fucti which is zer iff f.. ^ CL (a ), (iii) if f..?^l ( ) 13 - ij - the r.. is the sum f the pricipal parts f the Lauret expasis f f at its ples i G,. H Remark R.2.2 The imprtace f the sum decmpsiti f Lemma 1 lies i the fact that it permits t fid a a Jl.r. r a -r.r. fr r 00 A x. F = (c ) """by fidig first such a represetati fr "its ratial pricipal part" R. Nw bserve that, with [2], fi^ ): = {f G C (s); f has ples i <C +} = <D (s) (LJQ) (2.2) p fc( ): ={f G((l(a); f is -zer at ifiity} ^(f{ ) (2.3) 00 <C (s) is a qutiet rig [4((a )][ft (a )]" f R.(a ) with respect t its p 000 multiplicative system $C( ), [2], i.e. if f C (s) the f ca be writte as f = _/d. with. = <jl(a ), d,. = ({ (a ) by usig a scalig plymial r f r e.g. f(s) =(s-l)/(s-2)2 =f/df with f(s) =(s-1)/(s-a+l)2 ad 2 2 d_(s) = (s-2) /(s-a +1) : bserve that i this way e btais a 0 - represetati (f,d ) by makig (f,d ) a -cprime, [1], [2], cacellig ly if FG &_( ) 1, Z 0x- (iii) if F ^ (L_( ) the R is the sum f the pricipal parts f the -8-

11 cmm factrs (s-z)/(s-a) with z (Lq +, a <Cg _: here a pair (f,df) with f S(t(), df S(jC^) ad (f,df) c^-cprime is aqrepresetati. Observe als that (ft(a ) is a Euclidea rig, [9], [10], see als Appedix I. It fllws that every matrix with elemets i x. #Ia ), say ^.^(a ) 1, has a Hermite frm [8, p. 32] btaiable thrugh elemetary peratis [8, p. 34, Th. 22.4]. Hece the same must be true fr triagularizati. Als every cmpatible pair f matrices 71 ad & with elemets i &(a ) has a greatest cmm right divisr (g.c.r.d.), R., [8, p. 35], expressible i the frmt(tl+v& =ft where %L ad Y are matrices with elemets i 6{.( ); furthermre if $_is ivertible i fu ) we say that Ti ad J&are right cprime w.r.t. fisq); te that the matrices *ll,v,9\ca be btaied thrugh elemetary peratis [8, Chapter III, pp ], a variat f this prcedure beig described i [11, pp. 8-9] ad [7, p. 65]; it is als easily see that 71 ad # are right cprime w.r.t (R.( ) iff the matrix 1t has full rak fr all s i C, ad at ifiity; a + mrever if Tlad are right cprime w.r.t. QdJ the they are 0Q-right cprime as i Defiiti l.lr. Similar Facts hld fr a greatest cmm left divisr (g.c.r.d.) ad left cprimeess w.r.t. (ft(aq). The abve suggests that it shuld be relatively easy t fid a ratial aq-r.r. the pricipal ratial part R. f F i (2.1), ce we ca express R as x.x. m R=ftj ~ with ^ e<k(a) i #r ifc(g) x \ det[#r] ^(Q). These suggestis are explited i the prf f the fllwig therem. a x. Therem 2.1 If F 6(a ) 1, the F admits a a -r.r. ad a a -.r.. Mre precisely, 7lr>frr>\>Yr A there exist matrices with elemets i #_( ), amely f -9-

12 such that (i) (7^,%) is a aq-r.r. f F; (ii) (#0,7O is a a -x.r. f F; x x.. i 1 (iii). l r I *r *r :-k -ft! ft U 'x "x-j,«t ; vj J where if we call the matrices the left had side f (2.3),V ad b) respectively, the bviusly Wis a ivertible elemet ("uit") f (.+ )x( + ) /( (a ) ad withut lss f geerality. 1 rl (2.3) det tj= det UT = 1. A 0xi Prf: Withut lss f geerality we assume F %u. (a ) ; therwise chse flt =* ; <% r i ;K ; K =x» i Use w lemma 1 ad recall that each elemet r.. f its ratial pricipal part R admits accrdig t remark R.2.2 a ratial a -admissible repre setati (,d ) with ^.( ) ad d 4L (a ). Recall als r.. r. / r.. r.. 13 ij i3 i3 the structural prperties discussed i Remark R.2,2 ad apply the fllwig prcedure: Algrithm 2.1 Give is F, G ad R as i Lemma 2.1. x. ^.x ^ m Step 1. Fid # S 6L( ) x ad fi A(a ) 1 * with det fl ^ (0 ) c cr r r ad such that Lr r ~ i e.g. by settig & = diag[d.]._1 where the d. are clum least cmm (2.4) demiatrs f R w.r.t. (Pv(a ). -10-

13 Step 2. Csider the ( +.) x ± full rak matrix VI := ui _ A*. J«rJ (_,+ )x. e«(a) i x (2.5) By perfrmig elemetary rw peratis based the Euclidea algrithm perfrmed i the rig $UaQ)» e-s- t8» PP ], [11, p. 8-9], [7, p. 65], upper triagularize #?, i.e. fid a (.+ ) x (.+ ) matrix Ulivertible (.+ )x( + ) i R(a ) X ad a full rak upper triagular matrix.x (ft_g ${( ) 1 1 such that a#i= 1^ (2.6) ad where scalig (multiplyig rws by "uits" i $_(a )) ca be used t get det 20= 1. Step 3. Partiti to ad tp it.. i % % ci ff. ;W'1 = i. i '&. -^ A Y. 8,-J _ A Cmmet: the eight matrices with elemets i ff\() c^ (aq), amely (2.7) 1\T9 8T9tUr9Yr A. A satisfy the cclusis f Therem 1 prvided F has bee replaced by R Step 4. Recallig (2.1), defie t ~ (.+ )x ^ m Ttfe R( ) 1 is full rak because by assumpti, det & e ^v (a ), ~ /> r hece det $ is t the zer-elemet f </ucj ). r t -11-

14 K-K-^6 V%:=\-^% (2-8) Ur %. y.% ' ' \ ad stp. Cmmet: A the eight matrices with elemets i # (a ), amely satisfy the cclusis f Therem 1. We shall w shw that Algrithm 2.1 wrks. Step 1. Sice all elemets r.. f R i (2.1) are elemets f <E (s) ad i3 p have ples ly i <D, they admit a ratial a -admissible represetati O* ><* ) with E (ft(a ) ad d G 0C(a ) with ad d cprime r.. r.. r.. r.. r r 13 i3 13 ij ij rij w.r.t. R.(cr ), ad it is pssible t cstruct a least cmm multiple d G^~(a ) f all demiatrs d.. /fc( ) f clum j, [12, Ch. IV, 3 ij J' * ' 10]. Hece settig r = ii. /d we get that ^ = [ii..] ad A/ H, fy = diag[d.]. _ satisfy the cditis f step 1. r j j=l Step 2. Sice Wlis full rak because by assumpti det & v\- (a ), hece r is t the zer elemet f ft.(a ), step 2 is self explaatry. Step 3. The cmmet f step 3 is true as fllws. Observe that all matrices A *C i (2.5)-(2.7) have elemets i flx ) C^L(a ) with det fif ad _ ^00 1 det 0v. =0v, (a ); mrever frm Jf[= "U) hece A. /V AS -I "1 Frm yj"l)f - I we have -12-

15 Hece (fj,# ) is a a -r.r. f R, with IK a g.c.r.d. f 7?r ad < r, [8, p. 35]. Observe that frm fiffif~ = I, we get als Furthermre sice by cstructi %f is a ivertible elemet f ( + )x( + ) fi^a ),det V(s) teds t a zer cmplex cstat as s ->». Frm the partiti f 2/", (2.7), the [-^ifi^l =-^trj 1^ ] is full rak at ifiity; hece det & G rf?.(a ) teds t a zer cstat at ifiity. Thus (F»^) is a c^-x.r. f R. Step 4. Checkig the cmmet f step 4 fllws easily usig (2.8) ad simple cmputatis, i particular 1iT= vr ;k b«x ;^ i c * i V ; t~~ -G j I S" i J G i I -J i I.. i O 1 0 i ii * i V 0 pr: i -%. 11 i _ ~ i LG! I -J\r\ ru 0 G. I y~x =ti/1 Remark R2.3 Observe that i algrithm 2.1, used i the prf f Therem 2.1, we actually btai that fll G fr ).x. i l det ft e(k"(a ) x ' x. i det #0 e C(c ) X i.e. the "demiatrs" f the aq-r.r. (Jfi^.T^) ad the aq-x.r. Cfe»# ) are ratial! The uiqueess f the represetatis will be treated belw. -13-

16 We have als x. Crllary 2.1. Let F G (LTD) 1, the a x. F fc ) if ad ly if X F admits a a -r.r. 07?,/$) r a a -x.r. Cft'jft). Prf: Oly if: this is a immediate csequece f Therem 2.1. If: Observe that F = [f..].a*.&. Mrever sice F = 1\ ST it fllws by 13 1^,3^ 'r^r J Cramers rule that fr all i ad j fy" [^^[AdJ^l./det^ where frm the clsure prperties f $ (a ), [1], [#]. [Adj<$;]. belgs t fl. (a ) ad by defiiti det fif belgs t^ _(a ). Hece fr all i ad j,- belgs t fi(a0) =^(a^li^c^)]"1, [2]. Remark R2.4 Frm Crllary 2.1 it is bvius that we ca idetify A x. x (a ) 1= {F :Fe (LTD)+ i ad Fadmits a a -r.r. r a a -x.r.} (2.9) This is a suitable geeralizati f [1, Defiiti 3.1] where =. = 1. I the sequel we shall t make ay disticti betwee the tw classes. Ncmmutative fracti rigs, are treated i [13]. a A csequece f Crllary 2.1 is Crllary 2.2. Let (1^9&)9 (resp. (J^,^)) be a pair f matrices such that x. A x. a rtxrt i) i\. s<2j) \ Tr r-ajj ± \ (resp.»t 6d_(), x A H^<2 (a ) 1), ad ii) det # belgs t & (a ), (resp. det ft belgs x r a* t^"(a)). Uder these cditis the pair (/^,JS ) is q - r.c, (resp. the pair -14-

17 j^w (fr Sft ) is a -x.c), if ad ly if rak xx r^w = fr all s <E., (resp. rak a + ^ fifc") f> (.> i = fr all s (E ). O 0 + Prf: We shall restrict urselves t the right-cprime case. : fllws frm [Y \ %L^ & rule. i '<r l. j (s) = I fr all s e <e ad Sylvester's i V A x- <=: Let F = "ft # ad bserve that F G 6(a ) 1. Hece by Therem 2.1 rr - A x. _ a.x Fadmits a a - r. r. (7?r,#r), i.e.,flr #><>) \ #r = a_(q) such that F =7? 8, there exists ft. ^ 6L (a ) l- * ' IT O r r r _"- 1 adrre^ ^0).x a x "= A. 0.-1, with 2L ft +/"ft. =1» ad det ft &CC S0^ Let (H = f ^ ad bserve with r r r r. *-.x. &=& fi +yrj^ that (f^belgs t^(aq) mre fr all s <D, by assumpti. = rak i i * 1with det (H i{x"(aq).further = rak Fffr(s)" &(*) Hece by Sylvester's rule, det (R_(s) ^ 0 fr all s^ <c^ +. Frm the abve A.x it fllws that (ft- is a ivertible elemet f #_( *0) ^ ad there exists x A x % =GL%edA) t ad^ ^ =OT1^ =d\"1^e^(a) 6^.<c) such that Mr+W = x >i^- <^^r> is V^' i Fr future applicatis we have als A x Crllary 2.3. Let FG$(q) iadmit acjq-r.r. (7?r,#.) ad aaq-x.r. (& j^) where a 0. At At O it (p.r.c.f.) f F ad (ft,ft) At The (fl,fr) is a pseud-right-cprime factrizati (p.x.c.f.) f F i the sese f [7, pp ]. At is a pseud-left-cprime factrizati -15-

18 Prf: A A A Apply the defiitis ad the fact that #_(a ) C^Z(0) =#. fr all a < 0. a x We shall w discuss ples f F p(a ) A x Defiiti 2.2. Let p be a ple f F belgig ). The the MacMilla degree f the ple p f F is its maximal rder as a ple f ay mir f ay rder f F. Remark R.2.5 The defiiti f MacMilla degree here is based the fllwig prperties which are true whe F t (s), i.e. is a prper " x. A i ratial trasfer matrix. The characteristic plymial f F G ^ (s) x. is defied t be the least cmm demiatr f all mirs f ay rder f F ad is the characteristic plymial det[si-a] f ay miimal realizati [A,B,C,E] f F, [16], [14]; the MacMilla degree f x. FGC (s) is the degree f its characteristic plymial, [14], [15], [16]: hece the rder f a ple p f F as a zer f its characteristic plymial is its maximal rder as a ple f ay mir f ay rder f F: this ca be called the MacMilla degree f the ple p because this is exactly the MacMilla degree f the term due t p i a partial fracti expasi f F [14], [15]. Mrever let (Nr>Dr), ((D^N^resp.), be a right cprime, (resp. left cprime), plymial matrix factrizati f x. _1 F <E (s) 1, i.e. F = N D~, det D 0, (N,D ) right cprime, p ' rr r rr. (resp. F = D~~TT, det D t 0, (D,N ) left cprime), the det D, X X X X> X * (det D resp.), is equal mdul a zer cstat t the characteristic plymial f F, [11], [17]: hece the MacMilla degree f the ple p f F is the rder f p as a zer f det D, (det D resp.). Smethig. x. A /> i similar ca be de fr ples f F G ^( 0) * a +' -16-

19 x Therem 2.2. Let F >(aq) ad let (#r> r), (Gfy.fl^resp.) be a a -r.r. f F, (resp. a -x.r. f F). Uder these cditis: 0 a) P E <E. is a ple f F, if ad ly if det.fr(p) = 0, (det ^(p) = 0). b) If p j is a ple f F, the the rder f p as a zer f det jy, (det ft resp.), r Prf: Xt is its MacMilla degree, A c) There exists r a ivertible elemet f d ( ) such that det ft = r det ft.. r Fr a) ad b) we shall restrict urselves t a -r.r. ' -1 A ira0 a) Usig F = 1)ft ad the existece f matrices %L e^_(<0.x ad V ed_( ) such that fttt + 7 = I, where all matrices have A elemets i #. (c )» it fllws that g^f+tr-j^1 (2.10) :this expressi ad F are mermrphic i a pe half plae (E,, sme O- < ; furthermre 9/ ad 1/ are aalytic i (D, ad buded i <E,. 1 ^r r a..+ a_ + Let V(p) w be a eighbrhd f p (E, withi C,, the F has a ple 0 ^ -1 at p iff F is ubuded i V(p). Nw if det ft (p) =0 the ft" is ubuded i V(p) ad, because f (2.10), the same must hld fr F: therwise the left had side f (2.10) wuld be buded there. Cversely A, ^ A. _ ^ J_ if F is ubuded i V(p) the det & (p) = 0, therwise F = 7c ft wuld be 1 -* buded there. b) Observe that (#.,$ ) is a -r.c. implies rak ^r(s)~ Lftr(s)J =. Vs (E,, sme ^ <. (2.11) l

20 We fllw w the methd f [18, prf f Fact 2, p. 518]. Let us express -1 ay mir f rder p f F = 7>ft i terms f mirs f rder p f 7) ad ir r 'r mirs f rder.-p f ft. i r By well kw methds ad tatis, A, [19, pp ], we csider the mir f F made f the itersectis f rws i-, i0,...,i ad clums k-,k_,...,k, deted by 1 2 p 1 2 p Jh h \\ \kl k2 " \) =E^(v'''-*p) *"'(S--kp) "lth!-»t<vi> 1< <x <...< p< (2.12) P /i1i2...i\ 2^ VN /klk2'"' k±_p x k i-p l<x.<x0<...<x < 1 2 Q^2 det 0 r where JL<x0<...<x ad ll <!<...<xf, k-<k <...<k ad k'<k*<...<k* 12 p 12.-p 12 p 12.-p frm a cmplete system f idices f {1,2,...,.}. Observe that the umeratr f the abve expressi is prprtial t the Laplace expasi T T T [20, Exercise 7.2.3] f the mir f rder f [&Tflr] by adjigig rws ii...i f ftr t rws 44...k _p f fft- Fr a11 sg^ +' <2,11) implies that at least e such mir rder is zer. Hece fr s = p (E +, 1 at least e umeratr f a expressi (2.12) is zer ad b) fllws usig Defiiti 2.2. c) Csider r = det J3" (det #0)~. Sice det <fr ad det f bth r x r x belg t CL ( ) it fllws that r is a ivertible elemet f B(a) = \{L )] [?C(c )], [1], [2]. Mrever because f b) r has either A /v 1 A H ples r zers i <E,. Hece r ad r belg t (X ( J» [1]» [2]. c + 18-

21 Remark R2.6 By a similar reasig as i the prf f Therem 2.2c), i.e. by usig Therem 2.2b), it is easily shw that if (?,/%) ad a x. y, (ittff) are tw -r.r.'s f FS fj the there exists r a ivertible elemet f&jaj such that det ^ =rdet fr., ad similarly a Qx^ if Gfy^) ad (Aj^) are tw c^-x.r.'s f Fe^(aQ) the there exists ra ivertible elemet f ^_(Q) such that det ft% =rdetfl^. Mrever the latter elemets r, (icludig the e metied i Therem 2.2c)), will ivertible elemets f tfk^) if the demiatr determiats actually belg t tfc(a). This is the case i algrithm 2.1. We are w ready t lk at the uiqueess f aq-admissible represetatis A x. f F G {5( ). This is a geeralizati f Therem 3.4 f [1], a x. Therem 2.3. Let F G #(a ) 1 ad let (#.,&) ad <fi\fi\) be tw 1 r j. t jl a -r.r.'s f F, (respectively let C#»# ) ad (ftj^j) be tw c^-x.r.'s f F). Uder these cditis there exists a.x. a x aea()1 i, (resp.^ed (a ) ) (2.13) such that ad A.x. jj ^ is ivertible i #_(aq) 1,(resp.. is ivertible i a x a.(0) ) <2-14> %-%&.%- * «. (reap. ^ =/^, ^ =tftj - Mrever if ^, #f, jft, #1 elemets i 6^0 ). Prf. have elemets i i.( ) the &ad have r r x x We shall restrict urselves t -r.r.'s with elemets i CL_iaQ)' * f a.x; Defie ft = (ft') ft. Observe that, sice ft ad ft belg t & (a ) 1 x r r r r <-> with det fr ad det ft1 i#~(a ), it fllws by Cramer's Rule that/lad (2'15> -19-

22 a 1 A x (fl are elemets f (E)(q ). Mrever frm # = Fjfr' ad 7>r = FJ9f "r t r r it fllws that (2.15) hlds. Observe fially that /# + Yft. = I ad icjy + 1[U? = * where all matrices have elemets i CL (q ): hece by 1 1 (2.15), Uft + Vft a#c ad $ fl + ff } =^ where all matrices the A left had sides have elemets i & (a ): s sice CL (a ) is a algebra, - A.x. /Rad (IC belg t < _(q ) 1 x, i.e. (2.13)-(2.14) hld. «We give w a defiiti ad a crllary eeded fr further develpmets. Defiiti 2.3. We say that the pair (f) 9Jfr ), ((>&,# )resp.), is a ~ "*-^-^~ r r x x x a -right represetati ( x. a -r.r.), (resp. is a x. q -left represetati ( x a -x.r.)), iff A x A x A x (i) ^ e &_(qq) i ad ^ ^d_(q) ± \ (resp. fr^&jj ad a x. A a i (ii) the pair (/?,# ) is q -r.c, (resp. the pair Oft,,ft,) is a -x.c); r r x x (iii) det^- ^Ci(a ), (resp. det ft0 ^Ci(a )). r - x - Remark R.2.7 It fllws frm Cramerfs rule that if (# 9ft) is a _, a x. x, q -r.r. the F = # vjt G $(q ) ; mrever if we defie tw i r r x q -r.r.'s (1} 9ft) ad ( #',ft) t be equivalet if there exists (f^a ivertible elemet f CLJQ)± ±such that (1^,%.) = (f±fi>ftjd the accrdig t Therem 2.3, there exists a bjecti betwee the set f equivalece classes f x. a -r.r. fs {(/J,ft)} ad the elemets F * i r r x f fe(q ). As a csequece, mdul a equivalece class, e x A ai q -r.r. represets e elemet F G fc( ) ad vice-versa. Smethig similar is als true fr a x. q -x.r. ($ 9i)0). i xx rtx Crllary 2.4x. Let F b( ) x. The fr ay_ qq-x.r. (ft^jly) f F A there exist matrices with elemets i CL (a )» amely t^. ^;r?r,^r,ar,rr -20-

23 such that (i) <#,Ji ) is a aq-r.r. f F. i i Vri V*' X\-%? CA\ *t. 1%: rj L i, ' i (2.16) where if we call the matrices the left had side f (2.16), 'Z/respectively (i+)x(±+) %r, the bviusly &/is a ivertible elemet f &_(c ) ad withut lss f geerality det V= det U1 e 1. (2.16a) Prf: Apply Therem 2.1 ad use Therem 2.3 fr idetificati purpses. Remark R2.8 It is bvius that a similar Therem is valid whe we start frm ay q -r.r. (fl >A>) f F: call this Crllary 2.4r. 3. Feedback System Stability Csider the multi-iput multi-utput feedback system S shw i Fig. 3.1, where all relevat expressis are described i the frequecy A, A, dmai: i) usually P ad C are the plat ad ctrller trasfer fuctis with respective iputs u, u ad utputs y, y ; ii) u is the system iput ad w. the plat iput disturbace; iii) y = y is the system utput ad e = u - y = u the system errr. s s s c * Nte that if we had additive disturbaces applied at the plat utput, say w, the their effect is equivalet t a additial system iput -w. Frm Fig. 3.1 the system equatis are -21-

24 u. u w ṖJ. 1. i i! p- ~at t 1 u. l. A> "C ' 1 i 0~ 0 ' p J u (3.1) Let G =. l ~0. l -C 0 P~", J =. l r! I -. -I 0 i L. J (3.2) ad bserve that -1- = J G. Hece the system's iput-errr trasfer fucti H : (u,w ) \» (u,u ) J * e s p v c p ad iput-utput trasfer fucti H : (u,w ) * (y,y ) satisfy r yspcp A. A, 1 He = (I+G) X, (3.3) JH = I - H. y c (3.4) We have als the fllwig: System Assumptis Al) Fr sme a < 0 A x. a.x P <E( >(q ) x ad 6e6(q ) X (3.5) where P has a qq-x.r. (^,7^^), (3.6) C has a q -r.r. (/), ). lcr cr (3.7) A2) det [I + 6] = det [I +CP] is buded away frm zer at ifiity i i (3.8) Cq

25 Csequetly by the prperties f the algebras AAA &.= $.(0),#,_(<J0) cd p fr q < 0, &(q ), [1], [2] ad by (3.1)-(3.8): (.+ )x( + ) GG g(a) X x (3.9) A ( + )x( + ) A( + )x( + ) Jad J"1 belg ta_(a) * X C^L i i, (3.10) det[i+g]_1 =det[i +PC]"1 =det[i +CP]"1 ^&(q)9 (3.11) i H ad H belg t < >(q (.+ )x(.+ ) ) x X, (3.12) e y A(.+ )x(.+ ) ( + )x( + ) fi ea i ± h ea X X, (3.13) e y ( + )x( + ). A ( + )x( + ) He^(a)i 10~He&(a)i0 (3.14) e ^^ y - It makes therefre sese t have the fllwig: Defiiti 3.1 [18]. The feedback system S described by (3.1)-(3.8) is said t be #.-stable iff bth its iput-errr trasfer fucti He ad its iput-utput trasfer fucti H belg t (X Remark R3.1 Frm (3.13) ce system S is ^-stable the its iput-utput map (u,w ) \ + (u = e,u ;y,y = y ) will (i), fr ay p G [1,«], sp c spcp s take L -iputs it L -utputs with fiite gai ad (ii) will take ctiuus P P ad buded iputs, (peridic iputs, almst peridic iputs, resp.) it utputs belgig t the same classes, [7], [21], By (3.5)-(3.7) the fucti x defied i <E (fr sme q. < a ) by: X==detVcr+W <3-15) A is a elemet f (k ( ) ad is called characteristic fucti f S (i <Ca +). The imprtace f x Is discussed ext. -23-

26 Therem 3.1. Csider a feedback system S specified by (3.1)-(3.8). Csequetly (3.9)-(3.14) hld. Uder these cditis: (i) the system S is ^-stable if ad. ly if X(s) * 0 fr all s e (c+ ; (3.16) (ii) p C, is a zer f x(') (3.17) q t if ad ly if pe <c ^ is a ple f 5 (3.18) r q + r e if ad ly if p e <D ^ is a ple f H ; (3.19) v a + r y (iii) the MacMilla degrees f p (E^ A A, + as a ple f H ad H are the same ad equal t the multiplicity f p as a zer f x(*)» Prf f (i): First frm the defiiti (3.15) ad (3.5)-(3.7) X= det[i +PC] detj&;r det# (3.20). * 00 a. Hece by (3.8) ad sice bth det ft ^ ad det & ~ belg t&_(q), x is buded away frm zer at ifiity i (E,. Thus (3.16) is equivalet t if{ x(s) : s c } > 0. Nw the cclusi fllws by cditi (35) f A A. * Therem 1 f [18]: ideed G ad G2 f [18] crrespd t the preset C ad P; by Crllary 2.3 (ft ^tj 9 (Mcr>A%r),resp.), is a pseud leftcprime factrizati f P, (resp. pseud right-cprime factrizati f C); fially, as idicated i the cclusis f [18], Therem 1 f [18] applies t rectagular systems (i.e. ^.). a x. Prf f (ii) ad (iii): Sice P (&(qq),by Therem 2.1 it fllws that Phas ac-r.r. <^r./3 r). (3'21) mrever by (3.21), (3.6) ad Therem 2.2c): -24-

27 A there exists r a ivertible elemet f #_(%) ysuch that det -r det^pr. (3.22) Recall w relatis (3.2)-(3.4), (3.21), (3.7) ad csider the fllwig A matrices with elemets i^_(q), amely:?h. i '0 Upr -ii i L cr i, f~ fc cr 0. l ft pr (3.23) The it fllws easily usig Crllary 2.2: (.+ )x(4+^) l, Til. (tljv) is a q -r.r. f G 6 $( ) i ad similarly, usig H = (I+G) = ft(r+tl) ad H = J^Gd+G)"1 = j"1/?^/))"1: A (i+)x(i+q) (ft,jd+7)) is a a -r.r. f H e (qq) (i+)x(.+) (J_1^,6+7» is a 0Q-r.r. f Hy ft(qq) (3.24) (3.25) Nw, sice by (3.23), (3.21) ad (3.7) &+=. jbu: ^ 'cr i i.-a -> pr "^.! A i L "cr pr. «A -c, I il r J I i % "ft cr det [8+fl] = det [I +PC] det^cr det #pr. Hece cmparig (3.20), (3.26) ad (3.22):. i ' ft» pr_j A there exists r a ivertible elemet f tf_() such that (3.26) X = r det[j&+tf]. Recallig that r is buded ad buded away frm zer i Qq +9 sme ± < q9 it fllws by Therem 2.2a) ad (3.24), (3.25), (3.27) that the equivaleces (3.17) <=* (3.18) <=* (3.19) hld; similarly cclusi iii) is a csequece f Therem 2.3b) ad (3.24), (3.25), (3.27) (3.27)

28 Remarks. R3.2 Equati (3.15) defiig x is t the ly pssible expressi fr a characteristic fucti f S i (E.: bserve that ay q + J A A A elemet rx f (X ( ), where r is a ivertible elemet f CL Ak used istead f x fr havig the defiig (a ) ca be prperties f a characteristic fucti required i Therem 3.1. We call therefre characteristic fucti f S i (E, ay elemet f the equivalece class f elemets f d (q ) beig equal t x> defied by (3.15), mdul a ivertible elemet f A Q_(gQ). Observe that such a characteristic fucti is btaied if i (3.15) i) the <JQ-x.r. (fi^^ti^) f P is replaced by ather a -*.r. GB1^/?^) r if the tfq-r.r. (flcr»je r) a f C is replaced by ather a -r.r. (fl',#* ) (use Therem 2.3), ad ii) if we use left r right a -represetatis A, A, fr P ad/r C, (use (3.20) ad Therem 2.2c), see als Therem 1 f [18]). The characteristic fucti x give by (3.15) was chse because it suits best ur preset purpses. R3.3 Cditi (3.16) ca be checked by the graphical methds, [22], [23]. R3.4 Nte that accrdig t [32, Therem 3], the ^-stability f clsed lp system S is rbust. 4. Prelimiary "Algebraic" Prblem fr Cmpesatr Desig a x. We are give F &( ) where * x W ±S ay a~*"tm f * e^>(a0) * (4-i) We wat t slve prblem (COMP) (COMP) : Uder assumpti (4.1) defied by a x fr ay $ Q-._( ) slve the equati a x A x. Recall frm Defiiti 2.1 that ft e CL ( ), fl e CL (a ) 1, X - O X - O ' the pair (ft^h^) is qq-x.c. ad det & Ed^a0)- -26-

29 *.*+$#-# (4.2) fr A x A x 9Ge^_(a) i ad/p< _(q) (4.3) Prelimiary ifrmati: because f (4.1), accrdig t Crllary 2.4x, A there exist six matrices with elemets i^_(q ) amely V^^r'Ar'^r'K such that (i) (Hr,ftr) is a aq-r.r. f F (4.4) (ii) i,. i i ~ra UA p-rl-^1 u. i = LAi AJL*r j*lj w 1 ; i I -J where if we call the matrices the left had side f (4.5) respectively 2i/~~ Ci ( ), the bviusly hfis a ivertible elemet f ad withut lss f geerality \f9 (4.5) det'i^= det If1 = 1. Recall further by remark R2.7) that,mdul a equivalece class, e ± x ( a x q -r.r. (il9ft) represets e elemet f $)(a ) We are the lead t the fllwig: Therem 4.1 Csider the prblem (COMP). Uder the assumptis ad tatis specified abve: (i) All the slutis U il] f (COMP) are give by i r-aq TL LtJ 7L/ = ^-i L#J (4.5a) i i.e.-x=%tl-^;^ =^+r l9' (4.6) -27-

30 where "71 is a arbitrary elemet f /7 (q ).x i Mrever, by (4.5), (4.6) is equivalet t, "VlI [_erj r-xi.. -V IhI. l i.e. = -rrx+^ ft =\x+ftzif (4.7) ad (0C>tf) is q -r.c. if ad ly if (11$) is q -r.c. (4.8) (ii) If i additi F(s) +0 as s -» i C, x. ' q + i (4.9) the (OQW is a x a -r.r. if ad ly if (72,&) is a. x q -r.r. i (4.10) Hece accrdig t Remark R2.7) all slutis (XiU) f (COMP) resultig i elemets f ( >(q ) A "" w are geerated by (4.6) by the class a x m^cl (cr ) x ; (7?,fr) is a, x -r.r.} (4.11) O 1 Prf f(i): Nte that if (X,ip is give by (4.6), the usig (4.5), OCM) is a sluti f (4.2)-(4.3), i.e. f (COMP). Nw let (X*ft) be a sluti f (COMP), i.e., f (4.2)-(4.3). OCU) = (a^,]^ft): f The a particular sluti is ideed by (4.5) #^ +ft^ = * Xt remais t ^ add t this particular sluti the geeral sluti f the hmgeeus equati crrespdig t (4.2), amely #X+#0& = 0 (4.12) We claim that ay sluti (X,^) f (4.12) ca be put it the frm x (X,^) = (-J^,7?r7\) fr sme 71E cl_(q) i. T prve this, let (JC,U) be ay sluti f (4.12) ad defie 1\E >(a ) i by: (4.13) -28-

31 Hece by (4.12), (4.1) ad (4.4) tf-ftyaa-wl- (4,14) (4.13) ad (4.14) shw that ay sluti has the required frm but it remais.x t be shw that T\ CL_(0) 1. Use (4.5), (4.13) ad (4.14) t btai ~YX + Yfy =yi> where all matrices the left had side have elemets i a* r «.x <$.(a). Therefre ft^d (a ). KA~- - The equivalece f (4.6) ad (4.7) is a csequece f (4.5). Equivalece (4.8) is als a csequece f (4.5) ad Crllary 2.2. Prf f (ii): Observe that by (4.1) ad (4.9) det &z ed!!(a0) (4'15) ad 7? (s) -» 0 as IsI -> - i C. (4.16) <xv ' x. ' ' q + i where (4.16) fllws by # =j^f, (4.9) ad because all elemets f ft% are i CJL ( ), therefre are buded i <E.. Nw by (4.7) ad (4.16), - fr ay sequece (s.)^ c «a +with \s±\ -» <», i»- «, we have lim if det &{b±) =lim if det ^(Sj) det ^(s±) : sice by (4.15) det O is buded ad buded away frm zer at ifiity i VQ * fllws that +9 it tet%^cf_(aq) if ad ly if det Jfr^tf"^). (4.17) Hece equivalece (4.10) is established usig equivaleces (4.8) ad (4.17). * Remark R4.2. Prblem (COMP) discussed abve is a geeralizati f a methd fr cmpesatr desig i the lumped case fud i [3], [4]. I the sequel the sluti f this prblem will be used t shw cstructively A x. A that ay plat P G &( ) fr sme < 0, with P(s) ^ 0 as s + «> -29-

32 i C,»ca be stabilized by dyamic utput feedback i the sese f Fig. 3.1: mre precisely a cmpesatr C, (see Fig. 3.1), shuld be fud such that the clsed lp system S is CL-stable ad bth the A, A. iput-errr- ad iput-utput trasfer fuctis H resp. H have a give set f ples i the vertical strip [q,0) with specified MacMilla degrees. Mrever we wuld like that C wuld be such that the clsed lp system S is a rbust servmechaism. Kw stabilizati techiques i the lumped case iclude the desig f a state estimatr ad the use f state feedback r the desig f a ctrller, [16], [24], [25], [26], Multivariable servmechaisms are discussed i [27], [28], [29], [30], [31], [32], [33], [34]. 5. Cmpesatr Desig fr Stabilizati, Trackig ad Disturbace Rej ecti A We are give a plat P such that where A x P <B(q ) fr sme q < 0 Phas aq -*.r.c0 t^pt) with J3p 6KJ x (5.1) (5.2) the elemets f P = " [p] are real-valued Laplace trasfrmable distributis with supprt l+; (5.3) P(s) -* 0 as Is -* «> i <E x. ' ' q + i (5.4) Referece sigals (t be tracked) are geerated as fllws: x (0) is a arbitrary vectr i ]R ad s i(t) = a x (t), u (t) = c x (t), vt e m, s s s s s s + ^ where x x x (t) e m s, a ems s, c em0 s s ' s ' s (C,A ) is a cmpletely bservable pair; C5.5) thus u(s) = C(sl-A)""1x (0). -30-

33 Disturbace sigals (t be rejected) are geerated as fllws: w x (0) is a arbitrary vectr i ]R ad w * (t) - v«(t)» wp(t) =Vw(t) vt e m+ -\ where (C,A ) is a cmpletely bservable pair; WW (5.6) thus w (s) =C (si-a )-1x (0) p W WW J Furthermre, with q(...)detig the spectrum f the square matrix betwee the paretheses, we assume that q(aw) U q(ag) C (D+. (5.7> Let w i k ad \J>. dete the miimal plymials f A respectively Aw '\, ad let <j> := mic least cmm multiple f i >. ad \\> (5.8) q = degree f (j> =: 3<j> (5.9) Let Z.M dete the list f zers f <j>, i.e., let z. be a zer f < >, m dete its multiplicity ad let <f> admit k distict zers, the *-[$] (z.»...z.,; Z,...,z«;... ; z,,...,z,) ^i 3 ^_ j ^ (5.10) "l m2 *k {z1,...,zk> = q(aw) U(Ag), (5.11) q = 2 i=l m, z 6 [<}>]«=> z G2[«x (5.12) -31-

34 ad the maximal rder f z as a ple f ay elemet -1 l f Cr(sl-As) xr(0) ad C^sl-A^) xw<0) ay xg(0) GS S \ (5.13) ay xw(0) G]R w is m± (see Appedix 2). Fr trackig ad disturbace rejecti purpses, x pe6(0) i: [33], we assume fr i> (5.14) rak[7jp (s)] =Q V s e CA^ U0(A8). (5.15) Let fially A be a give fiite list f pits f the vertical strip [,0) with the prperty that JlGA^IeA. (5.16) We shall w discuss the Stabilizati, Trackig ad Disturbace Rejecti Prblem (STDP):.x the give data (5.1)-(5.16) fid a ctrller C G 6(q ) Fr, crrespdig t real valued distributis, such that the feedback system S, (3.1)-(3.8), (Fig. 3.1): (i) is ^.-stable; (ii) j [X;tt ] i.e., the list f zers f x (the characteristic fucti + f S defied by (3.15)) i (E is exactly A; q + ^ (iii) V x (0) G3R S, V xw(0) ]R the referece sigals u ( ) defied by (5.5) will be tracked asympttically ad the disturbaces w (*) defied by (5.6) will be rejected asympttically; mre precisely, with Fig. 3.1 i mid: the system errr e ( ) geerated by (u (*)»w ( )) defied by (5.5) ad (5.6) satisfies, fr sme < 0, e (t) = (e ) as t >» s i.e. (5.17) lim e (t)/ea = 0; t-x» s ' -32-

35 x. * i (iv) prperty (iii) is maitaied fr ay perturbed plat P fr which the feedback system S, (3.1)-(3.8), remais ^-stable. A x Remarks. R5.1 C is required t be i 8(0 ) 9 hece 6 is buded at ifiity i <E. This crrespds t C beig a prper ratial matrix i the lumped case. R5.2 Assumpti (5.4) is satisfied by all realistic mdels f physical plats: it reflects the iertia-like prperties f physical plats: it x implies als that, fr CGft), det[i +PC] = det[i +CP] -j- 1 as r. 1 A ix0 as IsI -» 00 i <E :hece, fr ay C sd( ),cditi (3.8) will be + satisfied ad the iput-errr- ad iput-utput trasfer fuctis He ad H f system S (see secti 3) will belg t 6(0 ) a (i+)x(i+) R5.3 Accrdig t the Therem 3.1,cditi (ii) f the (STDP) guara tees that simultaeusly the iput-errr- ad iput-utput trasfer fuc tis H ad H f feedback system S (Fig. 3.1) will have a prescribed set f ples i (E with specified MacMilla degrees amely the distict + pits f A with their give multiplicities. Observe that i the lumped case a similar ple specificati is de fr all f (E. The ituitive idea here is t place the "dmiat ples." Fially it shuld be stressed A, A. tis: we cat say which elemet f H ad H will btai a ple. e y R5.4 Cditi (iii) f the (STDP) will t ly guaratee that feedback system S is a servmechaism: it, i fact, guaratees that the system errr e ( ) s due t the referece ad disturbace sigals cvergest zer faster t tha e as t >«fr sme a < 0. R5.5 Cditi (iv) is a rbustess prperty guarateeig that as lg as the feedback System S remais ^-stable the referece sigals will be tracked ad disturbaces will be rejected asympttically: see als [32, Therem 3]. A. that we place here ples f H A, ad H csidered as matrix-valued fuc- -33-

36 I rder t slve the (STDP) we start by givig a prelimiary defii ti ad result. Fr q G]R csider the fucti space {00 0 e"at f(t) dt< c} (5.18) Lemma 5.1. Let q < 0. Let g G tf(a). Let u G L ad u G <2(q). The the l, q cvluti y = g * u satisfies y(t) = (e ) as t + «. (5.19) -qt Prf. Fr ay f G d(a), let f bee aeiiea defied by Dy f x (t) \zj := e f(t). Frm y = g * u ad y = g * u, we btai ya=ga*ua (5.20) ya = 8a * ua (5.21) J ly (t^ldt1 -* 0 q as t -*- c ad y_(t) -* cstat, say, b as t + ". Frm (5.20), y G L. q j.,q sice u G L-. Csequetly the cstat b = 0; equivaletly, y (t) -> 0 as t -)». Sice y(t) = e0ty (t), (5.19) fllws. «We are w ready fr the sluti f the (STDP). We shall dete by 2[f ;Q] the list f zers f the fucti f i the set Q, ad by [f] the list f zers f f. Algrithm 5.1. Data: We are give the descripti f a plat P, f referece- ad distur A bace-sigals (u («),w ( )), f the plymial <J> ad the lists 2I<}>] ad A: s p see (5.1)-(5.16). Step 1. Pick d ay mic plymial i ]R[s] such that 8d = 3d) = q ad d(s) ^ 0 fr all s G <E qq+ (5.23) -34-

37 Cmmet 1: Observe that ^ G ft (q ) CQ ( ) with real cefficiets, (5.24) zt ] =zw with xez[fi "f *G a. (5.25) Step 2. Pick a x <0 G u (q ), crrespdig t real valued distributis, - ft such that det < >G#(q ) ad Z[det*0;<E ] = A. - q + (5.26) Cmmet 2: The cditis fr JO ca be met by chsig D G R( ) crrespdig t real-valued distributis. x Step 3. Observe that F=P?6*«0>, A x with a -t.r.c^.iy:- C0pJl±,7?p,> (5.27) crrespdig t real-valued distributis, ad fid, usig the techique f Crllary 2.4l9 six matrices with elemets i d ( ) crrespdig t "N real valued distributis, amely %> ifa T> >T, %> vt (5.28) such that: i) i "V. -\ V. i r x.*. I i 0 "* 0 I _ (5.29) where if we call the matrices the left had side f (5.23) "^respectively (.+ )x(.+ ) rl i i %), the bviusly ij is a ivertible elemet f$ (q ) ad withut lss f geerality we ca scale it s that t1. det 2/= det[&j ] = 1 ; (5.29a) 35-

38 ii) Wr»«Q.) is a q -.r. f F. (5.30) Cmmets 3: I (5.28) elemets i CL ( ) crrespdig t real-valued "" distributis are btaied by grupig cmplex cjugate ples ad crres pdig residues. Step 4. Observe F i (5.27) satisfies F(s) -> 0 xj i as Is I > * i (E a+ (5.31) ad,usig (5.26)-(5.31), slve (COMP), defied by (4.2)-(4.3), as fllws:.x i) Pick 7?G CL ( ) i - the class crrespdig t real-valued distributis i A x {TiedjJ 1 : 0ft9P) is a.x q -r.r.} i ii) Set -X := ±71 -\*>i Ui=yjl+ 1^0. (5.32) (5.33) Cmmet 4: (i) the chice (5.32) is equivalet (by Crllary 2.2), t ix pickig 7? e#_(q ) that crrespdig t real valued distributis such. r- -* rak J0(s) = fr all s G A. (5.34) (ii) (X,^) as give by (5.33) is a.x a -r.r crrespdig t real valued distributis (5.35) (iii) Usig (5.29) e has als by (5.33): 7? =- 1/X+ 2^ ; <0 =7? #+ JD Tf.. (5.36) -36-

39 Step 5. Set 7iCI'-= as.-dcr'-h (5'37) C:=7?.O"1, (5.38) cr cr ad STOP. Cmmet 5: (i) A x CGB()1 with q - r.r. (7?.< > ) cr cr crrespdig t real valued distributis (5.39) (ii) C slves the (STDP). (5.40) Therem 5.1. Csider Algrithm 5.1. The C, as give by (5.38), belgs a 4X t ( ) with q - r.r. (7? 90 ) ad slves the (STDP). cr cr Prf: We shall shw that algrithm 5.1 wrks. Step 1 ad Step 2: These steps are self explaatry. Step 3. Because f Crllary 2.4 we ly eed t shw (5.27). Sice by * A XI^ A xl (5.24), 4 e &(a ) ad sice P G 8( ) it fllws that F = P^-G <B(q ) 1, (J) O O (J) Mrever (C Ajl J is a q -.r. f P^-. Ideed P^= C0 A)"1?? ad by v pad>/lpr <J) (j) pfcd p& (5.2), (5.8)-(5.15) det^^e^^a^ ad rak[eopa(s) ^- 7?p (s)] =Q fr fr all s G (E, i.e. by Crllary 2.2 (P ^97l ) is a - Jl.c.. qq+* ' ' p d p^ Step 4. Because f Therem 4.1 ad Crllary 2.2, we eed ly t shw (5.31). Nw bserve that this fllws frm (5.24), (5.27) ad (5.4). Step 5. a) (5.39) is true by the fact that (3C^4) is a ±x q -r.r.. Ideed bserve that the equati describig (COMP) is give by -37-

40 < =7^+4?=v*+i^ P* where we used (5.27) ad where by (5.25) ad (5.10)-(5.11) J3(s) = "ft 0(s) 3T(s) px, s G a(ag) Uq(Aw). Therefre by (5.7), (5.26), (5.16), (5.14), (5.15), rakbocs)] =, V s G c(a ) U a(a ). Hece this ad (5.35) imply that 0C(s) rak v>ss = V s G (D V Nw (5.35) ad (5.24) imply that det [ft -] G$~(a ), ad hece by Crllary 2.2 the pair (X,^J) A. is q - r.c b) We shw w that (5.40) is true. i) First fr the feedback system S (3.1)-(3.8) (Fig. 3.1), (where the plat trasfer fucti P is is give by (5.1)-(5.4) ad (5.14)-(5.15), ad where the ctrller trasfer fucti satisfies (5.37)-(5.39)), the A, A. /V trasfer fuctis H. ad H are well defied ad have elemets i C(a ) e y v (see Remark R5.2). ii) The equati (4.1) f (COMP) reads here: <D = 7? X+ >Ur= JO A, (5.41) I l\j p cr pit cr' x ' where we used (5.27) ad (5.37). Hece the characteristic fucti (3.15) f S satisfies here: X = det 3, (5.42) such that by usig (5.26) -38-

41 Hx;«J =?[detio;«j = A- (5.43) _+ Hece als by (5.16): q_+ X(s) * 0 V s G <E+. (5.44) It fllws that by (5.43) prperty (ii) f the (STDP) is verified, while prperty (i) fllws frm (5.44) ad Therem 3.1. iii) We shall w shw that the trackig prperty (iii) f the (STDP) hlds. If H resp. H dete trasfer fuctis f System S (Fig. 3.1) es,us " e^»w«defied by: H : u H" e with w = 0, (5.45) e,u s s p s' s r H : w "" e with u = 0, (5.46) e,w p s s s* p the usig (5.2), (5.39), (5.37), (5.41), K. "t1^"1 -^cr^par-vcrl^p* "Ij^pt (5'47) s s H =- [I+PC]'1^ =-8 L0 J) +7? 07) rhf 0=-4^""^ <5'48> e,w L J cr^pflrcr 'p& cr p d p s p Observe w that by (5.26) ad [7, Appedix D], det<# belgs t x /» CL() fr sme q G (q,0). Nw, sice 6 ( ) C^?(q), it fllws there a x fre, by (5.2) ad sice Ij Gd_(Q), that t a x x -F Veaw * (5-50) -39-

42 Furthermre by (5.5)-(5.13) ad (5.23): Vxs(0),^1[ cs(si-as)-1 xs(0)] GL^ ^ ( (5.51) ad its derivative belgs t C((), Vxw(0),^-1[^w(sI-V-1 ^(0)] Gl"^ 1 ad its derivative belgs t Ct(a). (5.52) Csider w the system errr e due t (u,w ) give by (5.5)-(5.7), the s s V xs(0)' V *W(0) A A, A, A, ^ e = H u + H w s e,u s e,w p s s s p ^ =^V [d Cs(sI"As)"1 x(0> 1+If\l t Cw[sl-Aw)-Ixw(0) ] whe we used (5.45)-(5.46), (5.47)-(5.48), (5.5)-(5.6). Therefre by (5.49)-(5.53) ad Lemma 5.1 (5.53) V xg(0), V xw(0), eg(t) =(e0t) ast+«. Q.E.D. iv) Prperty (iv) f the (STDP) is shw t be true as fllws. 3 Xi Let P G 8(a) be ay perturbed plat fr which the feedback system S (3.1)-(3.8) remais ^-stable. By Therem 2.1 P admits - A.r.CO ftl) ad the characteristic fucti x (3.15) becmes where X = det JO, - x -V>cr+Vke«-( ) Mrever (3.8) ad (3.20) read w respectively -40-

43 det [I +PC] is buded away frm zer at ifiity i <E, j^a. _ a+ X = det[i +PC]det jo det JO.. cr p r A It fllws that x is buded away frm zer at ifiity i <E ad by U-stability ad Therem 3.1 x(s) f 0 fr all s i d. I fact mre is A *^ true: sice x ca ly have a fiite umber f zers i the strip [,0), it fllws that ]a tq,0) such that x(s) i 0V sg <c_. Hece 7, i.e. det ^ is buded away frm zer i <E q<0: this implies, [7, Appedix D], q+ -_-1 A _ X A A that ft belgs t QX), (bserve als that CL (c ) c #(q) such that A _ x - #G< (q) ). Observe w that the trasfer fuctis i (5.47) ad (5.48) read \,us =W%. -* \, p= -i?r\t --- A_x A x where jtf"1^ <2() ad^xrty Gtf(G) i; ad qg[aq,0). The reasig f (ii) ca w be repeated t shw that V x (0), V x (0), eg(t) = (e ) as t -> «with ^ [a,0). Hece prperty (iii) f the (STDP) is maitaied. -41-

44 Appedix 1: R(a ) is a Euclidea Rig Recall that a pricipal ideal rig R, [12], is called a Euclidea rig. [8], if the fllwig prperties hld: 1. Assciated with every zer elemet f R is egative umber y(a) called the gauge f a; 2. Fr every pair a, b f R, b 0 there exist tw elemets r ad q f R such that a = bq + r ad either r = 0 r else y(r) < y(b). Recall that (ft(q ) is a pricipal ideal rig, [9], ad that the fllw ig fact hlds. Fact Al. Let a G <fl(q ), let tt(s) = s - a +1, the a = e,/try(a) a a*t* (Al.l) where e is a ivertible elemet f fl(q ), a ' i is a plymial which is zer at all zers f a ad where else, y(a) = umber f zers f a i (E ad at ifiity. (A1.2) v Cmmet: If a is ivertible i fl( ), the y(a) = 0. w Prf: a = /d where ad d are cprime plymials. Factrizig 1 CL ci cl cl = where (respectively ) takes it accut the zers f a a a+ a at a i <E (respectively (E ), ad bservig that d = d ad y(a) = 3(,) ", + 9(d ) - 3( ) «3(d ) - 3( ), we get a = e /iry^a; with a a 3. a~ a a*i e = TTY(a) /d. (A1.3) a a- a +We use Siglerfs term "gauge," [36], istead f MacDuffee's "stathm," [8]: "degree" culd als have bee used but wuld be misleadig sice we hadle plymials at the same time. -42-

45 Observe that e is ivertible i fl(q ). CL O We are w able t defie a Euclid Algrithm fr (L(q) with the gauge defied by (A1.2). Euclid Algrithm fr (R,(q): Give aad bi 6{(q),b^0, fid rg6{(q) ad q efi( ) such that a = bq + r where r = 0 r y(r) < y(b). Step 1. If y(b) _< y(a) g t step 2, else a = bo + a i.e. r = a,q = 0 ad y(r) = y(a) < y(b). Stp. Step 2. Apply Fact Al.l t a ad b, i.e. Step 3. Develp a+/iry(a) ad b+/iry(b) as plymials i w:= it = (s- +1)~, i.e., a+,,. _ v k Y(a)-k w* k (^at)(w)" a+w where, G C, a+ 3(,.) (Jfe<-)- E ^(b)'1 where ^ad bserve that the degree i w f these plymials is the gauge f a ad b resp.. + Step 4. Divide the plymial ( frr) «by the plymial ( fcj) (*) : T V<*/ TT "i- -43-

46 the there exist plymials x(w) ad y(w) such that (~^at)(w) =<-^y>^)x(w) +y(w) (A1.5) h+ with either y=0r 3(y(w)) <W-^yMw)) = Y(b). (A1.6) Step 5. Reitrduce the ivertible elemets e ad e, f (A1.4) t btai a = bq + r where q(s) = ^ ea(s) x(^-^j-) 1, (A1.7) r(s) =ea(s) y(7^i), (A1.8) ad bserve that either r = 0 r Y(r) < Y(b). (A1.9) Stp. a Justificati f the Euclid Algrithm We check the result f Step 5. Observe that q ad r as give by (A1.7)-(A1.8) are ft( ). Hece we must shw that if r ^ 0 the Y(r) < y(b). Observe w that by (A1.2) V a, b G (S((a ), a 4 0, b i 0, Y(ab) = Y(a) + y(b). Hece by (A1.8), with y(e ) = 0 we get Y(r) = a Y(y( +7"^* Hece, i view f (Al.6), if we ca shw that Y(y) = Y(y(s,Q +1)) 3(y(w)) the we are de. Nw y G ${( ), s we get by Fact Al.1-44-

Copyright 1978, by the author(s). All rights reserved.

Copyright 1978, by the author(s). All rights reserved. Cpyright 1978, by the authr(s). All rights reserved. Permissi t make digital r hard cpies f all r part f this wrk fr persal r classrm use is grated withut fee prvided that cpies are t made r distributed

More information

Multi-objective Programming Approach for. Fuzzy Linear Programming Problems

Multi-objective Programming Approach for. Fuzzy Linear Programming Problems Applied Mathematical Scieces Vl. 7 03. 37 8-87 HIKARI Ltd www.m-hikari.cm Multi-bective Prgrammig Apprach fr Fuzzy Liear Prgrammig Prblems P. Padia Departmet f Mathematics Schl f Advaced Scieces VIT Uiversity

More information

Chapter 3.1: Polynomial Functions

Chapter 3.1: Polynomial Functions Ntes 3.1: Ply Fucs Chapter 3.1: Plymial Fuctis I Algebra I ad Algebra II, yu ecutered sme very famus plymial fuctis. I this secti, yu will meet may ther members f the plymial family, what sets them apart

More information

D.S.G. POLLOCK: TOPICS IN TIME-SERIES ANALYSIS STATISTICAL FOURIER ANALYSIS

D.S.G. POLLOCK: TOPICS IN TIME-SERIES ANALYSIS STATISTICAL FOURIER ANALYSIS STATISTICAL FOURIER ANALYSIS The Furier Represetati f a Sequece Accrdig t the basic result f Furier aalysis, it is always pssible t apprximate a arbitrary aalytic fucti defied ver a fiite iterval f the

More information

K [f(t)] 2 [ (st) /2 K A GENERALIZED MEIJER TRANSFORMATION. Ku(z) ()x) t -)-I e. K(z) r( + ) () (t 2 I) -1/2 e -zt dt, G. L. N. RAO L.

K [f(t)] 2 [ (st) /2 K A GENERALIZED MEIJER TRANSFORMATION. Ku(z) ()x) t -)-I e. K(z) r( + ) () (t 2 I) -1/2 e -zt dt, G. L. N. RAO L. Iterat. J. Math. & Math. Scl. Vl. 8 N. 2 (1985) 359-365 359 A GENERALIZED MEIJER TRANSFORMATION G. L. N. RAO Departmet f Mathematics Jamshedpur C-perative Cllege f the Rachi Uiversity Jamshedpur, Idia

More information

A New Method for Finding an Optimal Solution. of Fully Interval Integer Transportation Problems

A New Method for Finding an Optimal Solution. of Fully Interval Integer Transportation Problems Applied Matheatical Scieces, Vl. 4, 200,. 37, 89-830 A New Methd fr Fidig a Optial Sluti f Fully Iterval Iteger Trasprtati Prbles P. Padia ad G. Nataraja Departet f Matheatics, Schl f Advaced Scieces,

More information

The Excel FFT Function v1.1 P. T. Debevec February 12, The discrete Fourier transform may be used to identify periodic structures in time ht.

The Excel FFT Function v1.1 P. T. Debevec February 12, The discrete Fourier transform may be used to identify periodic structures in time ht. The Excel FFT Fucti v P T Debevec February 2, 26 The discrete Furier trasfrm may be used t idetify peridic structures i time ht series data Suppse that a physical prcess is represeted by the fucti f time,

More information

Markov processes and the Kolmogorov equations

Markov processes and the Kolmogorov equations Chapter 6 Markv prcesses ad the Klmgrv equatis 6. Stchastic Differetial Equatis Csider the stchastic differetial equati: dx(t) =a(t X(t)) dt + (t X(t)) db(t): (SDE) Here a(t x) ad (t x) are give fuctis,

More information

UNIVERSITY OF TECHNOLOGY. Department of Mathematics PROBABILITY THEORY, STATISTICS AND OPERATIONS RESEARCH GROUP. Memorandum COSOR 76-10

UNIVERSITY OF TECHNOLOGY. Department of Mathematics PROBABILITY THEORY, STATISTICS AND OPERATIONS RESEARCH GROUP. Memorandum COSOR 76-10 EI~~HOVEN UNIVERSITY OF TECHNOLOGY Departmet f Mathematics PROBABILITY THEORY, STATISTICS AND OPERATIONS RESEARCH GROUP Memradum COSOR 76-10 O a class f embedded Markv prcesses ad recurrece by F.H. Sims

More information

Fourier Method for Solving Transportation. Problems with Mixed Constraints

Fourier Method for Solving Transportation. Problems with Mixed Constraints It. J. Ctemp. Math. Scieces, Vl. 5, 200,. 28, 385-395 Furier Methd fr Slvig Trasprtati Prblems with Mixed Cstraits P. Padia ad G. Nataraja Departmet f Mathematics, Schl f Advaced Scieces V I T Uiversity,

More information

Function representation of a noncommutative uniform algebra

Function representation of a noncommutative uniform algebra Fucti represetati f a cmmutative uifrm algebra Krzysztf Jarsz Abstract. We cstruct a Gelfad type represetati f a real cmmutative Baach algebra A satisfyig f 2 = kfk 2, fr all f 2 A:. Itrducti A uifrm algebra

More information

are specified , are linearly independent Otherwise, they are linearly dependent, and one is expressed by a linear combination of the others

are specified , are linearly independent Otherwise, they are linearly dependent, and one is expressed by a linear combination of the others Chater 3. Higher Order Liear ODEs Kreyszig by YHLee;4; 3-3. Hmgeeus Liear ODEs The stadard frm f the th rder liear ODE ( ) ( ) = : hmgeeus if r( ) = y y y y r Hmgeeus Liear ODE: Suersiti Pricile, Geeral

More information

MATH Midterm Examination Victor Matveev October 26, 2016

MATH Midterm Examination Victor Matveev October 26, 2016 MATH 33- Midterm Examiati Victr Matveev Octber 6, 6. (5pts, mi) Suppse f(x) equals si x the iterval < x < (=), ad is a eve peridic extesi f this fucti t the rest f the real lie. Fid the csie series fr

More information

Grade 3 Mathematics Course Syllabus Prince George s County Public Schools

Grade 3 Mathematics Course Syllabus Prince George s County Public Schools Ctet Grade 3 Mathematics Curse Syllabus Price Gerge s Cuty Public Schls Prerequisites: Ne Curse Descripti: I Grade 3, istructial time shuld fcus fur critical areas: (1) develpig uderstadig f multiplicati

More information

Ch. 1 Introduction to Estimation 1/15

Ch. 1 Introduction to Estimation 1/15 Ch. Itrducti t stimati /5 ample stimati Prblem: DSB R S f M f s f f f ; f, φ m tcsπf t + φ t f lectrics dds ise wt usually white BPF & mp t s t + w t st. lg. f & φ X udi mp cs π f + φ t Oscillatr w/ f

More information

Chapter 5. Root Locus Techniques

Chapter 5. Root Locus Techniques Chapter 5 Rt Lcu Techique Itrducti Sytem perfrmace ad tability dt determied dby cled-lp l ple Typical cled-lp feedback ctrl ytem G Ope-lp TF KG H Zer -, - Ple 0, -, - K Lcati f ple eaily fud Variati f

More information

Quantum Mechanics for Scientists and Engineers. David Miller

Quantum Mechanics for Scientists and Engineers. David Miller Quatum Mechaics fr Scietists ad Egieers David Miller Time-depedet perturbati thery Time-depedet perturbati thery Time-depedet perturbati basics Time-depedet perturbati thery Fr time-depedet prblems csider

More information

Intermediate Division Solutions

Intermediate Division Solutions Itermediate Divisi Slutis 1. Cmpute the largest 4-digit umber f the frm ABBA which is exactly divisible by 7. Sluti ABBA 1000A + 100B +10B+A 1001A + 110B 1001 is divisible by 7 (1001 7 143), s 1001A is

More information

5.1 Two-Step Conditional Density Estimator

5.1 Two-Step Conditional Density Estimator 5.1 Tw-Step Cditial Desity Estimatr We ca write y = g(x) + e where g(x) is the cditial mea fucti ad e is the regressi errr. Let f e (e j x) be the cditial desity f e give X = x: The the cditial desity

More information

Fourier Series & Fourier Transforms

Fourier Series & Fourier Transforms Experimet 1 Furier Series & Furier Trasfrms MATLAB Simulati Objectives Furier aalysis plays a imprtat rle i cmmuicati thery. The mai bjectives f this experimet are: 1) T gai a gd uderstadig ad practice

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

Full algebra of generalized functions and non-standard asymptotic analysis

Full algebra of generalized functions and non-standard asymptotic analysis Full algebra f geeralized fuctis ad -stadard asympttic aalysis Tdr D. Tdrv Has Veraeve Abstract We cstruct a algebra f geeralized fuctis edwed with a caical embeddig f the space f Schwartz distributis.

More information

Mean residual life of coherent systems consisting of multiple types of dependent components

Mean residual life of coherent systems consisting of multiple types of dependent components Mea residual life f cheret systems csistig f multiple types f depedet cmpets Serka Eryilmaz, Frak P.A. Cle y ad Tahai Cle-Maturi z February 20, 208 Abstract Mea residual life is a useful dyamic characteristic

More information

ENGI 4421 Central Limit Theorem Page Central Limit Theorem [Navidi, section 4.11; Devore sections ]

ENGI 4421 Central Limit Theorem Page Central Limit Theorem [Navidi, section 4.11; Devore sections ] ENGI 441 Cetral Limit Therem Page 11-01 Cetral Limit Therem [Navidi, secti 4.11; Devre sectis 5.3-5.4] If X i is t rmally distributed, but E X i, V X i ad is large (apprximately 30 r mre), the, t a gd

More information

IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 2 Issue 12, December

IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 2 Issue 12, December IJISET - Iteratial Jural f Ivative Sciece, Egieerig & Techlgy, Vl Issue, December 5 wwwijisetcm ISSN 48 7968 Psirmal ad * Pararmal mpsiti Operatrs the Fc Space Abstract Dr N Sivamai Departmet f athematics,

More information

ALE 26. Equilibria for Cell Reactions. What happens to the cell potential as the reaction proceeds over time?

ALE 26. Equilibria for Cell Reactions. What happens to the cell potential as the reaction proceeds over time? Name Chem 163 Secti: Team Number: AL 26. quilibria fr Cell Reactis (Referece: 21.4 Silberberg 5 th editi) What happes t the ptetial as the reacti prceeds ver time? The Mdel: Basis fr the Nerst quati Previusly,

More information

MATHEMATICS 9740/01 Paper 1 14 Sep hours

MATHEMATICS 9740/01 Paper 1 14 Sep hours Cadidate Name: Class: JC PRELIMINARY EXAM Higher MATHEMATICS 9740/0 Paper 4 Sep 06 3 hurs Additial Materials: Cver page Aswer papers List f Frmulae (MF5) READ THESE INSTRUCTIONS FIRST Write yur full ame

More information

Exhibit 2-9/30/15 Invoice Filing Page 1841 of Page 3660 Docket No

Exhibit 2-9/30/15 Invoice Filing Page 1841 of Page 3660 Docket No xhibit 2-9/3/15 Invie Filing Pge 1841 f Pge 366 Dket. 44498 F u v 7? u ' 1 L ffi s xs L. s 91 S'.e q ; t w W yn S. s t = p '1 F? 5! 4 ` p V -', {} f6 3 j v > ; gl. li -. " F LL tfi = g us J 3 y 4 @" V)

More information

ON FREE RING EXTENSIONS OF DEGREE N

ON FREE RING EXTENSIONS OF DEGREE N I terat. J. Math. & Mah. Sci. Vl. 4 N. 4 (1981) 703-709 703 ON FREE RING EXTENSIONS OF DEGREE N GEORGE SZETO Mathematics Departmet Bradley Uiversity Peria, Illiis 61625 U.S.A. (Received Jue 25, 1980) ABSTRACT.

More information

BIO752: Advanced Methods in Biostatistics, II TERM 2, 2010 T. A. Louis. BIO 752: MIDTERM EXAMINATION: ANSWERS 30 November 2010

BIO752: Advanced Methods in Biostatistics, II TERM 2, 2010 T. A. Louis. BIO 752: MIDTERM EXAMINATION: ANSWERS 30 November 2010 BIO752: Advaced Methds i Bistatistics, II TERM 2, 2010 T. A. Luis BIO 752: MIDTERM EXAMINATION: ANSWERS 30 Nvember 2010 Questi #1 (15 pits): Let X ad Y be radm variables with a jit distributi ad assume

More information

A Hadamard-type lower bound for symmetric diagonally dominant positive matrices

A Hadamard-type lower bound for symmetric diagonally dominant positive matrices A Hadamard-type lower boud for symmetric diagoally domiat positive matrices Christopher J. Hillar, Adre Wibisoo Uiversity of Califoria, Berkeley Jauary 7, 205 Abstract We prove a ew lower-boud form of

More information

Active redundancy allocation in systems. R. Romera; J. Valdés; R. Zequeira*

Active redundancy allocation in systems. R. Romera; J. Valdés; R. Zequeira* Wrkig Paper -6 (3) Statistics ad Ecmetrics Series March Departamet de Estadística y Ecmetría Uiversidad Carls III de Madrid Calle Madrid, 6 893 Getafe (Spai) Fax (34) 9 64-98-49 Active redudacy allcati

More information

A TYPE OF PRIMITIVE ALGEBRA*

A TYPE OF PRIMITIVE ALGEBRA* A TYPE OF PRIMITIVE ALGEBRA* BT J. H. M. WEDDERBURN I a recet paper,t L. E. Dickso has discussed the liear associative algebra, A, defied by the relatios xy = yo(x), y = g, where 8 ( x ) is a polyomial

More information

Author. Introduction. Author. o Asmir Tobudic. ISE 599 Computational Modeling of Expressive Performance

Author. Introduction. Author. o Asmir Tobudic. ISE 599 Computational Modeling of Expressive Performance ISE 599 Cmputatial Mdelig f Expressive Perfrmace Playig Mzart by Aalgy: Learig Multi-level Timig ad Dyamics Strategies by Gerhard Widmer ad Asmir Tbudic Preseted by Tsug-Ha (Rbert) Chiag April 5, 2006

More information

Solutions to Midterm II. of the following equation consistent with the boundary condition stated u. y u x y

Solutions to Midterm II. of the following equation consistent with the boundary condition stated u. y u x y Sltis t Midterm II Prblem : (pts) Fid the mst geeral slti ( f the fllwig eqati csistet with the bdary cditi stated y 3 y the lie y () Slti : Sice the system () is liear the slti is give as a sperpsiti

More information

SOME FIBONACCI AND LUCAS IDENTITIES. L. CARLITZ Dyke University, Durham, North Carolina and H. H. FERNS Victoria, B. C, Canada

SOME FIBONACCI AND LUCAS IDENTITIES. L. CARLITZ Dyke University, Durham, North Carolina and H. H. FERNS Victoria, B. C, Canada SOME FIBONACCI AND LUCAS IDENTITIES L. CARLITZ Dyke Uiversity, Durham, North Carolia ad H. H. FERNS Victoria, B. C, Caada 1. I the usual otatio, put (1.1) F _

More information

x 2 x 3 x b 0, then a, b, c log x 1 log z log x log y 1 logb log a dy 4. dx As tangent is perpendicular to the x axis, slope

x 2 x 3 x b 0, then a, b, c log x 1 log z log x log y 1 logb log a dy 4. dx As tangent is perpendicular to the x axis, slope The agle betwee the tagets draw t the parabla y = frm the pit (-,) 5 9 6 Here give pit lies the directri, hece the agle betwee the tagets frm that pit right agle Ratig :EASY The umber f values f c such

More information

Study of Energy Eigenvalues of Three Dimensional. Quantum Wires with Variable Cross Section

Study of Energy Eigenvalues of Three Dimensional. Quantum Wires with Variable Cross Section Adv. Studies Ther. Phys. Vl. 3 009. 5 3-0 Study f Eergy Eigevalues f Three Dimesial Quatum Wires with Variale Crss Secti M.. Sltai Erde Msa Departmet f physics Islamic Aad Uiversity Share-ey rach Ira alrevahidi@yah.cm

More information

Chapter 15: Fourier Series

Chapter 15: Fourier Series Chapter 5: Fourier Series Ex. 5.3- Ex. 5.3- Ex. 5.- f(t) K is a Fourier Series. he coefficiets are a K; a b for. f(t) AcosZ t is a Fourier Series. a A ad all other coefficiets are zero. Set origi at t,

More information

An S-type upper bound for the largest singular value of nonnegative rectangular tensors

An S-type upper bound for the largest singular value of nonnegative rectangular tensors Ope Mat. 06 4 95 933 Ope Matematics Ope Access Researc Article Jiaxig Za* ad Caili Sag A S-type upper bud r te largest sigular value egative rectagular tesrs DOI 0.55/mat-06-0085 Received August 3, 06

More information

The generalized marginal rate of substitution

The generalized marginal rate of substitution Jural f Mathematical Ecmics 31 1999 553 560 The geeralized margial rate f substituti M Besada, C Vazuez ) Facultade de Ecmicas, UiÕersidade de Vig, Aptd 874, 3600 Vig, Spai Received 31 May 1995; accepted

More information

, the random variable. and a sample size over the y-values 0:1:10.

, the random variable. and a sample size over the y-values 0:1:10. Lecture 3 (4//9) 000 HW PROBLEM 3(5pts) The estimatr i (c) f PROBLEM, p 000, where { } ~ iid bimial(,, is 000 e f the mst ppular statistics It is the estimatr f the ppulati prprti I PROBLEM we used simulatis

More information

A Study on Estimation of Lifetime Distribution with Covariates Under Misspecification

A Study on Estimation of Lifetime Distribution with Covariates Under Misspecification Prceedigs f the Wrld Cgress Egieerig ad Cmputer Sciece 2015 Vl II, Octber 21-23, 2015, Sa Fracisc, USA A Study Estimati f Lifetime Distributi with Cvariates Uder Misspecificati Masahir Ykyama, Member,

More information

It is always the case that unions, intersections, complements, and set differences are preserved by the inverse image of a function.

It is always the case that unions, intersections, complements, and set differences are preserved by the inverse image of a function. MATH 532 Measurable Fuctios Dr. Neal, WKU Throughout, let ( X, F, µ) be a measure space ad let (!, F, P ) deote the special case of a probability space. We shall ow begi to study real-valued fuctios defied

More information

The Acoustical Physics of a Standing Wave Tube

The Acoustical Physics of a Standing Wave Tube UIUC Physics 93POM/Physics 406POM The Physics f Music/Physics f Musical Istrumets The Acustical Physics f a Stadig Wave Tube A typical cylidrical-shaped stadig wave tube (SWT) {aa impedace tube} f legth

More information

Super-efficiency Models, Part II

Super-efficiency Models, Part II Super-efficiec Mdels, Part II Emilia Niskae The 4th f Nvember S steemiaalsi Ctets. Etesis t Variable Returs-t-Scale (0.4) S steemiaalsi Radial Super-efficiec Case Prblems with Radial Super-efficiec Case

More information

Review of Important Concepts

Review of Important Concepts Appedix 1 Review f Imprtat Ccepts I 1 AI.I Liear ad Matrix Algebra Imprtat results frm liear ad matrix algebra thery are reviewed i this secti. I the discussis t fllw it is assumed that the reader already

More information

Homework Set #3 - Solutions

Homework Set #3 - Solutions EE 15 - Applicatios of Covex Optimizatio i Sigal Processig ad Commuicatios Dr. Adre Tkaceko JPL Third Term 11-1 Homework Set #3 - Solutios 1. a) Note that x is closer to x tha to x l i the Euclidea orm

More information

ENGI 4421 Central Limit Theorem Page Central Limit Theorem [Navidi, section 4.11; Devore sections ]

ENGI 4421 Central Limit Theorem Page Central Limit Theorem [Navidi, section 4.11; Devore sections ] ENGI 441 Cetral Limit Therem Page 11-01 Cetral Limit Therem [Navidi, secti 4.11; Devre sectis 5.3-5.4] If X i is t rmally distributed, but E X i, V X i ad is large (apprximately 30 r mre), the, t a gd

More information

Design and Implementation of Cosine Transforms Employing a CORDIC Processor

Design and Implementation of Cosine Transforms Employing a CORDIC Processor C16 1 Desig ad Implemetati f Csie Trasfrms Emplyig a CORDIC Prcessr Sharaf El-Di El-Nahas, Ammar Mttie Al Hsaiy, Magdy M. Saeb Arab Academy fr Sciece ad Techlgy, Schl f Egieerig, Alexadria, EGYPT ABSTRACT

More information

Future Self-Guides. E,.?, :0-..-.,0 Q., 5...q ',D5', 4,] 1-}., d-'.4.., _. ZoltAn Dbrnyei Introduction. u u rt 5,4) ,-,4, a. a aci,, u 4.

Future Self-Guides. E,.?, :0-..-.,0 Q., 5...q ',D5', 4,] 1-}., d-'.4.., _. ZoltAn Dbrnyei Introduction. u u rt 5,4) ,-,4, a. a aci,, u 4. te SelfGi ZltAn Dbnyei Intdtin ; ) Q) 4 t? ) t _ 4 73 y S _ E _ p p 4 t t 4) 1_ ::_ J 1 `i () L VI O I4 " " 1 D 4 L e Q) 1 k) QJ 7 j ZS _Le t 1 ej!2 i1 L 77 7 G (4) 4 6 t (1 ;7 bb F) t f; n (i M Q) 7S

More information

E o and the equilibrium constant, K

E o and the equilibrium constant, K lectrchemical measuremets (Ch -5 t 6). T state the relati betwee ad K. (D x -b, -). Frm galvaic cell vltage measuremet (a) K sp (D xercise -8, -) (b) K sp ad γ (D xercise -9) (c) K a (D xercise -G, -6)

More information

THE MATRIX VERSION FOR THE MULTIVARIABLE HUMBERT POLYNOMIALS

THE MATRIX VERSION FOR THE MULTIVARIABLE HUMBERT POLYNOMIALS Misklc Mathematical Ntes HU ISSN 1787-2405 Vl. 13 (2012), N. 2, pp. 197 208 THE MATRI VERSION FOR THE MULTIVARIABLE HUMBERT POLYNOMIALS RABİA AKTAŞ, BAYRAM ÇEKIM, AN RECEP ŞAHI Received 4 May, 2011 Abstract.

More information

Identical Particles. We would like to move from the quantum theory of hydrogen to that for the rest of the periodic table

Identical Particles. We would like to move from the quantum theory of hydrogen to that for the rest of the periodic table We wuld like t ve fr the quatu thery f hydrge t that fr the rest f the peridic table Oe electr at t ultielectr ats This is cplicated by the iteracti f the electrs with each ther ad by the fact that the

More information

(I.C) Matrix algebra

(I.C) Matrix algebra (IC) Matrix algebra Before formalizig Gauss-Jorda i terms of a fixed procedure for row-reducig A, we briefly review some properties of matrix multiplicatio Let m{ [A ij ], { [B jk ] p, p{ [C kl ] q be

More information

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s A g la di ou s F. L. 462 E l ec tr on ic D ev el op me nt A i ng er A.W.S. 371 C. A. M. A l ex an de r 236 A d mi ni st ra ti on R. H. (M rs ) A n dr ew s P. V. 326 O p ti ca l Tr an sm is si on A p ps

More information

EECE 301 Signals & Systems

EECE 301 Signals & Systems EECE 301 Sigals & Systems Prof. Mark Fowler Note Set #8 D-T Covolutio: The Tool for Fidig the Zero-State Respose Readig Assigmet: Sectio 2.1-2.2 of Kame ad Heck 1/14 Course Flow Diagram The arrows here

More information

a for a 1 1 matrix. a b a b 2 2 matrix: We define det ad bc 3 3 matrix: We define a a a a a a a a a a a a a a a a a a

a for a 1 1 matrix. a b a b 2 2 matrix: We define det ad bc 3 3 matrix: We define a a a a a a a a a a a a a a a a a a Math E-2b Lecture #8 Notes This week is all about determiats. We ll discuss how to defie them, how to calculate them, lear the allimportat property kow as multiliearity, ad show that a square matrix A

More information

Chapter 1: Fundamentals

Chapter 1: Fundamentals Chapter 1: Fudametals 1.1 Real Numbers Irratial umbers are real umbers that cat be expressed as ratis f itegers. That such umbers exist was a prfud embarrassmet t the Pythagrea brtherhd, ad they are said

More information

Solutions. Definitions pertaining to solutions

Solutions. Definitions pertaining to solutions Slutis Defiitis pertaiig t slutis Slute is the substace that is disslved. It is usually preset i the smaller amut. Slvet is the substace that des the disslvig. It is usually preset i the larger amut. Slubility

More information

Axioms of Measure Theory

Axioms of Measure Theory MATH 532 Axioms of Measure Theory Dr. Neal, WKU I. The Space Throughout the course, we shall let X deote a geeric o-empty set. I geeral, we shall ot assume that ay algebraic structure exists o X so that

More information

[1 & α(t & T 1. ' ρ 1

[1 & α(t & T 1. ' ρ 1 NAME 89.304 - IGNEOUS & METAMORPHIC PETROLOGY DENSITY & VISCOSITY OF MAGMAS I. Desity The desity (mass/vlume) f a magma is a imprtat parameter which plays a rle i a umber f aspects f magma behavir ad evluti.

More information

The Complexity of Translation Membership for Macro Tree Transducers

The Complexity of Translation Membership for Macro Tree Transducers The Cmplexity f Traslati Membership fr Macr Tree Trasducers Kazuhir Iaba The Uiversity f Tky kiaba@is.s.u-tky.ac.jp Sebastia Maeth NICTA ad Uiversity f New Suth Wales sebastia.maeth@icta.cm.au ABSTRACT

More information

Control Systems. Controllability and Observability (Chapter 6)

Control Systems. Controllability and Observability (Chapter 6) 6.53 trl Systems trllaility ad Oservaility (hapter 6) Geeral Framewrk i State-Spae pprah Give a LTI system: x x u; y x (*) The system might e ustale r des t meet the required perfrmae spe. Hw a we imprve

More information

Section 6-2: Simplex Method: Maximization with Problem Constraints of the Form ~

Section 6-2: Simplex Method: Maximization with Problem Constraints of the Form ~ Sectin 6-2: Simplex Methd: Maximizatin with Prblem Cnstraints f the Frm ~ Nte: This methd was develped by Gerge B. Dantzig in 1947 while n assignment t the U.S. Department f the Air Frce. Definitin: Standard

More information

P a g e 5 1 of R e p o r t P B 4 / 0 9

P a g e 5 1 of R e p o r t P B 4 / 0 9 P a g e 5 1 of R e p o r t P B 4 / 0 9 J A R T a l s o c o n c l u d e d t h a t a l t h o u g h t h e i n t e n t o f N e l s o n s r e h a b i l i t a t i o n p l a n i s t o e n h a n c e c o n n e

More information

DIVISIBILITY PROPERTIES OF GENERALIZED FIBONACCI POLYNOMIALS

DIVISIBILITY PROPERTIES OF GENERALIZED FIBONACCI POLYNOMIALS DIVISIBILITY PROPERTIES OF GENERALIZED FIBONACCI POLYNOMIALS VERNER E. HOGGATT, JR. Sa Jose State Uiversity, Sa Jose, Califoria 95192 ad CALVIN T. LONG Washigto State Uiversity, Pullma, Washigto 99163

More information

GENERALIZATIONS OF ZECKENDORFS THEOREM. TilVIOTHY J. KELLER Student, Harvey Mudd College, Claremont, California

GENERALIZATIONS OF ZECKENDORFS THEOREM. TilVIOTHY J. KELLER Student, Harvey Mudd College, Claremont, California GENERALIZATIONS OF ZECKENDORFS THEOREM TilVIOTHY J. KELLER Studet, Harvey Mudd College, Claremot, Califoria 91711 The Fiboacci umbers F are defied by the recurrece relatio Fi = F 2 = 1, F = F - + F 0 (

More information

A new Type of Fuzzy Functions in Fuzzy Topological Spaces

A new Type of Fuzzy Functions in Fuzzy Topological Spaces IOSR Jurnal f Mathematics (IOSR-JM e-issn: 78-578, p-issn: 39-765X Vlume, Issue 5 Ver I (Sep - Oct06, PP 8-4 wwwisrjurnalsrg A new Type f Fuzzy Functins in Fuzzy Tplgical Spaces Assist Prf Dr Munir Abdul

More information

Review for cumulative test

Review for cumulative test Hrs Math 3 review prblems Jauary, 01 cumulative: Chapters 1- page 1 Review fr cumulative test O Mday, Jauary 7, Hrs Math 3 will have a curse-wide cumulative test cverig Chapters 1-. Yu ca expect the test

More information

On the affine nonlinearity in circuit theory

On the affine nonlinearity in circuit theory O the affie liearity i circuit thery Emauel Gluski The Kieret Cllege the Sea f Galilee; ad Ort Braude Cllege (Carmiel), Israel. gluski@ee.bgu.ac.il; http://www.ee.bgu.ac.il/~gluski/ E. Gluski, O the affie

More information

ECE-S352 Introduction to Digital Signal Processing Lecture 3A Direct Solution of Difference Equations

ECE-S352 Introduction to Digital Signal Processing Lecture 3A Direct Solution of Difference Equations ECE-S352 Itroductio to Digital Sigal Processig Lecture 3A Direct Solutio of Differece Equatios Discrete Time Systems Described by Differece Equatios Uit impulse (sample) respose h() of a DT system allows

More information

Unifying the Derivations for. the Akaike and Corrected Akaike. Information Criteria. from Statistics & Probability Letters,

Unifying the Derivations for. the Akaike and Corrected Akaike. Information Criteria. from Statistics & Probability Letters, Uifyig the Derivatis fr the Akaike ad Crrected Akaike Ifrmati Criteria frm Statistics & Prbability Letters, Vlume 33, 1997, pages 201{208. by Jseph E. Cavaaugh Departmet f Statistics, Uiversity f Missuri,

More information

The Structure of Z p when p is Prime

The Structure of Z p when p is Prime LECTURE 13 The Structure of Z p whe p is Prime Theorem 131 If p > 1 is a iteger, the the followig properties are equivalet (1) p is prime (2) For ay [0] p i Z p, the equatio X = [1] p has a solutio i Z

More information

Directional Duality Theory

Directional Duality Theory Suther Illiis Uiversity Carbdale OpeSIUC Discussi Papers Departmet f Ecmics 2004 Directial Duality Thery Daiel Primt Suther Illiis Uiversity Carbdale Rlf Fare Oreg State Uiversity Fllw this ad additial

More information

Axial Temperature Distribution in W-Tailored Optical Fibers

Axial Temperature Distribution in W-Tailored Optical Fibers Axial Temperature Distributi i W-Tailred Optical ibers Mhamed I. Shehata (m.ismail34@yah.cm), Mustafa H. Aly(drmsaly@gmail.cm) OSA Member, ad M. B. Saleh (Basheer@aast.edu) Arab Academy fr Sciece, Techlgy

More information

BC Calculus Review Sheet. converges. Use the integral: L 1

BC Calculus Review Sheet. converges. Use the integral: L 1 BC Clculus Review Sheet Whe yu see the wrds.. Fid the re f the uuded regi represeted y the itegrl (smetimes f ( ) clled hriztl imprper itegrl).. Fid the re f differet uuded regi uder f() frm (,], where

More information

,,,,..,,., {. (, ),, {,.,.,..,,.,.,,....... {.. : N {, Z {, Q {, Q p { p{ {. 3, R {, C {. : ord p {. 8, (k) {.42,!() { {. 24, () { {. 24, () { {. 25,., () { {. 26,. 9, () { {. 27,. 23, '() { ( ) {. 28,

More information

Chapter 4 : Laplace Transform

Chapter 4 : Laplace Transform 4. Itroductio Laplace trasform is a alterative to solve the differetial equatio by the complex frequecy domai ( s = σ + jω), istead of the usual time domai. The DE ca be easily trasformed ito a algebraic

More information

The generation of successive approximation methods for Markov decision processes by using stopping times

The generation of successive approximation methods for Markov decision processes by using stopping times The geerati f successive apprximati methds fr Markv decisi prcesses by usig stppig times Citati fr published versi (APA): va Nue, J. A. E. E., & Wessels, J. (1976). The geerati f successive apprximati

More information

THE ASYMPTOTIC COMPLEXITY OF MATRIX REDUCTION OVER FINITE FIELDS

THE ASYMPTOTIC COMPLEXITY OF MATRIX REDUCTION OVER FINITE FIELDS THE ASYMPTOTIC COMPLEXITY OF MATRIX REDUCTION OVER FINITE FIELDS DEMETRES CHRISTOFIDES Abstract. Cosider a ivertible matrix over some field. The Gauss-Jorda elimiatio reduces this matrix to the idetity

More information

A Simple Set of Test Matrices for Eigenvalue Programs*

A Simple Set of Test Matrices for Eigenvalue Programs* Simple Set f Test Matrices fr Eigenvalue Prgrams* By C. W. Gear** bstract. Sets f simple matrices f rder N are given, tgether with all f their eigenvalues and right eigenvectrs, and simple rules fr generating

More information

A Hartree-Fock Calculation of the Water Molecule

A Hartree-Fock Calculation of the Water Molecule Chemistry 460 Fall 2017 Dr. Jea M. Stadard Nvember 29, 2017 A Hartree-Fck Calculati f the Water Mlecule Itrducti A example Hartree-Fck calculati f the water mlecule will be preseted. I this case, the water

More information

ON THE M 3 M 1 QUESTION

ON THE M 3 M 1 QUESTION Vlume 5, 1980 Pages 77 104 http://tplgy.aubur.edu/tp/ ON THE M 3 M 1 QUESTION by Gary Gruehage Tplgy Prceedigs Web: http://tplgy.aubur.edu/tp/ Mail: Tplgy Prceedigs Departmet f Mathematics & Statistics

More information

Examination No. 3 - Tuesday, Nov. 15

Examination No. 3 - Tuesday, Nov. 15 NAME (lease rit) SOLUTIONS ECE 35 - DEVICE ELECTRONICS Fall Semester 005 Examiati N 3 - Tuesday, Nv 5 3 4 5 The time fr examiati is hr 5 mi Studets are allwed t use 3 sheets f tes Please shw yur wrk, artial

More information

ECE 308 Discrete-Time Signals and Systems

ECE 308 Discrete-Time Signals and Systems ECE 38-5 ECE 38 Discrete-Time Sigals ad Systems Z. Aliyazicioglu Electrical ad Computer Egieerig Departmet Cal Poly Pomoa ECE 38-5 1 Additio, Multiplicatio, ad Scalig of Sequeces Amplitude Scalig: (A Costat

More information

~,. :'lr. H ~ j. l' ", ...,~l. 0 '" ~ bl '!; 1'1. :<! f'~.., I,," r: t,... r':l G. t r,. 1'1 [<, ."" f'" 1n. t.1 ~- n I'>' 1:1 , I. <1 ~'..

~,. :'lr. H ~ j. l' , ...,~l. 0 ' ~ bl '!; 1'1. :<! f'~.., I,, r: t,... r':l G. t r,. 1'1 [<, . f' 1n. t.1 ~- n I'>' 1:1 , I. <1 ~'.. ,, 'l t (.) :;,/.I I n ri' ' r l ' rt ( n :' (I : d! n t, :?rj I),.. fl.),. f!..,,., til, ID f-i... j I. 't' r' t II!:t () (l r El,, (fl lj J4 ([) f., () :. -,,.,.I :i l:'!, :I J.A.. t,.. p, - ' I I I

More information

CALCULATING FIBONACCI VECTORS

CALCULATING FIBONACCI VECTORS THE GENERALIZED BINET FORMULA FOR CALCULATING FIBONACCI VECTORS Stuart D Aderso Departmet of Physics, Ithaca College 953 Daby Road, Ithaca NY 14850, USA email: saderso@ithacaedu ad Dai Novak Departmet

More information

A LIMITED ARITHMETIC ON SIMPLE CONTINUED FRACTIONS - II 1. INTRODUCTION

A LIMITED ARITHMETIC ON SIMPLE CONTINUED FRACTIONS - II 1. INTRODUCTION A LIMITED ARITHMETIC ON SIMPLE CONTINUED FRACTIONS - II C. T. LONG J. H. JORDAN* Washigto State Uiversity, Pullma, Washigto 1. INTRODUCTION I the first paper [2 ] i this series, we developed certai properties

More information

Bayesian Estimation for Continuous-Time Sparse Stochastic Processes

Bayesian Estimation for Continuous-Time Sparse Stochastic Processes Bayesia Estimati fr Ctiuus-Time Sparse Stchastic Prcesses Arash Amii, Ulugbek S Kamilv, Studet, IEEE, Emrah Bsta, Studet, IEEE, Michael User, Fellw, IEEE Abstract We csider ctiuus-time sparse stchastic

More information

WEST VIRGINIA UNIVERSITY

WEST VIRGINIA UNIVERSITY WEST VIRGINIA UNIVERSITY PLASMA PHYSICS GROUP INTERNAL REPORT PL - 045 Mea Optical epth ad Optical Escape Factr fr Helium Trasitis i Helic Plasmas R.F. Bivi Nvember 000 Revised March 00 TABLE OF CONTENT.0

More information

RMO Sample Paper 1 Solutions :

RMO Sample Paper 1 Solutions : RMO Sample Paper Slutis :. The umber f arragemets withut ay restricti = 9! 3!3!3! The umber f arragemets with ly e set f the csecutive 3 letters = The umber f arragemets with ly tw sets f the csecutive

More information

ACTIVE FILTERS EXPERIMENT 2 (EXPERIMENTAL)

ACTIVE FILTERS EXPERIMENT 2 (EXPERIMENTAL) EXPERIMENT ATIVE FILTERS (EXPERIMENTAL) OBJETIVE T desig secd-rder lw pass ilters usig the Salle & Key (iite psitive- gai) ad iiite-gai apliier dels. Oe circuit will exhibit a Butterwrth respse ad the

More information

Christensen, Mads Græsbøll; Vera-Candeas, Pedro; Somasundaram, Samuel D.; Jakobsson, Andreas

Christensen, Mads Græsbøll; Vera-Candeas, Pedro; Somasundaram, Samuel D.; Jakobsson, Andreas Dwladed frm vb.aau.dk : April 12, 2019 Aalbrg Uiversitet Rbust Subspace-based Fudametal Frequecy Estimati Christese, Mads Græsbøll; Vera-Cadeas, Pedr; Smasudaram, Samuel D.; Jakbss, Adreas Published i:

More information

[ 11 ] z of degree 2 as both degree 2 each. The degree of a polynomial in n variables is the maximum of the degrees of its terms.

[ 11 ] z of degree 2 as both degree 2 each. The degree of a polynomial in n variables is the maximum of the degrees of its terms. [ 11 ] 1 1.1 Polyomial Fuctios 1 Algebra Ay fuctio f ( x) ax a1x... a1x a0 is a polyomial fuctio if ai ( i 0,1,,,..., ) is a costat which belogs to the set of real umbers ad the idices,, 1,...,1 are atural

More information

Exam. Notes: A single A4 sheet of paper (double sided; hand-written or computer typed)

Exam. Notes: A single A4 sheet of paper (double sided; hand-written or computer typed) Exam February 8th, 8 Sigals & Systems (5-575-) Prof. R. D Adrea Exam Exam Duratio: 5 Mi Number of Problems: 5 Number of Poits: 5 Permitted aids: Importat: Notes: A sigle A sheet of paper (double sided;

More information

5 s. 00 S aaaog. 3s a o. gg pq ficfi^pq. So c o. H «o3 g gpq ^fi^ s 03 co -*«10 eo 5^ - 3 d s3.s. as fe«jo. Table of General Ordinances.

5 s. 00 S aaaog. 3s a o. gg pq ficfi^pq. So c o. H «o3 g gpq ^fi^ s 03 co -*«10 eo 5^ - 3 d s3.s. as fe«jo. Table of General Ordinances. 5 s Tble f Generl rinnes. q=! j-j 3 -ri j -s 3s m s3 0,0 0) fife s fert " 7- CN i-l r-l - p D fife s- 3 Ph' h ^q 3 3 (j; fe QtL. S &&X* «««i s PI 0) g #r

More information

AP Statistics Notes Unit Eight: Introduction to Inference

AP Statistics Notes Unit Eight: Introduction to Inference AP Statistics Ntes Uit Eight: Itrducti t Iferece Syllabus Objectives: 4.1 The studet will estimate ppulati parameters ad margis f errrs fr meas. 4.2 The studet will discuss the prperties f pit estimatrs,

More information

SOLVED EXAMPLES

SOLVED EXAMPLES Prelimiaries Chapter PELIMINAIES Cocept of Divisibility: A o-zero iteger t is said to be a divisor of a iteger s if there is a iteger u such that s tu I this case we write t s (i) 6 as ca be writte as

More information

Claude Elysée Lobry Université de Nice, Faculté des Sciences, parc Valrose, NICE, France.

Claude Elysée Lobry Université de Nice, Faculté des Sciences, parc Valrose, NICE, France. CHAOS AND CELLULAR AUTOMATA Claude Elysée Lbry Uiversité de Nice, Faculté des Scieces, parc Valrse, 06000 NICE, Frace. Keywrds: Chas, bifurcati, cellularautmata, cmputersimulatis, dyamical system, ifectius

More information