Learning From Data Lecture 9 Logistic Regression and Gradient Descent

Size: px
Start display at page:

Download "Learning From Data Lecture 9 Logistic Regression and Gradient Descent"

Transcription

1 Learning From Data Lecture 9 Logistic Regression and Gradient Descent Logistic Regression Gradient Descent M. Magdon-Ismail CSCI 4100/6100

2 recap: Linear Classification and Regression The linear signal: s = wtx Good Features are Important Algorithms Linear Classification. Pocket algorithm can tolerate errors Simple and efficient y Linear Regression. Single step learning: Before looking at the data, we can reason that symmetry and intensity should be good features based on our knowledge of the problem. c AM L Creator: Malik Magdon-Ismail w = X y = (XtX) 1Xt y Very efficient O(N d2 ) exact algorithm. x1 x2 Logistic Regression and Gradient Descent: 2 /23 Predicting a probability

3 Predicting a Probability Will someone have a heart attack over the next year? age 62 years gender male blood sugar 120 mg/dl40,000 HDL 50 LDL 120 Mass 190 lbs Height Classification: Yes/No Logistic Regression: Likelihood of heart attack logistic regression y [0, 1] h(x) = θ ( d ) w i x i = θ(w t x) i=0 c AM L Creator: Malik Magdon-Ismail Logistic Regression and Gradient Descent: 3 /23 What is θ?

4 Predicting a Probability Will someone have a heart attack over the next year? age 62 years gender male blood sugar 120 mg/dl40,000 HDL 50 LDL 120 Mass 190 lbs Height Classification: Yes/No Logistic Regression: Likelihood of heart attack logistic regression y [0, 1] h(x) = θ ( d ) w i x i = θ(w t x) i=0 1 θ(s) 0 s θ(s) = es 1+e s = 1 1+e s. θ( s) = e s 1+e s = 1 1+e s = 1 θ(s). c AM L Creator: Malik Magdon-Ismail Logistic Regression and Gradient Descent: 4 /23 Data is binary ±1

5 The Data is Still Binary, ±1 D = (x 1,y 1 = ±1),,(x N,y N = ±1) x n y n = ±1 a person s health information did they have a heart attack or not We cannot measure a probability. We can only see the occurence of an event and try to infer a probability. c AM L Creator: Malik Magdon-Ismail Logistic Regression and Gradient Descent: 5 /23 f is noisy

6 The Target Function is Inherently Noisy f(x) = P[y = +1 x]. The data is generated from a noisy target function: f(x) for y = +1; P(y x) = 1 f(x) for y = 1. c AM L Creator: Malik Magdon-Ismail Logistic Regression and Gradient Descent: 6 /23 When is h good?

7 What Makes an h Good? fitting the data means finding a good h h is good if: h(x n ) 1 whenever y n = +1; h(x n ) 0 whenever y n = 1. A simple error measure that captures this: E in (h) = 1 N ( h(xn ) 1 N 2 (1+y n) ) 2. n=1 Not very convenient (hard to minimize). c AM L Creator: Malik Magdon-Ismail Logistic Regression and Gradient Descent: 7 /23 Cross entropy error

8 The Cross Entropy Error Measure E in (w) = 1 N N ln(1+e y n w tx ) n=1 It looks complicated and ugly (ln,e ( ),...), But, it is based on an intuitive probabilistic interpretation of h. it is very convenient and mathematically friendly ( easy to minimize). Verify: y n = +1 encourages w t x n 0, so θ(w t x n ) 1; y n = 1 encourages w t x n 0, so θ(w t x n ) 0; c AM L Creator: Malik Magdon-Ismail Logistic Regression and Gradient Descent: 8 /23 Probabilistic interpretation

9 The Probabilistic Interpretation Suppose that h(x) = θ(w t x) closely captures P[+1 x]: P(y x) = θ(w t x) for y = +1; 1 θ(w t x) for y = 1. c AM L Creator: Malik Magdon-Ismail Logistic Regression and Gradient Descent: 9 /23 1 θ(s) = θ( s)

10 The Probabilistic Interpretation So, if h(x) = θ(w t x) closely captures P[+1 x]: P(y x) = θ(w t x) for y = +1; θ( w t x) for y = 1. c AM L Creator: Malik Magdon-Ismail Logistic Regression and Gradient Descent: 10 /23 Simplify to one equation

11 The Probabilistic Interpretation So, if h(x) = θ(w t x) closely captures P[+1 x]: P(y x) = θ(w t x) for y = +1; θ( w t x) for y = 1....or, more compactly, P(y x) = θ(y w t x) c AM L Creator: Malik Magdon-Ismail Logistic Regression and Gradient Descent: 11 /23 The likelihood

12 The Likelihood P(y x) = θ(y w t x) Recall: (x 1,y 1 ),...,(x N,y N ) are independently generated Likelihood: The probability of getting the y 1,...,y N in D from the corresponding x 1,...,x N : N P(y 1,...,y N x 1,...,x n ) = P(y n x n ). n=1 The likelihood measures the probability that the data were generated if f were h. c AM L Creator: Malik Magdon-Ismail Logistic Regression and Gradient Descent: 12 /23 Maximize the likelihood

13 Maximizing The Likelihood (why?) max N n=1 P(y n x n ) N ) max ln( n=1 P(y n x n ) max N n=1 lnp(y n x n ) min 1 N N n=1 lnp(y n x n ) min 1 N min 1 N N n=1 ln 1 P(y n x n ) N n=1 ln 1 θ(y n w t x n ) we specialize to our model here min 1 N N n=1 ln(1+e y n w t x n ) E in (w) = 1 N N ln(1+e y n w t x n ) n=1 c AM L Creator: Malik Magdon-Ismail Logistic Regression and Gradient Descent: 13 /23 How to minimize E in (w)

14 How To Minimize E in (w) Classification PLA/Pocket (iterative) Regression pseudoinverse (analytic), from solving w E in (w) = 0. Logistic Regression analytic won t work. Numerically/iteratively set w E in (w) 0. c AM L Creator: Malik Magdon-Ismail Logistic Regression and Gradient Descent: 14 /23 Hill analogy

15 Finding The Best Weights - Hill Descent Ball on a complicated hilly terrain rolls down to a local valley this is called a local minimum Questions: How to get to the bottom of the deepest valey? How to do this when we don t have gravity? c AM L Creator: Malik Magdon-Ismail Logistic Regression and Gradient Descent: 15 /23 Our E in is convex

16 Our E in Has Only One Valley In-sample Error, Ein Weights, w...because E in (w) is a convex function of w. (So, who care s if it looks ugly!) c AM L Creator: Malik Magdon-Ismail Logistic Regression and Gradient Descent: 16 /23 How to roll down?

17 How to Roll Down? Assume you are at weights w(t) and you take a step of size η in the direction ˆv. w(t+1) = w(t)+ηˆv We get to pick ˆv what s the best direction to take the step? Pick ˆv to make E in (w(t+1)) as small as possible. c AM L Creator: Malik Magdon-Ismail Logistic Regression and Gradient Descent: 17 /23 The gradient

18 The Gradient is the Fastest Way to Roll Down Approximating the change in E in E in = E in (w(t+1)) E in (w(t)) = E in (w(t)+ηˆv) E in (w(t)) = η E in (w(t)) tˆv +O(η 2 ) }{{} minimized at ˆv = E in(w(t)) E in (w(t)) > η E in (w(t)) (Taylor s Approximation) attained at ˆv = E in(w(t)) E in (w(t)) The best (steepest) direction to move is the negative gradient: ˆv = E in(w(t)) E in (w(t)) c AM L Creator: Malik Magdon-Ismail Logistic Regression and Gradient Descent: 18 /23 Iterate the gradient

19 Rolling Down Iterating the Negative Gradient w(0) w(1) w(2) w(3) negative gradient negative gradient negative gradient negative gradient. η = 0.5; 15 steps c AM L Creator: Malik Magdon-Ismail Logistic Regression and Gradient Descent: 19 /23 What step size?

20 The Goldilocks Step Size η too small η too large variable η t just right large η In-sample Error, Ein In-sample Error, Ein In-sample Error, Ein small η Weights, w Weights, w Weights, w η = 0.1; 75 steps η = 2; 10 steps variable η t ; 10 steps c AM L Creator: Malik Magdon-Ismail Logistic Regression and Gradient Descent: 20 /23 Fixed learning rate gradient descent

21 Fixed Learning Rate Gradient Descent η t = η E in (w(t)) E in (w(t)) 0 when closer to the minimum. ˆv = η t E in (w(t)) E in (w(t)) = η E in (w(t)) E in (w(t)) E in (w(t)) ˆv = η E in (w(t)) 1: Initialize at step t = 0 to w(0). 2: for t = 0,1,2,... do 3: Compute the gradient g t = E in (w(t)). 4: Move in the direction v t = g t. 5: Update the weights: w(t+1) = w(t)+ηv t. 6: Iterate until it is time to stop. 7: end for 8: Return the final weights. (Ex. 3.7 in LFD) Gradient descent can minimize any smooth function, for example E in (w) = 1 N N ln(1+e y n w tx ) n=1 logistic regression c AM L Creator: Malik Magdon-Ismail Logistic Regression and Gradient Descent: 21 /23 Stochastic gradient descent

22 Stochastic Gradient Descent (SGD) A variation of GD that considers only the error on one data point. E in (w) = 1 N ln(1+e y n w tx ) = 1 N e(w,x n,y n ) N N n=1 n=1 Pick a random data point (x,y ) Run an iteration of GD on e(w,x,y ) w(t+1) w(t) η w e(w,x,y ) 1. The average move is the same as GD; 2. Computation: fraction 1 N cheaper per step; 3. Stochastic: helps escape local minima; 4. Simple; 5. Similar to PLA. Logistic Regression: w(t+1) w(t)+y x ( ) η 1+e y w t x (Recall PLA: w(t+1) w(t)+y x ) c AM L Creator: Malik Magdon-Ismail Logistic Regression and Gradient Descent: 22 /23 GD versus SGD, a picture

23 Stochastic Gradient Descent GD SGD η = 6 10 steps N = 10 η = 2 30 steps c AM L Creator: Malik Magdon-Ismail Logistic Regression and Gradient Descent: 23 /23

ECS171: Machine Learning

ECS171: Machine Learning ECS171: Machine Learning Lecture 3: Linear Models I (LFD 3.2, 3.3) Cho-Jui Hsieh UC Davis Jan 17, 2018 Linear Regression (LFD 3.2) Regression Classification: Customer record Yes/No Regression: predicting

More information

Learning From Data Lecture 8 Linear Classification and Regression

Learning From Data Lecture 8 Linear Classification and Regression Learning From Data Lecture 8 Linear Classification and Regression Linear Classification Linear Regression M. Magdon-Ismail CSCI 4100/6100 recap: Approximation Versus Generalization VC Analysis E out E

More information

Learning From Data Lecture 10 Nonlinear Transforms

Learning From Data Lecture 10 Nonlinear Transforms Learning From Data Lecture 0 Nonlinear Transforms The Z-space Polynomial transforms Be careful M. Magdon-Ismail CSCI 400/600 recap: The Linear Model linear in w: makes the algorithms work linear in x:

More information

Learning From Data Lecture 2 The Perceptron

Learning From Data Lecture 2 The Perceptron Learning From Data Lecture 2 The Perceptron The Learning Setup A Simple Learning Algorithm: PLA Other Views of Learning Is Learning Feasible: A Puzzle M. Magdon-Ismail CSCI 4100/6100 recap: The Plan 1.

More information

Lecture 14 : Online Learning, Stochastic Gradient Descent, Perceptron

Lecture 14 : Online Learning, Stochastic Gradient Descent, Perceptron CS446: Machine Learning, Fall 2017 Lecture 14 : Online Learning, Stochastic Gradient Descent, Perceptron Lecturer: Sanmi Koyejo Scribe: Ke Wang, Oct. 24th, 2017 Agenda Recap: SVM and Hinge loss, Representer

More information

Preliminaries. Definition: The Euclidean dot product between two vectors is the expression. i=1

Preliminaries. Definition: The Euclidean dot product between two vectors is the expression. i=1 90 8 80 7 70 6 60 0 8/7/ Preliminaries Preliminaries Linear models and the perceptron algorithm Chapters, T x + b < 0 T x + b > 0 Definition: The Euclidean dot product beteen to vectors is the expression

More information

Optimization and Gradient Descent

Optimization and Gradient Descent Optimization and Gradient Descent INFO-4604, Applied Machine Learning University of Colorado Boulder September 12, 2017 Prof. Michael Paul Prediction Functions Remember: a prediction function is the function

More information

Machine Learning Foundations

Machine Learning Foundations Machine Learning Foundations ( 機器學習基石 ) Lecture 11: Linear Models for Classification Hsuan-Tien Lin ( 林軒田 ) htlin@csie.ntu.edu.tw Department of Computer Science & Information Engineering National Taiwan

More information

ECS171: Machine Learning

ECS171: Machine Learning ECS171: Machine Learning Lecture 4: Optimization (LFD 3.3, SGD) Cho-Jui Hsieh UC Davis Jan 22, 2018 Gradient descent Optimization Goal: find the minimizer of a function min f (w) w For now we assume f

More information

CSE 417T: Introduction to Machine Learning. Lecture 11: Review. Henry Chai 10/02/18

CSE 417T: Introduction to Machine Learning. Lecture 11: Review. Henry Chai 10/02/18 CSE 417T: Introduction to Machine Learning Lecture 11: Review Henry Chai 10/02/18 Unknown Target Function!: # % Training data Formal Setup & = ( ), + ),, ( -, + - Learning Algorithm 2 Hypothesis Set H

More information

Classification Logistic Regression

Classification Logistic Regression Announcements: Classification Logistic Regression Machine Learning CSE546 Sham Kakade University of Washington HW due on Friday. Today: Review: sub-gradients,lasso Logistic Regression October 3, 26 Sham

More information

Logistic Regression Review Fall 2012 Recitation. September 25, 2012 TA: Selen Uguroglu

Logistic Regression Review Fall 2012 Recitation. September 25, 2012 TA: Selen Uguroglu Logistic Regression Review 10-601 Fall 2012 Recitation September 25, 2012 TA: Selen Uguroglu!1 Outline Decision Theory Logistic regression Goal Loss function Inference Gradient Descent!2 Training Data

More information

Learning From Data Lecture 15 Reflecting on Our Path - Epilogue to Part I

Learning From Data Lecture 15 Reflecting on Our Path - Epilogue to Part I Learning From Data Lecture 15 Reflecting on Our Path - Epilogue to Part I What We Did The Machine Learning Zoo Moving Forward M Magdon-Ismail CSCI 4100/6100 recap: Three Learning Principles Scientist 2

More information

Neural Network Training

Neural Network Training Neural Network Training Sargur Srihari Topics in Network Training 0. Neural network parameters Probabilistic problem formulation Specifying the activation and error functions for Regression Binary classification

More information

Overfitting, Bias / Variance Analysis

Overfitting, Bias / Variance Analysis Overfitting, Bias / Variance Analysis Professor Ameet Talwalkar Professor Ameet Talwalkar CS260 Machine Learning Algorithms February 8, 207 / 40 Outline Administration 2 Review of last lecture 3 Basic

More information

Linear Regression (continued)

Linear Regression (continued) Linear Regression (continued) Professor Ameet Talwalkar Professor Ameet Talwalkar CS260 Machine Learning Algorithms February 6, 2017 1 / 39 Outline 1 Administration 2 Review of last lecture 3 Linear regression

More information

Classification: Logistic Regression from Data

Classification: Logistic Regression from Data Classification: Logistic Regression from Data Machine Learning: Jordan Boyd-Graber University of Colorado Boulder LECTURE 3 Slides adapted from Emily Fox Machine Learning: Jordan Boyd-Graber Boulder Classification:

More information

Stochastic Gradient Descent

Stochastic Gradient Descent Stochastic Gradient Descent Machine Learning CSE546 Carlos Guestrin University of Washington October 9, 2013 1 Logistic Regression Logistic function (or Sigmoid): Learn P(Y X) directly Assume a particular

More information

Gaussian and Linear Discriminant Analysis; Multiclass Classification

Gaussian and Linear Discriminant Analysis; Multiclass Classification Gaussian and Linear Discriminant Analysis; Multiclass Classification Professor Ameet Talwalkar Slide Credit: Professor Fei Sha Professor Ameet Talwalkar CS260 Machine Learning Algorithms October 13, 2015

More information

Logistic Regression. Robot Image Credit: Viktoriya Sukhanova 123RF.com

Logistic Regression. Robot Image Credit: Viktoriya Sukhanova 123RF.com Logistic Regression These slides were assembled by Eric Eaton, with grateful acknowledgement of the many others who made their course materials freely available online. Feel free to reuse or adapt these

More information

Learning From Data Lecture 5 Training Versus Testing

Learning From Data Lecture 5 Training Versus Testing Learning From Data Lecture 5 Training Versus Testing The Two Questions of Learning Theory of Generalization (E in E out ) An Effective Number of Hypotheses A Combinatorial Puzzle M. Magdon-Ismail CSCI

More information

Learning From Data Lecture 25 The Kernel Trick

Learning From Data Lecture 25 The Kernel Trick Learning From Data Lecture 25 The Kernel Trick Learning with only inner products The Kernel M. Magdon-Ismail CSCI 400/600 recap: Large Margin is Better Controling Overfitting Non-Separable Data 0.08 random

More information

Gradient Descent. Sargur Srihari

Gradient Descent. Sargur Srihari Gradient Descent Sargur srihari@cedar.buffalo.edu 1 Topics Simple Gradient Descent/Ascent Difficulties with Simple Gradient Descent Line Search Brent s Method Conjugate Gradient Descent Weight vectors

More information

Machine Learning. Lecture 2: Linear regression. Feng Li. https://funglee.github.io

Machine Learning. Lecture 2: Linear regression. Feng Li. https://funglee.github.io Machine Learning Lecture 2: Linear regression Feng Li fli@sdu.edu.cn https://funglee.github.io School of Computer Science and Technology Shandong University Fall 2017 Supervised Learning Regression: Predict

More information

CSC 411: Lecture 04: Logistic Regression

CSC 411: Lecture 04: Logistic Regression CSC 411: Lecture 04: Logistic Regression Raquel Urtasun & Rich Zemel University of Toronto Sep 23, 2015 Urtasun & Zemel (UofT) CSC 411: 04-Prob Classif Sep 23, 2015 1 / 16 Today Key Concepts: Logistic

More information

Linear models and the perceptron algorithm

Linear models and the perceptron algorithm 8/5/6 Preliminaries Linear models and the perceptron algorithm Chapters, 3 Definition: The Euclidean dot product beteen to vectors is the expression dx T x = i x i The dot product is also referred to as

More information

Logistic Regression. Stochastic Gradient Descent

Logistic Regression. Stochastic Gradient Descent Tutorial 8 CPSC 340 Logistic Regression Stochastic Gradient Descent Logistic Regression Model A discriminative probabilistic model for classification e.g. spam filtering Let x R d be input and y { 1, 1}

More information

Stochastic gradient descent; Classification

Stochastic gradient descent; Classification Stochastic gradient descent; Classification Steve Renals Machine Learning Practical MLP Lecture 2 28 September 2016 MLP Lecture 2 Stochastic gradient descent; Classification 1 Single Layer Networks MLP

More information

Regression with Numerical Optimization. Logistic

Regression with Numerical Optimization. Logistic CSG220 Machine Learning Fall 2008 Regression with Numerical Optimization. Logistic regression Regression with Numerical Optimization. Logistic regression based on a document by Andrew Ng October 3, 204

More information

CSCI567 Machine Learning (Fall 2014)

CSCI567 Machine Learning (Fall 2014) CSCI567 Machine Learning (Fall 24) Drs. Sha & Liu {feisha,yanliu.cs}@usc.edu October 2, 24 Drs. Sha & Liu ({feisha,yanliu.cs}@usc.edu) CSCI567 Machine Learning (Fall 24) October 2, 24 / 24 Outline Review

More information

Logistic Regression Introduction to Machine Learning. Matt Gormley Lecture 8 Feb. 12, 2018

Logistic Regression Introduction to Machine Learning. Matt Gormley Lecture 8 Feb. 12, 2018 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Logistic Regression Matt Gormley Lecture 8 Feb. 12, 2018 1 10-601 Introduction

More information

CS229 Supplemental Lecture notes

CS229 Supplemental Lecture notes CS229 Supplemental Lecture notes John Duchi Binary classification In binary classification problems, the target y can take on at only two values. In this set of notes, we show how to model this problem

More information

Selected Topics in Optimization. Some slides borrowed from

Selected Topics in Optimization. Some slides borrowed from Selected Topics in Optimization Some slides borrowed from http://www.stat.cmu.edu/~ryantibs/convexopt/ Overview Optimization problems are almost everywhere in statistics and machine learning. Input Model

More information

Linear Models in Machine Learning

Linear Models in Machine Learning CS540 Intro to AI Linear Models in Machine Learning Lecturer: Xiaojin Zhu jerryzhu@cs.wisc.edu We briefly go over two linear models frequently used in machine learning: linear regression for, well, regression,

More information

Logistic Regression Trained with Different Loss Functions. Discussion

Logistic Regression Trained with Different Loss Functions. Discussion Logistic Regression Trained with Different Loss Functions Discussion CS640 Notations We restrict our discussions to the binary case. g(z) = g (z) = g(z) z h w (x) = g(wx) = + e z = g(z)( g(z)) + e wx =

More information

Homework #3 RELEASE DATE: 10/28/2013 DUE DATE: extended to 11/18/2013, BEFORE NOON QUESTIONS ABOUT HOMEWORK MATERIALS ARE WELCOMED ON THE FORUM.

Homework #3 RELEASE DATE: 10/28/2013 DUE DATE: extended to 11/18/2013, BEFORE NOON QUESTIONS ABOUT HOMEWORK MATERIALS ARE WELCOMED ON THE FORUM. Homework #3 RELEASE DATE: 10/28/2013 DUE DATE: extended to 11/18/2013, BEFORE NOON QUESTIONS ABOUT HOMEWORK MATERIALS ARE WELCOMED ON THE FORUM. Unless granted by the instructor in advance, you must turn

More information

Logistic Regression. COMP 527 Danushka Bollegala

Logistic Regression. COMP 527 Danushka Bollegala Logistic Regression COMP 527 Danushka Bollegala Binary Classification Given an instance x we must classify it to either positive (1) or negative (0) class We can use {1,-1} instead of {1,0} but we will

More information

Generative v. Discriminative classifiers Intuition

Generative v. Discriminative classifiers Intuition Logistic Regression Machine Learning 070/578 Carlos Guestrin Carnegie Mellon University September 24 th, 2007 Generative v. Discriminative classifiers Intuition Want to Learn: h:x a Y X features Y target

More information

MLPR: Logistic Regression and Neural Networks

MLPR: Logistic Regression and Neural Networks MLPR: Logistic Regression and Neural Networks Machine Learning and Pattern Recognition Amos Storkey Amos Storkey MLPR: Logistic Regression and Neural Networks 1/28 Outline 1 Logistic Regression 2 Multi-layer

More information

Machine Learning Basics Lecture 4: SVM I. Princeton University COS 495 Instructor: Yingyu Liang

Machine Learning Basics Lecture 4: SVM I. Princeton University COS 495 Instructor: Yingyu Liang Machine Learning Basics Lecture 4: SVM I Princeton University COS 495 Instructor: Yingyu Liang Review: machine learning basics Math formulation Given training data x i, y i : 1 i n i.i.d. from distribution

More information

Learning From Data Lecture 3 Is Learning Feasible?

Learning From Data Lecture 3 Is Learning Feasible? Learning From Data Lecture 3 Is Learning Feasible? Outside the Data Probability to the Rescue Learning vs. Verification Selection Bias - A Cartoon M. Magdon-Ismail CSCI 4100/6100 recap: The Perceptron

More information

Outline. MLPR: Logistic Regression and Neural Networks Machine Learning and Pattern Recognition. Which is the correct model? Recap.

Outline. MLPR: Logistic Regression and Neural Networks Machine Learning and Pattern Recognition. Which is the correct model? Recap. Outline MLPR: and Neural Networks Machine Learning and Pattern Recognition 2 Amos Storkey Amos Storkey MLPR: and Neural Networks /28 Recap Amos Storkey MLPR: and Neural Networks 2/28 Which is the correct

More information

Lecture 3 - Linear and Logistic Regression

Lecture 3 - Linear and Logistic Regression 3 - Linear and Logistic Regression-1 Machine Learning Course Lecture 3 - Linear and Logistic Regression Lecturer: Haim Permuter Scribe: Ziv Aharoni Throughout this lecture we talk about how to use regression

More information

Variations of Logistic Regression with Stochastic Gradient Descent

Variations of Logistic Regression with Stochastic Gradient Descent Variations of Logistic Regression with Stochastic Gradient Descent Panqu Wang(pawang@ucsd.edu) Phuc Xuan Nguyen(pxn002@ucsd.edu) January 26, 2012 Abstract In this paper, we extend the traditional logistic

More information

Why should you care about the solution strategies?

Why should you care about the solution strategies? Optimization Why should you care about the solution strategies? Understanding the optimization approaches behind the algorithms makes you more effectively choose which algorithm to run Understanding the

More information

ECE521 lecture 4: 19 January Optimization, MLE, regularization

ECE521 lecture 4: 19 January Optimization, MLE, regularization ECE521 lecture 4: 19 January 2017 Optimization, MLE, regularization First four lectures Lectures 1 and 2: Intro to ML Probability review Types of loss functions and algorithms Lecture 3: KNN Convexity

More information

Linear classifiers: Overfitting and regularization

Linear classifiers: Overfitting and regularization Linear classifiers: Overfitting and regularization Emily Fox University of Washington January 25, 2017 Logistic regression recap 1 . Thus far, we focused on decision boundaries Score(x i ) = w 0 h 0 (x

More information

The classifier. Theorem. where the min is over all possible classifiers. To calculate the Bayes classifier/bayes risk, we need to know

The classifier. Theorem. where the min is over all possible classifiers. To calculate the Bayes classifier/bayes risk, we need to know The Bayes classifier Theorem The classifier satisfies where the min is over all possible classifiers. To calculate the Bayes classifier/bayes risk, we need to know Alternatively, since the maximum it is

More information

The classifier. Linear discriminant analysis (LDA) Example. Challenges for LDA

The classifier. Linear discriminant analysis (LDA) Example. Challenges for LDA The Bayes classifier Linear discriminant analysis (LDA) Theorem The classifier satisfies In linear discriminant analysis (LDA), we make the (strong) assumption that where the min is over all possible classifiers.

More information

Big Data Analytics. Lucas Rego Drumond

Big Data Analytics. Lucas Rego Drumond Big Data Analytics Lucas Rego Drumond Information Systems and Machine Learning Lab (ISMLL) Institute of Computer Science University of Hildesheim, Germany Predictive Models Predictive Models 1 / 34 Outline

More information

Classification Based on Probability

Classification Based on Probability Logistic Regression These slides were assembled by Byron Boots, with only minor modifications from Eric Eaton s slides and grateful acknowledgement to the many others who made their course materials freely

More information

Warm up: risk prediction with logistic regression

Warm up: risk prediction with logistic regression Warm up: risk prediction with logistic regression Boss gives you a bunch of data on loans defaulting or not: {(x i,y i )} n i= x i 2 R d, y i 2 {, } You model the data as: P (Y = y x, w) = + exp( yw T

More information

Linear Classification. CSE 6363 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington

Linear Classification. CSE 6363 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington Linear Classification CSE 6363 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington 1 Example of Linear Classification Red points: patterns belonging

More information

Convex Optimization Lecture 16

Convex Optimization Lecture 16 Convex Optimization Lecture 16 Today: Projected Gradient Descent Conditional Gradient Descent Stochastic Gradient Descent Random Coordinate Descent Recall: Gradient Descent (Steepest Descent w.r.t Euclidean

More information

Machine Learning Basics Lecture 7: Multiclass Classification. Princeton University COS 495 Instructor: Yingyu Liang

Machine Learning Basics Lecture 7: Multiclass Classification. Princeton University COS 495 Instructor: Yingyu Liang Machine Learning Basics Lecture 7: Multiclass Classification Princeton University COS 495 Instructor: Yingyu Liang Example: image classification indoor Indoor outdoor Example: image classification (multiclass)

More information

Logistic Regression. Professor Ameet Talwalkar. Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, / 48

Logistic Regression. Professor Ameet Talwalkar. Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, / 48 Logistic Regression Professor Ameet Talwalkar Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 1 / 48 Outline 1 Administration 2 Review of last lecture 3 Logistic regression

More information

Applied Machine Learning Lecture 5: Linear classifiers, continued. Richard Johansson

Applied Machine Learning Lecture 5: Linear classifiers, continued. Richard Johansson Applied Machine Learning Lecture 5: Linear classifiers, continued Richard Johansson overview preliminaries logistic regression training a logistic regression classifier side note: multiclass linear classifiers

More information

Learning From Data Lecture 12 Regularization

Learning From Data Lecture 12 Regularization Learning From Data Lecture 12 Regularization Constraining the Model Weight Decay Augmented Error M. Magdon-Ismail CSCI 4100/6100 recap: Overfitting Fitting the data more than is warranted Data Target Fit

More information

Lecture 13: Discriminative Sequence Models (MEMM and Struct. Perceptron)

Lecture 13: Discriminative Sequence Models (MEMM and Struct. Perceptron) Lecture 13: Discriminative Sequence Models (MEMM and Struct. Perceptron) Intro to NLP, CS585, Fall 2014 http://people.cs.umass.edu/~brenocon/inlp2014/ Brendan O Connor (http://brenocon.com) 1 Models for

More information

Case Study 1: Estimating Click Probabilities. Kakade Announcements: Project Proposals: due this Friday!

Case Study 1: Estimating Click Probabilities. Kakade Announcements: Project Proposals: due this Friday! Case Study 1: Estimating Click Probabilities Intro Logistic Regression Gradient Descent + SGD Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade April 4, 017 1 Announcements:

More information

Contents. 1 Introduction. 1.1 History of Optimization ALG-ML SEMINAR LISSA: LINEAR TIME SECOND-ORDER STOCHASTIC ALGORITHM FEBRUARY 23, 2016

Contents. 1 Introduction. 1.1 History of Optimization ALG-ML SEMINAR LISSA: LINEAR TIME SECOND-ORDER STOCHASTIC ALGORITHM FEBRUARY 23, 2016 ALG-ML SEMINAR LISSA: LINEAR TIME SECOND-ORDER STOCHASTIC ALGORITHM FEBRUARY 23, 2016 LECTURERS: NAMAN AGARWAL AND BRIAN BULLINS SCRIBE: KIRAN VODRAHALLI Contents 1 Introduction 1 1.1 History of Optimization.....................................

More information

Bias-Variance Tradeoff

Bias-Variance Tradeoff What s learning, revisited Overfitting Generative versus Discriminative Logistic Regression Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University September 19 th, 2007 Bias-Variance Tradeoff

More information

Classification Logistic Regression

Classification Logistic Regression O due Thursday µtwl Classification Logistic Regression Machine Learning CSE546 Kevin Jamieson University of Washington October 16, 2016 1 THUS FAR, REGRESSION: PREDICT A CONTINUOUS VALUE GIVEN SOME INPUTS

More information

Comments. Assignment 3 code released. Thought questions 3 due this week. Mini-project: hopefully you have started. implement classification algorithms

Comments. Assignment 3 code released. Thought questions 3 due this week. Mini-project: hopefully you have started. implement classification algorithms Neural networks Comments Assignment 3 code released implement classification algorithms use kernels for census dataset Thought questions 3 due this week Mini-project: hopefully you have started 2 Example:

More information

Sparse Linear Models (10/7/13)

Sparse Linear Models (10/7/13) STA56: Probabilistic machine learning Sparse Linear Models (0/7/) Lecturer: Barbara Engelhardt Scribes: Jiaji Huang, Xin Jiang, Albert Oh Sparsity Sparsity has been a hot topic in statistics and machine

More information

CS260: Machine Learning Algorithms

CS260: Machine Learning Algorithms CS260: Machine Learning Algorithms Lecture 4: Stochastic Gradient Descent Cho-Jui Hsieh UCLA Jan 16, 2019 Large-scale Problems Machine learning: usually minimizing the training loss min w { 1 N min w {

More information

CS60021: Scalable Data Mining. Large Scale Machine Learning

CS60021: Scalable Data Mining. Large Scale Machine Learning J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 1 CS60021: Scalable Data Mining Large Scale Machine Learning Sourangshu Bhattacharya Example: Spam filtering Instance

More information

Optimization for Machine Learning

Optimization for Machine Learning Optimization for Machine Learning Elman Mansimov 1 September 24, 2015 1 Modified based on Shenlong Wang s and Jake Snell s tutorials, with additional contents borrowed from Kevin Swersky and Jasper Snoek

More information

Lecture 2 Machine Learning Review

Lecture 2 Machine Learning Review Lecture 2 Machine Learning Review CMSC 35246: Deep Learning Shubhendu Trivedi & Risi Kondor University of Chicago March 29, 2017 Things we will look at today Formal Setup for Supervised Learning Things

More information

outline Nonlinear transformation Error measures Noisy targets Preambles to the theory

outline Nonlinear transformation Error measures Noisy targets Preambles to the theory Error and Noise outline Nonlinear transformation Error measures Noisy targets Preambles to the theory Linear is limited Data Hypothesis Linear in what? Linear regression implements Linear classification

More information

LECTURE 22: SWARM INTELLIGENCE 3 / CLASSICAL OPTIMIZATION

LECTURE 22: SWARM INTELLIGENCE 3 / CLASSICAL OPTIMIZATION 15-382 COLLECTIVE INTELLIGENCE - S19 LECTURE 22: SWARM INTELLIGENCE 3 / CLASSICAL OPTIMIZATION TEACHER: GIANNI A. DI CARO WHAT IF WE HAVE ONE SINGLE AGENT PSO leverages the presence of a swarm: the outcome

More information

Logistic Regression. William Cohen

Logistic Regression. William Cohen Logistic Regression William Cohen 1 Outline Quick review classi5ication, naïve Bayes, perceptrons new result for naïve Bayes Learning as optimization Logistic regression via gradient ascent Over5itting

More information

Classification: Logistic Regression from Data

Classification: Logistic Regression from Data Classification: Logistic Regression from Data Machine Learning: Alvin Grissom II University of Colorado Boulder Slides adapted from Emily Fox Machine Learning: Alvin Grissom II Boulder Classification:

More information

Logistic Regression Introduction to Machine Learning. Matt Gormley Lecture 9 Sep. 26, 2018

Logistic Regression Introduction to Machine Learning. Matt Gormley Lecture 9 Sep. 26, 2018 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Logistic Regression Matt Gormley Lecture 9 Sep. 26, 2018 1 Reminders Homework 3:

More information

ECE521 Lecture7. Logistic Regression

ECE521 Lecture7. Logistic Regression ECE521 Lecture7 Logistic Regression Outline Review of decision theory Logistic regression A single neuron Multi-class classification 2 Outline Decision theory is conceptually easy and computationally hard

More information

Warm up. Regrade requests submitted directly in Gradescope, do not instructors.

Warm up. Regrade requests submitted directly in Gradescope, do not  instructors. Warm up Regrade requests submitted directly in Gradescope, do not email instructors. 1 float in NumPy = 8 bytes 10 6 2 20 bytes = 1 MB 10 9 2 30 bytes = 1 GB For each block compute the memory required

More information

Lecture 1: Supervised Learning

Lecture 1: Supervised Learning Lecture 1: Supervised Learning Tuo Zhao Schools of ISYE and CSE, Georgia Tech ISYE6740/CSE6740/CS7641: Computational Data Analysis/Machine from Portland, Learning Oregon: pervised learning (Supervised)

More information

Machine Learning Basics Lecture 2: Linear Classification. Princeton University COS 495 Instructor: Yingyu Liang

Machine Learning Basics Lecture 2: Linear Classification. Princeton University COS 495 Instructor: Yingyu Liang Machine Learning Basics Lecture 2: Linear Classification Princeton University COS 495 Instructor: Yingyu Liang Review: machine learning basics Math formulation Given training data x i, y i : 1 i n i.i.d.

More information

MS&E 226: Small Data

MS&E 226: Small Data MS&E 226: Small Data Lecture 12: Logistic regression (v1) Ramesh Johari ramesh.johari@stanford.edu Fall 2015 1 / 30 Regression methods for binary outcomes 2 / 30 Binary outcomes For the duration of this

More information

Probabilistic classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2016

Probabilistic classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2016 Probabilistic classification CE-717: Machine Learning Sharif University of Technology M. Soleymani Fall 2016 Topics Probabilistic approach Bayes decision theory Generative models Gaussian Bayes classifier

More information

Linear and logistic regression

Linear and logistic regression Linear and logistic regression Guillaume Obozinski Ecole des Ponts - ParisTech Master MVA Linear and logistic regression 1/22 Outline 1 Linear regression 2 Logistic regression 3 Fisher discriminant analysis

More information

Introduction to Natural Computation. Lecture 9. Multilayer Perceptrons and Backpropagation. Peter Lewis

Introduction to Natural Computation. Lecture 9. Multilayer Perceptrons and Backpropagation. Peter Lewis Introduction to Natural Computation Lecture 9 Multilayer Perceptrons and Backpropagation Peter Lewis 1 / 25 Overview of the Lecture Why multilayer perceptrons? Some applications of multilayer perceptrons.

More information

GRADIENT DESCENT. CSE 559A: Computer Vision GRADIENT DESCENT GRADIENT DESCENT [0, 1] Pr(y = 1) w T x. 1 f (x; θ) = 1 f (x; θ) = exp( w T x)

GRADIENT DESCENT. CSE 559A: Computer Vision GRADIENT DESCENT GRADIENT DESCENT [0, 1] Pr(y = 1) w T x. 1 f (x; θ) = 1 f (x; θ) = exp( w T x) 0 x x x CSE 559A: Computer Vision For Binary Classification: [0, ] f (x; ) = σ( x) = exp( x) + exp( x) Output is interpreted as probability Pr(y = ) x are the log-odds. Fall 207: -R: :30-pm @ Lopata 0

More information

CSC2541 Lecture 5 Natural Gradient

CSC2541 Lecture 5 Natural Gradient CSC2541 Lecture 5 Natural Gradient Roger Grosse Roger Grosse CSC2541 Lecture 5 Natural Gradient 1 / 12 Motivation Two classes of optimization procedures used throughout ML (stochastic) gradient descent,

More information

1 Review of Winnow Algorithm

1 Review of Winnow Algorithm COS 511: Theoretical Machine Learning Lecturer: Rob Schapire Lecture # 17 Scribe: Xingyuan Fang, Ethan April 9th, 2013 1 Review of Winnow Algorithm We have studied Winnow algorithm in Algorithm 1. Algorithm

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Machine Learning: Jordan Boyd-Graber University of Maryland LOGISTIC REGRESSION FROM TEXT Slides adapted from Emily Fox Machine Learning: Jordan Boyd-Graber UMD Introduction

More information

Advanced computational methods X Selected Topics: SGD

Advanced computational methods X Selected Topics: SGD Advanced computational methods X071521-Selected Topics: SGD. In this lecture, we look at the stochastic gradient descent (SGD) method 1 An illustrating example The MNIST is a simple dataset of variety

More information

Lecture 2 - Learning Binary & Multi-class Classifiers from Labelled Training Data

Lecture 2 - Learning Binary & Multi-class Classifiers from Labelled Training Data Lecture 2 - Learning Binary & Multi-class Classifiers from Labelled Training Data DD2424 March 23, 2017 Binary classification problem given labelled training data Have labelled training examples? Given

More information

Introduction to Optimization

Introduction to Optimization Introduction to Optimization Konstantin Tretyakov (kt@ut.ee) MTAT.03.227 Machine Learning So far Machine learning is important and interesting The general concept: Fitting models to data So far Machine

More information

Probabilistic Graphical Models & Applications

Probabilistic Graphical Models & Applications Probabilistic Graphical Models & Applications Learning of Graphical Models Bjoern Andres and Bernt Schiele Max Planck Institute for Informatics The slides of today s lecture are authored by and shown with

More information

Lecture 2: From Linear Regression to Kalman Filter and Beyond

Lecture 2: From Linear Regression to Kalman Filter and Beyond Lecture 2: From Linear Regression to Kalman Filter and Beyond January 18, 2017 Contents 1 Batch and Recursive Estimation 2 Towards Bayesian Filtering 3 Kalman Filter and Bayesian Filtering and Smoothing

More information

CSCI567 Machine Learning (Fall 2018)

CSCI567 Machine Learning (Fall 2018) CSCI567 Machine Learning (Fall 2018) Prof. Haipeng Luo U of Southern California Sep 12, 2018 September 12, 2018 1 / 49 Administration GitHub repos are setup (ask TA Chi Zhang for any issues) HW 1 is due

More information

STA141C: Big Data & High Performance Statistical Computing

STA141C: Big Data & High Performance Statistical Computing STA141C: Big Data & High Performance Statistical Computing Lecture 8: Optimization Cho-Jui Hsieh UC Davis May 9, 2017 Optimization Numerical Optimization Numerical Optimization: min X f (X ) Can be applied

More information

COMPUTATIONAL INTELLIGENCE (INTRODUCTION TO MACHINE LEARNING) SS16

COMPUTATIONAL INTELLIGENCE (INTRODUCTION TO MACHINE LEARNING) SS16 COMPUTATIONAL INTELLIGENCE (INTRODUCTION TO MACHINE LEARNING) SS6 Lecture 3: Classification with Logistic Regression Advanced optimization techniques Underfitting & Overfitting Model selection (Training-

More information

Ad Placement Strategies

Ad Placement Strategies Case Study : Estimating Click Probabilities Intro Logistic Regression Gradient Descent + SGD AdaGrad Machine Learning for Big Data CSE547/STAT548, University of Washington Emily Fox January 7 th, 04 Ad

More information

Topics we covered. Machine Learning. Statistics. Optimization. Systems! Basics of probability Tail bounds Density Estimation Exponential Families

Topics we covered. Machine Learning. Statistics. Optimization. Systems! Basics of probability Tail bounds Density Estimation Exponential Families Midterm Review Topics we covered Machine Learning Optimization Basics of optimization Convexity Unconstrained: GD, SGD Constrained: Lagrange, KKT Duality Linear Methods Perceptrons Support Vector Machines

More information

Linear Models for Regression CS534

Linear Models for Regression CS534 Linear Models for Regression CS534 Example Regression Problems Predict housing price based on House size, lot size, Location, # of rooms Predict stock price based on Price history of the past month Predict

More information

MS&E 226: Small Data

MS&E 226: Small Data MS&E 226: Small Data Lecture 9: Logistic regression (v2) Ramesh Johari ramesh.johari@stanford.edu 1 / 28 Regression methods for binary outcomes 2 / 28 Binary outcomes For the duration of this lecture suppose

More information

Iterative Reweighted Least Squares

Iterative Reweighted Least Squares Iterative Reweighted Least Squares Sargur. University at Buffalo, State University of ew York USA Topics in Linear Classification using Probabilistic Discriminative Models Generative vs Discriminative

More information

CSC321 Lecture 8: Optimization

CSC321 Lecture 8: Optimization CSC321 Lecture 8: Optimization Roger Grosse Roger Grosse CSC321 Lecture 8: Optimization 1 / 26 Overview We ve talked a lot about how to compute gradients. What do we actually do with them? Today s lecture:

More information