Capacity Bounds on Timing Channels with Bounded Service Times

Size: px
Start display at page:

Download "Capacity Bounds on Timing Channels with Bounded Service Times"

Transcription

1 Capacity Bounds on Timing Channels with Bounded Service Times S. Sellke, C.-C. Wang, N. B. Shroff, and S. Bagchi School of Electrical and Computer Engineering Purdue University, West Lafayette, IN USA 6/22/07 1

2 What are Timing Channels? Msg(k)= of 22

3 Timing Channels Information is conveyed in the timing of the bits Sender: a 0, a 2,, a n-1. Server: S 0,S 2,, S n-1 Receiver: d 0, d 1, L, d n ; and recovers information. 3 of 22

4 Applications of Timing Channels Keyboard JitterBug [1] [1] G. Shah et al, Keyboards and Covert Channels, 2006 Best Student Paper Award, 15 th USENIX Security Symposium Implement timing channels using on-off technique over TCP/IP networks [2] [2] S. Cabuk et al, IP Covert Timing Channels: Design and Detection, 2004 Covert Timing Channels in Multi-Level Security (MLS) Systems [3],[4] [3] U. S. Department of Defense, ``The Orange Book, 1985 [4] J. Wray, An Analysis of Covert Timing Channels, of 22

5 Exponential Service Timing Channel ESTC: Service times S 1, S 2, are iid exponential random variables with parameter µ. Capacity of ESTC: Capacity of others: Deterministic Service Timing Channels have infinite capacity, even if service time is large. A. Anantharam and S. Verdu, Bits through Queues,, of 22

6 Bounded Service Timing Channels BSTC: service times S 1, S 2, L, S n are iid with bounded support. General BSTC: Symmetric BSTC Examples of BSTC: Uniform BSTC Gaussian BSTC 6 of 22

7 Lowest capacity BSTC? Is there a particular BSTC that serves a role similar to that of ESTC? That is, it has the lowest capacity among all BSTC with same service rate and support interval. 7 of 22

8 Our Contributions An upper bound lower bounds C L,1 and C L,2 C L,1 : C L,2 : For the uniform BSTC, C U.BSTC - C L,2! 0 as ²! 0 C U. BSTC - C L,1 < const. for all ² C U.BSTC < C BSTC : serves role similar to ESTC 8 of 22

9 Timing Channels with feedback With Feedback: The sender knows d k-1 before deciding a k Thus, the sender has full control of W k FB channel is reduced to a sequentially juxtaposed iid channel: W k! W k +S k 9 of 22

10 An Upper Bound on the Capacity New i.i.d Channels: W k! W k +S k where Recall: (inter-departure rate) (service rate) 10 of 22

11 An Upper Bound C U,PS (²) = µ sup 0< <1 G(², ) bits/sec, where = /µ and 11 of 22

12 Achievability: Scheme 1 A k : geometric r.v. to avoid queueing D k = (a k + 1/µ + / - ²) - (a k-1 + 1/µ + / - ²) = A + k / - 2 ² Values for A k are spaced 4 ² apart for error-free decoding 12 of 22

13 C L,1 (²): the First Lower Bound Error-free rate of scheme 1: C L,1 (²) = µ sup [H(p 1 ) /p 1 ] bits/sec 0< <1/(1+² µ) where p 1 = (4²µ ) / (1/ ² µ ) 13 of 22

14 14 of 22

15 Achievability: Scheme 2 If the absolute timing information is available to both sender and receiver. d k = a k + / - ² for k = 1, 2, L ) error-free decoding With long codeword length, the absolute timing can be obtained with arbitrary precision. 15 of 22

16 C L,2 (²): The Second Lower Bound Error-free rate of scheme 2: C L,2 (²) = µ sup [H(p 2 ) /p 2 ] bits/sec 0< <1/(1+ (1+2 )² µ) where p 2 = (2²µ ) / (1/ (1-2 ) ² µ ) = [ ] -, and = (1+²µ)/(2²µ) 16 of 22

17 17 of 22

18 Optimality of Our Schemes Define: C 1 (²) = C u (²) - C L,1 (²) C 2 (²) = C u (²) - C L,2 (²) Results on Uniform BSTC: C 1 (²) < log 2 (e) µ bits/sec C 2 (²)! 0 as ²! 0 18 of 22

19 Capacity of a Uniform BSTC For a uniform BSTC C 1 (²) < log 2 (e) µ bits/sec ) C U.BSTC (²) = C L,1 (²) + O(1) C 2 (²)! 0 as ²! 0 ) C U.BSTC (²) = C L,2 (²) + o(1) Scheme 2 is optimal; When ² is small, the uniform BSTC has the smallest capacity among all BSTCs with same µ and ². 19 of 22

20 Gaussian BSTC C = C L,2 + o(1) does not hold for G. BSTC. ²µ 0.1 All C L, Uniform BSTC C U C Gaussian BSTC C U C of 22

21 Summary Obtained one upper bound (C U ) and two error-free lower bounds (C L,1 and C L,2 ) on the capacity of BSTC. These bounds are asymptotically tight for the uniform BSTC: C U (U.BSTC) = C L,1 + O(1) ) C U.BSTC = C L,1 + O(1) C U (U.BSTC) = C L,2 + o(1) ) C U.BSTC = C L,2 + o(1) For any distribution-independent scheme, you cannot do better than Scheme 2. When ² is small, 21 of 22

22 Implementation S. Sellke, C-C. Wang, N.B. Shroff, and S. Bagchi, Covert Timing Channels over TCP/IP networks: from Theory to Practice, 2007 Practical Design and Implementation of a covert timing channel over TCP/IP networks. Experiments on computers at Purdue and Princeton Network Delay Characteristics: Small Jitter (3-5%) Rate of the TCP/IP Timing Channel: Up to 80 bit/sec, 5 times improvement over the on-off channels. What s more? For BSTC, a non-detectable scheme mimicking the normal traffic pattern. Error-control coding for timing channel. 22 of 22

The Timing Capacity of Single-Server Queues with Multiple Flows

The Timing Capacity of Single-Server Queues with Multiple Flows The Timing Capacity of Single-Server Queues with Multiple Flows Xin Liu and R. Srikant Coordinated Science Laboratory University of Illinois at Urbana Champaign March 14, 2003 Timing Channel Information

More information

Queueing Theory II. Summary. ! M/M/1 Output process. ! Networks of Queue! Method of Stages. ! General Distributions

Queueing Theory II. Summary. ! M/M/1 Output process. ! Networks of Queue! Method of Stages. ! General Distributions Queueing Theory II Summary! M/M/1 Output process! Networks of Queue! Method of Stages " Erlang Distribution " Hyperexponential Distribution! General Distributions " Embedded Markov Chains M/M/1 Output

More information

An Alternative Proof of the Rate-Distortion Function of Poisson Processes with a Queueing Distortion Measure

An Alternative Proof of the Rate-Distortion Function of Poisson Processes with a Queueing Distortion Measure An Alternative Proof of the Rate-Distortion Function of Poisson Processes with a Queueing Distortion Measure Todd P. Coleman, Negar Kiyavash, and Vijay G. Subramanian ECE Dept & Coordinated Science Laboratory,

More information

1.225 Transportation Flow Systems Quiz (December 17, 2001; Duration: 3 hours)

1.225 Transportation Flow Systems Quiz (December 17, 2001; Duration: 3 hours) 1.225 Transportation Flow Systems Quiz (December 17, 2001; Duration: 3 hours) Student Name: Alias: Instructions: 1. This exam is open-book 2. No cooperation is permitted 3. Please write down your name

More information

A Simple Memoryless Proof of the Capacity of the Exponential Server Timing Channel

A Simple Memoryless Proof of the Capacity of the Exponential Server Timing Channel A Simple Memoryless Proof of the Capacity of the Exponential Server iming Channel odd P. Coleman ECE Department Coordinated Science Laboratory University of Illinois colemant@illinois.edu Abstract his

More information

Towards Provably Invisible Network Flow Fingerprints

Towards Provably Invisible Network Flow Fingerprints Towards Provably Invisible Network Flow Fingerprints Ramin Soltani, Dennis Goeckel, Don Towsley, and Amir Houmansadr Electrical and Computer Engineering Department, University of Massachusetts, Amherst,

More information

Page 0 of 5 Final Examination Name. Closed book. 120 minutes. Cover page plus five pages of exam.

Page 0 of 5 Final Examination Name. Closed book. 120 minutes. Cover page plus five pages of exam. Final Examination Closed book. 120 minutes. Cover page plus five pages of exam. To receive full credit, show enough work to indicate your logic. Do not spend time calculating. You will receive full credit

More information

Quiz 1 EE 549 Wednesday, Feb. 27, 2008

Quiz 1 EE 549 Wednesday, Feb. 27, 2008 UNIVERSITY OF SOUTHERN CALIFORNIA, SPRING 2008 1 Quiz 1 EE 549 Wednesday, Feb. 27, 2008 INSTRUCTIONS This quiz lasts for 85 minutes. This quiz is closed book and closed notes. No Calculators or laptops

More information

Universal Anytime Codes: An approach to uncertain channels in control

Universal Anytime Codes: An approach to uncertain channels in control Universal Anytime Codes: An approach to uncertain channels in control paper by Stark Draper and Anant Sahai presented by Sekhar Tatikonda Wireless Foundations Department of Electrical Engineering and Computer

More information

An Entropy-Based Approach to Detecting Covert Timing Channels

An Entropy-Based Approach to Detecting Covert Timing Channels 1 An Entropy-Based Approach to Detecting Covert Timing Channels Steven Gianvecchio and Haining Wang Abstract The detection of covert timing channels is of increasing interest in light of recent exploits

More information

Covert Communications on Poisson Packet Channels

Covert Communications on Poisson Packet Channels Covert Communications on Poisson Packet Channels Ramin Soltani, Dennis Goeckel, Don Towsley, and Amir Houmansadr Electrical and Computer Engineering Department, University of Massachusetts, Amherst, {soltani,

More information

Estimating a linear process using phone calls

Estimating a linear process using phone calls Estimating a linear process using phone calls Mohammad Javad Khojasteh, Massimo Franceschetti, Gireeja Ranade Abstract We consider the problem of estimating an undisturbed, scalar, linear process over

More information

Shannon and Poisson. sergio verdú

Shannon and Poisson. sergio verdú Shannon and Poisson sergio verdú P λ (k) = e λλk k! deaths from horse kicks in the Prussian cavalry. photons arriving at photodetector packets arriving at a router DNA mutations Poisson entropy 3.5 3.0

More information

Covert Communications on Poisson Packet Channels

Covert Communications on Poisson Packet Channels Covert Communications on Poisson Packet Channels Ramin Soltani, Dennis Goeckel, Don Towsley, and Amir Houmansadr Electrical and Computer Engineering Department, University of Massachusetts, Amherst, {soltani,

More information

Lower Bounds on the Graphical Complexity of Finite-Length LDPC Codes

Lower Bounds on the Graphical Complexity of Finite-Length LDPC Codes Lower Bounds on the Graphical Complexity of Finite-Length LDPC Codes Igal Sason Department of Electrical Engineering Technion - Israel Institute of Technology Haifa 32000, Israel 2009 IEEE International

More information

Probability Models in Electrical and Computer Engineering Mathematical models as tools in analysis and design Deterministic models Probability models

Probability Models in Electrical and Computer Engineering Mathematical models as tools in analysis and design Deterministic models Probability models Probability Models in Electrical and Computer Engineering Mathematical models as tools in analysis and design Deterministic models Probability models Statistical regularity Properties of relative frequency

More information

Queues and Queueing Networks

Queues and Queueing Networks Queues and Queueing Networks Sanjay K. Bose Dept. of EEE, IITG Copyright 2015, Sanjay K. Bose 1 Introduction to Queueing Models and Queueing Analysis Copyright 2015, Sanjay K. Bose 2 Model of a Queue Arrivals

More information

A Tight Upper Bound on the Second-Order Coding Rate of Parallel Gaussian Channels with Feedback

A Tight Upper Bound on the Second-Order Coding Rate of Parallel Gaussian Channels with Feedback A Tight Upper Bound on the Second-Order Coding Rate of Parallel Gaussian Channels with Feedback Vincent Y. F. Tan (NUS) Joint work with Silas L. Fong (Toronto) 2017 Information Theory Workshop, Kaohsiung,

More information

Lecture 7: Simulation of Markov Processes. Pasi Lassila Department of Communications and Networking

Lecture 7: Simulation of Markov Processes. Pasi Lassila Department of Communications and Networking Lecture 7: Simulation of Markov Processes Pasi Lassila Department of Communications and Networking Contents Markov processes theory recap Elementary queuing models for data networks Simulation of Markov

More information

Large Deviations for Channels with Memory

Large Deviations for Channels with Memory Large Deviations for Channels with Memory Santhosh Kumar Jean-Francois Chamberland Henry Pfister Electrical and Computer Engineering Texas A&M University September 30, 2011 1/ 1 Digital Landscape Delay

More information

Covert Communications on Renewal Packet Channels

Covert Communications on Renewal Packet Channels Covert Communications on Renewal Packet Channels Ramin Soltani, Dennis Goeckel, Don Towsley, and Amir Houmansadr Electrical and Computer Engineering Department, University of Massachusetts, Amherst, {soltani,

More information

IN this paper, we consider the capacity of sticky channels, a

IN this paper, we consider the capacity of sticky channels, a 72 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 1, JANUARY 2008 Capacity Bounds for Sticky Channels Michael Mitzenmacher, Member, IEEE Abstract The capacity of sticky channels, a subclass of insertion

More information

Azadeh Faridi Doctor of Philosophy, 2007

Azadeh Faridi Doctor of Philosophy, 2007 ABSTRACT Title of dissertation: CROSS-LAYER DISTORTION CONTROL FOR DELAY SENSITIVE SOURCES Azadeh Faridi Doctor of Philosophy, 2007 Dissertation directed by: Professor Anthony Ephremides Department of

More information

THE capacity of the exponential server timing channel

THE capacity of the exponential server timing channel IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 6, JUNE 2006 2697 Capacity of Queues Via Point-Process Channels Rajesh Sundaresan, Senior Member, IEEE, and Sergio Verdú, Fellow, IEEE Abstract A conceptually

More information

Memory in Classical Information Theory: A Brief History

Memory in Classical Information Theory: A Brief History Beyond iid in information theory 8- January, 203 Memory in Classical Information Theory: A Brief History sergio verdu princeton university entropy rate Shannon, 948 entropy rate: memoryless process H(X)

More information

Fundamental Limits of Invisible Flow Fingerprinting

Fundamental Limits of Invisible Flow Fingerprinting Fundamental Limits of Invisible Flow Fingerprinting Ramin Soltani, Dennis Goeckel, Don Towsley, and Amir Houmansadr Electrical and Computer Engineering Department, University of Massachusetts, Amherst,

More information

Principles of Communications

Principles of Communications Principles of Communications Weiyao Lin Shanghai Jiao Tong University Chapter 10: Information Theory Textbook: Chapter 12 Communication Systems Engineering: Ch 6.1, Ch 9.1~ 9. 92 2009/2010 Meixia Tao @

More information

Approximately achieving the feedback interference channel capacity with point-to-point codes

Approximately achieving the feedback interference channel capacity with point-to-point codes Approximately achieving the feedback interference channel capacity with point-to-point codes Joyson Sebastian*, Can Karakus*, Suhas Diggavi* Abstract Superposition codes with rate-splitting have been used

More information

Performance Evaluation of Queuing Systems

Performance Evaluation of Queuing Systems Performance Evaluation of Queuing Systems Introduction to Queuing Systems System Performance Measures & Little s Law Equilibrium Solution of Birth-Death Processes Analysis of Single-Station Queuing Systems

More information

CS 798: Homework Assignment 3 (Queueing Theory)

CS 798: Homework Assignment 3 (Queueing Theory) 1.0 Little s law Assigned: October 6, 009 Patients arriving to the emergency room at the Grand River Hospital have a mean waiting time of three hours. It has been found that, averaged over the period of

More information

18.2 Continuous Alphabet (discrete-time, memoryless) Channel

18.2 Continuous Alphabet (discrete-time, memoryless) Channel 0-704: Information Processing and Learning Spring 0 Lecture 8: Gaussian channel, Parallel channels and Rate-distortion theory Lecturer: Aarti Singh Scribe: Danai Koutra Disclaimer: These notes have not

More information

Queueing Theory I Summary! Little s Law! Queueing System Notation! Stationary Analysis of Elementary Queueing Systems " M/M/1 " M/M/m " M/M/1/K "

Queueing Theory I Summary! Little s Law! Queueing System Notation! Stationary Analysis of Elementary Queueing Systems  M/M/1  M/M/m  M/M/1/K Queueing Theory I Summary Little s Law Queueing System Notation Stationary Analysis of Elementary Queueing Systems " M/M/1 " M/M/m " M/M/1/K " Little s Law a(t): the process that counts the number of arrivals

More information

Entropy based approach to detect covert. timing channels

Entropy based approach to detect covert. timing channels Entropy based approach to detect covert timing channels By Xiuwei Yi, Dhaval Patel Introduction The paper focuses on a new approach to detect covert timing channels that is based on a new entropy approach.

More information

A Covert Queueing Channel. in FCFS Schedulers

A Covert Queueing Channel. in FCFS Schedulers A Covert Queueing Channel in FCFS Schedulers AmirEmad Ghassami and Negar Kiyavash Abstract arxiv:707.07234v [cs.it] 23 Jul 207 We study covert queueing channels (CQCs), which are a kind of covert timing

More information

IS 709/809: Computational Methods in IS Research Fall Exam Review

IS 709/809: Computational Methods in IS Research Fall Exam Review IS 709/809: Computational Methods in IS Research Fall 2017 Exam Review Nirmalya Roy Department of Information Systems University of Maryland Baltimore County www.umbc.edu Exam When: Tuesday (11/28) 7:10pm

More information

X 1 : X Table 1: Y = X X 2

X 1 : X Table 1: Y = X X 2 ECE 534: Elements of Information Theory, Fall 200 Homework 3 Solutions (ALL DUE to Kenneth S. Palacio Baus) December, 200. Problem 5.20. Multiple access (a) Find the capacity region for the multiple-access

More information

Introduction to Queueing Theory with Applications to Air Transportation Systems

Introduction to Queueing Theory with Applications to Air Transportation Systems Introduction to Queueing Theory with Applications to Air Transportation Systems John Shortle George Mason University February 28, 2018 Outline Why stochastic models matter M/M/1 queue Little s law Priority

More information

The Rate-Distortion Function of a Poisson Process with a Queueing Distortion Measure

The Rate-Distortion Function of a Poisson Process with a Queueing Distortion Measure The Rate-Distortion Function of a Poisson Process with a Queueing Distortion Measure Todd P. Coleman Negar Kiyavash Vijay G. Subramanian Abstract This paper characterizes the rate distortion function of

More information

Data Rate Theorem for Stabilization over Time-Varying Feedback Channels

Data Rate Theorem for Stabilization over Time-Varying Feedback Channels Data Rate Theorem for Stabilization over Time-Varying Feedback Channels Workshop on Frontiers in Distributed Communication, Sensing and Control Massimo Franceschetti, UCSD (joint work with P. Minero, S.

More information

Stochastic-Process Limits

Stochastic-Process Limits Ward Whitt Stochastic-Process Limits An Introduction to Stochastic-Process Limits and Their Application to Queues With 68 Illustrations Springer Contents Preface vii 1 Experiencing Statistical Regularity

More information

4 An Introduction to Channel Coding and Decoding over BSC

4 An Introduction to Channel Coding and Decoding over BSC 4 An Introduction to Channel Coding and Decoding over BSC 4.1. Recall that channel coding introduces, in a controlled manner, some redundancy in the (binary information sequence that can be used at the

More information

ECE 3511: Communications Networks Theory and Analysis. Fall Quarter Instructor: Prof. A. Bruce McDonald. Lecture Topic

ECE 3511: Communications Networks Theory and Analysis. Fall Quarter Instructor: Prof. A. Bruce McDonald. Lecture Topic ECE 3511: Communications Networks Theory and Analysis Fall Quarter 2002 Instructor: Prof. A. Bruce McDonald Lecture Topic Introductory Analysis of M/G/1 Queueing Systems Module Number One Steady-State

More information

Non Markovian Queues (contd.)

Non Markovian Queues (contd.) MODULE 7: RENEWAL PROCESSES 29 Lecture 5 Non Markovian Queues (contd) For the case where the service time is constant, V ar(b) = 0, then the P-K formula for M/D/ queue reduces to L s = ρ + ρ 2 2( ρ) where

More information

Large deviations for random walks under subexponentiality: the big-jump domain

Large deviations for random walks under subexponentiality: the big-jump domain Large deviations under subexponentiality p. Large deviations for random walks under subexponentiality: the big-jump domain Ton Dieker, IBM Watson Research Center joint work with D. Denisov (Heriot-Watt,

More information

On the Capacity of Diffusion-Based Molecular Timing Channels With Diversity

On the Capacity of Diffusion-Based Molecular Timing Channels With Diversity On the Capacity of Diffusion-Based Molecular Timing Channels With Diversity Nariman Farsad, Yonathan Murin, Milind Rao, and Andrea Goldsmith Electrical Engineering, Stanford University, USA Abstract This

More information

Queueing Review. Christos Alexopoulos and Dave Goldsman 10/6/16. (mostly from BCNN) Georgia Institute of Technology, Atlanta, GA, USA

Queueing Review. Christos Alexopoulos and Dave Goldsman 10/6/16. (mostly from BCNN) Georgia Institute of Technology, Atlanta, GA, USA 1 / 24 Queueing Review (mostly from BCNN) Christos Alexopoulos and Dave Goldsman Georgia Institute of Technology, Atlanta, GA, USA 10/6/16 2 / 24 Outline 1 Introduction 2 Queueing Notation 3 Transient

More information

Delay, feedback, and the price of ignorance

Delay, feedback, and the price of ignorance Delay, feedback, and the price of ignorance Anant Sahai based in part on joint work with students: Tunc Simsek Cheng Chang Wireless Foundations Department of Electrical Engineering and Computer Sciences

More information

Solutions to Homework Discrete Stochastic Processes MIT, Spring 2011

Solutions to Homework Discrete Stochastic Processes MIT, Spring 2011 Exercise 6.5: Solutions to Homework 0 6.262 Discrete Stochastic Processes MIT, Spring 20 Consider the Markov process illustrated below. The transitions are labelled by the rate q ij at which those transitions

More information

Asymptotic Delay Distribution and Burst Size Impact on a Network Node Driven by Self-similar Traffic

Asymptotic Delay Distribution and Burst Size Impact on a Network Node Driven by Self-similar Traffic Èíôîðìàöèîííûå ïðîöåññû, Òîì 5, 1, 2005, ñòð. 4046. c 2004 D'Apice, Manzo. INFORMATION THEORY AND INFORMATION PROCESSING Asymptotic Delay Distribution and Burst Size Impact on a Network Node Driven by

More information

PBW 654 Applied Statistics - I Urban Operations Research

PBW 654 Applied Statistics - I Urban Operations Research PBW 654 Applied Statistics - I Urban Operations Research Lecture 2.I Queuing Systems An Introduction Operations Research Models Deterministic Models Linear Programming Integer Programming Network Optimization

More information

Design of IP networks with Quality of Service

Design of IP networks with Quality of Service Course of Multimedia Internet (Sub-course Reti Internet Multimediali ), AA 2010-2011 Prof. Pag. 1 Design of IP networks with Quality of Service 1 Course of Multimedia Internet (Sub-course Reti Internet

More information

LECTURE 15. Last time: Feedback channel: setting up the problem. Lecture outline. Joint source and channel coding theorem

LECTURE 15. Last time: Feedback channel: setting up the problem. Lecture outline. Joint source and channel coding theorem LECTURE 15 Last time: Feedback channel: setting up the problem Perfect feedback Feedback capacity Data compression Lecture outline Joint source and channel coding theorem Converse Robustness Brain teaser

More information

Queueing Theory and Simulation. Introduction

Queueing Theory and Simulation. Introduction Queueing Theory and Simulation Based on the slides of Dr. Dharma P. Agrawal, University of Cincinnati and Dr. Hiroyuki Ohsaki Graduate School of Information Science & Technology, Osaka University, Japan

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.262 Discrete Stochastic Processes Midterm Quiz April 6, 2010 There are 5 questions, each with several parts.

More information

NICTA Short Course. Network Analysis. Vijay Sivaraman. Day 1 Queueing Systems and Markov Chains. Network Analysis, 2008s2 1-1

NICTA Short Course. Network Analysis. Vijay Sivaraman. Day 1 Queueing Systems and Markov Chains. Network Analysis, 2008s2 1-1 NICTA Short Course Network Analysis Vijay Sivaraman Day 1 Queueing Systems and Markov Chains Network Analysis, 2008s2 1-1 Outline Why a short course on mathematical analysis? Limited current course offering

More information

Homework 1 - SOLUTION

Homework 1 - SOLUTION Homework - SOLUTION Problem M/M/ Queue ) Use the fact above to express π k, k > 0, as a function of π 0. π k = ( ) k λ π 0 µ 2) Using λ < µ and the fact that all π k s sum to, compute π 0 (as a function

More information

Control of Fork-Join Networks in Heavy-Traffic

Control of Fork-Join Networks in Heavy-Traffic in Heavy-Traffic Asaf Zviran Based on MSc work under the guidance of Rami Atar (Technion) and Avishai Mandelbaum (Technion) Industrial Engineering and Management Technion June 2010 Introduction Network

More information

Lecture 14 February 28

Lecture 14 February 28 EE/Stats 376A: Information Theory Winter 07 Lecture 4 February 8 Lecturer: David Tse Scribe: Sagnik M, Vivek B 4 Outline Gaussian channel and capacity Information measures for continuous random variables

More information

Interference Channels with Source Cooperation

Interference Channels with Source Cooperation Interference Channels with Source Cooperation arxiv:95.319v1 [cs.it] 19 May 29 Vinod Prabhakaran and Pramod Viswanath Coordinated Science Laboratory University of Illinois, Urbana-Champaign Urbana, IL

More information

Chapter 4. Data Transmission and Channel Capacity. Po-Ning Chen, Professor. Department of Communications Engineering. National Chiao Tung University

Chapter 4. Data Transmission and Channel Capacity. Po-Ning Chen, Professor. Department of Communications Engineering. National Chiao Tung University Chapter 4 Data Transmission and Channel Capacity Po-Ning Chen, Professor Department of Communications Engineering National Chiao Tung University Hsin Chu, Taiwan 30050, R.O.C. Principle of Data Transmission

More information

COMP Analysis of Algorithms & Data Structures

COMP Analysis of Algorithms & Data Structures COMP 3170 - Analysis of Algorithms & Data Structures Shahin Kamali Computational Complexity CLRS 34.1-34.4 University of Manitoba COMP 3170 - Analysis of Algorithms & Data Structures 1 / 50 Polynomial

More information

Performance-based Security for Encoding of Information Signals. FA ( ) Paul Cuff (Princeton University)

Performance-based Security for Encoding of Information Signals. FA ( ) Paul Cuff (Princeton University) Performance-based Security for Encoding of Information Signals FA9550-15-1-0180 (2015-2018) Paul Cuff (Princeton University) Contributors Two students finished PhD Tiance Wang (Goldman Sachs) Eva Song

More information

Gaussian channel. Information theory 2013, lecture 6. Jens Sjölund. 8 May Jens Sjölund (IMT, LiU) Gaussian channel 1 / 26

Gaussian channel. Information theory 2013, lecture 6. Jens Sjölund. 8 May Jens Sjölund (IMT, LiU) Gaussian channel 1 / 26 Gaussian channel Information theory 2013, lecture 6 Jens Sjölund 8 May 2013 Jens Sjölund (IMT, LiU) Gaussian channel 1 / 26 Outline 1 Definitions 2 The coding theorem for Gaussian channel 3 Bandlimited

More information

Chapter 2 Queueing Theory and Simulation

Chapter 2 Queueing Theory and Simulation Chapter 2 Queueing Theory and Simulation Based on the slides of Dr. Dharma P. Agrawal, University of Cincinnati and Dr. Hiroyuki Ohsaki Graduate School of Information Science & Technology, Osaka University,

More information

Queueing Review. Christos Alexopoulos and Dave Goldsman 10/25/17. (mostly from BCNN) Georgia Institute of Technology, Atlanta, GA, USA

Queueing Review. Christos Alexopoulos and Dave Goldsman 10/25/17. (mostly from BCNN) Georgia Institute of Technology, Atlanta, GA, USA 1 / 26 Queueing Review (mostly from BCNN) Christos Alexopoulos and Dave Goldsman Georgia Institute of Technology, Atlanta, GA, USA 10/25/17 2 / 26 Outline 1 Introduction 2 Queueing Notation 3 Transient

More information

Linear Model Predictive Control for Queueing Networks in Manufacturing and Road Traffic

Linear Model Predictive Control for Queueing Networks in Manufacturing and Road Traffic Linear Model Predictive Control for ueueing Networks in Manufacturing and Road Traffic Yoni Nazarathy Swinburne University of Technology, Melbourne. Joint work with: Erjen Lefeber (manufacturing), Hai

More information

Introduction to queuing theory

Introduction to queuing theory Introduction to queuing theory Claude Rigault ENST claude.rigault@enst.fr Introduction to Queuing theory 1 Outline The problem The number of clients in a system The client process Delay processes Loss

More information

Efficient Nonlinear Optimizations of Queuing Systems

Efficient Nonlinear Optimizations of Queuing Systems Efficient Nonlinear Optimizations of Queuing Systems Mung Chiang, Arak Sutivong, and Stephen Boyd Electrical Engineering Department, Stanford University, CA 9435 Abstract We present a systematic treatment

More information

Multiaccess Problem. How to let distributed users (efficiently) share a single broadcast channel? How to form a queue for distributed users?

Multiaccess Problem. How to let distributed users (efficiently) share a single broadcast channel? How to form a queue for distributed users? Multiaccess Problem How to let distributed users (efficiently) share a single broadcast channel? How to form a queue for distributed users? z The protocols we used to solve this multiaccess problem are

More information

Link Models for Packet Switching

Link Models for Packet Switching Link Models for Packet Switching To begin our study of the performance of communications networks, we will study a model of a single link in a message switched network. The important feature of this model

More information

Exercise 1. = P(y a 1)P(a 1 )

Exercise 1. = P(y a 1)P(a 1 ) Chapter 7 Channel Capacity Exercise 1 A source produces independent, equally probable symbols from an alphabet {a 1, a 2 } at a rate of one symbol every 3 seconds. These symbols are transmitted over a

More information

Lecture 10: Broadcast Channel and Superposition Coding

Lecture 10: Broadcast Channel and Superposition Coding Lecture 10: Broadcast Channel and Superposition Coding Scribed by: Zhe Yao 1 Broadcast channel M 0M 1M P{y 1 y x} M M 01 1 M M 0 The capacity of the broadcast channel depends only on the marginal conditional

More information

Electrical Engineering Written PhD Qualifier Exam Spring 2014

Electrical Engineering Written PhD Qualifier Exam Spring 2014 Electrical Engineering Written PhD Qualifier Exam Spring 2014 Friday, February 7 th 2014 Please do not write your name on this page or any other page you submit with your work. Instead use the student

More information

Discrete-event simulations

Discrete-event simulations Discrete-event simulations Lecturer: Dmitri A. Moltchanov E-mail: moltchan@cs.tut.fi http://www.cs.tut.fi/kurssit/elt-53606/ OUTLINE: Why do we need simulations? Step-by-step simulations; Classifications;

More information

Lecture 5: Asymptotic Equipartition Property

Lecture 5: Asymptotic Equipartition Property Lecture 5: Asymptotic Equipartition Property Law of large number for product of random variables AEP and consequences Dr. Yao Xie, ECE587, Information Theory, Duke University Stock market Initial investment

More information

On the static assignment to parallel servers

On the static assignment to parallel servers On the static assignment to parallel servers Ger Koole Vrije Universiteit Faculty of Mathematics and Computer Science De Boelelaan 1081a, 1081 HV Amsterdam The Netherlands Email: koole@cs.vu.nl, Url: www.cs.vu.nl/

More information

Shortest Paths & Link Weight Structure in Networks

Shortest Paths & Link Weight Structure in Networks Shortest Paths & Link Weight Structure in etworks Piet Van Mieghem CAIDA WIT (May 2006) P. Van Mieghem 1 Outline Introduction The Art of Modeling Conclusions P. Van Mieghem 2 Telecommunication: e2e A ETWORK

More information

6196 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 9, SEPTEMBER 2011

6196 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 9, SEPTEMBER 2011 6196 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 9, SEPTEMBER 2011 On the Structure of Real-Time Encoding and Decoding Functions in a Multiterminal Communication System Ashutosh Nayyar, Student

More information

Introduction to Queueing Theory

Introduction to Queueing Theory Introduction to Queueing Theory Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu Audio/Video recordings of this lecture are available at: http://www.cse.wustl.edu/~jain/cse567-11/

More information

Guess & Check Codes for Deletions, Insertions, and Synchronization

Guess & Check Codes for Deletions, Insertions, and Synchronization Guess & Check Codes for Deletions, Insertions, and Synchronization Serge Kas Hanna, Salim El Rouayheb ECE Department, Rutgers University sergekhanna@rutgersedu, salimelrouayheb@rutgersedu arxiv:759569v3

More information

Lecture 9: Diversity-Multiplexing Tradeoff Theoretical Foundations of Wireless Communications 1

Lecture 9: Diversity-Multiplexing Tradeoff Theoretical Foundations of Wireless Communications 1 : Diversity-Multiplexing Tradeoff Theoretical Foundations of Wireless Communications 1 Rayleigh Friday, May 25, 2018 09:00-11:30, Kansliet 1 Textbook: D. Tse and P. Viswanath, Fundamentals of Wireless

More information

CDA5530: Performance Models of Computers and Networks. Chapter 4: Elementary Queuing Theory

CDA5530: Performance Models of Computers and Networks. Chapter 4: Elementary Queuing Theory CDA5530: Performance Models of Computers and Networks Chapter 4: Elementary Queuing Theory Definition Queuing system: a buffer (waiting room), service facility (one or more servers) a scheduling policy

More information

1 Markov decision processes

1 Markov decision processes 2.997 Decision-Making in Large-Scale Systems February 4 MI, Spring 2004 Handout #1 Lecture Note 1 1 Markov decision processes In this class we will study discrete-time stochastic systems. We can describe

More information

The Method of Types and Its Application to Information Hiding

The Method of Types and Its Application to Information Hiding The Method of Types and Its Application to Information Hiding Pierre Moulin University of Illinois at Urbana-Champaign www.ifp.uiuc.edu/ moulin/talks/eusipco05-slides.pdf EUSIPCO Antalya, September 7,

More information

A Measurement-Analytic Approach for QoS Estimation in a Network Based on the Dominant Time Scale

A Measurement-Analytic Approach for QoS Estimation in a Network Based on the Dominant Time Scale 222 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 11, NO. 2, APRIL 2003 A Measurement-Analytic Approach for QoS Estimation in a Network Based on the Dominant Time Scale Do Young Eun and Ness B. Shroff, Senior

More information

SEVERAL results in classical queueing theory state that

SEVERAL results in classical queueing theory state that IEEE TRANSACTIONS ON INFORMATION THEORY, VOL 49, NO 2, FEBRUARY 2003 357 Entropy the Timing Capacity of Discrete Queues Balaji Prabhakar, Member, IEEE, Robert Gallager, Life Fellow, IEEE Abstract Queueing

More information

λ λ λ In-class problems

λ λ λ In-class problems In-class problems 1. Customers arrive at a single-service facility at a Poisson rate of 40 per hour. When two or fewer customers are present, a single attendant operates the facility, and the service time

More information

Simplification of Network Dynamics in Large Systems

Simplification of Network Dynamics in Large Systems Simplification of Network Dynamics in Large Systems Xiaojun Lin and Ness B. Shroff Abstract In this paper we show that significant simplicity can be exploited for pricing-based control of large networks.

More information

6 Solving Queueing Models

6 Solving Queueing Models 6 Solving Queueing Models 6.1 Introduction In this note we look at the solution of systems of queues, starting with simple isolated queues. The benefits of using predefined, easily classified queues will

More information

Chapter 10. Queuing Systems. D (Queuing Theory) Queuing theory is the branch of operations research concerned with waiting lines.

Chapter 10. Queuing Systems. D (Queuing Theory) Queuing theory is the branch of operations research concerned with waiting lines. Chapter 10 Queuing Systems D. 10. 1. (Queuing Theory) Queuing theory is the branch of operations research concerned with waiting lines. D. 10.. (Queuing System) A ueuing system consists of 1. a user source.

More information

Analysis of Rate-distortion Functions and Congestion Control in Scalable Internet Video Streaming

Analysis of Rate-distortion Functions and Congestion Control in Scalable Internet Video Streaming Analysis of Rate-distortion Functions and Congestion Control in Scalable Internet Video Streaming Min Dai Electrical Engineering, Texas A&M University Dmitri Loguinov Computer Science, Texas A&M University

More information

Relaying Information Streams

Relaying Information Streams Relaying Information Streams Anant Sahai UC Berkeley EECS sahai@eecs.berkeley.edu Originally given: Oct 2, 2002 This was a talk only. I was never able to rigorously formalize the back-of-the-envelope reasoning

More information

0utline. 1. Tools from Operations Research. 2. Applications

0utline. 1. Tools from Operations Research. 2. Applications 0utline 1. Tools from Operations Research Little s Law (average values) Unreliable Machine(s) (operation dependent) Buffers (zero buffers & infinite buffers) M/M/1 Queue (effects of variation) 2. Applications

More information

On the Throughput, Capacity and Stability Regions of Random Multiple Access over Standard Multi-Packet Reception Channels

On the Throughput, Capacity and Stability Regions of Random Multiple Access over Standard Multi-Packet Reception Channels On the Throughput, Capacity and Stability Regions of Random Multiple Access over Standard Multi-Packet Reception Channels Jie Luo, Anthony Ephremides ECE Dept. Univ. of Maryland College Park, MD 20742

More information

GI/M/1 and GI/M/m queuing systems

GI/M/1 and GI/M/m queuing systems GI/M/1 and GI/M/m queuing systems Dmitri A. Moltchanov moltchan@cs.tut.fi http://www.cs.tut.fi/kurssit/tlt-2716/ OUTLINE: GI/M/1 queuing system; Methods of analysis; Imbedded Markov chain approach; Waiting

More information

Estimation Theory Fredrik Rusek. Chapters

Estimation Theory Fredrik Rusek. Chapters Estimation Theory Fredrik Rusek Chapters 3.5-3.10 Recap We deal with unbiased estimators of deterministic parameters Performance of an estimator is measured by the variance of the estimate (due to the

More information

On Channel Access Delay of CSMA Policies in Wireless Networks with Primary Interference Constraints

On Channel Access Delay of CSMA Policies in Wireless Networks with Primary Interference Constraints Forty-Seventh Annual Allerton Conference Allerton House, UIUC, Illinois, USA September 30 - October 2, 2009 On Channel Access Delay of CSMA Policies in Wireless Networks with Primary Interference Constraints

More information

Bit-Stuffing Algorithms for Crosstalk Avoidance in High-Speed Switching

Bit-Stuffing Algorithms for Crosstalk Avoidance in High-Speed Switching Bit-Stuffing Algorithms for Crosstalk Avoidance in High-Speed Switching Cheng-Shang Chang, Jay Cheng, Tien-Ke Huang, Xuan-Chao Huang, Duan-Shin Lee, and Chao-Yi Chen Institute of Communications Engineering

More information

The Poisson Channel with Side Information

The Poisson Channel with Side Information The Poisson Channel with Side Information Shraga Bross School of Enginerring Bar-Ilan University, Israel brosss@macs.biu.ac.il Amos Lapidoth Ligong Wang Signal and Information Processing Laboratory ETH

More information

Channels with cost constraints: strong converse and dispersion

Channels with cost constraints: strong converse and dispersion Channels with cost constraints: strong converse and dispersion Victoria Kostina, Sergio Verdú Dept. of Electrical Engineering, Princeton University, NJ 08544, USA Abstract This paper shows the strong converse

More information