398 ENUMERATION OF PERMUTATIONS BY SEQUENCES II [Dec. REFERENCES

Size: px
Start display at page:

Download "398 ENUMERATION OF PERMUTATIONS BY SEQUENCES II [Dec. REFERENCES"

Transcription

1 398 ENUMERATION OF PERMUTATIONS BY SEQUENCES II [Dec. Results similar to those obtained for p (x) may be obtained for q*(x). At this stage, it is not certain just how useful a study of q^(x) and r (x) might be. REFERENCES. A. Erdelyi et al. Higher Transcendental Functions. Vol.. New York: McGraw- Hill, A. Erdelyi et at* Tables of Integral Transforms. Vol.. New York: McGraw- Hill, L. Gegenbauer. "Zur Theorie der Functionen C^ix)." Osterreichische Akadamie der Wissenschaften Mathematisch Naturwissen Schaftliche Klasse Denkscriften, 8 (88): A. F. Horadam. "Basic Properties of a Certain Generalized Sequence of Numbers." The Fibonacci Quarterly 3 (965): A. F. Horadam. "Polynomials Associated with Chebyshev Polynomials of the First Kind." The Fibonacci Quarterly 5 (977): D. V. Jaiswal. "On Polynomials Related to Tchebichef Polynomials of the Second Kind." The Fibonacci Quarterly (97): W. Magnus, F. Oberhettinger,& R. P. Soni. Formulas and Theorems for the Special Functions of Mathematical Physics. Berlin: Springer-Verlag, E. D. Rainville. Special Functions. New York: Macmillan, G. Szego. Orthogonal Polynomials. American Mathematical Society Colloquium Publications, 939, Vol. 3. ENUMERATION OF PERMUTATIONS BY S E Q U E N C E S I I L. CARLITZ Duke University, Durham, NC Andre [] discussed the enumeration of permutations by number of sequences; his results are reproduced in Netto's book [5, pp. 05-]. Let P(n 9 s) denote the number of permutations of Z n = {,,..., n} with s ascending or descending sequences. It is convenient to put (.) P(0, s) = P(l, s) = 6 0>s. Andre proved that P(n 9 s) satisfies (.) P(n +, s) = sp(n 9 s) + P(n, s - ) + (n - s + l)p(n, s - ), (n >. ). The following generating function for P(n 9 s) was obtained in []: (.3) ( - x*y»'**ltp( n + l, 8) x n- = l ^ J g / / l - * +_sin JL \ > *-** n!^rt + x\ x - cos z J However, an explicit formula for P(n, s) was not found. In the present note, we shall show how an explicit formula for P(n 9 s) can be obtained. We show first that the polynomial (.) p (x) = Pin +, x)(-x) n - s satisfies (.5) p B (ar) = - _( - x) n -i\ j^(-l) n+k A n + lyk T n. k+ (x) - +, + I k-i

2 98] ENUMERATION OF PERMUTATIONS BY SEQUENCES II 399 and (.6) p B.. l(a r) > - L _ ( l -«) B - E (-l) k - (>l B. k +A n, k+ )T n _ k (x)., Z k = 0 where the A n y k are the Eulerian numbers [3], [7, p. 0] defined by z \r A.JU. \ - x and T n (x) is the Chebychev polynomial of the first kind defined by [6, p. 30] (.8) T n (x) = c o s n<$> 9 x = cos<j>. Making use of (.5) and (.6), explicit formulas for P(n 9 s) are obtained. For the final results, see (3.7), (3.8), and (.), (.3).. In (.3) take x = -cos (j), so that /o (.) i \ \ > ^ / ( s m (b) AN-" ^ n V* > P(n -nt +. i, s ) \ ( / - c o s <b) isn~s = -= + cos (b ±\ / s i n d> j ~ - - s i n s \.. n c o s n o s = o0 ^ \ c o s > + c o s z l We have ( s m (f> - s m s \,_ J-/ J = t a n z l/'o J_ AN (z + A\ - COs(g + ([)) Y d>) cos $ + cos / + cos(s + cj)).* Hence, if we put (.) ( B l n!! s l n * = E / ^cos ^ v / n Y n! \cos (j) + cos zf n = 0 it is clear that /o ON ^ / I N d n - COS (J) (.3) f (cos <J>) - r.n + COS ( aq) To evaluate this derivative, write Then and - cos $ I e^% - l\, + cos y i 0 ^ + w e*i + x (e*t + )S d - cos (t) _ e** i e ^ i 3i _,_ i d$ X + c o s * (e** + l ) (e<* + l ) 3 e** + ( e ^ + l ) ( e ^ + l ) 3 d - cos (j) = i 7i i _ 6i A» + C O S * e** + ( e ^ + l ) (e** + l ) 3 (e** + ) * ' The g e n e r a l formula i s n <T~ cos (j). n - y ( _ r ) f e - i ( ^ l ) 5 (, fe) (. ) (-l)"ii* - c o s 9. ^ - ^ ( - l ) " - ^ - i ;! ^ n > K), ( n > ), where («, k) is the Stirling number of the second kind [7, Ch. ] : Es(«. *); = rr(^ - D*. n = k

3 00 ENUMERATION OF PERMUTATIONS BY SEQUENCES-! I [Dec. The proof of (.) by induction is simple. The derivative of the right-hand side is equal to fc-i (e** + l ) k + fe-i [(«* + l) k (e*t + l ) k + Since fesfa, &) + (n, /c- ) = S(n- l 9 We may rewrite (.) in the following form: " ^ w " E < " ) k (fe "" )! {(*S(n, fc)+- (n, fc- )}.. *-i ( e ^ + l ) k k), this evidently completes the induction. ( ^ _ +cos <j) ( e # i + )» k V In the next place, we require the identity (.6) ^ ( - l ) * - ^ - l)!s(n, k)(x+l)"- k - (-)- k_^. lik a: k. <n >. ), fc- fc-0 where A n _ >k i s the Eulerian number defined by (.7). To prove (.6), take Eff (-D"" ^ ~ DiS(n, fc)(* + I)"" "" ~ " * fc - fc^l n - k - S^fc." ( * + i>"*(** ( * + ) - n* fc.-i = l o g V + ^ + i ] = l o g * + i ',z n (x + l ) n >\ri>9 A.. Differentiating with respect to s 9 we get On the other hand, by <-i>"fir (.7), <-i>**...*** Hence, l + x (~l)*- l (fc - l)!s(n, *)<*+ )"-* = E ^ ) " " " " ^ -!, ^ ' fc- k By (.5) and (*6) we have, on replacing n by n +, I d - COS 0 ( - ) " V *, inn-fc + l, k0i ( U * + COS * - 0, +.» - ^ *» +!. * ' '

4 98] ENUMERATION OF PERMUTATIONS BY SEQUENCES II 0 since A n+ 0 = 0. Moreover, since [3] (3-) A n+<k = A n+>n _ k+ (l<k<n+l), we have ^» i + cos - (" > S-n A n + ^ (eh + i)n+. n+ kn-fc+)*i, n -i(n-fc+)*i -i<-*)" <-D k + X + l.^, / ^ * + Therefore, in view of (.3), we get n + l <n-fc+)<k,. - \(n - k + )<K (3.) fn(cos ) = (-i)" (-l)^x + >, f, ( w + &- ( COS y(j)j It is convenient to consider n even and n odd separately, so that n+ (3.3) / (cos W - -\- n (-l)»***m ll + i f c -i!lzjl±i fc-i (cos <> j and, n s i n ~(n - k + )(() o i i n - j., - " >. k ',. ^ fc-i (cos cp) By (.3), (.), and (.), P B (COS >) = } t cos t S±nn< ) ^ ( c o s +> (3.5),, = " cos n+ ±<j> sin"" j< > / (cos <J>). In particular p n (cos $) = «cos n + c > sin "" <}> f (cos <f>), so that, by (3.3), n + l (3.6) p n (cos <p) = - ^ - ( - cos (p)"" (- )" + f c + l c 0 B +i, 8 k < n " fc + 3 k = l Using (3.) and (.8), (3.6) gives (3-7) p n M - - ^ ( - * ) * Zc- This proves (.5). Next, replacing n by n - in (3.5), we get L^(~~ l^n A n + l t k T n-k + l ^ + A n + l,n + l p ^ C c o s ) = ^cos n + } * sin *" 3 < > / ^ ^ ( c o s (f)) = 8in n - 3 U E (" ) n + ^ n 5 k S i n \^ln ~ k+ *>< fc-l (continued)

5 0 ENUMERATION OF PERMUTATIONS BY SEQUENCES II [ D e c. = sin "- ^^(-D n + k A n k {cos(n --fc)< > - cos(n - fc + l)(f>} n = i_ ( _ c o s M " " ^! ) ' " * ^, + n. fc + >cos(n-fc)< > = ^-( - cos c())? Finally, therefore, by (.8), fc = i n - l E t - l ) n + k W Bi. fc +.n. fc + i)co8(n - m +A nn \. fc = o J (3-8) P ^(x) ~ d - ^ " ^ [ E C - D - ^ a ^,, + ^ W + V, }.. We recall that j - - ' * " - I (-)' (" " f " > W " «, < > ). ' 0<j<_n <J \ J / Ihus (3.7) becomes ~ E ( - ) - E ^ +,, E (-i)( n "^J' + ) (n - k - j \ l / n - \ - fc - j + i S. / n - V x»-s V J - l /IV * / "" n t l ' " + ^ - \n - s) { x) Comparison with (.) gives (.) P(n +. P) - - ^ X X ^,, E (-D J '(r " " J ' + ') ^ & = ; s = n + /c + j ' - t - l l > ^ s=n+ + / n - * - A l / " " l\ n-fe-j + l + _ W «~ \ t7 / Similarly, it follows from (3.8) that w-i (.3) P(n, a) = - L - M + ) E (-)' fc = 0 ^ n, «+ l s = n + fc + j-t-l {( n -y j ) + ( n -y-i-% n -*y- _J_( n - \ k-j

6 98] ENUMERATION OF PERMUTATIONS BY SEQUENCES II For numerical checks of the above results, it is probably easier to use (3.7) and (3.8) rather than the explicit formulas (.) and (.3). It is convenient to recall the following tables for P(n 9 s) and A n k, respectively: TABLE \v S n \ TABLE We f i r s t take (3.7) with n =. Then P l tte) - ( - x){^5jl T (x) - ^^(3?) + ^ 5, 3 } = ( - ^r){(^ - ) + 5# + 66} = x 3-8tf + 58; - 3.

7 0 ENUMERATION OF PERMUTATIONS BY SEQUENCES II [Dec. Taking n = 3 in (3.7), we get p s (x) - ( - x) {-A 7A T 3 (x) + A 7a T (x) - U^ T^x)-+ A^} = - ( - a;) {-(a; 3-3x) + 0(a; - ) - 9a; + 6} = ( - a;) (5-88a; + 0a; - a? 3 ) = 5-68a; + 85a; - 836a; 3 + a; * - a; 5. Next, taking n = in (3.8), we get fc = 0 = A ha T (x). - W lfjl + ^ )T (a;) + ^> = (a; - ) - a; + = a; - a? + 0. Similarly, taking n = 3 in (3.8), we get p E ( - D 3 + k 5 (x) = y U - a;) W 6tfc +A 6>k + )T s _ k (x) +A B>3 \ [k = o J = ( - a;){-a 6jl T 3 (x) + G 6sl + A 6> )T (x) - (A sa + A 6t3 )T ± (x) + A 6t3 ] = ( - a;){-(a; 3-3a;) + 58(a; - ) - 359a; + 30} = x h - 60a; 3-36a; - 300a; +. Another partial check is furnished by taking x = - in (3.7) and (3.8). Since T n (-l) = cos rm = (-l) n, it is easily verified that (3.7) and (3.8) reduce to and n Pin (- ) = E W B+. k + A n+lw n + ) = ^ n + _ fc = (n + )! fc- fc- n - n P B - < - + > - E ^. k +, ^ + l ) n,k = Y, A n, k = ( ">! > fc = 0 fc = l respectively. On the other hand, for x =, it is evident from (3.7) and (3.8) that (5.) p () = 0 (n > ). L n Moreover, since T n (l) =, it follows from (3.7) and (3.) that p ( w + ) ' m = r-n n - l ( n ~ )! \i "T(-i) n+k+ A +A [ *-i J n+l By (.7), we have fc-i

8 98] ENUMERATION OF PERMUTATIONS BY SEQUENCES II»-i fc-i e z + n=o in the notation of Norlund [5, p. 7]. Hence <*.> pr i, < i >- i Fi il w For example p^'(l) = = 36; since C 7 = 7, this is in agreement with (5.). As for p _ (^r), it follows from (3.8) that so that p : > = (-i>"-,i5^{i:(-i)" + *w I. k + ^,, + ) + **,.,.} (n - " ^ [ fc- fc«l = (w - ) 0 n - Z ^ ^ ) ^ n, fc» fc-l (5.3) PzVA'd) = («> ). p<-_i) () = (. D - ^ i l l f "f (-i)-* k w li>k + *,,,. k+> p I fc = o By (. 8 ), mt, N n s i n neb,. * W ) - s i. n, y (a: = cos <(,), which gives T n '(l) = n. Thus fe After some m a n i p u l a t i o n, we get z = o (5.) P» " " ( ) = ^ n - ^ ' E ( - D ' : " ( " -?C + l ), k fc- n (n - ) n 9 n - fc- Making use of (.7), it can be proved that (5.5) ( - x)a^(x) = A n + (x) - (n + l)aca n (ar), where Hence fe = ^n(-l) - ^ n + i(-l) + (w + l)a n (-i) - C n +, where C n+ has the same meaning as above. Thus (5.) reduces to

9 06 HOW TO FIND THE "GOLDEN NUMBER" WITHOUT REALLY TRYING [Dec. (5.6) p ( " _) (i) - ( w ~ )! e,,. For example, in agreement with (5.6). (Please turn to page 65.) p'^cl) = = 36, REFERENCES. D. Andre. "Etude sur les maxima, minima et sequences des permutations." Annates soientifiques de l f Eoole Normale Superieure (3) (89):-3.. L. Carlitz. "Enumeration of Permutations by Sequences." The Fibonacci Quarterly 6 (978):59-68, 3. L. Carlitz. "Eulerian Numbers and Polynomials." Math, Mag, 3 (959): E. Netto. Lehrbuch der Combinatorik, Leipzig: Teubner, N. E. Norlund. Vorlesungen uber Differenzenrechnung. Berlin: Springer Verlag, E..D-. Rainville. Special Functions, New York: Macmillan, J. Riordan. An Introduction to Combinatorial Analysis, New York: Wiley, 958. HOW TO FIND THE "GOLDEN NUMBER" WITHOUT REALLY TRYING ROGER FISCHLER Carleton University, Ottawa, Canada K55B6 ".... I WAJbh,.. to potnt out that the, aae ol thu qold<in A&ction... hcu> appaxtntly bu/a>t out -into a &uddm and d&voatattng dluzaaz whtch hah &hou)n no AtgnA o& stopping... f? [, p. 5] Most of the papers involving claims concerning the "golden number" deal with distinct items such as paintings, basing their assertions on measurements of these individual objects. As an example, we may cite the article by Hedian [3]. However measurements, no matter how accurate, cannot be used to reconstruct the original system of proportions used to design an object, for many systems may give rise to approximately the same set of numbers; see [6, 7] for an example of this. The only valid way of determining the system of proportions used by an artist is by means of documentation. A detailed investigation of three cases [8, 9, 0, ] for which it had been claimed in the literature that the artist in question had used the "golden number" showed that these assertions were without any foundation whatsoever. There is, however, another class of papers that seeks to convince the reader via statistical data applied to a whole class of related objects. The earliest examples of these are Zeising's morphological works, e.g., [7]- More recently we have Duckworth's book [5] on Vergil's Aeneid and a series of papers by Benjafield and his coauthors involving such things as interpersonal relationships (see e.g. [], which gives a partial listing of some of these papers). Mathematically we may approach the question in the following way. Suppose we have a certain length which is split into two parts, the larger being M and the smaller m. If the length is divided according to the golden section, then it does not matter which of the quantities, m/m or M/(M + m), we use, for they are equal. But now suppose we have a collection of lengths and we are trying to determine statistically if the data are consistent with a partition according to the golden

{~}) n -'R 1 {n, 3, X)RU, k, A) = {J (" J. j =0

{~}) n -'R 1 {n, 3, X)RU, k, A) = {J ( J. j =0 2l WEIGHTED STIRLING NUMBERS OF THE FIRST AND SECOND KIND II [Oct. 6. CONCLUSION We have proven a number-theoretical problem about a sequence, which is a computer-oriented type, but cannot be solved by

More information

be a formal power series with h 0 = 1, v(h^) = \ and v(h n ) > 1 for n > 1. Define a n by

be a formal power series with h 0 = 1, v(h^) = \ and v(h n ) > 1 for n > 1. Define a n by THE POWER OF 2 DIVIDING THE COEFFICIENTS OF CERTAIN POWER SERIES F. T. Howard Wake Forest University, Box 7388 Reynolda Station, Winston-Salem, NC 27109 (Submitted August 1999-Final Revision January 2000)

More information

EXPANSION OF ANALYTIC FUNCTIONS IN TERMS INVOLVING LUCAS NUMBERS OR SIMILAR NUMBER SEQUENCES

EXPANSION OF ANALYTIC FUNCTIONS IN TERMS INVOLVING LUCAS NUMBERS OR SIMILAR NUMBER SEQUENCES EXPANSION OF ANALYTIC FUNCTIONS IN TERMS INVOLVING LUCAS NUMBERS OR SIMILAR NUMBER SEQUENCES PAUL F. BYRD San Jose State College, San Jose, California 1. INTRODUCTION In a previous article [_ 1J, certain

More information

MIXED PELL POLYNOMIALS. A. F, HORADAM University of New England, Armidale, Australia

MIXED PELL POLYNOMIALS. A. F, HORADAM University of New England, Armidale, Australia A. F, HORADAM University of New England, Armidale, Australia Bro. J. M. MAHON Catholic College of Education, Sydney, Australia (Submitted April 1985) 1. INTRODUCTION Pell polynomials P n (x) are defined

More information

SOME IDENTITIES INVOLVING GENERALIZED GENOCCHI POLYNOMIALS AND GENERALIZED FIBONACCI-LUCAS SEQUENCES

SOME IDENTITIES INVOLVING GENERALIZED GENOCCHI POLYNOMIALS AND GENERALIZED FIBONACCI-LUCAS SEQUENCES SOME IDENTITIES INVOLVING GENERALIZED GENOCCHI POLYNOMIALS AND GENERALIZED FIBONACCI-LUCAS SEQUENCES Zhizheng Zhang and Jingyu Jin Department of mathematics, Luoyang Teachers College, Luoyang, Henan, 471022,

More information

COMPOSITIONS AND FIBONACCI NUMBERS

COMPOSITIONS AND FIBONACCI NUMBERS COMPOSITIONS AND FIBONACCI NUMBERS V. E. HOGGATT, JR., and D. A. LIND San Jose State College, San Jose, California and University of Cambridge, England 1, INTRODUCTION A composition of n is an ordered

More information

NEW GENERATING FUNCTIONS FOR CLASSICAL POLYNOMIALS1. J. w. brown

NEW GENERATING FUNCTIONS FOR CLASSICAL POLYNOMIALS1. J. w. brown NEW GENERATING FUNCTIONS FOR CLASSICAL POLYNOMIALS1 J. w. brown 1. Introduction. As recently as 1951 Brafman [l]-[4] initiated a series of papers in which he gave a variety of new unusual generating functions

More information

The Degree of the Splitting Field of a Random Polynomial over a Finite Field

The Degree of the Splitting Field of a Random Polynomial over a Finite Field The Degree of the Splitting Field of a Random Polynomial over a Finite Field John D. Dixon and Daniel Panario School of Mathematics and Statistics Carleton University, Ottawa, Canada fjdixon,danielg@math.carleton.ca

More information

Combinatorial Interpretations of a Generalization of the Genocchi Numbers

Combinatorial Interpretations of a Generalization of the Genocchi Numbers 1 2 3 47 6 23 11 Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.6 Combinatorial Interpretations of a Generalization of the Genocchi Numbers Michael Domaratzki Jodrey School of Computer Science

More information

VAROL'S PERMUTATION AND ITS GENERALIZATION. Bolian Liu South China Normal University, Guangzhou, P. R. of China {Submitted June 1994)

VAROL'S PERMUTATION AND ITS GENERALIZATION. Bolian Liu South China Normal University, Guangzhou, P. R. of China {Submitted June 1994) VROL'S PERMUTTION ND ITS GENERLIZTION Bolian Liu South China Normal University, Guangzhou, P. R. of China {Submitted June 994) INTRODUCTION Let S be the set of n! permutations II = a^x...a n of Z = (,,...,«}.

More information

Y. H. Harris Kwong SUNY College at Fredonia, Fredonia, NY (Submitted May 1987)

Y. H. Harris Kwong SUNY College at Fredonia, Fredonia, NY (Submitted May 1987) Y. H. Harris Kwong SUNY College at Fredonia, Fredonia, NY 14063 (Submitted May 1987) 1. Introduction The Stirling number of the second kind, S(n, k), is defined as the number of ways to partition a set

More information

C O M P L E X FACTORIZATIONS O F T H E F I B O N A C C I AND LUCAS NUMBERS

C O M P L E X FACTORIZATIONS O F T H E F I B O N A C C I AND LUCAS NUMBERS C O M P L E X FACTORIZATIONS O F T H E F I B O N A C C I AND LUCAS NUMBERS Nathan D. Cahill, John R. D'Errico, and John P* Spence Eastman Kodak Company, 343 State Street, Rochester, NY 4650 {natfaan. cahill,

More information

ON THE NUMBER OF NIVEN NUMBERS UP TO

ON THE NUMBER OF NIVEN NUMBERS UP TO ON THE NUMBER OF NIVEN NUMBERS UP TO Jean-Marie DeKoninck 1 D partement de Math matiques et de statistique, University Laval, Quebec G1K 7P4, Canada e-mail: jmdk@mat.ulaval.ca Nicolas Doyon Departement

More information

DIFFERENTIAL PROPERTIES OF A GENERAL CLASS OF POLYNOMIALS. Richard Andre-Jeannin IUT GEA, Route de Romain, Longwy, France (Submitted April 1994)

DIFFERENTIAL PROPERTIES OF A GENERAL CLASS OF POLYNOMIALS. Richard Andre-Jeannin IUT GEA, Route de Romain, Longwy, France (Submitted April 1994) DIFFERENTIAL PROPERTIES OF A GENERAL CLASS OF POLYNOMIALS Richard Andre-Jeannin IUT GEA, Route de Romain, 54400 Longwy, France (Submitted April 1994) 1. INTRODUCTION Let us consider the generalized Fibonacci

More information

Permutations with Inversions

Permutations with Inversions 1 2 3 47 6 23 11 Journal of Integer Sequences, Vol. 4 2001, Article 01.2.4 Permutations with Inversions Barbara H. Margolius Cleveland State University Cleveland, Ohio 44115 Email address: b.margolius@csuohio.edu

More information

Some integrals and series involving the Gegenbauer polynomials and the Legendre functions on the cut ( 1, 1)

Some integrals and series involving the Gegenbauer polynomials and the Legendre functions on the cut ( 1, 1) Integral Transforms and Special Functions Vol. 3, No. 11, November 01, 847 85 Some integrals and series involving the Gegenbauer polynomials and the Legendre functions on the cut, 1) Radosław Szmytkowski*

More information

Beukers integrals and Apéry s recurrences

Beukers integrals and Apéry s recurrences 2 3 47 6 23 Journal of Integer Sequences, Vol. 8 (25), Article 5.. Beukers integrals and Apéry s recurrences Lalit Jain Faculty of Mathematics University of Waterloo Waterloo, Ontario N2L 3G CANADA lkjain@uwaterloo.ca

More information

GENERATING FUNCTIONS OF CENTRAL VALUES IN GENERALIZED PASCAL TRIANGLES. CLAUDIA SMITH and VERNER E. HOGGATT, JR.

GENERATING FUNCTIONS OF CENTRAL VALUES IN GENERALIZED PASCAL TRIANGLES. CLAUDIA SMITH and VERNER E. HOGGATT, JR. GENERATING FUNCTIONS OF CENTRAL VALUES CLAUDIA SMITH and VERNER E. HOGGATT, JR. San Jose State University, San Jose, CA 95. INTRODUCTION In this paper we shall examine the generating functions of the central

More information

On Some Combinations of Non-Consecutive Terms of a Recurrence Sequence

On Some Combinations of Non-Consecutive Terms of a Recurrence Sequence 1 2 3 47 6 23 11 Journal of Integer Sequences, Vol. 21 (2018), Article 18.3.5 On Some Combinations of Non-Consecutive Terms of a Recurrence Sequence Eva Trojovská Department of Mathematics Faculty of Science

More information

RANDOM PERMUTATIONS AND BERNOULLI SEQUENCES. Dominique Foata (Strasbourg)

RANDOM PERMUTATIONS AND BERNOULLI SEQUENCES. Dominique Foata (Strasbourg) RANDOM PERMUTATIONS AND BERNOULLI SEQUENCES Dominique Foata (Strasbourg) ABSTRACT. The so-called first fundamental transformation provides a natural combinatorial link between statistics involving cycle

More information

Quadrature Formulas for Infinite Integrals

Quadrature Formulas for Infinite Integrals Quadrature Formulas for Infinite Integrals By W. M. Harper 1. Introduction. Since the advent of high-speed computers, "mechanical" quadratures of the type (1) f w(x)f(x)dx^ Hif(aj) Ja 3=1 have become increasingly

More information

Inequalities for logarithmic and exponential functions

Inequalities for logarithmic and exponential functions General Mathematics Vol. 12, No. 2 (24), 47 52 Inequalities for logarithmic and exponential functions Eugen Constantinescu Abstract In [1] it was announced the precise inequality : for x 1 4 ( ) ( ) 12x

More information

On Certain Sums of Stirling Numbers with Binomial Coefficients

On Certain Sums of Stirling Numbers with Binomial Coefficients 1 2 3 47 6 23 11 Journal of Integer Sequences, Vol. 18 (2015, Article 15.9.6 On Certain Sums of Stirling Numbers with Binomial Coefficients H. W. Gould Department of Mathematics West Virginia University

More information

1. INTRODUCTION For n G N, where N = {0,1,2,...}, the Bernoulli polynomials, B (t), are defined by means of the generating function

1. INTRODUCTION For n G N, where N = {0,1,2,...}, the Bernoulli polynomials, B (t), are defined by means of the generating function CONGRUENCES RELATING RATIONAL VALUES OF BERNOULLI AND EULER POLYNOMIALS Glenn J. Fox Dept. of Mathematics and Computer Science, Emory University, Atlanta, GA 30322 E-mail: fox@mathcs.emory.edu (Submitted

More information

Takao Komatsu School of Mathematics and Statistics, Wuhan University

Takao Komatsu School of Mathematics and Statistics, Wuhan University Degenerate Bernoulli polynomials and poly-cauchy polynomials Takao Komatsu School of Mathematics and Statistics, Wuhan University 1 Introduction Carlitz [6, 7] defined the degenerate Bernoulli polynomials

More information

2 MUMTAZ AHMAD KHAN AND KHURSHEED AHMAD Later on, in 977, the polynomials L n (x) were also studied by R. Panda [9]. It may be remarked here that in t

2 MUMTAZ AHMAD KHAN AND KHURSHEED AHMAD Later on, in 977, the polynomials L n (x) were also studied by R. Panda [9]. It may be remarked here that in t SOOCHOW JOURNAL OF MATHEMATICS Volume 26, No., pp. 9-27, January 2 A STUDY OF BESSEL POLYNOMIALS SUGGESTED BY THE POLYNOMIALS L n (x) OF PRABHAKAR AND REKHA BY MUMTAZ AHMAD KHAN AND KHURSHEED AHMAD Abstract.

More information

The Degree of the Splitting Field of a Random Polynomial over a Finite Field

The Degree of the Splitting Field of a Random Polynomial over a Finite Field The Degree of the Splitting Field of a Random Polynomial over a Finite Field John D. Dixon and Daniel Panario School of Mathematics and Statistics Carleton University, Ottawa, Canada {jdixon,daniel}@math.carleton.ca

More information

A LINEAR BINOMIAL RECURRENCE AND THE BELL NUMBERS AND POLYNOMIALS

A LINEAR BINOMIAL RECURRENCE AND THE BELL NUMBERS AND POLYNOMIALS Applicable Analysis and Discrete Mathematics, 1 (27, 371 385. Available electronically at http://pefmath.etf.bg.ac.yu A LINEAR BINOMIAL RECURRENCE AND THE BELL NUMBERS AND POLYNOMIALS H. W. Gould, Jocelyn

More information

ELEMENTARY PROBLEMS AND SOLUTIONS. Edited by Stanley Rabinowitz

ELEMENTARY PROBLEMS AND SOLUTIONS. Edited by Stanley Rabinowitz Edited by Stanley Rabinowitz Please send all material for to Dr. STANLEY RABINOWITZ; 12 VINE BROOK RD; WESTFORD, MA 01886-4212 USA. Correspondence may also be sent to the problem editor by electronic mail

More information

THE p-adic VALUATION OF EULERIAN NUMBERS: TREES AND BERNOULLI NUMBERS

THE p-adic VALUATION OF EULERIAN NUMBERS: TREES AND BERNOULLI NUMBERS THE p-adic VALUATION OF EULERIAN NUMBERS: TREES AND BERNOULLI NUMBERS FRANCIS N. CASTRO, OSCAR E. GONZÁLEZ, AND LUIS A. MEDINA Abstract. In this work we explore the p-adic valuation of Eulerian numbers.

More information

Applications of Chromatic Polynomials Involving Stirling Numbers

Applications of Chromatic Polynomials Involving Stirling Numbers Applications of Chromatic Polynomials Involving Stirling Numbers A. Mohr and T.D. Porter Department of Mathematics Southern Illinois University Carbondale, IL 6290 tporter@math.siu.edu June 23, 2008 The

More information

MATH39001 Generating functions. 1 Ordinary power series generating functions

MATH39001 Generating functions. 1 Ordinary power series generating functions MATH3900 Generating functions The reference for this part of the course is generatingfunctionology by Herbert Wilf. The 2nd edition is downloadable free from http://www.math.upenn. edu/~wilf/downldgf.html,

More information

Chapter 5: Integer Compositions and Partitions and Set Partitions

Chapter 5: Integer Compositions and Partitions and Set Partitions Chapter 5: Integer Compositions and Partitions and Set Partitions Prof. Tesler Math 184A Fall 2017 Prof. Tesler Ch. 5: Compositions and Partitions Math 184A / Fall 2017 1 / 46 5.1. Compositions A strict

More information

On Linear Recursive Sequences with Coefficients in Arithmetic-Geometric Progressions

On Linear Recursive Sequences with Coefficients in Arithmetic-Geometric Progressions Applied Mathematical Sciences, Vol. 9, 015, no. 5, 595-607 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/ams.015.5163 On Linear Recursive Sequences with Coefficients in Arithmetic-Geometric Progressions

More information

ON UNIVERSAL SUMS OF POLYGONAL NUMBERS

ON UNIVERSAL SUMS OF POLYGONAL NUMBERS Sci. China Math. 58(2015), no. 7, 1367 1396. ON UNIVERSAL SUMS OF POLYGONAL NUMBERS Zhi-Wei SUN Department of Mathematics, Nanjing University Nanjing 210093, People s Republic of China zwsun@nju.edu.cn

More information

THREE IDENTITIES BETWEEN STIRLING NUMBERS AND THE STABILIZING CHARACTER SEQUENCE

THREE IDENTITIES BETWEEN STIRLING NUMBERS AND THE STABILIZING CHARACTER SEQUENCE PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 60, October 1976 THREE IDENTITIES BETWEEN STIRLING NUMBERS AND THE STABILIZING CHARACTER SEQUENCE MICHAEL GILPIN Abstract. Let x denote the stabilizing

More information

REPRESENTATION GRIDS FOR CERTAIN MORGAN-VOYCE NUMBERS A. F. Horadam The University of New England, Annidale, 2351, Australia (Submitted February 1998)

REPRESENTATION GRIDS FOR CERTAIN MORGAN-VOYCE NUMBERS A. F. Horadam The University of New England, Annidale, 2351, Australia (Submitted February 1998) REPRESENTATION GRIDS FOR CERTAIN MORGAN-VOYCE NUMBERS A. F. Horadam The University of New Engl, Annidale, 2351, Australia (Submitted February 1998) 1. BACKGROUND Properties of representation number sequences

More information

Introducing the Normal Distribution

Introducing the Normal Distribution Department of Mathematics Ma 3/13 KC Border Introduction to Probability and Statistics Winter 219 Lecture 1: Introducing the Normal Distribution Relevant textbook passages: Pitman [5]: Sections 1.2, 2.2,

More information

Combinatorial Enumeration. Jason Z. Gao Carleton University, Ottawa, Canada

Combinatorial Enumeration. Jason Z. Gao Carleton University, Ottawa, Canada Combinatorial Enumeration Jason Z. Gao Carleton University, Ottawa, Canada Counting Combinatorial Structures We are interested in counting combinatorial (discrete) structures of a given size. For example,

More information

Some Congruences for the Partial Bell Polynomials

Some Congruences for the Partial Bell Polynomials 3 47 6 3 Journal of Integer Seuences, Vol. 009), Article 09.4. Some Congruences for the Partial Bell Polynomials Miloud Mihoubi University of Science and Technology Houari Boumediene Faculty of Mathematics

More information

YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE

YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE fa it) On the Jacobi Polynomials PA ' Gregory Matviyenko Research Report YALETJ/DCS/RR-1076 June 13, 1995 DTI,* QUALITY DEFECTED 3 YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE & k.-. *,«.

More information

Linear transformations preserving the strong q-log-convexity of polynomials

Linear transformations preserving the strong q-log-convexity of polynomials Linear transformations preserving the strong q-log-convexity of polynomials Bao-Xuan Zhu School of Mathematics and Statistics Jiangsu Normal University Xuzhou, PR China bxzhu@jsnueducn Hua Sun College

More information

Newton, Fermat, and Exactly Realizable Sequences

Newton, Fermat, and Exactly Realizable Sequences 1 2 3 47 6 23 11 Journal of Integer Sequences, Vol. 8 (2005), Article 05.1.2 Newton, Fermat, and Exactly Realizable Sequences Bau-Sen Du Institute of Mathematics Academia Sinica Taipei 115 TAIWAN mabsdu@sinica.edu.tw

More information

Applications. More Counting Problems. Complexity of Algorithms

Applications. More Counting Problems. Complexity of Algorithms Recurrences Applications More Counting Problems Complexity of Algorithms Part I Recurrences and Binomial Coefficients Paths in a Triangle P(0, 0) P(1, 0) P(1,1) P(2, 0) P(2,1) P(2, 2) P(3, 0) P(3,1) P(3,

More information

PAijpam.eu THE PERIOD MODULO PRODUCT OF CONSECUTIVE FIBONACCI NUMBERS

PAijpam.eu THE PERIOD MODULO PRODUCT OF CONSECUTIVE FIBONACCI NUMBERS International Journal of Pure and Applied Mathematics Volume 90 No. 014, 5-44 ISSN: 111-8080 (printed version); ISSN: 114-95 (on-line version) url: http://www.ipam.eu doi: http://dx.doi.org/10.17/ipam.v90i.7

More information

Discrete Orthogonal Polynomials on Equidistant Nodes

Discrete Orthogonal Polynomials on Equidistant Nodes International Mathematical Forum, 2, 2007, no. 21, 1007-1020 Discrete Orthogonal Polynomials on Equidistant Nodes Alfredo Eisinberg and Giuseppe Fedele Dip. di Elettronica, Informatica e Sistemistica Università

More information

G E N E R A L I Z E D C O N V O L U T I O N A R R A Y S

G E N E R A L I Z E D C O N V O L U T I O N A R R A Y S G E N E R A L I Z E D C O N V O L U T I O N A R R A Y S V. E. HOGGATT,JR. San Jose State University, San Jose, California 00192 G. E. BERGUM South Dakota State University, Brookings, Sooth Dakota 57006

More information

Mathematical Induction

Mathematical Induction Mathematical Induction MAT30 Discrete Mathematics Fall 018 MAT30 (Discrete Math) Mathematical Induction Fall 018 1 / 19 Outline 1 Mathematical Induction Strong Mathematical Induction MAT30 (Discrete Math)

More information

ACO Comprehensive Exam October 18 and 19, Analysis of Algorithms

ACO Comprehensive Exam October 18 and 19, Analysis of Algorithms Consider the following two graph problems: 1. Analysis of Algorithms Graph coloring: Given a graph G = (V,E) and an integer c 0, a c-coloring is a function f : V {1,,...,c} such that f(u) f(v) for all

More information

A NOTE ON RAMUS IDENTITY AND ASSOCIATED RECURSION RELATIONS

A NOTE ON RAMUS IDENTITY AND ASSOCIATED RECURSION RELATIONS A NOTE ON RAMUS IDENTITY AND ASSOCIATED RECURSION RELATIONS CHARLES S. KAHANE Abstract. A system of recursion relations is used to establish Ramus identity for sums of binomial coefficients in arithmetic

More information

A Laplace Transform Technique for Evaluating Infinite Series

A Laplace Transform Technique for Evaluating Infinite Series 394 MATHEMATICS MAGAZINE determinant due to Mansion [3], although he did not state his method as a matrix factorization. See Muir's history [4] for more details. Acknowledgments. I thank John Rhodes and

More information

Math Assignment 11

Math Assignment 11 Math 2280 - Assignment 11 Dylan Zwick Fall 2013 Section 8.1-2, 8, 13, 21, 25 Section 8.2-1, 7, 14, 17, 32 Section 8.3-1, 8, 15, 18, 24 1 Section 8.1 - Introduction and Review of Power Series 8.1.2 - Find

More information

PARTITIONS, COMPOSITIONS AND CYCLOMATIC NUMBER OF FUNCTION LATTICES

PARTITIONS, COMPOSITIONS AND CYCLOMATIC NUMBER OF FUNCTION LATTICES 0#0# PARTITIONS, COMPOSITIONS AND CYCLOMATIC NUMBER OF FUNCTION LATTICES EDUARD FUCHS University of J. E Purkyne, 662 95 Brno, Czechoslovakia (Submitted June 1982) 1. INTRODUCTION By a poset we mean a

More information

Chapter 5: Integer Compositions and Partitions and Set Partitions

Chapter 5: Integer Compositions and Partitions and Set Partitions Chapter 5: Integer Compositions and Partitions and Set Partitions Prof. Tesler Math 184A Winter 2017 Prof. Tesler Ch. 5: Compositions and Partitions Math 184A / Winter 2017 1 / 32 5.1. Compositions A strict

More information

Generating Orthogonal Polynomials and their Derivatives using Vertex Matching-Partitions of Graphs

Generating Orthogonal Polynomials and their Derivatives using Vertex Matching-Partitions of Graphs Generating Orthogonal Polynomials and their Derivatives using Vertex Matching-Partitions of Graphs John P. McSorley, Philip Feinsilver Department of Mathematics Southern Illinois University Carbondale,

More information

ADVANCED PROBLEMS AND SOLUTIONS

ADVANCED PROBLEMS AND SOLUTIONS Edited by Raymond E. Whitney Please send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS to RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK HAVEN UNIVERSITY, LOCK HA VEN, PA 17745. This

More information

General Power Series

General Power Series General Power Series James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University March 29, 2018 Outline Power Series Consequences With all these preliminaries

More information

and ttuu ee 2 (logn loglogn) 1 J

and ttuu ee 2 (logn loglogn) 1 J 282 ON THE DENSITY OF THE ABUNDANT NUMBEBS. But, by Lemma 3, b v a(6 M )^ 2 which is a contradiction. Thus the theorem is established. 4. It will be seen that the method used in this paper leads immediately

More information

Summation of certain infinite Fibonacci related series

Summation of certain infinite Fibonacci related series arxiv:52.09033v (30 Dec 205) Summation of certain infinite Fibonacci related series Bakir Farhi Laboratoire de Mathématiques appliquées Faculté des Sciences Exactes Université de Bejaia 06000 Bejaia Algeria

More information

2.1 Convergence of Sequences

2.1 Convergence of Sequences Chapter 2 Sequences 2. Convergence of Sequences A sequence is a function f : N R. We write f) = a, f2) = a 2, and in general fn) = a n. We usually identify the sequence with the range of f, which is written

More information

A generalisation of the quintuple product identity. Abstract

A generalisation of the quintuple product identity. Abstract A generalisation of the quintuple product identity Abstract The quintuple identity has appeared many times in the literature. Indeed, no fewer than 12 proofs have been given. We establish a more general

More information

Summing Series: Solutions

Summing Series: Solutions Sequences and Series Misha Lavrov Summing Series: Solutions Western PA ARML Practice December, 0 Switching the order of summation Prove useful identity 9 x x x x x x Riemann s zeta function ζ is defined

More information

Section 4.2: Mathematical Induction 1

Section 4.2: Mathematical Induction 1 Section 4.: Mathematical Induction 1 Over the next couple of sections, we shall consider a method of proof called mathematical induction. Induction is fairly complicated, but a very useful proof technique,

More information

Closed-form Second Solution to the Confluent Hypergeometric Difference Equation in the Degenerate Case

Closed-form Second Solution to the Confluent Hypergeometric Difference Equation in the Degenerate Case International Journal of Difference Equations ISS 973-669, Volume 11, umber 2, pp. 23 214 (216) http://campus.mst.edu/ijde Closed-form Second Solution to the Confluent Hypergeometric Difference Equation

More information

*!5(/i,*)=t(-i)*-, fty.

*!5(/i,*)=t(-i)*-, fty. ON THE DIVISIBILITY BY 2 OF THE STIRLING NUMBERS OF THE SECOND KIND T* Lengyel Occidental College, 1600 Campus Road., Los Angeles, CA 90041 {Submitted August 1992) 1. INTRODUCTION In this paper we characterize

More information

Several Generating Functions for Second-Order Recurrence Sequences

Several Generating Functions for Second-Order Recurrence Sequences 47 6 Journal of Integer Sequences, Vol. 009), Article 09..7 Several Generating Functions for Second-Order Recurrence Sequences István Mező Institute of Mathematics University of Debrecen Hungary imezo@math.lte.hu

More information

CSC 344 Algorithms and Complexity. Proof by Mathematical Induction

CSC 344 Algorithms and Complexity. Proof by Mathematical Induction CSC 344 Algorithms and Complexity Lecture #1 Review of Mathematical Induction Proof by Mathematical Induction Many results in mathematics are claimed true for every positive integer. Any of these results

More information

Certain Dual Series Equations Involving Generalized Laguerre Polynomials

Certain Dual Series Equations Involving Generalized Laguerre Polynomials International Journal of Computational and Applied Mathematics. ISSN 1819-4966 Volume 11, Number 1 (2016), pp. 55-59 Research India Publications http://www.ripublication.com Certain Dual Series Equations

More information

Discrete Math, Spring Solutions to Problems V

Discrete Math, Spring Solutions to Problems V Discrete Math, Spring 202 - Solutions to Problems V Suppose we have statements P, P 2, P 3,, one for each natural number In other words, we have the collection or set of statements {P n n N} a Suppose

More information

GENERATING FUNCTIONS K-FIBONACCI AND K-JACOBSTHAL NUMBERS AT NEGATIVE INDICES

GENERATING FUNCTIONS K-FIBONACCI AND K-JACOBSTHAL NUMBERS AT NEGATIVE INDICES Electronic Journal of Mathematical Analysis and Applications Vol. 6(2) July 2018, pp. 195-202. ISSN: 2090-729X(online) http://fcag-egypt.com/journals/ejmaa/ GENERATING FUNCTIONS K-FIBONACCI AND K-JACOBSTHAL

More information

LATTICE POINT SOLUTION OF THE GENERALIZED PROBLEM OF TERQUEi. AND AN EXTENSION OF FIBONACCI NUMBERS.

LATTICE POINT SOLUTION OF THE GENERALIZED PROBLEM OF TERQUEi. AND AN EXTENSION OF FIBONACCI NUMBERS. i LATTICE POINT SOLUTION OF THE GENERALIZED PROBLEM OF TERQUEi. AND AN EXTENSION OF FIBONACCI NUMBERS. C. A. CHURCH, Jr. and H. W. GOULD, W. Virginia University, Morgantown, W. V a. In this paper we give

More information

CONGRUENCES FOR BERNOULLI - LUCAS SUMS

CONGRUENCES FOR BERNOULLI - LUCAS SUMS CONGRUENCES FOR BERNOULLI - LUCAS SUMS PAUL THOMAS YOUNG Abstract. We give strong congruences for sums of the form N BnVn+1 where Bn denotes the Bernoulli number and V n denotes a Lucas sequence of the

More information

A CONGRUENTIAL IDENTITY AND THE 2-ADIC ORDER OF LACUNARY SUMS OF BINOMIAL COEFFICIENTS

A CONGRUENTIAL IDENTITY AND THE 2-ADIC ORDER OF LACUNARY SUMS OF BINOMIAL COEFFICIENTS A CONGRUENTIAL IDENTITY AND THE 2-ADIC ORDER OF LACUNARY SUMS OF BINOMIAL COEFFICIENTS Gregory Tollisen Department of Mathematics, Occidental College, 1600 Campus Road, Los Angeles, USA tollisen@oxy.edu

More information

On the Convergence of the Summation Formulas Constructed by Using a Symbolic Operator Approach

On the Convergence of the Summation Formulas Constructed by Using a Symbolic Operator Approach On the Convergence of the Summation Formulas Constructed by Using a Symbolic Operator Approach Tian-Xiao He 1, Leetsch C. Hsu 2, and Peter J.-S. Shiue 3 1 Department of Mathematics and Computer Science

More information

EECS 1028 M: Discrete Mathematics for Engineers

EECS 1028 M: Discrete Mathematics for Engineers EECS 1028 M: Discrete Mathematics for Engineers Suprakash Datta Office: LAS 3043 Course page: http://www.eecs.yorku.ca/course/1028 Also on Moodle S. Datta (York Univ.) EECS 1028 W 18 1 / 16 Sequences and

More information

A GENERALIZATION OF STIRLING NUMBERS

A GENERALIZATION OF STIRLING NUMBERS Hongquan Yu Institute of Mathematical Sciences, Dalian University of Technology, Dalian 6024, China (Submitted September 996-Final Revision December 996). INTRODUCTION Let W(x), fix), g(x) be formal power

More information

ADVANCED PROBLEMS AND SOLUTIONS Edited By RAYMOND E.WHITNEY Lock Haven State College, Lock Haven, Pennsylvania

ADVANCED PROBLEMS AND SOLUTIONS Edited By RAYMOND E.WHITNEY Lock Haven State College, Lock Haven, Pennsylvania ADVANCED PROBLEMS AND SOLUTIONS Edited By RAYMOND E.WHITNEY Loc Haven State College, Loc Haven, Pennsylvania Send all communications concerning Advanced Problems and Solutions to Raymond E. Whitney, Mathematics

More information

AND OCCUPANCY PROBLEMS

AND OCCUPANCY PROBLEMS COMBINATIONS, COMPOSITIONS AND OCCUPANCY PROBLEMS MORTON ABRAMSON York University, Downsview, Toronto, Canada Let r < k be positive integers,, INTRODUCTION By a composition of k into r parts (an r-composition

More information

Ex. Here's another one. We want to prove that the sum of the cubes of the first n natural numbers is. n = n 2 (n+1) 2 /4.

Ex. Here's another one. We want to prove that the sum of the cubes of the first n natural numbers is. n = n 2 (n+1) 2 /4. Lecture One type of mathematical proof that goes everywhere is mathematical induction (tb 147). Induction is essentially used to show something is true for all iterations, i, of a sequence, where i N.

More information

Sequences and infinite series

Sequences and infinite series Sequences and infinite series D. DeTurck University of Pennsylvania March 29, 208 D. DeTurck Math 04 002 208A: Sequence and series / 54 Sequences The lists of numbers you generate using a numerical method

More information

Bernoulli Numbers and their Applications

Bernoulli Numbers and their Applications Bernoulli Numbers and their Applications James B Silva Abstract The Bernoulli numbers are a set of numbers that were discovered by Jacob Bernoulli (654-75). This set of numbers holds a deep relationship

More information

A determinant characterization of moment sequences with finitely many mass-points

A determinant characterization of moment sequences with finitely many mass-points To appear in Linear and Multilinear Algebra Vol 00, No 00, Month 20XX, 1 9 A determinant characterization of moment sequences with finitely many mass-points Christian Berg a and Ryszard Szwarc b a Department

More information

A Probabilistic View of Certain Weighted Fibonacci Sums

A Probabilistic View of Certain Weighted Fibonacci Sums Claremont Colleges Scholarship @ Claremont All HMC Faculty Publications and Research HMC Faculty Scholarship 8-1-2003 A Probabilistic View of Certain Weighted Fibonacci Sums Arthur T. Benjamin Harvey Mudd

More information

Explicit formulas using partitions of integers for numbers defined by recursion

Explicit formulas using partitions of integers for numbers defined by recursion Explicit formulas using partitions of integers for numbers defined by recursion Giuseppe Fera, Vittorino Talamini, arxiv:2.440v2 [math.nt] 27 Feb 203 DCFA, Sezione di Fisica e Matematica, Università di

More information

ON A KIND OF GENERALIZED ARITHMETIC-GEOMETRIC PROGRESSION

ON A KIND OF GENERALIZED ARITHMETIC-GEOMETRIC PROGRESSION ON A KIND OF GENERALIZED ARITHMETIC-GEOMETRIC PROGRESSION Leetsch C. Hsu* Dalian University of Technology, Dalian 116024, China (Submitted August 1995) 1. INTRODUCTION Let (t\h) p denote the generalized

More information

Let D be the open unit disk of the complex plane. Its boundary, the unit circle of the complex plane, is denoted by D. Let

Let D be the open unit disk of the complex plane. Its boundary, the unit circle of the complex plane, is denoted by D. Let HOW FAR IS AN ULTRAFLAT SEQUENCE OF UNIMODULAR POLYNOMIALS FROM BEING CONJUGATE-RECIPROCAL? Tamás Erdélyi Abstract. In this paper we study ultraflat sequences (P n) of unimodular polynomials P n K n in

More information

Subrings of Finite Commutative Rings

Subrings of Finite Commutative Rings Subrings of Finite Commutative Rings Francisco Franco Munoz arxiv:1712.02025v1 [math.ac] 6 Dec 2017 Abstract We record some basic results on subrings of finite commutative rings. Among them we establish

More information

Counting permutations by cyclic peaks and valleys

Counting permutations by cyclic peaks and valleys Annales Mathematicae et Informaticae 43 (2014) pp. 43 54 http://ami.ektf.hu Counting permutations by cyclic peaks and valleys Chak-On Chow a, Shi-Mei Ma b, Toufik Mansour c Mark Shattuck d a Division of

More information

THE ORDER OF APPEARANCE OF PRODUCT OF CONSECUTIVE FIBONACCI NUMBERS

THE ORDER OF APPEARANCE OF PRODUCT OF CONSECUTIVE FIBONACCI NUMBERS THE ORDER OF APPEARANCE OF PRODUCT OF CONSECUTIVE FIBONACCI NUMBERS DIEGO MARQUES Abstract. Let F n be the nth Fibonacci number. The order of appearance z(n) of a natural number n is defined as the smallest

More information

SOME PROPERTIES OF THIRD-ORDER RECURRENCE RELATIONS

SOME PROPERTIES OF THIRD-ORDER RECURRENCE RELATIONS SOME PROPERTIES OF THIRD-ORDER RECURRENCE RELATIONS A. G. SHANNON* University of Papua New Guinea, Boroko, T. P. N. G. A. F. HORADAIVS University of New Engl, Armidale, Australia. INTRODUCTION In this

More information

SOME IDENTITIES INVOLVING THE FIBONACCI POLYNOMIALS*

SOME IDENTITIES INVOLVING THE FIBONACCI POLYNOMIALS* * Yi Yuan and Wenpeeg Zhang Research Center for Basic Science, Xi'an Jiaotong University, Xi'an Shaanxi. P.R. China (Submitted June 2000-Final Revision November 2000) 1. INTROBUCTION AND RESULTS As usual,

More information

The generalized order-k Fibonacci Pell sequence by matrix methods

The generalized order-k Fibonacci Pell sequence by matrix methods Journal of Computational and Applied Mathematics 09 (007) 33 45 wwwelseviercom/locate/cam The generalized order- Fibonacci Pell sequence by matrix methods Emrah Kilic Mathematics Department, TOBB University

More information

Permutation Statistics and q-fibonacci Numbers

Permutation Statistics and q-fibonacci Numbers Permutation Statistics and q-fibonacci Numbers Adam M Goyt and David Mathisen Mathematics Department Minnesota State University Moorhead Moorhead, MN 56562 Submitted: April 2, 2009; Accepted: August 2,

More information

ASYMPTOTIC DISTRIBUTION OF THE MAXIMUM CUMULATIVE SUM OF INDEPENDENT RANDOM VARIABLES

ASYMPTOTIC DISTRIBUTION OF THE MAXIMUM CUMULATIVE SUM OF INDEPENDENT RANDOM VARIABLES ASYMPTOTIC DISTRIBUTION OF THE MAXIMUM CUMULATIVE SUM OF INDEPENDENT RANDOM VARIABLES KAI LAI CHUNG The limiting distribution of the maximum cumulative sum 1 of a sequence of independent random variables

More information

ADVANCED PROBLEMS AND SOLUTIONS

ADVANCED PROBLEMS AND SOLUTIONS Edited by RAYMOND E. WHITNEY Please send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS to RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK HAVEN UNIVERSITY, LOCK HA PA 17745, This department

More information

On the minimum of several random variables

On the minimum of several random variables On the minimum of several random variables Yehoram Gordon Alexander Litvak Carsten Schütt Elisabeth Werner Abstract For a given sequence of real numbers a,..., a n we denote the k-th smallest one by k-

More information

On certain combinatorial expansions of the Legendre-Stirling numbers

On certain combinatorial expansions of the Legendre-Stirling numbers On certain combinatorial expansions of the Legendre-Stirling numbers Shi-Mei Ma School of Mathematics and Statistics Northeastern University at Qinhuangdao Hebei, P.R. China shimeimapapers@163.com Yeong-Nan

More information

Section 4.1: Sequences and Series

Section 4.1: Sequences and Series Section 4.1: Sequences and Series In this section, we shall introduce the idea of sequences and series as a necessary tool to develop the proof technique called mathematical induction. Most of the material

More information

Thesis submitted in partial fulfillment of the requirement for The award of the degree of. Masters of Science in Mathematics and Computing

Thesis submitted in partial fulfillment of the requirement for The award of the degree of. Masters of Science in Mathematics and Computing SOME n-color COMPOSITION Thesis submitted in partial fulfillment of the requirement for The award of the degree of Masters of Science in Mathematics and Computing Submitted by Shelja Ratta Roll no- 301203014

More information

Generating Functions

Generating Functions Semester 1, 2004 Generating functions Another means of organising enumeration. Two examples we have seen already. Example 1. Binomial coefficients. Let X = {1, 2,..., n} c k = # k-element subsets of X

More information