424: Oscillations & Waves

Size: px
Start display at page:

Download "424: Oscillations & Waves"

Transcription

1 424: Oscillations & Waves 1

2 PH424: PS 30%; Lab Manuscript 30%; Final 35%; Quizzes/Wrks 5% ~ Jan & Feb 2019 ~ Mon Tue Wed Thu Fri Free motion of an -PS 1a due Lab & oscillator -driven SHM and Discussion: the -Free damped oscillations circuits LCR circuit 7 Simple Harmonic Motion - 4 representations 14 Forced motion & resonances 15 Admittance, Impedance, phase shifts. 16 -PS 2a due Lab Data Workshop. 17 [Math Methods] 11 -PS 1b due Forced motion of a damped oscillator LCR circuit resonance 18 -PS 2b due [Math Methods] 21 Martin Luther King Day 28 Pre-Lab -Wave phenomena, demo lab -Reflection & Transmission 4 [Math Methods] PDEs, wave eqn w/ arb. initial conditions Lab data workshop /presentation 22 [Math Methods] 29 Workshop & discussion: Coax Cable Lab Workshop 5 Wave Propagation Lab data: Peer Review Session Interactive Coax workshop & discovery lab Multiple Driving Frequencies & Superposition 23 [Math Methods] Formal LRC Manuscript Due 30 -PS 4a due -Reflection & Transmission 6 -PS5a due Waves on string simulation (PhET ) Dispersive waves Coax Cable formal abstract due 24 Intro to Wave Mechanics ABCD forms Demo lab. 25 Wave Equation Fourier Solutions -PS3 due PS4b due Wave propagation Labs Data Peer & attenuation Review, Abstract Writing Workshop 7 Wave Energy: kinetic vs. potential ennergy density 8 -PS5b due [one PDE advance problem] Paradigms 424 Review 2

3 Formal Technical Writing One formal lab manuscript is required and one scientific conference abstract with figure. Good technical writing is very similar to writing an essay with sub-headings. We want to hear a convincing scientific story, not a shopping list of everything you did. Check out course web-site (writing tab) We will have data & write-up workshops 3

4 Week 1-2: Oscillations modulations wrt time, f(t) Week 3-5: Waves 1D modulations wrt space, y(x) AND BOTH y(x,t) Superposition of 4 brain neuron activity

5 Are oscillations ubiquitous? Or are they merely a paradigm? White Board Brainstorm: what physical systems have oscillations and/or waves? Superposition of 5 brain neuron activity

6 Are oscillations ubiquitous? Or are they merely a paradigm? PRL 116, (2016) 6

7 2018 Morou & Strickland Chirped Pulse Amplification 10 fs: the atomo laser pulse

8 REPRESENTING SIMPLE HARMONIC MOTION 8

9 amplitude x(t) = Acos( w 0 t + f) phase angle period angular freq T = 2p w 0 = 1 f (cyclic) freq A 1 x 0 position t = - f w 0 -A -1 time determined by initial conditions determined by physical system 9

10 1 Position (cm) x(t) = Acos w 0 t + f ( ) x t 1 2 Velocity (cm/s) ( ) x(t) = Aw 0 cos w 0 t + f + p 2 Acceleration (cm/s 2 ) ( ) x(t) = Aw 0 2 cos w 0 t + f + p v a t t 1 2 time (s) 10

11 These representations of the position of a simple harmonic oscillator as a function of time are all equivalent - there are 2 arbitrary constants in each. Note that A, f, B p and B q are REAL; C and D are COMPLEX. x(t) is real-valued variable in all cases. A: x(t) = Acos( w 0 t +f) B: C: D: x(t) = B p cosw 0 t + B q sinw 0 t x(t) = C exp iw 0 t ( ) + C *exp -iw 0 t ( ) x(t) = Re Dexp iw 0 t ( ) [ ] Engrave these on your soul - and know how to derive the relationships among A & f; B p & B q ; C; and D. 11

12 k m Example: initial conditions x(t) = Acos( w 0 t +f) k m x(t) = B p cosw 0 t + B q sinw 0 t x m = 0.01 kg; k = 36 Nm -1. At t = 0, m is displaced 50mm to the right and is moving to the right at 1.7 ms -1. Express the motion in form A form B 12

13 x(t) = Acos( w 0 t +f) x(t) = 57.5cos( éë 60s -1 ù û t ) mm x(t) = B p cosw 0 t + B q sinw 0 t x(t) = 50mmcos éë 60s -1 ù û t ( ) mmsin ( 60s -1 ù û t) éë B p = Acosf B q = -Asinf A = B p 2 + B q 2 tanf = - B q B p 13

14 k Using complex numbers: initial conditions. Same example as before, but now use the "C" and "D" forms m x(t) = C exp iw 0 t ( ) + C *exp -iw 0 t ( ) k m x(t) = Re Dexp iw 0 t ( ) [ ] x m = 0.01 kg; k = 36 Nm -1. At t = 0, m is displaced 50mm to the right and is moving to the right at 1.7 ms -1. Express the motion in form C form D 14

15 x( t) = x(t) = C exp iw 0 t ( ) + C *exp -iw 0 t ( ) ( 1 1 i60s t i60s t ( i) e + ( i) e )mm x( t) = x(t) = Re Dexp iw 0 t ( ) [ ] Re ( i ) e 1 i60s t mm Acosf = B p = 2Re C [ ] = Re D [ ] Asinf = -B q = 2Im C [ ] = Im D [ ] D = 2C = A tanf = Im [ D ] Re[ D] = Im [ C ] Re[ C] 15

16 Optional Clicker Questions 16

17 A particle executes simple harmonic motion. When the velocity of the particle is a maximum which one of the following gives the correct values of potential energy and acceleration of the particle. (a)potential energy is maximum and acceleration is maximum. (b)potential energy is maximum and acceleration is zero. (c)potential energy is minimum and acceleration is maximum. (d)potential energy is minimum and acceleration is zero. 17

18 A particle executes simple harmonic motion. When the velocity of the particle is a maximum which one of the following gives the correct values of potential energy and acceleration of the particle. (a)potential energy is maximum and acceleration is maximum. (b)potential energy is maximum and acceleration is zero. (c)potential energy is minimum and acceleration is maximum. (d)potential energy is minimum and acceleration is zero. Answer (d). When velocity is maximum displacement is zero so potential energy and acceleration are both zero. 18

19 A mass vibrates on the end of the spring. The mass is replaced with another mass and the frequency of oscillation doubles. The mass was changed by a factor of (a) 1/4 (b) ½ (c) 2 (d) 4 19

20 A mass vibrates on the end of the spring. The mass is replaced with another mass and the frequency of oscillation doubles. The mass was changed by a factor of (a) 1/4 (b) 1/2 (c) 2 (d) 4 Answer (a). Since the frequency has increased the mass must have decreased. Frequency is inversely proportional to the square root of mass, so to double frequency the mass must change by a factor of 1/4. 20

21 A mass vibrates on the end of the spring. The mass is replaced with another mass and the frequency of oscillation doubles. The maximum acceleration of the mass: (a) remains the same. (b) is halved. (c) is doubled. (d) is quadrupled. 21

22 A mass vibrates on the end of the spring. The mass is replaced with another mass and the frequency of oscillation doubles. The maximum acceleration of the mass: (a) remains the same. (b) is halved. (c) is doubled. (d) is quadrupled. Answer (d). Acceleration is proportional to frequency squared. If frequency is doubled than acceleration is quadrupled. 22

23 A particle oscillates on the end of a spring and its position as a function of time is shown below. At the moment when the mass is at the point P it has (a) positive velocity and positive acceleration (b) positive velocity and negative acceleration (c) negative velocity and negative acceleration (d) negative velocity and positive acceleration 23

24 A particle oscillates on the end of a spring and its position as a function of time is shown below. At the moment when the mass is at the point P it has (a) positive velocity and positive acceleration (b) positive velocity and negative acceleration (c) negative velocity and negative acceleration (d) negative velocity and positive acceleration Answer (b). The slope is positive so velocity is positive. Since the slope is getting smaller with time the acceleration is negative. 24

25 Optional Review of Complex Numbers 25

26 Complex numbers z = a + ib z = z e if i = -1 Re z Im z ( ) = a ( ) = b üï ýreal numbers þï Imag b z z = a 2 + b 2 f Real a Argand diagram tanf = b a 26

27 Euler s relation exp if ( ) = cosf + isinf exp iw 0 t ( ) = cos w 0 t ( ) + isin w 0 t ( ) 27

28 Consistency argument z = a + ib z = z e if If these represent the same thing, then the assumed Euler relationship says: a + ib = z cosf + i z sinf Equate real parts: Equate imaginary parts: a = z cosf b = z sinf z = a 2 + b 2 tanf = b a 28

29 x(t) = Re Ae if e iw 0t [ ] [ ] = Re Ae i ( w 0 t+f ) t = T 0 /4 Imag PHASOR p 2 +f f t = 0, T 0, 2T 0 Real w 0 t +f t = t 29

30 Adding complex numbers is easy in rectangular form z = a + ib w = c + id Imag z + w = [ a + c] + i[ b + d] c b a Real d 30

31 Multiplication and division of complex numbers is easy in polar form z = z e if w = w e iq zw = z w e i [ f +q ] Imag z q+f w q f Real 31

32 Another important idea is the COMPLEX CONJUGATE of a complex number. To form the c.c., change i -> -i z = a + ib z* = a - ib z + z* = [ a + a] + i[ b - b] = 2a Imag z = z e if z* = z e -if b z a f Real zz* = z e if z e -if = z 2 The product of a complex number and its complex conjugate is REAL. We say zz* equals mod z squared 32

33 And finally, rationalizing complex numbers, or: what to do when there's an i in the denominator? z = a + ib c + id z = a + ib c + id c - id c - id z = = ac + bd + i bc - ad ( ) c 2 + d 2 ac + bd c 2 + d 2 Re( z) + i bc - ad ( ) c 2 + d 2 Im( z) 33

PEER REVIEW. ... Your future in science will be largely controlled by anonymous letters from your peers. peers. Matt. Corinne

PEER REVIEW. ... Your future in science will be largely controlled by anonymous letters from your peers. peers. Matt. Corinne PEER REVIEW 1... Your future in science will be largely controlled by anonymous letters from your peers. Matt peers Corinne 2 3 4 5 6 MULTIPLE DRIVNG FREQUENCIES LRC circuit L I = (1/Z)V ext Z must have

More information

Chapter 13 Lecture. Essential University Physics Richard Wolfson 2 nd Edition. Oscillatory Motion Pearson Education, Inc.

Chapter 13 Lecture. Essential University Physics Richard Wolfson 2 nd Edition. Oscillatory Motion Pearson Education, Inc. Chapter 13 Lecture Essential University Physics Richard Wolfson nd Edition Oscillatory Motion Slide 13-1 In this lecture you ll learn To describe the conditions under which oscillatory motion occurs To

More information

AC Circuits III. Physics 2415 Lecture 24. Michael Fowler, UVa

AC Circuits III. Physics 2415 Lecture 24. Michael Fowler, UVa AC Circuits III Physics 415 Lecture 4 Michael Fowler, UVa Today s Topics LC circuits: analogy with mass on spring LCR circuits: damped oscillations LCR circuits with ac source: driven pendulum, resonance.

More information

Chapter 16: Oscillatory Motion and Waves. Simple Harmonic Motion (SHM)

Chapter 16: Oscillatory Motion and Waves. Simple Harmonic Motion (SHM) Chapter 6: Oscillatory Motion and Waves Hooke s Law (revisited) F = - k x Tthe elastic potential energy of a stretched or compressed spring is PE elastic = kx / Spring-block Note: To consider the potential

More information

Faculty of Computers and Information. Basic Science Department

Faculty of Computers and Information. Basic Science Department 18--018 FCI 1 Faculty of Computers and Information Basic Science Department 017-018 Prof. Nabila.M.Hassan 18--018 FCI Aims of Course: The graduates have to know the nature of vibration wave motions with

More information

BASIC WAVE CONCEPTS. Reading: Main 9.0, 9.1, 9.3 GEM 9.1.1, Giancoli?

BASIC WAVE CONCEPTS. Reading: Main 9.0, 9.1, 9.3 GEM 9.1.1, Giancoli? 1 BASIC WAVE CONCEPTS Reading: Main 9.0, 9.1, 9.3 GEM 9.1.1, 9.1.2 Giancoli? REVIEW SINGLE OSCILLATOR: The oscillation functions you re used to describe how one quantity (position, charge, electric field,

More information

Vibrations and Waves Physics Year 1. Handout 1: Course Details

Vibrations and Waves Physics Year 1. Handout 1: Course Details Vibrations and Waves Jan-Feb 2011 Handout 1: Course Details Office Hours Vibrations and Waves Physics Year 1 Handout 1: Course Details Dr Carl Paterson (Blackett 621, carl.paterson@imperial.ac.uk Office

More information

CHAPTER 11 TEST REVIEW

CHAPTER 11 TEST REVIEW AP PHYSICS Name: Period: Date: 50 Multiple Choice 45 Single Response 5 Multi-Response Free Response 3 Short Free Response 2 Long Free Response DEVIL PHYSICS BADDEST CLASS ON CAMPUS AP EXAM CHAPTER TEST

More information

ME 563 HOMEWORK # 7 SOLUTIONS Fall 2010

ME 563 HOMEWORK # 7 SOLUTIONS Fall 2010 ME 563 HOMEWORK # 7 SOLUTIONS Fall 2010 PROBLEM 1: Given the mass matrix and two undamped natural frequencies for a general two degree-of-freedom system with a symmetric stiffness matrix, find the stiffness

More information

Introduction to Vibration. Professor Mike Brennan

Introduction to Vibration. Professor Mike Brennan Introduction to Vibration Professor Mie Brennan Introduction to Vibration Nature of vibration of mechanical systems Free and forced vibrations Frequency response functions Fundamentals For free vibration

More information

8. What is the period of a pendulum consisting of a 6-kg object oscillating on a 4-m string?

8. What is the period of a pendulum consisting of a 6-kg object oscillating on a 4-m string? 1. In the produce section of a supermarket, five pears are placed on a spring scale. The placement of the pears stretches the spring and causes the dial to move from zero to a reading of 2.0 kg. If the

More information

Equations. A body executing simple harmonic motion has maximum acceleration ) At the mean positions ) At the two extreme position 3) At any position 4) he question is irrelevant. A particle moves on the

More information

PreClass Notes: Chapter 13, Sections

PreClass Notes: Chapter 13, Sections PreClass Notes: Chapter 13, Sections 13.3-13.7 From Essential University Physics 3 rd Edition by Richard Wolfson, Middlebury College 2016 by Pearson Education, Inc. Narration and extra little notes by

More information

A body is displaced from equilibrium. State the two conditions necessary for the body to execute simple harmonic motion

A body is displaced from equilibrium. State the two conditions necessary for the body to execute simple harmonic motion 1. Simple harmonic motion and the greenhouse effect (a) A body is displaced from equilibrium. State the two conditions necessary for the body to execute simple harmonic motion. 1. 2. (b) In a simple model

More information

C. points X and Y only. D. points O, X and Y only. (Total 1 mark)

C. points X and Y only. D. points O, X and Y only. (Total 1 mark) Grade 11 Physics -- Homework 16 -- Answers on a separate sheet of paper, please 1. A cart, connected to two identical springs, is oscillating with simple harmonic motion between two points X and Y that

More information

The (Fast) Fourier Transform

The (Fast) Fourier Transform The (Fast) Fourier Transform The Fourier transform (FT) is the analog, for non-periodic functions, of the Fourier series for periodic functions can be considered as a Fourier series in the limit that the

More information

BSc/MSci MidTerm Test

BSc/MSci MidTerm Test BSc/MSci MidTerm Test PHY-217 Vibrations and Waves Time Allowed: 40 minutes Date: 18 th Nov, 2011 Time: 9:10-9:50 Instructions: Answer ALL questions in section A. Answer ONLY ONE questions from section

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 22 Review Spring 2013 Semester Matthew Jones Midterm Exam: Date: Wednesday, March 6 th Time: 8:00 10:00 pm Room: PHYS 203 Material: French, chapters 1-8 Review

More information

Chapter 2: Complex numbers

Chapter 2: Complex numbers Chapter 2: Complex numbers Complex numbers are commonplace in physics and engineering. In particular, complex numbers enable us to simplify equations and/or more easily find solutions to equations. We

More information

Apr 29, 2013 PHYSICS I Lecture 22

Apr 29, 2013 PHYSICS I Lecture 22 95.141 Apr 29, 2013 PHYSICS I Lecture 22 Course website: faculty.uml.edu/pchowdhury/95.141/ www.masteringphysics.com Course: UML95141SPRING2013 Lecture Capture h"p://echo360.uml.edu/chowdhury2013/physics1spring.html

More information

11/17/10. Chapter 14. Oscillations. Chapter 14. Oscillations Topics: Simple Harmonic Motion. Simple Harmonic Motion

11/17/10. Chapter 14. Oscillations. Chapter 14. Oscillations Topics: Simple Harmonic Motion. Simple Harmonic Motion 11/17/10 Chapter 14. Oscillations This striking computergenerated image demonstrates an important type of motion: oscillatory motion. Examples of oscillatory motion include a car bouncing up and down,

More information

Exam tomorrow on Chapter 15, 16, and 17 (Oscilla;ons and Waves 1 &2)

Exam tomorrow on Chapter 15, 16, and 17 (Oscilla;ons and Waves 1 &2) Exam tomorrow on Chapter 15, 16, and 17 (Oscilla;ons and Waves 1 &2) What to study: Quiz 6 Homework problems for Chapters 15 & 16 Material indicated in the following review slides Other Specific things:

More information

Pre-Class. List everything you remember about circular motion...

Pre-Class. List everything you remember about circular motion... Pre-Class List everything you remember about circular motion... Quote of the Day I'm addicted to brake fluid......but I can stop anytime I want. Table of Contents Click on the topic to go to that section

More information

4.1 KINEMATICS OF SIMPLE HARMONIC MOTION 4.2 ENERGY CHANGES DURING SIMPLE HARMONIC MOTION 4.3 FORCED OSCILLATIONS AND RESONANCE Notes

4.1 KINEMATICS OF SIMPLE HARMONIC MOTION 4.2 ENERGY CHANGES DURING SIMPLE HARMONIC MOTION 4.3 FORCED OSCILLATIONS AND RESONANCE Notes 4.1 KINEMATICS OF SIMPLE HARMONIC MOTION 4.2 ENERGY CHANGES DURING SIMPLE HARMONIC MOTION 4.3 FORCED OSCILLATIONS AND RESONANCE Notes I. DEFINING TERMS A. HOW ARE OSCILLATIONS RELATED TO WAVES? II. EQUATIONS

More information

PHY217: Vibrations and Waves

PHY217: Vibrations and Waves Assessed Problem set 1 Issued: 5 November 01 PHY17: Vibrations and Waves Deadline for submission: 5 pm Thursday 15th November, to the V&W pigeon hole in the Physics reception on the 1st floor of the GO

More information

2. Determine whether the following pair of functions are linearly dependent, or linearly independent:

2. Determine whether the following pair of functions are linearly dependent, or linearly independent: Topics to be covered on the exam include: Recognizing, and verifying solutions to homogeneous second-order linear differential equations, and their corresponding Initial Value Problems Recognizing and

More information

Resonance and response

Resonance and response Chapter 2 Resonance and response Last updated September 20, 2008 In this section of the course we begin with a very simple system a mass hanging from a spring and see how some remarkable ideas emerge.

More information

Chapter 16 Waves. Types of waves Mechanical waves. Electromagnetic waves. Matter waves

Chapter 16 Waves. Types of waves Mechanical waves. Electromagnetic waves. Matter waves Chapter 16 Waves Types of waves Mechanical waves exist only within a material medium. e.g. water waves, sound waves, etc. Electromagnetic waves require no material medium to exist. e.g. light, radio, microwaves,

More information

Chapter 14: Periodic motion

Chapter 14: Periodic motion Chapter 14: Periodic motion Describing oscillations Simple harmonic motion Energy of simple harmonic motion Applications of simple harmonic motion Simple pendulum & physical pendulum Damped oscillations

More information

FIRST YEAR MATHS FOR PHYSICS STUDENTS NORMAL MODES AND WAVES. Hilary Term Prof. G.G.Ross. Question Sheet 1: Normal Modes

FIRST YEAR MATHS FOR PHYSICS STUDENTS NORMAL MODES AND WAVES. Hilary Term Prof. G.G.Ross. Question Sheet 1: Normal Modes FIRST YEAR MATHS FOR PHYSICS STUDENTS NORMAL MODES AND WAVES Hilary Term 008. Prof. G.G.Ross Question Sheet : Normal Modes [Questions marked with an asterisk (*) cover topics also covered by the unstarred

More information

No Lecture on Wed. But, there is a lecture on Thursday, at your normal recitation time, so please be sure to come!

No Lecture on Wed. But, there is a lecture on Thursday, at your normal recitation time, so please be sure to come! Announcements Quiz 6 tomorrow Driscoll Auditorium Covers: Chapter 15 (lecture and homework, look at Questions, Checkpoint, and Summary) Chapter 16 (Lecture material covered, associated Checkpoints and

More information

OSCILLATIONS ABOUT EQUILIBRIUM

OSCILLATIONS ABOUT EQUILIBRIUM OSCILLATIONS ABOUT EQUILIBRIUM Chapter 13 Units of Chapter 13 Periodic Motion Simple Harmonic Motion Connections between Uniform Circular Motion and Simple Harmonic Motion The Period of a Mass on a Spring

More information

Simple Harmonic Motion Test Tuesday 11/7

Simple Harmonic Motion Test Tuesday 11/7 Simple Harmonic Motion Test Tuesday 11/7 Chapter 11 Vibrations and Waves 1 If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount of time, the motion is

More information

Waves, the Wave Equation, and Phase Velocity

Waves, the Wave Equation, and Phase Velocity Waves, the Wave Equation, and Phase Velocity What is a wave? The one-dimensional wave equation Wavelength, frequency, period, etc. Phase velocity Complex numbers and exponentials Plane waves, laser beams,

More information

PREMED COURSE, 14/08/2015 OSCILLATIONS

PREMED COURSE, 14/08/2015 OSCILLATIONS PREMED COURSE, 14/08/2015 OSCILLATIONS PERIODIC MOTIONS Mechanical Metronom Laser Optical Bunjee jumping Electrical Astronomical Pulsar Biological ECG AC 50 Hz Another biological exampe PERIODIC MOTIONS

More information

10. Operators and the Exponential Response Formula

10. Operators and the Exponential Response Formula 52 10. Operators and the Exponential Response Formula 10.1. Operators. Operators are to functions as functions are to numbers. An operator takes a function, does something to it, and returns this modified

More information

Physics 141, Lecture 7. Outline. Course Information. Course information: Homework set # 3 Exam # 1. Quiz. Continuation of the discussion of Chapter 4.

Physics 141, Lecture 7. Outline. Course Information. Course information: Homework set # 3 Exam # 1. Quiz. Continuation of the discussion of Chapter 4. Physics 141, Lecture 7. Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 07, Page 1 Outline. Course information: Homework set # 3 Exam # 1 Quiz. Continuation of the

More information

kg meter ii) Note the dimensions of ρ τ are kg 2 velocity 2 meter = 1 sec 2 We will interpret this velocity in upcoming slides.

kg meter ii) Note the dimensions of ρ τ are kg 2 velocity 2 meter = 1 sec 2 We will interpret this velocity in upcoming slides. II. Generalizing the 1-dimensional wave equation First generalize the notation. i) "q" has meant transverse deflection of the string. Replace q Ψ, where Ψ may indicate other properties of the medium that

More information

Energy in a Simple Harmonic Oscillator. Class 30. Simple Harmonic Motion

Energy in a Simple Harmonic Oscillator. Class 30. Simple Harmonic Motion Simple Harmonic Motion Class 30 Here is a simulation of a mass hanging from a spring. This is a case of stable equilibrium in which there is a large extension in which the restoring force is linear in

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS TSOKOS LESSON 4-1 SIMPLE HARMONIC MOTION Introductory Video: Simple Harmonic Motion IB Assessment Statements Topic 4.1, Kinematics of Simple Harmonic

More information

Physics Mechanics. Lecture 32 Oscillations II

Physics Mechanics. Lecture 32 Oscillations II Physics 170 - Mechanics Lecture 32 Oscillations II Gravitational Potential Energy A plot of the gravitational potential energy U g looks like this: Energy Conservation Total mechanical energy of an object

More information

Oscillations and Waves

Oscillations and Waves Oscillations and Waves Oscillation: Wave: Examples of oscillations: 1. mass on spring (eg. bungee jumping) 2. pendulum (eg. swing) 3. object bobbing in water (eg. buoy, boat) 4. vibrating cantilever (eg.

More information

BSc/MSci EXAMINATION. Vibrations and Waves. Date: 4 th May, Time: 14:30-17:00

BSc/MSci EXAMINATION. Vibrations and Waves. Date: 4 th May, Time: 14:30-17:00 BSc/MSci EXAMINATION PHY-217 Vibrations and Waves Time Allowed: 2 hours 30 minutes Date: 4 th May, 2011 Time: 14:30-17:00 Instructions: Answer ALL questions in section A. Answer ONLY TWO questions from

More information

Module 25: Outline Resonance & Resonance Driven & LRC Circuits Circuits 2

Module 25: Outline Resonance & Resonance Driven & LRC Circuits Circuits 2 Module 25: Driven RLC Circuits 1 Module 25: Outline Resonance & Driven LRC Circuits 2 Driven Oscillations: Resonance 3 Mass on a Spring: Simple Harmonic Motion A Second Look 4 Mass on a Spring (1) (2)

More information

Written homework due on Monday at the start of class Online homework due on Tuesday by 8 am

Written homework due on Monday at the start of class Online homework due on Tuesday by 8 am Homework #12 Written homework due on Monday at the start of class Online homework due on Tuesday by 8 am Exam 3 Wednesday May 6 from 7 to 9 pm Make-up exams need to be scheduled no later than Friday this

More information

Oscillations. Phys101 Lectures 28, 29. Key points: Simple Harmonic Motion (SHM) SHM Related to Uniform Circular Motion The Simple Pendulum

Oscillations. Phys101 Lectures 28, 29. Key points: Simple Harmonic Motion (SHM) SHM Related to Uniform Circular Motion The Simple Pendulum Phys101 Lectures 8, 9 Oscillations Key points: Simple Harmonic Motion (SHM) SHM Related to Uniform Circular Motion The Simple Pendulum Ref: 11-1,,3,4. Page 1 Oscillations of a Spring If an object oscillates

More information

Chapter 13. F =!kx. Vibrations and Waves. ! = 2" f = 2" T. Hooke s Law Reviewed. Sinusoidal Oscillation Graphing x vs. t. Phases.

Chapter 13. F =!kx. Vibrations and Waves. ! = 2 f = 2 T. Hooke s Law Reviewed. Sinusoidal Oscillation Graphing x vs. t. Phases. Chapter 13 Vibrations and Waves Hooke s Law Reviewed F =!k When is positive, F is negative ; When at equilibrium (=0, F = 0 ; When is negative, F is positive ; 1 2 Sinusoidal Oscillation Graphing vs. t

More information

Lecture 14: Superposition & Time-Dependent Quantum States

Lecture 14: Superposition & Time-Dependent Quantum States Lecture 14: Superposition & Time-Dependent Quantum States U= y(x,t=0) 2 U= U= y(x,t 0 ) 2 U= x 0 x L 0 x L Lecture 14, p 1 Last Week Time-independent Schrodinger s Equation (SEQ): 2 2m d y ( x) U ( x)

More information

Exam III Physics 101: Lecture 19 Elasticity and Oscillations

Exam III Physics 101: Lecture 19 Elasticity and Oscillations Exam III Physics 101: Lecture 19 Elasticity and Oscillations Physics 101: Lecture 19, Pg 1 Overview Springs (review) Restoring force proportional to displacement F = -k x (often a good approximation) U

More information

Rutgers University Department of Physics & Astronomy. 01:750:271 Honors Physics I Fall Lecture 20 JJ II. Home Page. Title Page.

Rutgers University Department of Physics & Astronomy. 01:750:271 Honors Physics I Fall Lecture 20 JJ II. Home Page. Title Page. Rutgers University Department of Physics & Astronomy 01:750:271 Honors Physics Fall 2015 Lecture 20 Page 1 of 31 1. No quizzes during Thanksgiving week. There will be recitation according to the regular

More information

Waves and Fields (PHYS 195): Week 4 Spring 2019 v1.0

Waves and Fields (PHYS 195): Week 4 Spring 2019 v1.0 Waves and Fields (PHYS 195): Week 4 Spring 2019 v1.0 Intro: This week we finish our study of damped driven oscillators and resonance in these systems and start on our study of waves, beginning with transverse

More information

PHYSICS - CLUTCH CH 15: PERIODIC MOTION (OSCILLATIONS)

PHYSICS - CLUTCH CH 15: PERIODIC MOTION (OSCILLATIONS) !! www.clutchprep.com REVIEW SPRINGS When you push/pull against a spring with FA, the spring pushes back (Newton s Law): - x = ( or ). - NOT the spring s length, but its change x =. - k is the spring s

More information

CHAPTER 12 OSCILLATORY MOTION

CHAPTER 12 OSCILLATORY MOTION CHAPTER 1 OSCILLATORY MOTION Before starting the discussion of the chapter s concepts it is worth to define some terms we will use frequently in this chapter: 1. The period of the motion, T, is the time

More information

1 A mass on a spring undergoes SHM. The maximum displacement from the equilibrium is called?

1 A mass on a spring undergoes SHM. The maximum displacement from the equilibrium is called? Slide 1 / 20 1 mass on a spring undergoes SHM. The maximum displacement from the equilibrium is called? Period Frequency mplitude Wavelength Speed Slide 2 / 20 2 In a periodic process, the number of cycles

More information

Chapter 14. PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman. Lectures by Wayne Anderson

Chapter 14. PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman. Lectures by Wayne Anderson Chapter 14 Periodic Motion PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Exam 3 results Class Average - 57 (Approximate grade

More information

CHAPTER 11 VIBRATIONS AND WAVES

CHAPTER 11 VIBRATIONS AND WAVES CHAPTER 11 VIBRATIONS AND WAVES http://www.physicsclassroom.com/class/waves/u10l1a.html UNITS Simple Harmonic Motion Energy in the Simple Harmonic Oscillator The Period and Sinusoidal Nature of SHM The

More information

Vibrations and waves: revision. Martin Dove Queen Mary University of London

Vibrations and waves: revision. Martin Dove Queen Mary University of London Vibrations and waves: revision Martin Dove Queen Mary University of London Form of the examination Part A = 50%, 10 short questions, no options Part B = 50%, Answer questions from a choice of 4 Total exam

More information

1 f. result from periodic disturbance same period (frequency) as source Longitudinal or Transverse Waves Characterized by

1 f. result from periodic disturbance same period (frequency) as source Longitudinal or Transverse Waves Characterized by result from periodic disturbance same period (frequency) as source Longitudinal or Transverse Waves Characterized by amplitude (how far do the bits move from their equilibrium positions? Amplitude of MEDIUM)

More information

17 M00/430/H(2) B3. This question is about an oscillating magnet.

17 M00/430/H(2) B3. This question is about an oscillating magnet. 17 M00/430/H(2) B3. This question is about an oscillating magnet. The diagram below shows a magnet M suspended vertically from a spring. When the magnet is in equilibrium its mid-point P coincides with

More information

Electromagnetic Waves

Electromagnetic Waves Electromagnetic Waves Our discussion on dynamic electromagnetic field is incomplete. I H E An AC current induces a magnetic field, which is also AC and thus induces an AC electric field. H dl Edl J ds

More information

Analytical Physics 1B Lecture 5: Physical Pendulums and Introduction to Mechanical Waves

Analytical Physics 1B Lecture 5: Physical Pendulums and Introduction to Mechanical Waves Analytical Physics 1B Lecture 5: Physical Pendulums and Introduction to Mechanical Waves Sang-Wook Cheong Friday, February 16 th, 2017 Two Exam 1 Questions with errors Correct answer: L = r X p = (2000

More information

Old Exams - Questions Ch-16

Old Exams - Questions Ch-16 Old Exams - Questions Ch-16 T081 : Q1. The displacement of a string carrying a traveling sinusoidal wave is given by: y( x, t) = y sin( kx ω t + ϕ). At time t = 0 the point at x = 0 m has a displacement

More information

Chapter 5 Oscillatory Motion

Chapter 5 Oscillatory Motion Chapter 5 Oscillatory Motion Simple Harmonic Motion An object moves with simple harmonic motion whenever its acceleration is proportional to its displacement from some equilibrium position and is oppositely

More information

Oscillator Homework Problems

Oscillator Homework Problems Oscillator Homework Problems Michael Fowler 3//7 1 Dimensional exercises: use dimensions to find a characteristic time for an undamped simple harmonic oscillator, and a pendulum Why does the dimensional

More information

Chapter 11 Vibrations and Waves

Chapter 11 Vibrations and Waves Chapter 11 Vibrations and Waves 11-1 Simple Harmonic Motion If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount of time, the motion is called periodic.

More information

Chapter 16 Lectures. Oscillatory Motion and Waves

Chapter 16 Lectures. Oscillatory Motion and Waves Chapter 16 Lectures January-06-18 5:48 PM Oscillatory Motion and Waves Oscillations are back-and-forth motions. Sometimes the word vibration is used in place of oscillation; for our purposes, we can consider

More information

Lecture 6: Differential Equations Describing Vibrations

Lecture 6: Differential Equations Describing Vibrations Lecture 6: Differential Equations Describing Vibrations In Chapter 3 of the Benson textbook, we will look at how various types of musical instruments produce sound, focusing on issues like how the construction

More information

Waves and Fields (PHYS 195): Week 9 Spring 2018 v1.5

Waves and Fields (PHYS 195): Week 9 Spring 2018 v1.5 Waves and Fields (PHYS 195): Week 9 Spring 2018 v1.5 Intro: This week we finish our discussion of electric potential and electrostatics before moving on to current and a bit of magnetostatics. Reminder:

More information

Phys101 Lectures 28, 29. Wave Motion

Phys101 Lectures 28, 29. Wave Motion Phys101 Lectures 8, 9 Wave Motion Key points: Types of Waves: Transverse and Longitudinal Mathematical Representation of a Traveling Wave The Principle of Superposition Standing Waves; Resonance Ref: 11-7,8,9,10,11,16,1,13,16.

More information

Dynamics of structures

Dynamics of structures Dynamics of structures 2.Vibrations: single degree of freedom system Arnaud Deraemaeker (aderaema@ulb.ac.be) 1 One degree of freedom systems in real life 2 1 Reduction of a system to a one dof system Example

More information

16 SUPERPOSITION & STANDING WAVES

16 SUPERPOSITION & STANDING WAVES Chapter 6 SUPERPOSITION & STANDING WAVES 6. Superposition of waves Principle of superposition: When two or more waves overlap, the resultant wave is the algebraic sum of the individual waves. Illustration:

More information

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc.

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc. Chapter 14 Oscillations Oscillations of a Spring Simple Harmonic Motion Energy in the Simple Harmonic Oscillator Simple Harmonic Motion Related to Uniform Circular Motion The Simple Pendulum The Physical

More information

Simple Harmonic Motion

Simple Harmonic Motion 3/5/07 Simple Harmonic Motion 0. The Ideal Spring and Simple Harmonic Motion HOOKE S AW: RESTORING FORCE OF AN IDEA SPRING The restoring force on an ideal spring is F x k x spring constant Units: N/m 3/5/07

More information

Light and Matter. Thursday, 8/31/2006 Physics 158 Peter Beyersdorf. Document info

Light and Matter. Thursday, 8/31/2006 Physics 158 Peter Beyersdorf. Document info Light and Matter Thursday, 8/31/2006 Physics 158 Peter Beyersdorf Document info 3. 1 1 Class Outline Common materials used in optics Index of refraction absorption Classical model of light absorption Light

More information

Study Sheet for Exam #3

Study Sheet for Exam #3 Physics 121 Spring 2003 Dr. Dragt Study Sheet for Exam #3 14. Physics knowledge, like all subjects having some substance, is cumulative. You are still responsible for all material on the Study Sheets for

More information

AHL 9.1 Energy transformation

AHL 9.1 Energy transformation AHL 9.1 Energy transformation 17.1.2018 1. [1 mark] A pendulum oscillating near the surface of the Earth swings with a time period T. What is the time period of the same pendulum near the surface of the

More information

University Physics 226N/231N Old Dominion University. Chapter 14: Oscillatory Motion

University Physics 226N/231N Old Dominion University. Chapter 14: Oscillatory Motion University Physics 226N/231N Old Dominion University Chapter 14: Oscillatory Motion Dr. Todd Satogata (ODU/Jefferson Lab) satogata@jlab.org http://www.toddsatogata.net/2016-odu Monday, November 5, 2016

More information

Dynamic circuits: Frequency domain analysis

Dynamic circuits: Frequency domain analysis Electronic Circuits 1 Dynamic circuits: Contents Free oscillation and natural frequency Transfer functions Frequency response Bode plots 1 System behaviour: overview 2 System behaviour : review solution

More information

You may use your books and notes. Moreover, you are encouraged to freely discuss the questions..which doesn't mean copying answers.

You may use your books and notes. Moreover, you are encouraged to freely discuss the questions..which doesn't mean copying answers. Section: Oscillations Take-Home Test You may use your books and notes. Moreover, you are encouraged to freely discuss the questions..which doesn't mean copying answers. 1. In simple harmonic motion, the

More information

Section 3: Complex numbers

Section 3: Complex numbers Essentially: Section 3: Complex numbers C (set of complex numbers) up to different notation: the same as R 2 (euclidean plane), (i) Write the real 1 instead of the first elementary unit vector e 1 = (1,

More information

WAVES MODULE 3.1 PRACTICAL ACTIVITY TRAVELLING WAVES GRAPHICAL ANALYSIS WORKSHOP

WAVES MODULE 3.1 PRACTICAL ACTIVITY TRAVELLING WAVES GRAPHICAL ANALYSIS WORKSHOP HSC PHYSICS ONLINE WAVES MODULE 3.1 PRACTICAL ACTIVITY TRAVELLING WAVES GRAPHICAL ANALYSIS WORKSHOP This practical activity is best done with a team of three people. There should be a reflection period

More information

Fourier Series. Green - underdamped

Fourier Series. Green - underdamped Harmonic Oscillator Fourier Series Undamped: Green - underdamped Overdamped: Critical: Underdamped: Driven: Calculus of Variations b f {y, y'; x}dx is stationary when f y d f = 0 dx y' a Note that y is

More information

Mass on a spring: including a driving force, and friction proportional to velocity (eg, from a dashpot).

Mass on a spring: including a driving force, and friction proportional to velocity (eg, from a dashpot). Physics 06a, Caltech 8 October, 208 Lecture 6: Equilibria and Oscillations We study equilibria and linear oscillations. Motion of dynamical systems can be classified as secular (long-term, non-periodic)

More information

Chapter 14 Oscillations

Chapter 14 Oscillations Chapter 14 Oscillations Chapter Goal: To understand systems that oscillate with simple harmonic motion. Slide 14-2 Chapter 14 Preview Slide 14-3 Chapter 14 Preview Slide 14-4 Chapter 14 Preview Slide 14-5

More information

PHYSICS. Chapter 15 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 15 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 15 Lecture RANDALL D. KNIGHT Chapter 15 Oscillations IN THIS CHAPTER, you will learn about systems that oscillate in simple harmonic

More information

Chapter 14 Preview Looking Ahead

Chapter 14 Preview Looking Ahead Chapter 14 Preview Looking Ahead Text: p. 438 Slide 14-1 Chapter 14 Preview Looking Back: Springs and Restoring Forces In Chapter 8, you learned that a stretched spring exerts a restoring force proportional

More information

Lab 1: Damped, Driven Harmonic Oscillator

Lab 1: Damped, Driven Harmonic Oscillator 1 Introduction Lab 1: Damped, Driven Harmonic Oscillator The purpose of this experiment is to study the resonant properties of a driven, damped harmonic oscillator. This type of motion is characteristic

More information

x(t+ δt) - x(t) = slope δt t+δt

x(t+ δt) - x(t) = slope δt t+δt Techniques of Physics Worksheet 2 Classical Vibrations and Waves Introduction You will have encountered many different examples of wave phenomena in your courses and should be familiar with most of the

More information

Lab 1: damped, driven harmonic oscillator

Lab 1: damped, driven harmonic oscillator Lab 1: damped, driven harmonic oscillator 1 Introduction The purpose of this experiment is to study the resonant properties of a driven, damped harmonic oscillator. This type of motion is characteristic

More information

1 (2n)! (-1)n (θ) 2n

1 (2n)! (-1)n (θ) 2n Complex Numbers and Algebra The real numbers are complete for the operations addition, subtraction, multiplication, and division, or more suggestively, for the operations of addition and multiplication

More information

M A : Ordinary Differential Equations

M A : Ordinary Differential Equations M A 2 0 5 1: Ordinary Differential Equations Essential Class Notes & Graphics C 17 * Sections C11-C18, C20 2016-2017 1 Required Background 1. INTRODUCTION CLASS 1 The definition of the derivative, Derivative

More information

Chapter 13: Oscillatory Motions

Chapter 13: Oscillatory Motions Chapter 13: Oscillatory Motions Simple harmonic motion Spring and Hooe s law When a mass hanging from a spring and in equilibrium, the Newton s nd law says: Fy ma Fs Fg 0 Fs Fg This means the force due

More information

KEELE UNIVERSITY PHYSICS/ASTROPHYSICS MODULE PHY OSCILLATIONS AND WAVES PRACTICE EXAM

KEELE UNIVERSITY PHYSICS/ASTROPHYSICS MODULE PHY OSCILLATIONS AND WAVES PRACTICE EXAM KEELE UNIVERSITY PHYSICS/ASTROPHYSICS MODULE PHY-10012 OSCILLATIONS AND WAVES PRACTICE EXAM Candidates should attempt ALL of PARTS A and B, and TWO questions from PART C. PARTS A and B should be answered

More information

5.1 Second order linear differential equations, and vector space theory connections.

5.1 Second order linear differential equations, and vector space theory connections. Math 2250-004 Wed Mar 1 5.1 Second order linear differential equations, and vector space theory connections. Definition: A vector space is a collection of objects together with and "addition" operation

More information

If the symmetry axes of a uniform symmetric body coincide with the coordinate axes, the products of inertia (Ixy etc.

If the symmetry axes of a uniform symmetric body coincide with the coordinate axes, the products of inertia (Ixy etc. Prof. O. B. Wright, Autumn 007 Mechanics Lecture 9 More on rigid bodies, coupled vibrations Principal axes of the inertia tensor If the symmetry axes of a uniform symmetric body coincide with the coordinate

More information

The... of a particle is defined as its change in position in some time interval.

The... of a particle is defined as its change in position in some time interval. Distance is the. of a path followed by a particle. Distance is a quantity. The... of a particle is defined as its change in position in some time interval. Displacement is a.. quantity. The... of a particle

More information

Keble College - Hilary 2014 CP3&4: Mathematical methods I&II Tutorial 5 - Waves and normal modes II

Keble College - Hilary 2014 CP3&4: Mathematical methods I&II Tutorial 5 - Waves and normal modes II Tomi Johnson 1 Keble College - Hilary 2014 CP3&4: Mathematical methods I&II Tutorial 5 - Waves and normal modes II Prepare full solutions to the problems with a self assessment of your progress on a cover

More information

Physics P201 D. Baxter/R. Heinz. FINAL EXAM December 10, :00 10:00 AM INSTRUCTIONS

Physics P201 D. Baxter/R. Heinz. FINAL EXAM December 10, :00 10:00 AM INSTRUCTIONS Seat # Physics P201 D. Baxter/R. Heinz FINAL EXAM December 10, 2001 8:00 10:00 AM INSTRUCTIONS 1. Sit in SEAT # given above. 2. DO NOT OPEN THE EXAM UNTIL YOU ARE TOLD TO DO SO. 3. Print your name (last

More information

Chapter 15. Oscillations

Chapter 15. Oscillations Chapter 15 Oscillations 15.1 Simple Harmonic Motion Oscillatory Motion: Motion which is periodic in time; motion that repeats itself in time. Examples: SHM: Power line oscillates when the wind blows past.

More information

Chapter 9: Complex Numbers

Chapter 9: Complex Numbers Chapter 9: Comple Numbers 9.1 Imaginary Number 9. Comple Number - definition - argand diagram - equality of comple number 9.3 Algebraic operations on comple number - addition and subtraction - multiplication

More information