Learning From Data Lecture 2 The Perceptron

Size: px
Start display at page:

Download "Learning From Data Lecture 2 The Perceptron"

Transcription

1 Learning From Data Lecture 2 The Perceptron The Learning Setup A Simple Learning Algorithm: PLA Other Views of Learning Is Learning Feasible: A Puzzle M. Magdon-Ismail CSCI 4100/6100

2 recap: The Plan 1. What is Learning? 2.Can We do it? 3.How to do it? 4.How to do it well? 5. General principles? concepts theory practice 6. Advanced techniques. 7. Other Learning Paradigms. our language will be mathematics......our sword will be computer algorithms c AM L Creator: Malik Magdon-Ismail The Perceptron: 2 /25 Recap: key players

3 recap: The Key Players Salary, debt, years in residence,... input x R d = X. Approve credit or not output y { 1,+1} = Y. True relationship between x and y target function f : X Y. (The target f is unknown.) Data on customers data set D = (x 1,y 1 ),...,(x N,y N ). (y n = f(x n ).) X Y and D are given by the learning problem; The target f is fixed but unknown. We learn the function f from the data D. c AM L Creator: Malik Magdon-Ismail The Perceptron: 3 /25 Recap: learning setup

4 recap: Summary of the Learning Setup UNKNOWN TARGET FUNCTION f : X Y (ideal credit approval formula) y n = f(x n ) TRAINING EXAMPLES (x 1,y 1 ),(x 2,y 2 ),...,(x N,y N ) (historical records of credit customers) LEARNING ALGORITHM A FINAL HYPOTHESIS g f (learned credit approval formula) HYPOTHESIS SET H (set of candidate formulas) c AM L Creator: Malik Magdon-Ismail The Perceptron: 4 /25 Simple learning model

5 A Simple Learning Model Input vector x = [x 1,...,x d ] t. Give importance weights to the different inputs and compute a Credit Score d Credit Score = w i x i. Approve credit if the Credit Score is acceptable. d Approve credit if w i x i > threshold, ( Credit Score is good) Deny credit if i=1 i=1 d w i x i < threshold. ( Credit Score is bad) i=1 How to choose the importance weights w i input x i is important = large weight w i input x i beneficial for credit = positive weight w i > 0 input x i detrimental for credit = negative weight w i < 0 c AM L Creator: Malik Magdon-Ismail The Perceptron: 5 /25 Rewriting the model

6 A Simple Learning Model Approve credit if Deny credit if d w i x i > threshold, i=1 d w i x i < threshold. i=1 can be written formally as (( d ) h(x) = sign w i x i i=1 +w 0 ) The bias weight w 0 corresponds to the threshold. (How?) c AM L Creator: Malik Magdon-Ismail The Perceptron: 6 /25 Perceptron

7 The Perceptron Hypothesis Set We have defined a Hyopthesis set H H = {h(x) = sign(w t x)} uncountably infinite H w = w 0 w 1. w d Rd+1, x = 1 x 1. {1} Rd. x d This hypothesis set is called the perceptron or linear separator c AM L Creator: Malik Magdon-Ismail The Perceptron: 7 /25 Geometry of perceptron

8 Geometry of The Perceptron h(x) = sign(w t x) (Problem 1.2 in LFD) Which one should we pick? c AM L Creator: Malik Magdon-Ismail The Perceptron: 8 /25 Use the data

9 Use the Data to Pick a Line A perceptron fits the data by using a line to separate the +1 from 1 data. Fitting the data: How to find a hyperplane that separates the data? ( It s obvious - just look at the data and draw the line, is not a valid solution.) c AM L Creator: Malik Magdon-Ismail The Perceptron: 9 /25 How to learn g

10 How to Learn a Final Hypothesis g from H We want to select g H so that g f. We certainly want g f on the data set D. Ideally, g(x n ) = y n. How do we find such a g in the infinite hypothesis set H, if it exists? Idea! Start with some weight vector and try to improve it. c AM L Creator: Malik Magdon-Ismail The Perceptron: 10 /25 PLA

11 The Perceptron Learning Algorithm (PLA) A simple iterative method. 1: w(1) = 0 2: for iteration t = 1,2,3,... 3: the weight vector is w(t). 4: From (x 1,y 1 ),...,(x N,y N ) pick any misclassified example. 5: Call the misclassified example (x,y ), w(t) y x y = +1 w(t+1) x sign(w(t) x ) y. 6: Update the weight: y = 1 7: t t+1 w(t+1) = w(t)+y x. w(t+1) y x w(t) x PLA implements our idea: start at some weights and try to improve. incremental learning on a single example at a time c AM L Creator: Malik Magdon-Ismail The Perceptron: 11 /25 PLA convergence

12 Does PLA Work? Theorem. If the data can be fit by a linear separator, then after some finite number of steps, PLA will find one. What if the data cannot be fit by a perceptron? iteration 1 c AM L Creator: Malik Magdon-Ismail The Perceptron: 12 /25 Start

13 Does PLA Work? Theorem. If the data can be fit by a linear separator, then after some finite number of steps, PLA will find one. What if the data cannot be fit by a perceptron? iteration 1 c AM L Creator: Malik Magdon-Ismail The Perceptron: 13 /25 Iteration 1

14 Does PLA Work? Theorem. If the data can be fit by a linear separator, then after some finite number of steps, PLA will find one. After how long? What if the data cannot be fit by a perceptron? iteration 1 c AM L Creator: Malik Magdon-Ismail The Perceptron: 14 /25 Iteratrion 2

15 Does PLA Work? Theorem. If the data can be fit by a linear separator, then after some finite number of steps, PLA will find one. After how long? What if the data cannot be fit by a perceptron? iteration 2 c AM L Creator: Malik Magdon-Ismail The Perceptron: 15 /25 Iteration 3

16 Does PLA Work? Theorem. If the data can be fit by a linear separator, then after some finite number of steps, PLA will find one. After how long? What if the data cannot be fit by a perceptron? iteration 3 c AM L Creator: Malik Magdon-Ismail The Perceptron: 16 /25 Iteration 4

17 Does PLA Work? Theorem. If the data can be fit by a linear separator, then after some finite number of steps, PLA will find one. After how long? What if the data cannot be fit by a perceptron? iteration 4 c AM L Creator: Malik Magdon-Ismail The Perceptron: 17 /25 Iteration 5

18 Does PLA Work? Theorem. If the data can be fit by a linear separator, then after some finite number of steps, PLA will find one. After how long? What if the data cannot be fit by a perceptron? iteration 5 c AM L Creator: Malik Magdon-Ismail The Perceptron: 18 /25 Iteration 6

19 Does PLA Work? Theorem. If the data can be fit by a linear separator, then after some finite number of steps, PLA will find one. After how long? What if the data cannot be fit by a perceptron? iteration 6 c AM L Creator: Malik Magdon-Ismail The Perceptron: 19 /25 Non-separable data?

20 Does PLA Work? Theorem. If the data can be fit by a linear separator, then after some finite number of steps, PLA will find one. After how long? What if the data cannot be fit by a perceptron? iteration 1 c AM L Creator: Malik Magdon-Ismail The Perceptron: 20 /25 We can fit!

21 We can Fit the Data We can find an h that works from infinitely many (for the perceptron). (So computationally, things seem good.) Ultimately, remember that we want to predict. We don t care about the data, we care about outside the data. Can a limited data set reveal enough information to pin down an entire target function, so that we can predict outside the data? c AM L Creator: Malik Magdon-Ismail The Perceptron: 21 /25 Other views of learning

22 Other Views of Learning Design: learning is from data, design is from specs and a model. Statistics, Function Approximation. Data Mining: find patterns in massive data (typically unsupervised). Three Learning Paradigms Supervised: the data is (x n,f(x n )) you are told the answer. Reinforcement: you get feedback on potential answers you try: x try something get feedback. Unsupervised: only given x n, learn to organize the data. c AM L Creator: Malik Magdon-Ismail The Perceptron: 22 /25 Coins supervised

23 Supervised Learning - Classifying Coins 25 Mass 1 5 Mass Size Size c AM L Creator: Malik Magdon-Ismail The Perceptron: 23 /25 Coins unsupervised

24 Unsupervised Learning - Categorizing Coins type 4 Mass Mass type 3 type 1 type 2 Size Size c AM L Creator: Malik Magdon-Ismail The Perceptron: 24 /25 Puzzle: outside the data

25 Outside the Data Set - A Puzzle Dogs (f = 1) Trees (f = +1) Tree or Dog? (f =?) c AM L Creator: Malik Magdon-Ismail The Perceptron: 25 /25

Learning From Data Lecture 3 Is Learning Feasible?

Learning From Data Lecture 3 Is Learning Feasible? Learning From Data Lecture 3 Is Learning Feasible? Outside the Data Probability to the Rescue Learning vs. Verification Selection Bias - A Cartoon M. Magdon-Ismail CSCI 4100/6100 recap: The Perceptron

More information

Learning From Data Lecture 8 Linear Classification and Regression

Learning From Data Lecture 8 Linear Classification and Regression Learning From Data Lecture 8 Linear Classification and Regression Linear Classification Linear Regression M. Magdon-Ismail CSCI 4100/6100 recap: Approximation Versus Generalization VC Analysis E out E

More information

Learning From Data Lecture 10 Nonlinear Transforms

Learning From Data Lecture 10 Nonlinear Transforms Learning From Data Lecture 0 Nonlinear Transforms The Z-space Polynomial transforms Be careful M. Magdon-Ismail CSCI 400/600 recap: The Linear Model linear in w: makes the algorithms work linear in x:

More information

Learning From Data Lecture 5 Training Versus Testing

Learning From Data Lecture 5 Training Versus Testing Learning From Data Lecture 5 Training Versus Testing The Two Questions of Learning Theory of Generalization (E in E out ) An Effective Number of Hypotheses A Combinatorial Puzzle M. Magdon-Ismail CSCI

More information

Learning From Data Lecture 25 The Kernel Trick

Learning From Data Lecture 25 The Kernel Trick Learning From Data Lecture 25 The Kernel Trick Learning with only inner products The Kernel M. Magdon-Ismail CSCI 400/600 recap: Large Margin is Better Controling Overfitting Non-Separable Data 0.08 random

More information

Learning From Data Lecture 9 Logistic Regression and Gradient Descent

Learning From Data Lecture 9 Logistic Regression and Gradient Descent Learning From Data Lecture 9 Logistic Regression and Gradient Descent Logistic Regression Gradient Descent M. Magdon-Ismail CSCI 4100/6100 recap: Linear Classification and Regression The linear signal:

More information

Learning From Data Lecture 14 Three Learning Principles

Learning From Data Lecture 14 Three Learning Principles Learning From Data Lecture 14 Three Learning Principles Occam s Razor Sampling Bias Data Snooping M. Magdon-Ismail CSCI 4100/6100 recap: Validation and Cross Validation Validation Cross Validation D (N)

More information

Learning From Data Lecture 15 Reflecting on Our Path - Epilogue to Part I

Learning From Data Lecture 15 Reflecting on Our Path - Epilogue to Part I Learning From Data Lecture 15 Reflecting on Our Path - Epilogue to Part I What We Did The Machine Learning Zoo Moving Forward M Magdon-Ismail CSCI 4100/6100 recap: Three Learning Principles Scientist 2

More information

outline Nonlinear transformation Error measures Noisy targets Preambles to the theory

outline Nonlinear transformation Error measures Noisy targets Preambles to the theory Error and Noise outline Nonlinear transformation Error measures Noisy targets Preambles to the theory Linear is limited Data Hypothesis Linear in what? Linear regression implements Linear classification

More information

Preliminaries. Definition: The Euclidean dot product between two vectors is the expression. i=1

Preliminaries. Definition: The Euclidean dot product between two vectors is the expression. i=1 90 8 80 7 70 6 60 0 8/7/ Preliminaries Preliminaries Linear models and the perceptron algorithm Chapters, T x + b < 0 T x + b > 0 Definition: The Euclidean dot product beteen to vectors is the expression

More information

Linear models and the perceptron algorithm

Linear models and the perceptron algorithm 8/5/6 Preliminaries Linear models and the perceptron algorithm Chapters, 3 Definition: The Euclidean dot product beteen to vectors is the expression dx T x = i x i The dot product is also referred to as

More information

CSC Neural Networks. Perceptron Learning Rule

CSC Neural Networks. Perceptron Learning Rule CSC 302 1.5 Neural Networks Perceptron Learning Rule 1 Objectives Determining the weight matrix and bias for perceptron networks with many inputs. Explaining what a learning rule is. Developing the perceptron

More information

Perceptron. by Prof. Seungchul Lee Industrial AI Lab POSTECH. Table of Contents

Perceptron. by Prof. Seungchul Lee Industrial AI Lab  POSTECH. Table of Contents Perceptron by Prof. Seungchul Lee Industrial AI Lab http://isystems.unist.ac.kr/ POSTECH Table of Contents I.. Supervised Learning II.. Classification III. 3. Perceptron I. 3.. Linear Classifier II. 3..

More information

Minimax risk bounds for linear threshold functions

Minimax risk bounds for linear threshold functions CS281B/Stat241B (Spring 2008) Statistical Learning Theory Lecture: 3 Minimax risk bounds for linear threshold functions Lecturer: Peter Bartlett Scribe: Hao Zhang 1 Review We assume that there is a probability

More information

CSE 417T: Introduction to Machine Learning. Lecture 11: Review. Henry Chai 10/02/18

CSE 417T: Introduction to Machine Learning. Lecture 11: Review. Henry Chai 10/02/18 CSE 417T: Introduction to Machine Learning Lecture 11: Review Henry Chai 10/02/18 Unknown Target Function!: # % Training data Formal Setup & = ( ), + ),, ( -, + - Learning Algorithm 2 Hypothesis Set H

More information

Learning From Data Lecture 7 Approximation Versus Generalization

Learning From Data Lecture 7 Approximation Versus Generalization Learning From Data Lecture 7 Approimation Versus Generalization The VC Dimension Approimation Versus Generalization Bias and Variance The Learning Curve M. Magdon-Ismail CSCI 4100/6100 recap: The Vapnik-Chervonenkis

More information

ECS171: Machine Learning

ECS171: Machine Learning ECS171: Machine Learning Lecture 6: Training versus Testing (LFD 2.1) Cho-Jui Hsieh UC Davis Jan 29, 2018 Preamble to the theory Training versus testing Out-of-sample error (generalization error): What

More information

Learning From Data Lecture 13 Validation and Model Selection

Learning From Data Lecture 13 Validation and Model Selection Learning From Data Lecture 13 Validation and Model Selection The Validation Set Model Selection Cross Validation M. Magdon-Ismail CSCI 4100/6100 recap: Regularization Regularization combats the effects

More information

Training the linear classifier

Training the linear classifier 215, Training the linear classifier A natural way to train the classifier is to minimize the number of classification errors on the training data, i.e. choosing w so that the training error is minimized.

More information

Machine Learning Lecture 7

Machine Learning Lecture 7 Course Outline Machine Learning Lecture 7 Fundamentals (2 weeks) Bayes Decision Theory Probability Density Estimation Statistical Learning Theory 23.05.2016 Discriminative Approaches (5 weeks) Linear Discriminant

More information

Active Learning and Optimized Information Gathering

Active Learning and Optimized Information Gathering Active Learning and Optimized Information Gathering Lecture 7 Learning Theory CS 101.2 Andreas Krause Announcements Project proposal: Due tomorrow 1/27 Homework 1: Due Thursday 1/29 Any time is ok. Office

More information

More about the Perceptron

More about the Perceptron More about the Perceptron CMSC 422 MARINE CARPUAT marine@cs.umd.edu Credit: figures by Piyush Rai and Hal Daume III Recap: Perceptron for binary classification Classifier = hyperplane that separates positive

More information

Machine Learning (CS 567) Lecture 3

Machine Learning (CS 567) Lecture 3 Machine Learning (CS 567) Lecture 3 Time: T-Th 5:00pm - 6:20pm Location: GFS 118 Instructor: Sofus A. Macskassy (macskass@usc.edu) Office: SAL 216 Office hours: by appointment Teaching assistant: Cheol

More information

CSC321 Lecture 4 The Perceptron Algorithm

CSC321 Lecture 4 The Perceptron Algorithm CSC321 Lecture 4 The Perceptron Algorithm Roger Grosse and Nitish Srivastava January 17, 2017 Roger Grosse and Nitish Srivastava CSC321 Lecture 4 The Perceptron Algorithm January 17, 2017 1 / 1 Recap:

More information

Machine Learning (CS 567) Lecture 2

Machine Learning (CS 567) Lecture 2 Machine Learning (CS 567) Lecture 2 Time: T-Th 5:00pm - 6:20pm Location: GFS118 Instructor: Sofus A. Macskassy (macskass@usc.edu) Office: SAL 216 Office hours: by appointment Teaching assistant: Cheol

More information

Machine Learning Foundations

Machine Learning Foundations Machine Learning Foundations ( 機器學習基石 ) Lecture 4: Feasibility of Learning Hsuan-Tien Lin ( 林軒田 ) htlin@csie.ntu.edu.tw Department of Computer Science & Information Engineering National Taiwan University

More information

Machine Learning. Lecture 9: Learning Theory. Feng Li.

Machine Learning. Lecture 9: Learning Theory. Feng Li. Machine Learning Lecture 9: Learning Theory Feng Li fli@sdu.edu.cn https://funglee.github.io School of Computer Science and Technology Shandong University Fall 2018 Why Learning Theory How can we tell

More information

Linear Classifiers and the Perceptron

Linear Classifiers and the Perceptron Linear Classifiers and the Perceptron William Cohen February 4, 2008 1 Linear classifiers Let s assume that every instance is an n-dimensional vector of real numbers x R n, and there are only two possible

More information

Linear Classification

Linear Classification Linear Classification by Prof. Seungchul Lee isystems Design Lab http://isystems.unist.ac.kr/ UNIS able of Contents I.. Supervised Learning II.. Classification III. 3. Perceptron I. 3.. Linear Classifier

More information

Learning From Data Lecture 26 Kernel Machines

Learning From Data Lecture 26 Kernel Machines Learning From Data Lecture 26 Kernel Machines Popular Kernels The Kernel Measures Similarity Kernels in Different Applications M Magdon-Ismail CSCI 4100/6100 recap: The Kernel Allows Us to Bypass Z-space

More information

Homework #1 RELEASE DATE: 09/26/2013 DUE DATE: 10/14/2013, BEFORE NOON QUESTIONS ABOUT HOMEWORK MATERIALS ARE WELCOMED ON THE FORUM.

Homework #1 RELEASE DATE: 09/26/2013 DUE DATE: 10/14/2013, BEFORE NOON QUESTIONS ABOUT HOMEWORK MATERIALS ARE WELCOMED ON THE FORUM. Homework #1 REEASE DATE: 09/6/013 DUE DATE: 10/14/013, BEFORE NOON QUESTIONS ABOUT HOMEWORK MATERIAS ARE WECOMED ON THE FORUM. Unless granted by the instructor in advance, you must turn in a printed/written

More information

SVMs: nonlinearity through kernels

SVMs: nonlinearity through kernels Non-separable data e-8. Support Vector Machines 8.. The Optimal Hyperplane Consider the following two datasets: SVMs: nonlinearity through kernels ER Chapter 3.4, e-8 (a) Few noisy data. (b) Nonlinearly

More information

CS 446 Machine Learning Fall 2016 Nov 01, Bayesian Learning

CS 446 Machine Learning Fall 2016 Nov 01, Bayesian Learning CS 446 Machine Learning Fall 206 Nov 0, 206 Bayesian Learning Professor: Dan Roth Scribe: Ben Zhou, C. Cervantes Overview Bayesian Learning Naive Bayes Logistic Regression Bayesian Learning So far, we

More information

The perceptron learning algorithm is one of the first procedures proposed for learning in neural network models and is mostly credited to Rosenblatt.

The perceptron learning algorithm is one of the first procedures proposed for learning in neural network models and is mostly credited to Rosenblatt. 1 The perceptron learning algorithm is one of the first procedures proposed for learning in neural network models and is mostly credited to Rosenblatt. The algorithm applies only to single layer models

More information

Machine Learning Foundations

Machine Learning Foundations Machine Learning Foundations ( 機器學習基石 ) Lecture 8: Noise and Error Hsuan-Tien Lin ( 林軒田 ) htlin@csie.ntu.edu.tw Department of Computer Science & Information Engineering National Taiwan University ( 國立台灣大學資訊工程系

More information

Pattern Recognition Prof. P. S. Sastry Department of Electronics and Communication Engineering Indian Institute of Science, Bangalore

Pattern Recognition Prof. P. S. Sastry Department of Electronics and Communication Engineering Indian Institute of Science, Bangalore Pattern Recognition Prof. P. S. Sastry Department of Electronics and Communication Engineering Indian Institute of Science, Bangalore Lecture - 27 Multilayer Feedforward Neural networks with Sigmoidal

More information

ORIE 4741: Learning with Big Messy Data. Generalization

ORIE 4741: Learning with Big Messy Data. Generalization ORIE 4741: Learning with Big Messy Data Generalization Professor Udell Operations Research and Information Engineering Cornell September 23, 2017 1 / 21 Announcements midterm 10/5 makeup exam 10/2, by

More information

COMS 4721: Machine Learning for Data Science Lecture 10, 2/21/2017

COMS 4721: Machine Learning for Data Science Lecture 10, 2/21/2017 COMS 4721: Machine Learning for Data Science Lecture 10, 2/21/2017 Prof. John Paisley Department of Electrical Engineering & Data Science Institute Columbia University FEATURE EXPANSIONS FEATURE EXPANSIONS

More information

Machine Learning Linear Models

Machine Learning Linear Models Machine Learning Linear Models Outline II - Linear Models 1. Linear Regression (a) Linear regression: History (b) Linear regression with Least Squares (c) Matrix representation and Normal Equation Method

More information

Warm up: risk prediction with logistic regression

Warm up: risk prediction with logistic regression Warm up: risk prediction with logistic regression Boss gives you a bunch of data on loans defaulting or not: {(x i,y i )} n i= x i 2 R d, y i 2 {, } You model the data as: P (Y = y x, w) = + exp( yw T

More information

Learning Theory. Machine Learning CSE546 Carlos Guestrin University of Washington. November 25, Carlos Guestrin

Learning Theory. Machine Learning CSE546 Carlos Guestrin University of Washington. November 25, Carlos Guestrin Learning Theory Machine Learning CSE546 Carlos Guestrin University of Washington November 25, 2013 Carlos Guestrin 2005-2013 1 What now n We have explored many ways of learning from data n But How good

More information

10/05/2016. Computational Methods for Data Analysis. Massimo Poesio SUPPORT VECTOR MACHINES. Support Vector Machines Linear classifiers

10/05/2016. Computational Methods for Data Analysis. Massimo Poesio SUPPORT VECTOR MACHINES. Support Vector Machines Linear classifiers Computational Methods for Data Analysis Massimo Poesio SUPPORT VECTOR MACHINES Support Vector Machines Linear classifiers 1 Linear Classifiers denotes +1 denotes -1 w x + b>0 f(x,w,b) = sign(w x + b) How

More information

Linear Classifiers. Michael Collins. January 18, 2012

Linear Classifiers. Michael Collins. January 18, 2012 Linear Classifiers Michael Collins January 18, 2012 Today s Lecture Binary classification problems Linear classifiers The perceptron algorithm Classification Problems: An Example Goal: build a system that

More information

Multi-class SVMs. Lecture 17: Aykut Erdem April 2016 Hacettepe University

Multi-class SVMs. Lecture 17: Aykut Erdem April 2016 Hacettepe University Multi-class SVMs Lecture 17: Aykut Erdem April 2016 Hacettepe University Administrative We will have a make-up lecture on Saturday April 23, 2016. Project progress reports are due April 21, 2016 2 days

More information

Loss Functions, Decision Theory, and Linear Models

Loss Functions, Decision Theory, and Linear Models Loss Functions, Decision Theory, and Linear Models CMSC 678 UMBC January 31 st, 2018 Some slides adapted from Hamed Pirsiavash Logistics Recap Piazza (ask & answer questions): https://piazza.com/umbc/spring2018/cmsc678

More information

Linear Classifiers: Expressiveness

Linear Classifiers: Expressiveness Linear Classifiers: Expressiveness Machine Learning Spring 2018 The slides are mainly from Vivek Srikumar 1 Lecture outline Linear classifiers: Introduction What functions do linear classifiers express?

More information

Recap from previous lecture

Recap from previous lecture Recap from previous lecture Learning is using past experience to improve future performance. Different types of learning: supervised unsupervised reinforcement active online... For a machine, experience

More information

CS 543 Page 1 John E. Boon, Jr.

CS 543 Page 1 John E. Boon, Jr. CS 543 Machine Learning Spring 2010 Lecture 05 Evaluating Hypotheses I. Overview A. Given observed accuracy of a hypothesis over a limited sample of data, how well does this estimate its accuracy over

More information

Lecture 5 Neural models for NLP

Lecture 5 Neural models for NLP CS546: Machine Learning in NLP (Spring 2018) http://courses.engr.illinois.edu/cs546/ Lecture 5 Neural models for NLP Julia Hockenmaier juliahmr@illinois.edu 3324 Siebel Center Office hours: Tue/Thu 2pm-3pm

More information

Linear Classifiers and the Perceptron Algorithm

Linear Classifiers and the Perceptron Algorithm Linear Classifiers and the Perceptron Algorithm 36350, Data Mining 10 November 2008 Contents 1 Linear Classifiers 1 2 The Perceptron Algorithm 3 1 Linear Classifiers Notation: x is a vector of realvalued

More information

Decision Trees: Overfitting

Decision Trees: Overfitting Decision Trees: Overfitting Emily Fox University of Washington January 30, 2017 Decision tree recap Loan status: Root 22 18 poor 4 14 Credit? Income? excellent 9 0 3 years 0 4 Fair 9 4 Term? 5 years 9

More information

Lecture Support Vector Machine (SVM) Classifiers

Lecture Support Vector Machine (SVM) Classifiers Introduction to Machine Learning Lecturer: Amir Globerson Lecture 6 Fall Semester Scribe: Yishay Mansour 6.1 Support Vector Machine (SVM) Classifiers Classification is one of the most important tasks in

More information

Binary Classification / Perceptron

Binary Classification / Perceptron Binary Classification / Perceptron Nicholas Ruozzi University of Texas at Dallas Slides adapted from David Sontag and Vibhav Gogate Supervised Learning Input: x 1, y 1,, (x n, y n ) x i is the i th data

More information

COS 511: Theoretical Machine Learning. Lecturer: Rob Schapire Lecture 24 Scribe: Sachin Ravi May 2, 2013

COS 511: Theoretical Machine Learning. Lecturer: Rob Schapire Lecture 24 Scribe: Sachin Ravi May 2, 2013 COS 5: heoretical Machine Learning Lecturer: Rob Schapire Lecture 24 Scribe: Sachin Ravi May 2, 203 Review of Zero-Sum Games At the end of last lecture, we discussed a model for two player games (call

More information

COMP 875 Announcements

COMP 875 Announcements Announcements Tentative presentation order is out Announcements Tentative presentation order is out Remember: Monday before the week of the presentation you must send me the final paper list (for posting

More information

Foundations of Computer Science Lecture 23 Languages: What is Computation?

Foundations of Computer Science Lecture 23 Languages: What is Computation? Foundations of Computer Science Lecture 23 Languages: What is Computation? A Formal Model of a Computing Problem Decision Problems and Languages Describing a Language: Regular Expressions Complexity of

More information

CSC242: Intro to AI. Lecture 21

CSC242: Intro to AI. Lecture 21 CSC242: Intro to AI Lecture 21 Administrivia Project 4 (homeworks 18 & 19) due Mon Apr 16 11:59PM Posters Apr 24 and 26 You need an idea! You need to present it nicely on 2-wide by 4-high landscape pages

More information

Name (NetID): (1 Point)

Name (NetID): (1 Point) CS446: Machine Learning Fall 2016 October 25 th, 2016 This is a closed book exam. Everything you need in order to solve the problems is supplied in the body of this exam. This exam booklet contains four

More information

Section 4.2: Mathematical Induction 1

Section 4.2: Mathematical Induction 1 Section 4.: Mathematical Induction 1 Over the next couple of sections, we shall consider a method of proof called mathematical induction. Induction is fairly complicated, but a very useful proof technique,

More information

ECE521 Lecture7. Logistic Regression

ECE521 Lecture7. Logistic Regression ECE521 Lecture7 Logistic Regression Outline Review of decision theory Logistic regression A single neuron Multi-class classification 2 Outline Decision theory is conceptually easy and computationally hard

More information

PAC-learning, VC Dimension and Margin-based Bounds

PAC-learning, VC Dimension and Margin-based Bounds More details: General: http://www.learning-with-kernels.org/ Example of more complex bounds: http://www.research.ibm.com/people/t/tzhang/papers/jmlr02_cover.ps.gz PAC-learning, VC Dimension and Margin-based

More information

Vote. Vote on timing for night section: Option 1 (what we have now) Option 2. Lecture, 6:10-7:50 25 minute dinner break Tutorial, 8:15-9

Vote. Vote on timing for night section: Option 1 (what we have now) Option 2. Lecture, 6:10-7:50 25 minute dinner break Tutorial, 8:15-9 Vote Vote on timing for night section: Option 1 (what we have now) Lecture, 6:10-7:50 25 minute dinner break Tutorial, 8:15-9 Option 2 Lecture, 6:10-7 10 minute break Lecture, 7:10-8 10 minute break Tutorial,

More information

Lecture 29: Computational Learning Theory

Lecture 29: Computational Learning Theory CS 710: Complexity Theory 5/4/2010 Lecture 29: Computational Learning Theory Instructor: Dieter van Melkebeek Scribe: Dmitri Svetlov and Jake Rosin Today we will provide a brief introduction to computational

More information

Support Vector Machines

Support Vector Machines Support Vector Machines Hypothesis Space variable size deterministic continuous parameters Learning Algorithm linear and quadratic programming eager batch SVMs combine three important ideas Apply optimization

More information

Lecture 4: Training a Classifier

Lecture 4: Training a Classifier Lecture 4: Training a Classifier Roger Grosse 1 Introduction Now that we ve defined what binary classification is, let s actually train a classifier. We ll approach this problem in much the same way as

More information

Learning From Data Lecture 12 Regularization

Learning From Data Lecture 12 Regularization Learning From Data Lecture 12 Regularization Constraining the Model Weight Decay Augmented Error M. Magdon-Ismail CSCI 4100/6100 recap: Overfitting Fitting the data more than is warranted Data Target Fit

More information

Security Analytics. Topic 6: Perceptron and Support Vector Machine

Security Analytics. Topic 6: Perceptron and Support Vector Machine Security Analytics Topic 6: Perceptron and Support Vector Machine Purdue University Prof. Ninghui Li Based on slides by Prof. Jenifer Neville and Chris Clifton Readings Principle of Data Mining Chapter

More information

Probability and Statistical Decision Theory

Probability and Statistical Decision Theory Tufts COMP 135: Introduction to Machine Learning https://www.cs.tufts.edu/comp/135/2019s/ Probability and Statistical Decision Theory Many slides attributable to: Erik Sudderth (UCI) Prof. Mike Hughes

More information

CS 188: Artificial Intelligence Spring Announcements

CS 188: Artificial Intelligence Spring Announcements CS 188: Artificial Intelligence Spring 2010 Lecture 22: Nearest Neighbors, Kernels 4/18/2011 Pieter Abbeel UC Berkeley Slides adapted from Dan Klein Announcements On-going: contest (optional and FUN!)

More information

Lecture Learning infinite hypothesis class via VC-dimension and Rademacher complexity;

Lecture Learning infinite hypothesis class via VC-dimension and Rademacher complexity; CSCI699: Topics in Learning and Game Theory Lecture 2 Lecturer: Ilias Diakonikolas Scribes: Li Han Today we will cover the following 2 topics: 1. Learning infinite hypothesis class via VC-dimension and

More information

COSMOS: Making Robots and Making Robots Intelligent Lecture 6: Introduction to feedback control

COSMOS: Making Robots and Making Robots Intelligent Lecture 6: Introduction to feedback control CONTENTS 1 INTRODUCTION: THE MAGIC OF FEEDBACK COSMOS: Making Robots and Making Robots Intelligent Lecture 6: Introduction to feedback control Jorge Cortés and William B. Dunbar March 7, 26 Abstract In

More information

Web-Mining Agents Computational Learning Theory

Web-Mining Agents Computational Learning Theory Web-Mining Agents Computational Learning Theory Prof. Dr. Ralf Möller Dr. Özgür Özcep Universität zu Lübeck Institut für Informationssysteme Tanya Braun (Exercise Lab) Computational Learning Theory (Adapted)

More information

Statistical Machine Learning Theory. From Multi-class Classification to Structured Output Prediction. Hisashi Kashima.

Statistical Machine Learning Theory. From Multi-class Classification to Structured Output Prediction. Hisashi Kashima. http://goo.gl/jv7vj9 Course website KYOTO UNIVERSITY Statistical Machine Learning Theory From Multi-class Classification to Structured Output Prediction Hisashi Kashima kashima@i.kyoto-u.ac.jp DEPARTMENT

More information

Voting (Ensemble Methods)

Voting (Ensemble Methods) 1 2 Voting (Ensemble Methods) Instead of learning a single classifier, learn many weak classifiers that are good at different parts of the data Output class: (Weighted) vote of each classifier Classifiers

More information

Input layer. Weight matrix [ ] Output layer

Input layer. Weight matrix [ ] Output layer MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.034 Artificial Intelligence, Fall 2003 Recitation 10, November 4 th & 5 th 2003 Learning by perceptrons

More information

Bias-Variance Tradeoff

Bias-Variance Tradeoff What s learning, revisited Overfitting Generative versus Discriminative Logistic Regression Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University September 19 th, 2007 Bias-Variance Tradeoff

More information

Machine Learning & Data Mining CMS/CS/CNS/EE 155. Lecture 2: Perceptron & Gradient Descent

Machine Learning & Data Mining CMS/CS/CNS/EE 155. Lecture 2: Perceptron & Gradient Descent Machine Learning & Data Mining CMS/CS/CNS/EE 155 Lecture 2: Perceptron & Gradient Descent Announcements Homework 1 is out Due Tuesday Jan 12 th at 2pm Via Moodle Sign up for Moodle & Piazza if you haven

More information

CPSC 340: Machine Learning and Data Mining

CPSC 340: Machine Learning and Data Mining CPSC 340: Machine Learning and Data Mining Linear Classifiers: predictions Original version of these slides by Mark Schmidt, with modifications by Mike Gelbart. 1 Admin Assignment 4: Due Friday of next

More information

GRADIENT DESCENT AND LOCAL MINIMA

GRADIENT DESCENT AND LOCAL MINIMA GRADIENT DESCENT AND LOCAL MINIMA 25 20 5 15 10 3 2 1 1 2 5 2 2 4 5 5 10 Suppose for both functions above, gradient descent is started at the point marked red. It will walk downhill as far as possible,

More information

Logistic Regression. Machine Learning Fall 2018

Logistic Regression. Machine Learning Fall 2018 Logistic Regression Machine Learning Fall 2018 1 Where are e? We have seen the folloing ideas Linear models Learning as loss minimization Bayesian learning criteria (MAP and MLE estimation) The Naïve Bayes

More information

ML in Practice: CMSC 422 Slides adapted from Prof. CARPUAT and Prof. Roth

ML in Practice: CMSC 422 Slides adapted from Prof. CARPUAT and Prof. Roth ML in Practice: CMSC 422 Slides adapted from Prof. CARPUAT and Prof. Roth N-fold cross validation Instead of a single test-training split: train test Split data into N equal-sized parts Train and test

More information

Lecture 4: Linear predictors and the Perceptron

Lecture 4: Linear predictors and the Perceptron Lecture 4: Linear predictors and the Perceptron Introduction to Learning and Analysis of Big Data Kontorovich and Sabato (BGU) Lecture 4 1 / 34 Inductive Bias Inductive bias is critical to prevent overfitting.

More information

Gaussian and Linear Discriminant Analysis; Multiclass Classification

Gaussian and Linear Discriminant Analysis; Multiclass Classification Gaussian and Linear Discriminant Analysis; Multiclass Classification Professor Ameet Talwalkar Slide Credit: Professor Fei Sha Professor Ameet Talwalkar CS260 Machine Learning Algorithms October 13, 2015

More information

Expansion of Terms. f (x) = x 2 6x + 9 = (x 3) 2 = 0. x 3 = 0

Expansion of Terms. f (x) = x 2 6x + 9 = (x 3) 2 = 0. x 3 = 0 Expansion of Terms So, let s say we have a factorized equation. Wait, what s a factorized equation? A factorized equation is an equation which has been simplified into brackets (or otherwise) to make analyzing

More information

CS 188: Artificial Intelligence. Outline

CS 188: Artificial Intelligence. Outline CS 188: Artificial Intelligence Lecture 21: Perceptrons Pieter Abbeel UC Berkeley Many slides adapted from Dan Klein. Outline Generative vs. Discriminative Binary Linear Classifiers Perceptron Multi-class

More information

Lecture 7 Introduction to Statistical Decision Theory

Lecture 7 Introduction to Statistical Decision Theory Lecture 7 Introduction to Statistical Decision Theory I-Hsiang Wang Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw December 20, 2016 1 / 55 I-Hsiang Wang IT Lecture 7

More information

CS 188: Artificial Intelligence Spring Announcements

CS 188: Artificial Intelligence Spring Announcements CS 188: Artificial Intelligence Spring 2010 Lecture 24: Perceptrons and More! 4/22/2010 Pieter Abbeel UC Berkeley Slides adapted from Dan Klein Announcements W7 due tonight [this is your last written for

More information

Practical Agnostic Active Learning

Practical Agnostic Active Learning Practical Agnostic Active Learning Alina Beygelzimer Yahoo Research based on joint work with Sanjoy Dasgupta, Daniel Hsu, John Langford, Francesco Orabona, Chicheng Zhang, and Tong Zhang * * introductory

More information

Linear Regression. Machine Learning CSE546 Kevin Jamieson University of Washington. Oct 5, Kevin Jamieson 1

Linear Regression. Machine Learning CSE546 Kevin Jamieson University of Washington. Oct 5, Kevin Jamieson 1 Linear Regression Machine Learning CSE546 Kevin Jamieson University of Washington Oct 5, 2017 1 The regression problem Given past sales data on zillow.com, predict: y = House sale price from x = {# sq.

More information

Announcements. CS 188: Artificial Intelligence Spring Classification. Today. Classification overview. Case-Based Reasoning

Announcements. CS 188: Artificial Intelligence Spring Classification. Today. Classification overview. Case-Based Reasoning CS 188: Artificial Intelligence Spring 21 Lecture 22: Nearest Neighbors, Kernels 4/18/211 Pieter Abbeel UC Berkeley Slides adapted from Dan Klein Announcements On-going: contest (optional and FUN!) Remaining

More information

FINAL: CS 6375 (Machine Learning) Fall 2014

FINAL: CS 6375 (Machine Learning) Fall 2014 FINAL: CS 6375 (Machine Learning) Fall 2014 The exam is closed book. You are allowed a one-page cheat sheet. Answer the questions in the spaces provided on the question sheets. If you run out of room for

More information

Statistical and Computational Learning Theory

Statistical and Computational Learning Theory Statistical and Computational Learning Theory Fundamental Question: Predict Error Rates Given: Find: The space H of hypotheses The number and distribution of the training examples S The complexity of the

More information

Name (NetID): (1 Point)

Name (NetID): (1 Point) CS446: Machine Learning (D) Spring 2017 March 16 th, 2017 This is a closed book exam. Everything you need in order to solve the problems is supplied in the body of this exam. This exam booklet contains

More information

Lecture 4: Training a Classifier

Lecture 4: Training a Classifier Lecture 4: Training a Classifier Roger Grosse 1 Introduction Now that we ve defined what binary classification is, let s actually train a classifier. We ll approach this problem in much the same way as

More information

SGN (4 cr) Chapter 5

SGN (4 cr) Chapter 5 SGN-41006 (4 cr) Chapter 5 Linear Discriminant Analysis Jussi Tohka & Jari Niemi Department of Signal Processing Tampere University of Technology January 21, 2014 J. Tohka & J. Niemi (TUT-SGN) SGN-41006

More information

Induction of Decision Trees

Induction of Decision Trees Induction of Decision Trees Peter Waiganjo Wagacha This notes are for ICS320 Foundations of Learning and Adaptive Systems Institute of Computer Science University of Nairobi PO Box 30197, 00200 Nairobi.

More information

CSC 411: Lecture 03: Linear Classification

CSC 411: Lecture 03: Linear Classification CSC 411: Lecture 03: Linear Classification Richard Zemel, Raquel Urtasun and Sanja Fidler University of Toronto Zemel, Urtasun, Fidler (UofT) CSC 411: 03-Classification 1 / 24 Examples of Problems What

More information

Regression and Classification" with Linear Models" CMPSCI 383 Nov 15, 2011!

Regression and Classification with Linear Models CMPSCI 383 Nov 15, 2011! Regression and Classification" with Linear Models" CMPSCI 383 Nov 15, 2011! 1 Todayʼs topics" Learning from Examples: brief review! Univariate Linear Regression! Batch gradient descent! Stochastic gradient

More information

Convex envelopes, cardinality constrained optimization and LASSO. An application in supervised learning: support vector machines (SVMs)

Convex envelopes, cardinality constrained optimization and LASSO. An application in supervised learning: support vector machines (SVMs) ORF 523 Lecture 8 Princeton University Instructor: A.A. Ahmadi Scribe: G. Hall Any typos should be emailed to a a a@princeton.edu. 1 Outline Convexity-preserving operations Convex envelopes, cardinality

More information

2. If the values for f(x) can be made as close as we like to L by choosing arbitrarily large. lim

2. If the values for f(x) can be made as close as we like to L by choosing arbitrarily large. lim Limits at Infinity and Horizontal Asymptotes As we prepare to practice graphing functions, we should consider one last piece of information about a function that will be helpful in drawing its graph the

More information