ON THE NORMAL MOMENT DISTRIBUTIONS

Size: px
Start display at page:

Download "ON THE NORMAL MOMENT DISTRIBUTIONS"

Transcription

1 ON THE NORMAL MOMENT DISTRIBUTIONS Akin Olosunde Department of Statistics, P.M.B. 40, University of Agriculture, Abeokuta. 00, NIGERIA. Abstract Normal moment distribution is a particular case of well known Kotz-type elliptical distributions, the density which depends on a shape parameters α, such that α = 0 corresponds to the normal probability density function; several important properties of this class of density function and relationship with existing distribution are established. Keywords and phrases: Normal Moment Distribution, Cumulative Distribution Function,Probability Density Function, Generalized Birnbaum-Saunder Distribution, Reflected Gamma Distribution. AMS(000) Mathematics Subject Classification:Primary 60E05. Introduction Some univariate distributions that have been of great importance lately is the family of elliptical contour densities or simply elliptical distributions. This family includes distributions with lesser or greater kurtosis than the normal distribution. Furthermore, the elliptical family has the normal distributions as a special case. The elliptical laws have been studied by numerous authors and most important results were obtained by Fang,Kotz, and Ng [990]. The use of elliptical distribution as a generalization of normal distribution is not based on empirical arguments or on physical laws. In general, its reasoning is purely statistical and /or mathematical, in the sense that (a) the theory developed under normal distribution is a particular case of the theory derived within elliptical distributions; (b) many of the properties of the normal distribution can be generalized to the case of the elliptical distributions; (c) some important statistics in the theory of normal inference are invariant within the elliptical family. for these reasons, currently, a large part of normal theory is being reconstructed using elliptical distributions, allowing that any statistical analysis in which a normal distribution All correspondence to be addressed to this author - akinolosunde@yahoo.ca

2 can be assumed, can be generalized to this whole family. For a random variable (one dimensional case), the elliptical distributions are symmetrical distributions in R. A r.v. X with elliptical distribution is characterized by the parameters µ and σ and is characterized by a function generator of densities,g, for which the notation X is EC(µ, σ;g) is used. In general, µ and σ are position and scale parameters respectively. µ=e(x) when the first moment of the distribution exists. Var(X)=c 0 σ when the first two moments exists, where c 0 = φ (0) and φ is the derivative of the function φ associated with characteristic function of X. in this article we introduce parameter α which is the shape parameter such that α= 0 corresponds to normal distribution and we called the distribution normal moment distribution. The normal moment distribution can be derived from Kotz-type distribution see Fang et al [990]. Let X be continuous r.v. such that X is (0,;g). Thus, the characteristics function of X is given by ψ(x) = φ(x ); x R, () with φ:r + R, and the p.d.f. of X is given by f(x) = cg(x ); x R, () where g is the kernel of the pdf of X and c the normalization constant. X follows the Kotz-type symmetric distribution with parameters r, s > 0 and q > / and the pdf is f(x) = xr(q )/s Γ((q )/s) x(q ) exp( rx s ), x R. (3) Where normal distribution is a particular case of the Kotz type when q=s= and r=/ in this work we found the pdf of normal moment by introducing a shape parameter α which is define below starting from Kotz-type distribution.. Definition A r.v. X from standardized pdf in (4)above is said to be normal moment distribution if r=/, s= and q=α+. Therefore, X is a normal moment r.v. if it has pdf given by f(x) = e x α+ Γ(α + < x <, α 0 (4) )xα Where α is the shape parameter and Γ(.) is gamma function. Then we say that X is a normal moment random variable with parameter α; for brevity we shall say that X is NM(α), (4) is a proper density function because;if f:r R > 0 denote a positive real valued-function. We say f is very rapidly decreasing (VRD) if every smooth compactly supported function g is a uniform limit (on R) of functions of the form f(x)p(x), where P(x) is a polynomial, thus we have this theorem; Theorem. If f(x) is VRD, then the moment integrals; f(x)xα dx converges for all α. 3

3 Proof. The space of smooth compactly supported functions is of infinite dimension, and all such spaces are uniform limits of sequences f(x)p α (x). Therefore, f(x)p(x) L (R) for some polynomial P of arbitrary large degree. Therefore, f(x)= (x α ) for all α, and the lemma follows.thus, x α e x < x <, α 0 (5) exists and the integrand is a positive continuous function which is bounded by an integrable function. Also, the normal moment distribution can be attributed as a special case of the Sobolev (q-r)family of life distribution which is widely used in fatigue life modeling Sobolev (994). The importance of the statistical theory and application of the normal distribution is well known. Since the proposed distribution is more flexible than the normal distribution, it is anticipated that this class of the distribution will give a better fit for some sets of data for a selected values of the shape parameter α, in this paper we shall consider only standardized type that is where X is NM(α,0,). The first section have introduced the topic and some literature review. In second section some discussions about the shape of the distribution are presented. The third section; the even moment, properties and the relationship with well known distributions are established.the last section shows the estimation of the parameters of the distribution and finally some remarks on this distribution. SHAPE One of the unique properties that distinguished normal moment distribution is the shape of the pdf, it can easily be seen that dlogf(x)/dx= α, see (figure.0. Appendix A).We notes that as α increases the degree of peakedness also increases, f(0)=0 and 0 f(x)= 0 f(x), also, the shape is similar to reflected gamma distribution introduced by Borghi(965) which includes Laplace distribution as a special case when the shape parameter α=. The cumulative distribution function is not in close form the tables of approximate values for some selected α has been produced by Olosunde (007) using numerical computation method. 3 THE MOMENTS AND RELATED DISTRIBU- TIONS In what follows we derived the rth moment of the distribution associated even rth moment is given as If X is NM(α) then the E(x r ) = xr f(x)dx = r Γ(α + r + ) Γ(α + ) (6) 4

4 it can thus be seen that E(X) = 0 (7) var(x) = α + (8) γ = 0 (9) γ = α + 3 (0) The expressions γ and γ are the skewness and kurtosis respectively for the standard normal moment distribution. We establish some properties and prove theorems that shows relationships between the normal moment distribution and some well known distributions. Theorem 3. Let X be a continuous random variable having the even normal moment distribution and α 0. Then the following properties hold; (a) NM(0)=N(0,), (b) if X is NM(α) then -X is NM(α), (c) X =Y is χ (α+). Proof: (a)and(b) are obvious, (c) can easily be proved that; P[Y y]= P[X y]=p[- y X y] F (y) = y 0 r/ Γ(r/) zr/ e z/ dz, for y > 0, () and when r=α+,the result follows Theorem 3. Let X and X be two independent continuously distributed random variable each having the even normal moment distribution symmetric about 0 with parameters α and α respectively, then the random variable F = X /(α + ) X/(α + 0 < f < () ), has an f-distribution with r = α + and r = α + degree of freedom. Proof: and h(x ) = k(α )x α e x / (3) h(x ) = k(α )x α e x / (4) 5

5 from equation () above since x is it can be shown that f( α + α + )p, x = p (5) h F,P (f, p) = J h X,X [g (f, p), g (f, p)], (6) where J is the jacobian of the transformation which is nonzero and from theorem above we have define a new random variable and propose finding the marginal p.d.f. g (f) of F,given the equation for the joint p.d.f. g(f,p)of the random variables f and x =p that is; g(f, p) = f α + / α +α Γ(α + )Γ(α + )(α α + / )α +/ p α +α + e p [+f( α +/ α +/ )], (7) then the marginal pdf g of F is f r / ( r r ) r / Γ( r +r ) Γ( r )Γ( r )[ + f( r r )] (r +r )/ 0 < f < (8) This is the pdf of f-distribution with degree of freedom r =α + and r =α +. Theorem 3.3 Let X be a random variable of continuous type having the normal moment distribution symmetric about 0 and α=. then Y = ln x has Gumbel pdf having the shape parameter λ= Proof: it can be shown that f Y (y) = d dy g (y) f X (g (y)) e y e e y, forλ =, < y <, (9) The corresponding moment generating function is t Γ( t) (0) This is the moment generating function of Gumbel distribution the shape parameter λ=. Theorem 3.4 Let X and X be two stochastically independent random variables which are N(0, ) and normal moment distribution respectively, then Y = x x has Cauchy-type distribution. 6

6 proof: Given the joint density function of X, X and y as stated above, for y = x, the transformation such that the joint pdf of y and y is, f Y,Y (y, y ) = J f X,X (g (y, y ), g (y, y )), < y <, < y < = f(y, y ) = k(α) π y α e y and marginal pdf of y say g (y ) and solving, we have (+y ) () k(α) π 0 y α+ e y (+y ) dy = Γ(α + ) Γ(α + ) π ( + y ) α+ () This is Cauchy type distribution, note that when α = 0 the distribution reduces to Cauchy distribution. and g (y ) does not converge for α=0, where the µ r moment is Γ(r + )Γ(α r + ) Γ(α + ) (3) 4 ESTIMATION We consider estimation by the method of maximum likelihood. from (4) introducing a new variable of integration, say y, by writing then (4) becomes f(y; α, µ, σ) = α+/ Γ(α + /) x = y µ, σ > 0, (4) σ (y µ) α σ α+ The log-likelihood for a random sample x,...x n n exp[ / ( y µ i= σ ) ], < µ <, σ > 0, < y <. (5) logl(α, µ, σ) = n(α+ n )ln nlnγ(α+ )+α ln(x i µ) n(α+)lnσ n (x i= σ µ). i= (6) The first order derivatives of (6) with respect to the three parameters are: lnl = n n(α+) i= + (xi µ), where σ σ σ 3 ni= (x ˆσ i µ) =, (7) n(α + ) 7

7 lnl α = n i= ln(x µ) nlnσ nln Γ (α+ ) Γ(α+ ) and lnl µ = σ ni= (x i µ) α n i= (x i µ). Setting the expressions to zero give the equations as stated above, the case of µ and α can be solve using numerical computation.γ (.) represent digamma function. 5 Remarks In this work, we have discussed a wider extension of the normal distribution starting with Kotz-type distribution, obtaining its density and some of its graphics to see how the shape parameter influences its behavior. We have also outlined some important properties of this new model, some of its anticipated usefulnes is in fatigue life modeling following the recent work of Diaz-Garcia and Leiva-Sanchez(005) where they presented the generalization of Birnbaum-Saunder distribution(gbs),which is denoted by T GBS(δ, β; g), then we have this theorem that: Theorem 5. Let T GBS(δ, β; g). Then, the pdf of T is given by f T (t, δ) = Γ(α + )( δ )α+ t ( β + β t )α exp[ δ ( t β + β )][t 3/ t (t + β) ]. (8) δβ / proof: This result is simply proof following the same procedure used in Diaz-Garcia and Leiva-Sanchez(005) References [] Allan, J.Mathematical Formulars and Integrals. Academic Press, Inc. [] Allan,S., and Keith, J. (985)Kendall s Advanced Theory of Statistics. Charles Griffin and Co. Ltd. London. [3] Balakrishnan,N., and Kocherlakota, S. (985). On the double weibull distribution: Order Statistics and estimation, Sankhya, Series B, 48, [4] Borghi,O.(965).Sobre una distribucion de frecuencias, Trabajos de Estadistica,6, 7-9. [5] Diaz-Garcia, J.A. and Leiva-Sanchez,V.(005). A new family of life distributions based on the contoured elliptical distributions. Journal of Statistical Planning and Inference, 8(),

8 [6] Fang,K.T., Kotz,S. and Ng, K.W.(990). Symmetric multivariate and related distribution. Chapman and Hall, London. [7] Olosunde, A.A., and Ojo, M.O. (007). Some properties of normal moment distribution, Ife Journal of Science, (To appear) [8] Sobolev, I.G.(994). Interrelations between probabilty distributions belonging to the q-r family, Izmeritel naya Tekhnika,0,-4. 9

9 Appendix A. Figure.0. The Pdf of Normal Moment Distributions for selected values of α=,,3 respectively and µ=0, σ =.

ON A GENERALIZATION OF THE GUMBEL DISTRIBUTION

ON A GENERALIZATION OF THE GUMBEL DISTRIBUTION ON A GENERALIZATION OF THE GUMBEL DISTRIBUTION S. Adeyemi Department of Mathematics Obafemi Awolowo University, Ile-Ife. Nigeria.0005 e-mail:shollerss00@yahoo.co.uk Abstract A simple generalization of

More information

Distributions of Functions of Random Variables. 5.1 Functions of One Random Variable

Distributions of Functions of Random Variables. 5.1 Functions of One Random Variable Distributions of Functions of Random Variables 5.1 Functions of One Random Variable 5.2 Transformations of Two Random Variables 5.3 Several Random Variables 5.4 The Moment-Generating Function Technique

More information

On q-gamma Distributions, Marshall-Olkin q-gamma Distributions and Minification Processes

On q-gamma Distributions, Marshall-Olkin q-gamma Distributions and Minification Processes CHAPTER 4 On q-gamma Distributions, Marshall-Olkin q-gamma Distributions and Minification Processes 4.1 Introduction Several skewed distributions such as logistic, Weibull, gamma and beta distributions

More information

Continuous Random Variables

Continuous Random Variables 1 / 24 Continuous Random Variables Saravanan Vijayakumaran sarva@ee.iitb.ac.in Department of Electrical Engineering Indian Institute of Technology Bombay February 27, 2013 2 / 24 Continuous Random Variables

More information

Tail dependence in bivariate skew-normal and skew-t distributions

Tail dependence in bivariate skew-normal and skew-t distributions Tail dependence in bivariate skew-normal and skew-t distributions Paola Bortot Department of Statistical Sciences - University of Bologna paola.bortot@unibo.it Abstract: Quantifying dependence between

More information

The Type I Generalized Half Logistic Distribution Downloaded from jirss.irstat.ir at 11: on Monday August 20th 2018

The Type I Generalized Half Logistic Distribution Downloaded from jirss.irstat.ir at 11: on Monday August 20th 2018 JIRSS (2014) Vol. 13, No. 1, pp 69-82 The Type I Generalized Half Logistic Distribution A. K. Olapade Department of Mathematics, Obafemi Awolowo University, Ile-Ife, Nigeria. Abstract. In this paper, we

More information

4. Distributions of Functions of Random Variables

4. Distributions of Functions of Random Variables 4. Distributions of Functions of Random Variables Setup: Consider as given the joint distribution of X 1,..., X n (i.e. consider as given f X1,...,X n and F X1,...,X n ) Consider k functions g 1 : R n

More information

Multivariate Distribution Models

Multivariate Distribution Models Multivariate Distribution Models Model Description While the probability distribution for an individual random variable is called marginal, the probability distribution for multiple random variables is

More information

Chapter 4 Multiple Random Variables

Chapter 4 Multiple Random Variables Review for the previous lecture Theorems and Examples: How to obtain the pmf (pdf) of U = g ( X Y 1 ) and V = g ( X Y) Chapter 4 Multiple Random Variables Chapter 43 Bivariate Transformations Continuous

More information

Multivariate Normal-Laplace Distribution and Processes

Multivariate Normal-Laplace Distribution and Processes CHAPTER 4 Multivariate Normal-Laplace Distribution and Processes The normal-laplace distribution, which results from the convolution of independent normal and Laplace random variables is introduced by

More information

Random Variables and Their Distributions

Random Variables and Their Distributions Chapter 3 Random Variables and Their Distributions A random variable (r.v.) is a function that assigns one and only one numerical value to each simple event in an experiment. We will denote r.vs by capital

More information

Statistics for scientists and engineers

Statistics for scientists and engineers Statistics for scientists and engineers February 0, 006 Contents Introduction. Motivation - why study statistics?................................... Examples..................................................3

More information

p-birnbaum SAUNDERS DISTRIBUTION: APPLICATIONS TO RELIABILITY AND ELECTRONIC BANKING HABITS

p-birnbaum SAUNDERS DISTRIBUTION: APPLICATIONS TO RELIABILITY AND ELECTRONIC BANKING HABITS p-birnbaum SAUNDERS DISTRIBUTION: APPLICATIONS TO RELIABILITY AND ELECTRONIC BANKING 1 V.M.Chacko, Mariya Jeeja P V and 3 Deepa Paul 1, Department of Statistics St.Thomas College, Thrissur Kerala-681 e-mail:chackovm@gmail.com

More information

arxiv: v1 [math.pr] 10 Oct 2017

arxiv: v1 [math.pr] 10 Oct 2017 Yet another skew-elliptical family but of a different kind: return to Lemma 1 arxiv:1710.03494v1 [math.p] 10 Oct 017 Adelchi Azzalini Dipartimento di Scienze Statistiche Università di Padova Italia Giuliana

More information

Chapter 5 continued. Chapter 5 sections

Chapter 5 continued. Chapter 5 sections Chapter 5 sections Discrete univariate distributions: 5.2 Bernoulli and Binomial distributions Just skim 5.3 Hypergeometric distributions 5.4 Poisson distributions Just skim 5.5 Negative Binomial distributions

More information

Modelling Dependence with Copulas and Applications to Risk Management. Filip Lindskog, RiskLab, ETH Zürich

Modelling Dependence with Copulas and Applications to Risk Management. Filip Lindskog, RiskLab, ETH Zürich Modelling Dependence with Copulas and Applications to Risk Management Filip Lindskog, RiskLab, ETH Zürich 02-07-2000 Home page: http://www.math.ethz.ch/ lindskog E-mail: lindskog@math.ethz.ch RiskLab:

More information

BMIR Lecture Series on Probability and Statistics Fall 2015 Discrete RVs

BMIR Lecture Series on Probability and Statistics Fall 2015 Discrete RVs Lecture #7 BMIR Lecture Series on Probability and Statistics Fall 2015 Department of Biomedical Engineering and Environmental Sciences National Tsing Hua University 7.1 Function of Single Variable Theorem

More information

Geometric Skew-Normal Distribution

Geometric Skew-Normal Distribution Debasis Kundu Arun Kumar Chair Professor Department of Mathematics & Statistics Indian Institute of Technology Kanpur Part of this work is going to appear in Sankhya, Ser. B. April 11, 2014 Outline 1 Motivation

More information

Multivariate Distributions

Multivariate Distributions IEOR E4602: Quantitative Risk Management Spring 2016 c 2016 by Martin Haugh Multivariate Distributions We will study multivariate distributions in these notes, focusing 1 in particular on multivariate

More information

Univariate Normal Probability Density Function

Univariate Normal Probability Density Function Statistical Distributions Univariate Normal Probability Density Function A random variable, x, is normally distributed if, and only if, its probability density function has the following form: Prob(x θ,

More information

2 Functions of random variables

2 Functions of random variables 2 Functions of random variables A basic statistical model for sample data is a collection of random variables X 1,..., X n. The data are summarised in terms of certain sample statistics, calculated as

More information

Continuous Distributions

Continuous Distributions Chapter 3 Continuous Distributions 3.1 Continuous-Type Data In Chapter 2, we discuss random variables whose space S contains a countable number of outcomes (i.e. of discrete type). In Chapter 3, we study

More information

Spherically Symmetric Logistic Distribution

Spherically Symmetric Logistic Distribution Journal of Multivariate Analysis 7, 2226 (999) Article ID jmva.999.826, available online at httpwww.idealibrary.com on Spherically Symmetric Logistic Distribution Nikolai A. Volodin The Australian Council

More information

Some results on Denault s capital allocation rule

Some results on Denault s capital allocation rule Faculty of Economics and Applied Economics Some results on Denault s capital allocation rule Steven Vanduffel and Jan Dhaene DEPARTMENT OF ACCOUNTANCY, FINANCE AND INSURANCE (AFI) AFI 0601 Some Results

More information

Topic 4: Continuous random variables

Topic 4: Continuous random variables Topic 4: Continuous random variables Course 3, 216 Page Continuous random variables Definition (Continuous random variable): An r.v. X has a continuous distribution if there exists a non-negative function

More information

Miscellaneous Errors in the Chapter 6 Solutions

Miscellaneous Errors in the Chapter 6 Solutions Miscellaneous Errors in the Chapter 6 Solutions 3.30(b In this problem, early printings of the second edition use the beta(a, b distribution, but later versions use the Poisson(λ distribution. If your

More information

Topic 4: Continuous random variables

Topic 4: Continuous random variables Topic 4: Continuous random variables Course 003, 2018 Page 0 Continuous random variables Definition (Continuous random variable): An r.v. X has a continuous distribution if there exists a non-negative

More information

3. Probability and Statistics

3. Probability and Statistics FE661 - Statistical Methods for Financial Engineering 3. Probability and Statistics Jitkomut Songsiri definitions, probability measures conditional expectations correlation and covariance some important

More information

Joint p.d.f. and Independent Random Variables

Joint p.d.f. and Independent Random Variables 1 Joint p.d.f. and Independent Random Variables Let X and Y be two discrete r.v. s and let R be the corresponding space of X and Y. The joint p.d.f. of X = x and Y = y, denoted by f(x, y) = P(X = x, Y

More information

Part IA Probability. Definitions. Based on lectures by R. Weber Notes taken by Dexter Chua. Lent 2015

Part IA Probability. Definitions. Based on lectures by R. Weber Notes taken by Dexter Chua. Lent 2015 Part IA Probability Definitions Based on lectures by R. Weber Notes taken by Dexter Chua Lent 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures.

More information

Math 3215 Intro. Probability & Statistics Summer 14. Homework 5: Due 7/3/14

Math 3215 Intro. Probability & Statistics Summer 14. Homework 5: Due 7/3/14 Math 325 Intro. Probability & Statistics Summer Homework 5: Due 7/3/. Let X and Y be continuous random variables with joint/marginal p.d.f. s f(x, y) 2, x y, f (x) 2( x), x, f 2 (y) 2y, y. Find the conditional

More information

Generation from simple discrete distributions

Generation from simple discrete distributions S-38.3148 Simulation of data networks / Generation of random variables 1(18) Generation from simple discrete distributions Note! This is just a more clear and readable version of the same slide that was

More information

Introduction to Statistical Inference Self-study

Introduction to Statistical Inference Self-study Introduction to Statistical Inference Self-study Contents Definition, sample space The fundamental object in probability is a nonempty sample space Ω. An event is a subset A Ω. Definition, σ-algebra A

More information

A NEW CLASS OF SKEW-NORMAL DISTRIBUTIONS

A NEW CLASS OF SKEW-NORMAL DISTRIBUTIONS A NEW CLASS OF SKEW-NORMAL DISTRIBUTIONS Reinaldo B. Arellano-Valle Héctor W. Gómez Fernando A. Quintana November, 2003 Abstract We introduce a new family of asymmetric normal distributions that contains

More information

Statistics, Data Analysis, and Simulation SS 2015

Statistics, Data Analysis, and Simulation SS 2015 Statistics, Data Analysis, and Simulation SS 2015 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Mainz, 27. April 2015 Dr. Michael O. Distler

More information

Sampling Distributions

Sampling Distributions In statistics, a random sample is a collection of independent and identically distributed (iid) random variables, and a sampling distribution is the distribution of a function of random sample. For example,

More information

International Journal of Scientific & Engineering Research, Volume 6, Issue 2, February-2015 ISSN

International Journal of Scientific & Engineering Research, Volume 6, Issue 2, February-2015 ISSN 1686 On Some Generalised Transmuted Distributions Kishore K. Das Luku Deka Barman Department of Statistics Gauhati University Abstract In this paper a generalized form of the transmuted distributions has

More information

1 Review of Probability and Distributions

1 Review of Probability and Distributions Random variables. A numerically valued function X of an outcome ω from a sample space Ω X : Ω R : ω X(ω) is called a random variable (r.v.), and usually determined by an experiment. We conventionally denote

More information

MAS223 Statistical Inference and Modelling Exercises

MAS223 Statistical Inference and Modelling Exercises MAS223 Statistical Inference and Modelling Exercises The exercises are grouped into sections, corresponding to chapters of the lecture notes Within each section exercises are divided into warm-up questions,

More information

Continuous Random Variables

Continuous Random Variables Continuous Random Variables Recall: For discrete random variables, only a finite or countably infinite number of possible values with positive probability. Often, there is interest in random variables

More information

Multivariate Statistics

Multivariate Statistics Multivariate Statistics Chapter 2: Multivariate distributions and inference Pedro Galeano Departamento de Estadística Universidad Carlos III de Madrid pedro.galeano@uc3m.es Course 2016/2017 Master in Mathematical

More information

Statistics 3657 : Moment Generating Functions

Statistics 3657 : Moment Generating Functions Statistics 3657 : Moment Generating Functions A useful tool for studying sums of independent random variables is generating functions. course we consider moment generating functions. In this Definition

More information

1.12 Multivariate Random Variables

1.12 Multivariate Random Variables 112 MULTIVARIATE RANDOM VARIABLES 59 112 Multivariate Random Variables We will be using matrix notation to denote multivariate rvs and their distributions Denote by X (X 1,,X n ) T an n-dimensional random

More information

Bivariate Sinh-Normal Distribution and A Related Model

Bivariate Sinh-Normal Distribution and A Related Model Bivariate Sinh-Normal Distribution and A Related Model Debasis Kundu 1 Abstract Sinh-normal distribution is a symmetric distribution with three parameters. In this paper we introduce bivariate sinh-normal

More information

1 Probability and Random Variables

1 Probability and Random Variables 1 Probability and Random Variables The models that you have seen thus far are deterministic models. For any time t, there is a unique solution X(t). On the other hand, stochastic models will result in

More information

Probability and Distributions

Probability and Distributions Probability and Distributions What is a statistical model? A statistical model is a set of assumptions by which the hypothetical population distribution of data is inferred. It is typically postulated

More information

Stat 5101 Notes: Brand Name Distributions

Stat 5101 Notes: Brand Name Distributions Stat 5101 Notes: Brand Name Distributions Charles J. Geyer September 5, 2012 Contents 1 Discrete Uniform Distribution 2 2 General Discrete Uniform Distribution 2 3 Uniform Distribution 3 4 General Uniform

More information

Multiple Random Variables

Multiple Random Variables Multiple Random Variables This Version: July 30, 2015 Multiple Random Variables 2 Now we consider models with more than one r.v. These are called multivariate models For instance: height and weight An

More information

Probability. Machine Learning and Pattern Recognition. Chris Williams. School of Informatics, University of Edinburgh. August 2014

Probability. Machine Learning and Pattern Recognition. Chris Williams. School of Informatics, University of Edinburgh. August 2014 Probability Machine Learning and Pattern Recognition Chris Williams School of Informatics, University of Edinburgh August 2014 (All of the slides in this course have been adapted from previous versions

More information

Modulation of symmetric densities

Modulation of symmetric densities 1 Modulation of symmetric densities 1.1 Motivation This book deals with a formulation for the construction of continuous probability distributions and connected statistical aspects. Before we begin, a

More information

MA/ST 810 Mathematical-Statistical Modeling and Analysis of Complex Systems

MA/ST 810 Mathematical-Statistical Modeling and Analysis of Complex Systems MA/ST 810 Mathematical-Statistical Modeling and Analysis of Complex Systems Review of Basic Probability The fundamentals, random variables, probability distributions Probability mass/density functions

More information

Review 1: STAT Mark Carpenter, Ph.D. Professor of Statistics Department of Mathematics and Statistics. August 25, 2015

Review 1: STAT Mark Carpenter, Ph.D. Professor of Statistics Department of Mathematics and Statistics. August 25, 2015 Review : STAT 36 Mark Carpenter, Ph.D. Professor of Statistics Department of Mathematics and Statistics August 25, 25 Support of a Random Variable The support of a random variable, which is usually denoted

More information

Review: mostly probability and some statistics

Review: mostly probability and some statistics Review: mostly probability and some statistics C2 1 Content robability (should know already) Axioms and properties Conditional probability and independence Law of Total probability and Bayes theorem Random

More information

Deccan Education Society s FERGUSSON COLLEGE, PUNE (AUTONOMOUS) SYLLABUS UNDER AUTOMONY. SECOND YEAR B.Sc. SEMESTER - III

Deccan Education Society s FERGUSSON COLLEGE, PUNE (AUTONOMOUS) SYLLABUS UNDER AUTOMONY. SECOND YEAR B.Sc. SEMESTER - III Deccan Education Society s FERGUSSON COLLEGE, PUNE (AUTONOMOUS) SYLLABUS UNDER AUTOMONY SECOND YEAR B.Sc. SEMESTER - III SYLLABUS FOR S. Y. B. Sc. STATISTICS Academic Year 07-8 S.Y. B.Sc. (Statistics)

More information

PCMI Introduction to Random Matrix Theory Handout # REVIEW OF PROBABILITY THEORY. Chapter 1 - Events and Their Probabilities

PCMI Introduction to Random Matrix Theory Handout # REVIEW OF PROBABILITY THEORY. Chapter 1 - Events and Their Probabilities PCMI 207 - Introduction to Random Matrix Theory Handout #2 06.27.207 REVIEW OF PROBABILITY THEORY Chapter - Events and Their Probabilities.. Events as Sets Definition (σ-field). A collection F of subsets

More information

Sampling Distributions

Sampling Distributions Sampling Distributions In statistics, a random sample is a collection of independent and identically distributed (iid) random variables, and a sampling distribution is the distribution of a function of

More information

A THREE-PARAMETER WEIGHTED LINDLEY DISTRIBUTION AND ITS APPLICATIONS TO MODEL SURVIVAL TIME

A THREE-PARAMETER WEIGHTED LINDLEY DISTRIBUTION AND ITS APPLICATIONS TO MODEL SURVIVAL TIME STATISTICS IN TRANSITION new series, June 07 Vol. 8, No., pp. 9 30, DOI: 0.307/stattrans-06-07 A THREE-PARAMETER WEIGHTED LINDLEY DISTRIBUTION AND ITS APPLICATIONS TO MODEL SURVIVAL TIME Rama Shanker,

More information

Continuous random variables

Continuous random variables Continuous random variables Can take on an uncountably infinite number of values Any value within an interval over which the variable is definied has some probability of occuring This is different from

More information

On prediction and density estimation Peter McCullagh University of Chicago December 2004

On prediction and density estimation Peter McCullagh University of Chicago December 2004 On prediction and density estimation Peter McCullagh University of Chicago December 2004 Summary Having observed the initial segment of a random sequence, subsequent values may be predicted by calculating

More information

Chapter 3 sections. SKIP: 3.10 Markov Chains. SKIP: pages Chapter 3 - continued

Chapter 3 sections. SKIP: 3.10 Markov Chains. SKIP: pages Chapter 3 - continued Chapter 3 sections Chapter 3 - continued 3.1 Random Variables and Discrete Distributions 3.2 Continuous Distributions 3.3 The Cumulative Distribution Function 3.4 Bivariate Distributions 3.5 Marginal Distributions

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 (Many figures from C. M. Bishop, "Pattern Recognition and ") 1of 89 Part II

More information

ECE 4400:693 - Information Theory

ECE 4400:693 - Information Theory ECE 4400:693 - Information Theory Dr. Nghi Tran Lecture 8: Differential Entropy Dr. Nghi Tran (ECE-University of Akron) ECE 4400:693 Lecture 1 / 43 Outline 1 Review: Entropy of discrete RVs 2 Differential

More information

On Bayesian Inference with Conjugate Priors for Scale Mixtures of Normal Distributions

On Bayesian Inference with Conjugate Priors for Scale Mixtures of Normal Distributions Journal of Applied Probability & Statistics Vol. 5, No. 1, xxx xxx c 2010 Dixie W Publishing Corporation, U. S. A. On Bayesian Inference with Conjugate Priors for Scale Mixtures of Normal Distributions

More information

STAT 801: Mathematical Statistics. Distribution Theory

STAT 801: Mathematical Statistics. Distribution Theory STAT 81: Mathematical Statistics Distribution Theory Basic Problem: Start with assumptions about f or CDF of random vector X (X 1,..., X p ). Define Y g(x 1,..., X p ) to be some function of X (usually

More information

On Five Parameter Beta Lomax Distribution

On Five Parameter Beta Lomax Distribution ISSN 1684-840 Journal of Statistics Volume 0, 01. pp. 10-118 On Five Parameter Beta Lomax Distribution Muhammad Rajab 1, Muhammad Aleem, Tahir Nawaz and Muhammad Daniyal 4 Abstract Lomax (1954) developed

More information

Foundations of Statistical Inference

Foundations of Statistical Inference Foundations of Statistical Inference Jonathan Marchini Department of Statistics University of Oxford MT 2013 Jonathan Marchini (University of Oxford) BS2a MT 2013 1 / 27 Course arrangements Lectures M.2

More information

Contents 1. Contents

Contents 1. Contents Contents 1 Contents 6 Distributions of Functions of Random Variables 2 6.1 Transformation of Discrete r.v.s............. 3 6.2 Method of Distribution Functions............. 6 6.3 Method of Transformations................

More information

S6880 #7. Generate Non-uniform Random Number #1

S6880 #7. Generate Non-uniform Random Number #1 S6880 #7 Generate Non-uniform Random Number #1 Outline 1 Inversion Method Inversion Method Examples Application to Discrete Distributions Using Inversion Method 2 Composition Method Composition Method

More information

Some generalisations of Birnbaum-Saunders and sinh-normal distributions

Some generalisations of Birnbaum-Saunders and sinh-normal distributions International Mathematical Forum, 1, 006, no. 35, 1709-177 Some generalisations of Birnbaum-Saunders and sinh-normal distributions José A.Díaz-García Universidad Autónoma Agraria Antonio Narro Department

More information

Let X be a continuous random variable, < X < f(x) is the so called probability density function (pdf) if

Let X be a continuous random variable, < X < f(x) is the so called probability density function (pdf) if University of California, Los Angeles Department of Statistics Statistics 1A Instructor: Nicolas Christou Continuous probability distributions Let X be a continuous random variable, < X < f(x) is the so

More information

Lecture 17: The Exponential and Some Related Distributions

Lecture 17: The Exponential and Some Related Distributions Lecture 7: The Exponential and Some Related Distributions. Definition Definition: A continuous random variable X is said to have the exponential distribution with parameter if the density of X is e x if

More information

Stat 5101 Lecture Slides: Deck 8 Dirichlet Distribution. Charles J. Geyer School of Statistics University of Minnesota

Stat 5101 Lecture Slides: Deck 8 Dirichlet Distribution. Charles J. Geyer School of Statistics University of Minnesota Stat 5101 Lecture Slides: Deck 8 Dirichlet Distribution Charles J. Geyer School of Statistics University of Minnesota 1 The Dirichlet Distribution The Dirichlet Distribution is to the beta distribution

More information

3 Continuous Random Variables

3 Continuous Random Variables Jinguo Lian Math437 Notes January 15, 016 3 Continuous Random Variables Remember that discrete random variables can take only a countable number of possible values. On the other hand, a continuous random

More information

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Gaussian Processes Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 01 Pictorial view of embedding distribution Transform the entire distribution to expected features Feature space Feature

More information

P (x). all other X j =x j. If X is a continuous random vector (see p.172), then the marginal distributions of X i are: f(x)dx 1 dx n

P (x). all other X j =x j. If X is a continuous random vector (see p.172), then the marginal distributions of X i are: f(x)dx 1 dx n JOINT DENSITIES - RANDOM VECTORS - REVIEW Joint densities describe probability distributions of a random vector X: an n-dimensional vector of random variables, ie, X = (X 1,, X n ), where all X is are

More information

Review of Statistics I

Review of Statistics I Review of Statistics I Hüseyin Taştan 1 1 Department of Economics Yildiz Technical University April 17, 2010 1 Review of Distribution Theory Random variables, discrete vs continuous Probability distribution

More information

Testing a Normal Covariance Matrix for Small Samples with Monotone Missing Data

Testing a Normal Covariance Matrix for Small Samples with Monotone Missing Data Applied Mathematical Sciences, Vol 3, 009, no 54, 695-70 Testing a Normal Covariance Matrix for Small Samples with Monotone Missing Data Evelina Veleva Rousse University A Kanchev Department of Numerical

More information

Exam 2. Jeremy Morris. March 23, 2006

Exam 2. Jeremy Morris. March 23, 2006 Exam Jeremy Morris March 3, 006 4. Consider a bivariate normal population with µ 0, µ, σ, σ and ρ.5. a Write out the bivariate normal density. The multivariate normal density is defined by the following

More information

Introduction to Normal Distribution

Introduction to Normal Distribution Introduction to Normal Distribution Nathaniel E. Helwig Assistant Professor of Psychology and Statistics University of Minnesota (Twin Cities) Updated 17-Jan-2017 Nathaniel E. Helwig (U of Minnesota) Introduction

More information

MCMC 2: Lecture 3 SIR models - more topics. Phil O Neill Theo Kypraios School of Mathematical Sciences University of Nottingham

MCMC 2: Lecture 3 SIR models - more topics. Phil O Neill Theo Kypraios School of Mathematical Sciences University of Nottingham MCMC 2: Lecture 3 SIR models - more topics Phil O Neill Theo Kypraios School of Mathematical Sciences University of Nottingham Contents 1. What can be estimated? 2. Reparameterisation 3. Marginalisation

More information

, find P(X = 2 or 3) et) 5. )px (1 p) n x x = 0, 1, 2,..., n. 0 elsewhere = 40

, find P(X = 2 or 3) et) 5. )px (1 p) n x x = 0, 1, 2,..., n. 0 elsewhere = 40 Assignment 4 Fall 07. Exercise 3.. on Page 46: If the mgf of a rom variable X is ( 3 + 3 et) 5, find P(X or 3). Since the M(t) of X is ( 3 + 3 et) 5, X has a binomial distribution with n 5, p 3. The probability

More information

Stat 5101 Notes: Brand Name Distributions

Stat 5101 Notes: Brand Name Distributions Stat 5101 Notes: Brand Name Distributions Charles J. Geyer February 14, 2003 1 Discrete Uniform Distribution DiscreteUniform(n). Discrete. Rationale Equally likely outcomes. The interval 1, 2,..., n of

More information

Chapter 5. Chapter 5 sections

Chapter 5. Chapter 5 sections 1 / 43 sections Discrete univariate distributions: 5.2 Bernoulli and Binomial distributions Just skim 5.3 Hypergeometric distributions 5.4 Poisson distributions Just skim 5.5 Negative Binomial distributions

More information

Probability Distributions

Probability Distributions Probability Distributions Seungjin Choi Department of Computer Science Pohang University of Science and Technology, Korea seungjin@postech.ac.kr 1 / 25 Outline Summarize the main properties of some of

More information

From Determinism to Stochasticity

From Determinism to Stochasticity From Determinism to Stochasticity Reading for this lecture: (These) Lecture Notes. Outline of next few lectures: Probability theory Stochastic processes Measurement theory You Are Here A B C... α γ β δ

More information

Lecture 3. Probability - Part 2. Luigi Freda. ALCOR Lab DIAG University of Rome La Sapienza. October 19, 2016

Lecture 3. Probability - Part 2. Luigi Freda. ALCOR Lab DIAG University of Rome La Sapienza. October 19, 2016 Lecture 3 Probability - Part 2 Luigi Freda ALCOR Lab DIAG University of Rome La Sapienza October 19, 2016 Luigi Freda ( La Sapienza University) Lecture 3 October 19, 2016 1 / 46 Outline 1 Common Continuous

More information

2. The CDF Technique. 1. Introduction. f X ( ).

2. The CDF Technique. 1. Introduction. f X ( ). Week 5: Distributions of Function of Random Variables. Introduction Suppose X,X 2,..., X n are n random variables. In this chapter, we develop techniques that may be used to find the distribution of functions

More information

EEL 5544 Noise in Linear Systems Lecture 30. X (s) = E [ e sx] f X (x)e sx dx. Moments can be found from the Laplace transform as

EEL 5544 Noise in Linear Systems Lecture 30. X (s) = E [ e sx] f X (x)e sx dx. Moments can be found from the Laplace transform as L30-1 EEL 5544 Noise in Linear Systems Lecture 30 OTHER TRANSFORMS For a continuous, nonnegative RV X, the Laplace transform of X is X (s) = E [ e sx] = 0 f X (x)e sx dx. For a nonnegative RV, the Laplace

More information

x. Figure 1: Examples of univariate Gaussian pdfs N (x; µ, σ 2 ).

x. Figure 1: Examples of univariate Gaussian pdfs N (x; µ, σ 2 ). .8.6 µ =, σ = 1 µ = 1, σ = 1 / µ =, σ =.. 3 1 1 3 x Figure 1: Examples of univariate Gaussian pdfs N (x; µ, σ ). The Gaussian distribution Probably the most-important distribution in all of statistics

More information

04. Random Variables: Concepts

04. Random Variables: Concepts University of Rhode Island DigitalCommons@URI Nonequilibrium Statistical Physics Physics Course Materials 215 4. Random Variables: Concepts Gerhard Müller University of Rhode Island, gmuller@uri.edu Creative

More information

Continuous Random Variables. and Probability Distributions. Continuous Random Variables and Probability Distributions ( ) ( ) Chapter 4 4.

Continuous Random Variables. and Probability Distributions. Continuous Random Variables and Probability Distributions ( ) ( ) Chapter 4 4. UCLA STAT 11 A Applied Probability & Statistics for Engineers Instructor: Ivo Dinov, Asst. Prof. In Statistics and Neurology Teaching Assistant: Christopher Barr University of California, Los Angeles,

More information

Probability Distribution And Density For Functional Random Variables

Probability Distribution And Density For Functional Random Variables Probability Distribution And Density For Functional Random Variables E. Cuvelier 1 M. Noirhomme-Fraiture 1 1 Institut d Informatique Facultés Universitaires Notre-Dame de la paix Namur CIL Research Contact

More information

Bayes Estimation and Prediction of the Two-Parameter Gamma Distribution

Bayes Estimation and Prediction of the Two-Parameter Gamma Distribution Bayes Estimation and Prediction of the Two-Parameter Gamma Distribution Biswabrata Pradhan & Debasis Kundu Abstract In this article the Bayes estimates of two-parameter gamma distribution is considered.

More information

APPM/MATH 4/5520 Solutions to Exam I Review Problems. f X 1,X 2. 2e x 1 x 2. = x 2

APPM/MATH 4/5520 Solutions to Exam I Review Problems. f X 1,X 2. 2e x 1 x 2. = x 2 APPM/MATH 4/5520 Solutions to Exam I Review Problems. (a) f X (x ) f X,X 2 (x,x 2 )dx 2 x 2e x x 2 dx 2 2e 2x x was below x 2, but when marginalizing out x 2, we ran it over all values from 0 to and so

More information

IE 230 Probability & Statistics in Engineering I. Closed book and notes. 60 minutes.

IE 230 Probability & Statistics in Engineering I. Closed book and notes. 60 minutes. Closed book and notes. 60 minutes. A summary table of some univariate continuous distributions is provided. Four Pages. In this version of the Key, I try to be more complete than necessary to receive full

More information

Weighted Exponential Distribution and Process

Weighted Exponential Distribution and Process Weighted Exponential Distribution and Process Jilesh V Some generalizations of exponential distribution and related time series models Thesis. Department of Statistics, University of Calicut, 200 Chapter

More information

Test Problems for Probability Theory ,

Test Problems for Probability Theory , 1 Test Problems for Probability Theory 01-06-16, 010-1-14 1. Write down the following probability density functions and compute their moment generating functions. (a) Binomial distribution with mean 30

More information

Partial Solutions for h4/2014s: Sampling Distributions

Partial Solutions for h4/2014s: Sampling Distributions 27 Partial Solutions for h4/24s: Sampling Distributions ( Let X and X 2 be two independent random variables, each with the same probability distribution given as follows. f(x 2 e x/2, x (a Compute the

More information

Multivariate Random Variable

Multivariate Random Variable Multivariate Random Variable Author: Author: Andrés Hincapié and Linyi Cao This Version: August 7, 2016 Multivariate Random Variable 3 Now we consider models with more than one r.v. These are called multivariate

More information

APPM/MATH 4/5520 Solutions to Problem Set Two. = 2 y = y 2. e 1 2 x2 1 = 1. (g 1

APPM/MATH 4/5520 Solutions to Problem Set Two. = 2 y = y 2. e 1 2 x2 1 = 1. (g 1 APPM/MATH 4/552 Solutions to Problem Set Two. Let Y X /X 2 and let Y 2 X 2. (We can select Y 2 to be anything but when dealing with a fraction for Y, it is usually convenient to set Y 2 to be the denominator.)

More information