From Determinism to Stochasticity

Size: px
Start display at page:

Download "From Determinism to Stochasticity"

Transcription

1 From Determinism to Stochasticity Reading for this lecture: (These) Lecture Notes. Outline of next few lectures: Probability theory Stochastic processes Measurement theory

2 You Are Here A B C... α γ β δ System Instrument Process Modeller The Learning Channel 2

3 A B C... α γ β δ System Instrument Process Modeller The Learning Channel 2

4 You Will Soon Be Here A B C... α γ β δ System Instrument Process Modeller The Learning Channel 2

5 Probability Theory of Dynamical Systems: Probability Theory Review: Discrete Random Variable (RV): X Events (Alphabet): X = {, 2,...,k} Realization: x X Probability mass function ( distribution ): Pr(x) = Pr{X = x} apple Pr(x) apple, x 2X Normalized: Pr(x) = x X 3

6 Probability Theory of Dynamical Systems: Probability Theory Review... Discrete random variables:. Biased coin: X = {H, T} Pr(H) =/3 Pr(T )=2/3 2. Sequence: No pairs of s X = {,,,,,,, } Pr(s 3 )=,, 3 otherwise 4

7 Probability Theory of Dynamical Systems: Probability Theory Review... Continuous Random Variable: X Takes values over continuous event space: X Cumulative distribution function: P (x) = Pr(X x) apple Pr(x) apple, x 2X If continuous, then random variable is. Probability density function: p(x) =P (x) apple p(x), x 2X p(x)dx =Pr(X<x+ dx) Normalization: (e.g., if x 2 R) Pr(X < ) = or Pr(X <x) dx p(x) = Support of distribution: suppx = {x : p(x) > } 5

8 Probability Theory of Dynamical Systems: Probability Theory Review... Continuous random variable X: Uniform distribution on interval: X = R { Density: p(x) =, x, otherwise x< Distribution: Pr(x) = x x x> Support: supp X = [, ]

9 Probability Theory of Dynamical Systems: Probability Theory Review... Continuous random variable X: Gaussian: Density: X = R p(x) = (x µ) 2 σ 2π e 2σ 2 Distribution: P (x) = x dy p(y) Erf(x) Support: supp X = R 7

10 Probability Theory of Dynamical Systems: Probability Theory Review... Discrete RVs: X over X & Y over Y Joint distribution: Pr(X, Y ) Marginal distributions: Pr(X) = y Y Pr(X, y) Pr(Y )= x X Pr(x, Y ) 8

11 Probability Theory of Dynamical Systems: Probability Theory Review... Factor joint distribution: Pr(X, Y ) = Pr(X Y )Pr(Y ) Pr(X, Y ) = Pr(Y X)Pr(X) Conditional distributions: Pr(Y X) = Pr(X, Y ) Pr(X) Pr(X Y )= Pr(X, Y ) Pr(Y ), Pr(X) =, Pr(Y ) = 9

12 Probability Theory of Dynamical Systems: Probability Theory Review... Statistical independence: X Y Pr(X, Y ) = Pr(X)Pr(Y ) Conditional independence ( shielding ): X Z Y Pr(X, Y Z) = Pr(X Z)Pr(Y Z)

13 Dynamical Evolution of Distributions: Dynamical system: {X, T} State density: p(x) x X Can evolve individual states and sets: T : x x Initial density: p (x) E.g., model of measuring a system Evolve a density? p (x) T p (x)

14 Dynamical Evolution of Distributions... Conservation of probability: p (y)dy = p (x)dx y = T (x) Perron-Frobenius Operator: Locally: y = T (x) p n+ (y) = p n(x) T (x) y + dy y p (y)dy Globally: p n+ (y) = x T (y) p n (x) T (x) x p (x)dx x + dx 2

15 Dynamical Evolution of Distributions... Frobenius-Perron Equation: p n+ (y) = dx p n (x)δ(y T(x)) Dirac delta-function: {, x = δ(x) =, x dx δ(x c)f(x) =f(c) dx (x) = y p(y) p(y) y = T (x) p(x) x 3

16 Dynamical Evolution of Distributions... Example: Delta function initial distribution Map: x n+ = f(x n ) Initial condition: x R Initial distribution: p (x) =δ(x x ) p (y) = dx p (x) (y f(x)) = dx (x x ) (y f(x)) = (y f(x )) = (y x ). p n (y) = (y x n )... reduces to an orbit 4

17 Dynamical Evolution of Distributions... Delta function IC: The easy case and expected result. What happens when the IC has finite support? p (x) = { 2, x /3.25, otherwise Consider a set of increasingly more complicated systems and how they evolve distributions... 5

18 Dynamical Evolution of Distributions... t = t = t = 2 Example: Linear circle map x n+ =.+x n (mod ) t = 3 t = 4 t = 5 x n+ t = t = 7 t = 8 x n f (x) = x x x

19 Dynamical Evolution of Distributions... t = t = t = 2 Example: Shift map t = 3 t = 4 t = 5 x n+ x n t = t = 7 t = 8 Spreading: f (x) =2 x x x 7

20 Dynamical Evolution of Distributions... t = t = t = 2 Example: Tent map a = 2. t = 3 t = 4 t = 5 x n+ x n t = t = 7 t = 8 Spreading: f (x) =2 x x x 8

21 Dynamical Evolution of Distributions... t = t = t = 2 Example: Logistic map r = 4 x n+ t = 3 t = 4 t = 5 x n t = t = 7 t = 8 f (x) =4( 2x) Spreading: x<3/8 orx>5/8 Contraction: 3/8 <x<5/8 x x x 9

22 Dynamical Evolution of Distributions... Example: Logistic map r = 3.7 t = t = t = 2 t = 3 t = 4 t = 5 x n+ x n t = 8 t = 2 t = 2 Peaks in distribution are images of maximum x x x 2

23 Time-asymptotic distribution: What we observe How to characterize? Invariant measure: A distribution that maps onto itself Analog of invariant sets Stable invariant measures: Stable in what sense? Robust to noise or parameters or??? 2

24 Invariant measures for D Maps: Probability distribution (density p (x)) that is invariant:. Distribution s support must be an invariant set: = f( ), = supp p (x) ={x : p (x) > } I. Probabilities invariant : Distribution a fixed point of Frobenius-Perron Equation p (y) = dx p (x) (y f(x)) Functional equation: Find p ( ) that satisfies this. 22

25 Example: Periodic-k orbit {x,x 2,...,x k } p(x) =δ p (y) = dx p(x)δ(y f(x)) ( k ) = dx δ (x x i ) δ(y f(x)) i= ( k ) = δ (y f(x i )) i= ( k ) = δ (y x (i+)mod k ) i= ( k ) = δ (y x i ) Is it invariant? i= Yes! has density ( k ) (x x i ) i= 23

26 Example: Shift map invariant distribution x n+ Uniform distribution: p(x) =,x [, ] x n p (y) p (y) p (y) p (y) /2 /2 y /2 y y /2 y p (y) =p (y)+p (y) x p (x) =p (x) (y x) 24

27 Example: Shift map invariant distribution x n+ Uniform distribution: p(x) =,x [, ] x n Via Frobenius-Perron Equation: Two cases A: x /2 B: /2 <x p (y) = = 2 2 dx p (x) (y dx (y 2x) f(x)) p (y) = = 2 2 dx p (x) (y dx (y 2x) f(x)) = 2 = 2 p (y) = p (y)+p (y) = p (x) (y x) 25

28 ( ax n, apple x n apple Example: Tent map x n+ = 2 a( x n ), Fully two-onto-one: a =2 2 <x n apple Uniform distribution is invariant: p(x) =,x [, ] Proof from FP Equation: Two cases First case: exactly that of shift map x n+ Second case: slope is all that s important /2 <x p (y) = Z 2 Z = 2 dx p (x) (y f(x)) dx (y (2 2x)) = 2 x n 2

29 Example: Tent map where two bands merge to one: Invariant distribution: p, x max = a/2 p(x) = x min = a( a/2) x = a/( + a) Equal areas: x min x x p, x <x x max, otherwise p(x) p (x x min )=p (x max x ) a = 2 p p x min 2 x x max Normalization: p (x x min )+p (x max x )= p = 2(x x min ) p = 2(x max x ) 27

30 Example: Logistic map x n+ = rx n ( x n ) Fully two-onto-one: r =4 Invariant distribution? p(x) = Exercise. π x( x) 28

31 Numerical Example: Tent map Typical chaotic parameter: a =.75 Two bands merge to one: a = 2 29

32 Numerical Example: Tent map Typical chaotic parameter: a =.75 Two bands merge to one: a = 2 x 29

33 Numerical Example: Tent map Typical chaotic parameter: a =.75 Two bands merge to one: a = 2 x x 29

34 Numerical Example: Logistic map x n+ = rx n ( x n ) Typical chaotic parameter: r =3.7 Two bands merge to one: r =

35 Numerical Example: Logistic map x n+ = rx n ( x n ) Typical chaotic parameter: r =3.7 Two bands merge to one: r = x 3

36 Numerical Example: Logistic map x n+ = rx n ( x n ) Typical chaotic parameter: r =3.7 Two bands merge to one: r = x x 3

37 Numerical Example: Cusp map (a, b) =(, /2) x n+ = a( 2x n b ) x n+ x n 3

38 Numerical Example: Cusp map (a, b) =(, /2) x n+ = a( 2x n b ) x n+ x n x 3

39 Issue: Many invariant measures in chaos: An infinite number of unstable periodic orbits: Each has one. But none of these are what one sees, one sees the aperiodic orbits. How to exclude periodic orbit measures? Add noise and take noise level to zero; which measures are left? Robust invariant measures. 32

40 Reading for next lecture: Lecture Notes. 33

From Determinism to Stochasticity

From Determinism to Stochasticity From Determinism to Stochasticity Reading for this lecture: (These) Lecture Notes. Lecture 8: Nonlinear Physics, Physics 5/25 (Spring 2); Jim Crutchfield Monday, May 24, 2 Cave: Sensory Immersive Visualization

More information

One dimensional Maps

One dimensional Maps Chapter 4 One dimensional Maps The ordinary differential equation studied in chapters 1-3 provide a close link to actual physical systems it is easy to believe these equations provide at least an approximate

More information

Example Chaotic Maps (that you can analyze)

Example Chaotic Maps (that you can analyze) Example Chaotic Maps (that you can analyze) Reading for this lecture: NDAC, Sections.5-.7. Lecture 7: Natural Computation & Self-Organization, Physics 256A (Winter 24); Jim Crutchfield Monday, January

More information

Lecture 11: Continuous-valued signals and differential entropy

Lecture 11: Continuous-valued signals and differential entropy Lecture 11: Continuous-valued signals and differential entropy Biology 429 Carl Bergstrom September 20, 2008 Sources: Parts of today s lecture follow Chapter 8 from Cover and Thomas (2007). Some components

More information

Probability & Computing

Probability & Computing Probability & Computing Stochastic Process time t {X t t 2 T } state space Ω X t 2 state x 2 discrete time: T is countable T = {0,, 2,...} discrete space: Ω is finite or countably infinite X 0,X,X 2,...

More information

2 Functions of random variables

2 Functions of random variables 2 Functions of random variables A basic statistical model for sample data is a collection of random variables X 1,..., X n. The data are summarised in terms of certain sample statistics, calculated as

More information

ECE 4400:693 - Information Theory

ECE 4400:693 - Information Theory ECE 4400:693 - Information Theory Dr. Nghi Tran Lecture 8: Differential Entropy Dr. Nghi Tran (ECE-University of Akron) ECE 4400:693 Lecture 1 / 43 Outline 1 Review: Entropy of discrete RVs 2 Differential

More information

Probability. Machine Learning and Pattern Recognition. Chris Williams. School of Informatics, University of Edinburgh. August 2014

Probability. Machine Learning and Pattern Recognition. Chris Williams. School of Informatics, University of Edinburgh. August 2014 Probability Machine Learning and Pattern Recognition Chris Williams School of Informatics, University of Edinburgh August 2014 (All of the slides in this course have been adapted from previous versions

More information

Lecture 7 Random Signal Analysis

Lecture 7 Random Signal Analysis Lecture 7 Random Signal Analysis 7. Introduction to Probability 7. Amplitude Distributions 7.3 Uniform, Gaussian, and Other Distributions 7.4 Power and Power Density Spectra 7.5 Properties of the Power

More information

Perhaps the simplest way of modeling two (discrete) random variables is by means of a joint PMF, defined as follows.

Perhaps the simplest way of modeling two (discrete) random variables is by means of a joint PMF, defined as follows. Chapter 5 Two Random Variables In a practical engineering problem, there is almost always causal relationship between different events. Some relationships are determined by physical laws, e.g., voltage

More information

Lecture 11. Probability Theory: an Overveiw

Lecture 11. Probability Theory: an Overveiw Math 408 - Mathematical Statistics Lecture 11. Probability Theory: an Overveiw February 11, 2013 Konstantin Zuev (USC) Math 408, Lecture 11 February 11, 2013 1 / 24 The starting point in developing the

More information

Lecture 4. Continuous Random Variables and Transformations of Random Variables

Lecture 4. Continuous Random Variables and Transformations of Random Variables Math 408 - Mathematical Statistics Lecture 4. Continuous Random Variables and Transformations of Random Variables January 25, 2013 Konstantin Zuev (USC) Math 408, Lecture 4 January 25, 2013 1 / 13 Agenda

More information

16 : Markov Chain Monte Carlo (MCMC)

16 : Markov Chain Monte Carlo (MCMC) 10-708: Probabilistic Graphical Models 10-708, Spring 2014 16 : Markov Chain Monte Carlo MCMC Lecturer: Matthew Gormley Scribes: Yining Wang, Renato Negrinho 1 Sampling from low-dimensional distributions

More information

Lecture 3. Probability - Part 2. Luigi Freda. ALCOR Lab DIAG University of Rome La Sapienza. October 19, 2016

Lecture 3. Probability - Part 2. Luigi Freda. ALCOR Lab DIAG University of Rome La Sapienza. October 19, 2016 Lecture 3 Probability - Part 2 Luigi Freda ALCOR Lab DIAG University of Rome La Sapienza October 19, 2016 Luigi Freda ( La Sapienza University) Lecture 3 October 19, 2016 1 / 46 Outline 1 Common Continuous

More information

Math 180B Problem Set 3

Math 180B Problem Set 3 Math 180B Problem Set 3 Problem 1. (Exercise 3.1.2) Solution. By the definition of conditional probabilities we have Pr{X 2 = 1, X 3 = 1 X 1 = 0} = Pr{X 3 = 1 X 2 = 1, X 1 = 0} Pr{X 2 = 1 X 1 = 0} = P

More information

1 Random Variable: Topics

1 Random Variable: Topics Note: Handouts DO NOT replace the book. In most cases, they only provide a guideline on topics and an intuitive feel. 1 Random Variable: Topics Chap 2, 2.1-2.4 and Chap 3, 3.1-3.3 What is a random variable?

More information

Gaussian Random Variables Why we Care

Gaussian Random Variables Why we Care Gaussian Random Variables Why we Care I Gaussian random variables play a critical role in modeling many random phenomena. I By central limit theorem, Gaussian random variables arise from the superposition

More information

Introduction to Systems Analysis and Decision Making Prepared by: Jakub Tomczak

Introduction to Systems Analysis and Decision Making Prepared by: Jakub Tomczak Introduction to Systems Analysis and Decision Making Prepared by: Jakub Tomczak 1 Introduction. Random variables During the course we are interested in reasoning about considered phenomenon. In other words,

More information

Lecture 6. Four postulates of quantum mechanics. The eigenvalue equation. Momentum and energy operators. Dirac delta function. Expectation values

Lecture 6. Four postulates of quantum mechanics. The eigenvalue equation. Momentum and energy operators. Dirac delta function. Expectation values Lecture 6 Four postulates of quantum mechanics The eigenvalue equation Momentum and energy operators Dirac delta function Expectation values Objectives Learn about eigenvalue equations and operators. Learn

More information

4 Pairs of Random Variables

4 Pairs of Random Variables B.Sc./Cert./M.Sc. Qualif. - Statistical Theory 4 Pairs of Random Variables 4.1 Introduction In this section, we consider a pair of r.v. s X, Y on (Ω, F, P), i.e. X, Y : Ω R. More precisely, we define a

More information

Random Variables. Cumulative Distribution Function (CDF) Amappingthattransformstheeventstotherealline.

Random Variables. Cumulative Distribution Function (CDF) Amappingthattransformstheeventstotherealline. Random Variables Amappingthattransformstheeventstotherealline. Example 1. Toss a fair coin. Define a random variable X where X is 1 if head appears and X is if tail appears. P (X =)=1/2 P (X =1)=1/2 Example

More information

EE4601 Communication Systems

EE4601 Communication Systems EE4601 Communication Systems Week 2 Review of Probability, Important Distributions 0 c 2011, Georgia Institute of Technology (lect2 1) Conditional Probability Consider a sample space that consists of two

More information

Lecture 2: From Linear Regression to Kalman Filter and Beyond

Lecture 2: From Linear Regression to Kalman Filter and Beyond Lecture 2: From Linear Regression to Kalman Filter and Beyond Department of Biomedical Engineering and Computational Science Aalto University January 26, 2012 Contents 1 Batch and Recursive Estimation

More information

18.440: Lecture 19 Normal random variables

18.440: Lecture 19 Normal random variables 18.440 Lecture 19 18.440: Lecture 19 Normal random variables Scott Sheffield MIT Outline Tossing coins Normal random variables Special case of central limit theorem Outline Tossing coins Normal random

More information

31 Lecture 31 Information loss rate

31 Lecture 31 Information loss rate 338 31 Lecture 31 nformation loss rate 31.1 Observation with finite resolution When a dynamical system is given, we wish to describe its state at each instant with a constant precision. Suppose the data

More information

Module 2: Reflecting on One s Problems

Module 2: Reflecting on One s Problems MATH55 Module : Reflecting on One s Problems Main Math concepts: Translations, Reflections, Graphs of Equations, Symmetry Auxiliary ideas: Working with quadratics, Mobius maps, Calculus, Inverses I. Transformations

More information

STAT 801: Mathematical Statistics. Distribution Theory

STAT 801: Mathematical Statistics. Distribution Theory STAT 81: Mathematical Statistics Distribution Theory Basic Problem: Start with assumptions about f or CDF of random vector X (X 1,..., X p ). Define Y g(x 1,..., X p ) to be some function of X (usually

More information

Probability review. September 11, Stoch. Systems Analysis Introduction 1

Probability review. September 11, Stoch. Systems Analysis Introduction 1 Probability review Alejandro Ribeiro Dept. of Electrical and Systems Engineering University of Pennsylvania aribeiro@seas.upenn.edu http://www.seas.upenn.edu/users/~aribeiro/ September 11, 2015 Stoch.

More information

Bifurcations in the Quadratic Map

Bifurcations in the Quadratic Map Chapter 14 Bifurcations in the Quadratic Map We will approach the study of the universal period doubling route to chaos by first investigating the details of the quadratic map. This investigation suggests

More information

Transformation of Probability Densities

Transformation of Probability Densities Transformation of Probability Densities This Wikibook shows how to transform the probability density of a continuous random variable in both the one-dimensional and multidimensional case. In other words,

More information

PHY411 Lecture notes Part 5

PHY411 Lecture notes Part 5 PHY411 Lecture notes Part 5 Alice Quillen January 27, 2016 Contents 0.1 Introduction.................................... 1 1 Symbolic Dynamics 2 1.1 The Shift map.................................. 3 1.2

More information

Random Variables. Random variables. A numerically valued map X of an outcome ω from a sample space Ω to the real line R

Random Variables. Random variables. A numerically valued map X of an outcome ω from a sample space Ω to the real line R In probabilistic models, a random variable is a variable whose possible values are numerical outcomes of a random phenomenon. As a function or a map, it maps from an element (or an outcome) of a sample

More information

Lecture Notes 1 Probability and Random Variables. Conditional Probability and Independence. Functions of a Random Variable

Lecture Notes 1 Probability and Random Variables. Conditional Probability and Independence. Functions of a Random Variable Lecture Notes 1 Probability and Random Variables Probability Spaces Conditional Probability and Independence Random Variables Functions of a Random Variable Generation of a Random Variable Jointly Distributed

More information

Chapter 4. Continuous Random Variables 4.1 PDF

Chapter 4. Continuous Random Variables 4.1 PDF Chapter 4 Continuous Random Variables In this chapter we study continuous random variables. The linkage between continuous and discrete random variables is the cumulative distribution (CDF) which we will

More information

Lecture Notes 1 Probability and Random Variables. Conditional Probability and Independence. Functions of a Random Variable

Lecture Notes 1 Probability and Random Variables. Conditional Probability and Independence. Functions of a Random Variable Lecture Notes 1 Probability and Random Variables Probability Spaces Conditional Probability and Independence Random Variables Functions of a Random Variable Generation of a Random Variable Jointly Distributed

More information

Consider the joint probability, P(x,y), shown as the contours in the figure above. P(x) is given by the integral of P(x,y) over all values of y.

Consider the joint probability, P(x,y), shown as the contours in the figure above. P(x) is given by the integral of P(x,y) over all values of y. ATMO/OPTI 656b Spring 009 Bayesian Retrievals Note: This follows the discussion in Chapter of Rogers (000) As we have seen, the problem with the nadir viewing emission measurements is they do not contain

More information

Gaussian processes for inference in stochastic differential equations

Gaussian processes for inference in stochastic differential equations Gaussian processes for inference in stochastic differential equations Manfred Opper, AI group, TU Berlin November 6, 2017 Manfred Opper, AI group, TU Berlin (TU Berlin) inference in SDE November 6, 2017

More information

LQR, Kalman Filter, and LQG. Postgraduate Course, M.Sc. Electrical Engineering Department College of Engineering University of Salahaddin

LQR, Kalman Filter, and LQG. Postgraduate Course, M.Sc. Electrical Engineering Department College of Engineering University of Salahaddin LQR, Kalman Filter, and LQG Postgraduate Course, M.Sc. Electrical Engineering Department College of Engineering University of Salahaddin May 2015 Linear Quadratic Regulator (LQR) Consider a linear system

More information

Chapter 5 Joint Probability Distributions

Chapter 5 Joint Probability Distributions Applied Statistics and Probability for Engineers Sixth Edition Douglas C. Montgomery George C. Runger Chapter 5 Joint Probability Distributions 5 Joint Probability Distributions CHAPTER OUTLINE 5-1 Two

More information

EE222 - Spring 16 - Lecture 2 Notes 1

EE222 - Spring 16 - Lecture 2 Notes 1 EE222 - Spring 16 - Lecture 2 Notes 1 Murat Arcak January 21 2016 1 Licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Essentially Nonlinear Phenomena Continued

More information

Monte Carlo Simulations

Monte Carlo Simulations Monte Carlo Simulations What are Monte Carlo Simulations and why ones them? Pseudo Random Number generators Creating a realization of a general PDF The Bootstrap approach A real life example: LOFAR simulations

More information

Statistical Methods in Particle Physics

Statistical Methods in Particle Physics Statistical Methods in Particle Physics Lecture 3 October 29, 2012 Silvia Masciocchi, GSI Darmstadt s.masciocchi@gsi.de Winter Semester 2012 / 13 Outline Reminder: Probability density function Cumulative

More information

A review of probability theory

A review of probability theory 1 A review of probability theory In this book we will study dynamical systems driven by noise. Noise is something that changes randomly with time, and quantities that do this are called stochastic processes.

More information

Introduction to Bayesian Statistics

Introduction to Bayesian Statistics School of Computing & Communication, UTS January, 207 Random variables Pre-university: A number is just a fixed value. When we talk about probabilities: When X is a continuous random variable, it has a

More information

Day 5: Generative models, structured classification

Day 5: Generative models, structured classification Day 5: Generative models, structured classification Introduction to Machine Learning Summer School June 18, 2018 - June 29, 2018, Chicago Instructor: Suriya Gunasekar, TTI Chicago 22 June 2018 Linear regression

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 (Many figures from C. M. Bishop, "Pattern Recognition and ") 1of 89 Part II

More information

ENGG2430A-Homework 2

ENGG2430A-Homework 2 ENGG3A-Homework Due on Feb 9th,. Independence vs correlation a For each of the following cases, compute the marginal pmfs from the joint pmfs. Explain whether the random variables X and Y are independent,

More information

Math 416 Lecture 3. The average or mean or expected value of x 1, x 2, x 3,..., x n is

Math 416 Lecture 3. The average or mean or expected value of x 1, x 2, x 3,..., x n is Math 416 Lecture 3 Expected values The average or mean or expected value of x 1, x 2, x 3,..., x n is x 1 x 2... x n n x 1 1 n x 2 1 n... x n 1 n 1 n x i p x i where p x i 1 n is the probability of x i

More information

Lecture 8: Channel Capacity, Continuous Random Variables

Lecture 8: Channel Capacity, Continuous Random Variables EE376A/STATS376A Information Theory Lecture 8-02/0/208 Lecture 8: Channel Capacity, Continuous Random Variables Lecturer: Tsachy Weissman Scribe: Augustine Chemparathy, Adithya Ganesh, Philip Hwang Channel

More information

Tangent Planes, Linear Approximations and Differentiability

Tangent Planes, Linear Approximations and Differentiability Jim Lambers MAT 80 Spring Semester 009-10 Lecture 5 Notes These notes correspond to Section 114 in Stewart and Section 3 in Marsden and Tromba Tangent Planes, Linear Approximations and Differentiability

More information

CMPT 882 Machine Learning

CMPT 882 Machine Learning CMPT 882 Machine Learning Lecture Notes Instructor: Dr. Oliver Schulte Scribe: Qidan Cheng and Yan Long Mar. 9, 2004 and Mar. 11, 2004-1 - Basic Definitions and Facts from Statistics 1. The Binomial Distribution

More information

A Probability Primer. A random walk down a probabilistic path leading to some stochastic thoughts on chance events and uncertain outcomes.

A Probability Primer. A random walk down a probabilistic path leading to some stochastic thoughts on chance events and uncertain outcomes. A Probability Primer A random walk down a probabilistic path leading to some stochastic thoughts on chance events and uncertain outcomes. Are you holding all the cards?? Random Events A random event, E,

More information

Solutions to Exercises, Section 2.5

Solutions to Exercises, Section 2.5 Instructor s Solutions Manual, Section 2.5 Exercise 1 Solutions to Exercises, Section 2.5 For Exercises 1 4, write the domain of the given function r as a union of intervals. 1. r(x) 5x3 12x 2 + 13 x 2

More information

Lecture 5 Channel Coding over Continuous Channels

Lecture 5 Channel Coding over Continuous Channels Lecture 5 Channel Coding over Continuous Channels I-Hsiang Wang Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw November 14, 2014 1 / 34 I-Hsiang Wang NIT Lecture 5 From

More information

p. 6-1 Continuous Random Variables p. 6-2

p. 6-1 Continuous Random Variables p. 6-2 Continuous Random Variables Recall: For discrete random variables, only a finite or countably infinite number of possible values with positive probability (>). Often, there is interest in random variables

More information

Transformation of a Random Variable

Transformation of a Random Variable April 12, 2018 Copyright (c) 2018 Youg W. Lim. Permissio is grated to copy, distribute ad/or modify this documet uder the terms of the GNU Free Documetatio Licese, Versio 1.2 or ay later versio published

More information

Brandon C. Kelly (Harvard Smithsonian Center for Astrophysics)

Brandon C. Kelly (Harvard Smithsonian Center for Astrophysics) Brandon C. Kelly (Harvard Smithsonian Center for Astrophysics) Probability quantifies randomness and uncertainty How do I estimate the normalization and logarithmic slope of a X ray continuum, assuming

More information

Review session Midterm 1

Review session Midterm 1 AS.110.109: Calculus II (Eng) Review session Midterm 1 Yi Wang, Johns Hopkins University Fall 2018 7.1: Integration by parts Basic integration method: u-sub, integration table Integration By Parts formula

More information

Monte Carlo Studies. The response in a Monte Carlo study is a random variable.

Monte Carlo Studies. The response in a Monte Carlo study is a random variable. Monte Carlo Studies The response in a Monte Carlo study is a random variable. The response in a Monte Carlo study has a variance that comes from the variance of the stochastic elements in the data-generating

More information

Chapter 2. Random Variable. Define single random variables in terms of their PDF and CDF, and calculate moments such as the mean and variance.

Chapter 2. Random Variable. Define single random variables in terms of their PDF and CDF, and calculate moments such as the mean and variance. Chapter 2 Random Variable CLO2 Define single random variables in terms of their PDF and CDF, and calculate moments such as the mean and variance. 1 1. Introduction In Chapter 1, we introduced the concept

More information

STAT 450: Statistical Theory. Distribution Theory. Reading in Casella and Berger: Ch 2 Sec 1, Ch 4 Sec 1, Ch 4 Sec 6.

STAT 450: Statistical Theory. Distribution Theory. Reading in Casella and Berger: Ch 2 Sec 1, Ch 4 Sec 1, Ch 4 Sec 6. STAT 450: Statistical Theory Distribution Theory Reading in Casella and Berger: Ch 2 Sec 1, Ch 4 Sec 1, Ch 4 Sec 6. Example: Why does t-statistic have t distribution? Ingredients: Sample X 1,...,X n from

More information

The Big, Big Picture (Bifurcations II)

The Big, Big Picture (Bifurcations II) The Big, Big Picture (Bifurcations II) Reading for this lecture: NDAC, Chapter 8 and Sec. 10.0-10.4. 1 Beyond fixed points: Bifurcation: Qualitative change in behavior as a control parameter is (slowly)

More information

MATH 411 NOTES (UNDER CONSTRUCTION)

MATH 411 NOTES (UNDER CONSTRUCTION) MATH 411 NOTES (NDE CONSTCTION 1. Notes on compact sets. This is similar to ideas you learned in Math 410, except open sets had not yet been defined. Definition 1.1. K n is compact if for every covering

More information

ECE Lecture #10 Overview

ECE Lecture #10 Overview ECE 450 - Lecture #0 Overview Introduction to Random Vectors CDF, PDF Mean Vector, Covariance Matrix Jointly Gaussian RV s: vector form of pdf Introduction to Random (or Stochastic) Processes Definitions

More information

Stochastic processes Lecture 1: Multiple Random Variables Ch. 5

Stochastic processes Lecture 1: Multiple Random Variables Ch. 5 Stochastic processes Lecture : Multiple Random Variables Ch. 5 Dr. Ir. Richard C. Hendriks 26/04/8 Delft University of Technology Challenge the future Organization Plenary Lectures Book: R.D. Yates and

More information

CS145: Probability & Computing

CS145: Probability & Computing CS45: Probability & Computing Lecture 0: Continuous Bayes Rule, Joint and Marginal Probability Densities Instructor: Eli Upfal Brown University Computer Science Figure credits: Bertsekas & Tsitsiklis,

More information

Chaos and Liapunov exponents

Chaos and Liapunov exponents PHYS347 INTRODUCTION TO NONLINEAR PHYSICS - 2/22 Chaos and Liapunov exponents Definition of chaos In the lectures we followed Strogatz and defined chaos as aperiodic long-term behaviour in a deterministic

More information

Lecture Notes 3 Multiple Random Variables. Joint, Marginal, and Conditional pmfs. Bayes Rule and Independence for pmfs

Lecture Notes 3 Multiple Random Variables. Joint, Marginal, and Conditional pmfs. Bayes Rule and Independence for pmfs Lecture Notes 3 Multiple Random Variables Joint, Marginal, and Conditional pmfs Bayes Rule and Independence for pmfs Joint, Marginal, and Conditional pdfs Bayes Rule and Independence for pdfs Functions

More information

Introduction to Machine Learning

Introduction to Machine Learning What does this mean? Outline Contents Introduction to Machine Learning Introduction to Probabilistic Methods Varun Chandola December 26, 2017 1 Introduction to Probability 1 2 Random Variables 3 3 Bayes

More information

Lecture 14 February 28

Lecture 14 February 28 EE/Stats 376A: Information Theory Winter 07 Lecture 4 February 8 Lecturer: David Tse Scribe: Sagnik M, Vivek B 4 Outline Gaussian channel and capacity Information measures for continuous random variables

More information

P1 Calculus II. Partial Differentiation & Multiple Integration. Prof David Murray. dwm/courses/1pd

P1 Calculus II. Partial Differentiation & Multiple Integration. Prof David Murray.   dwm/courses/1pd P1 2017 1 / 39 P1 Calculus II Partial Differentiation & Multiple Integration Prof David Murray david.murray@eng.ox.ac.uk www.robots.ox.ac.uk/ dwm/courses/1pd 4 lectures, MT 2017 P1 2017 2 / 39 Motivation

More information

DEEP LEARNING CHAPTER 3 PROBABILITY & INFORMATION THEORY

DEEP LEARNING CHAPTER 3 PROBABILITY & INFORMATION THEORY DEEP LEARNING CHAPTER 3 PROBABILITY & INFORMATION THEORY OUTLINE 3.1 Why Probability? 3.2 Random Variables 3.3 Probability Distributions 3.4 Marginal Probability 3.5 Conditional Probability 3.6 The Chain

More information

Review: mostly probability and some statistics

Review: mostly probability and some statistics Review: mostly probability and some statistics C2 1 Content robability (should know already) Axioms and properties Conditional probability and independence Law of Total probability and Bayes theorem Random

More information

Chapter 2: Random Variables

Chapter 2: Random Variables ECE54: Stochastic Signals and Systems Fall 28 Lecture 2 - September 3, 28 Dr. Salim El Rouayheb Scribe: Peiwen Tian, Lu Liu, Ghadir Ayache Chapter 2: Random Variables Example. Tossing a fair coin twice:

More information

Physics 116C The Distribution of the Sum of Random Variables

Physics 116C The Distribution of the Sum of Random Variables Physics 116C The Distribution of the Sum of Random Variables Peter Young (Dated: December 2, 2013) Consider a random variable with a probability distribution P(x). The distribution is normalized, i.e.

More information

3 Operations on One Random Variable - Expectation

3 Operations on One Random Variable - Expectation 3 Operations on One Random Variable - Expectation 3.0 INTRODUCTION operations on a random variable Most of these operations are based on a single concept expectation. Even a probability of an event can

More information

A Tour of Reinforcement Learning The View from Continuous Control. Benjamin Recht University of California, Berkeley

A Tour of Reinforcement Learning The View from Continuous Control. Benjamin Recht University of California, Berkeley A Tour of Reinforcement Learning The View from Continuous Control Benjamin Recht University of California, Berkeley trustable, scalable, predictable Control Theory! Reinforcement Learning is the study

More information

3.8 Functions of a Random Variable

3.8 Functions of a Random Variable STAT 421 Lecture Notes 76 3.8 Functions of a Random Variable This section introduces a new and important topic: determining the distribution of a function of a random variable. We suppose that there is

More information

Supervised Learning: Non-parametric Estimation

Supervised Learning: Non-parametric Estimation Supervised Learning: Non-parametric Estimation Edmondo Trentin March 18, 2018 Non-parametric Estimates No assumptions are made on the form of the pdfs 1. There are 3 major instances of non-parametric estimates:

More information

ECE 636: Systems identification

ECE 636: Systems identification ECE 636: Systems identification Lectures 3 4 Random variables/signals (continued) Random/stochastic vectors Random signals and linear systems Random signals in the frequency domain υ ε x S z + y Experimental

More information

Ch3 Operations on one random variable-expectation

Ch3 Operations on one random variable-expectation Ch3 Operations on one random variable-expectation Previously we define a random variable as a mapping from the sample space to the real line We will now introduce some operations on the random variable.

More information

Check Your Understanding of the Lecture Material Finger Exercises with Solutions

Check Your Understanding of the Lecture Material Finger Exercises with Solutions Check Your Understanding of the Lecture Material Finger Exercises with Solutions Instructor: David Dobor March 6, 2017 While the solutions to these questions are available, you are strongly encouraged

More information

Chaos, Complexity, and Inference (36-462)

Chaos, Complexity, and Inference (36-462) Chaos, Complexity, and Inference (36-462) Lecture 1 Cosma Shalizi 13 January 2009 Course Goals Learn about developments in dynamics and systems theory Understand how they relate to fundamental questions

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning 12. Gaussian Processes Alex Smola Carnegie Mellon University http://alex.smola.org/teaching/cmu2013-10-701 10-701 The Normal Distribution http://www.gaussianprocess.org/gpml/chapters/

More information

Data Analysis and Monte Carlo Methods

Data Analysis and Monte Carlo Methods Lecturer: Allen Caldwell, Max Planck Institute for Physics & TUM Recitation Instructor: Oleksander (Alex) Volynets, MPP & TUM General Information: - Lectures will be held in English, Mondays 16-18:00 -

More information

outline Nonlinear transformation Error measures Noisy targets Preambles to the theory

outline Nonlinear transformation Error measures Noisy targets Preambles to the theory Error and Noise outline Nonlinear transformation Error measures Noisy targets Preambles to the theory Linear is limited Data Hypothesis Linear in what? Linear regression implements Linear classification

More information

Solve the problem. Determine the center and radius of the circle. Use the given information about a circle to find its equation.

Solve the problem. Determine the center and radius of the circle. Use the given information about a circle to find its equation. Math1314-TestReview2-Spring2016 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve the problem. 1) Is the point (-5, -3) on the circle defined

More information

Analysis of Probabilistic Systems

Analysis of Probabilistic Systems Analysis of Probabilistic Systems Bootcamp Lecture 2: Measure and Integration Prakash Panangaden 1 1 School of Computer Science McGill University Fall 2016, Simons Institute Panangaden (McGill) Analysis

More information

Review of probability

Review of probability Review of probability Computer Sciences 760 Spring 2014 http://pages.cs.wisc.edu/~dpage/cs760/ Goals for the lecture you should understand the following concepts definition of probability random variables

More information

[POLS 8500] Review of Linear Algebra, Probability and Information Theory

[POLS 8500] Review of Linear Algebra, Probability and Information Theory [POLS 8500] Review of Linear Algebra, Probability and Information Theory Professor Jason Anastasopoulos ljanastas@uga.edu January 12, 2017 For today... Basic linear algebra. Basic probability. Programming

More information

Lecture 10: Broadcast Channel and Superposition Coding

Lecture 10: Broadcast Channel and Superposition Coding Lecture 10: Broadcast Channel and Superposition Coding Scribed by: Zhe Yao 1 Broadcast channel M 0M 1M P{y 1 y x} M M 01 1 M M 0 The capacity of the broadcast channel depends only on the marginal conditional

More information

Computer Vision Group Prof. Daniel Cremers. 9. Gaussian Processes - Regression

Computer Vision Group Prof. Daniel Cremers. 9. Gaussian Processes - Regression Group Prof. Daniel Cremers 9. Gaussian Processes - Regression Repetition: Regularized Regression Before, we solved for w using the pseudoinverse. But: we can kernelize this problem as well! First step:

More information

PATTERN RECOGNITION AND MACHINE LEARNING

PATTERN RECOGNITION AND MACHINE LEARNING PATTERN RECOGNITION AND MACHINE LEARNING Chapter 1. Introduction Shuai Huang April 21, 2014 Outline 1 What is Machine Learning? 2 Curve Fitting 3 Probability Theory 4 Model Selection 5 The curse of dimensionality

More information

P (x). all other X j =x j. If X is a continuous random vector (see p.172), then the marginal distributions of X i are: f(x)dx 1 dx n

P (x). all other X j =x j. If X is a continuous random vector (see p.172), then the marginal distributions of X i are: f(x)dx 1 dx n JOINT DENSITIES - RANDOM VECTORS - REVIEW Joint densities describe probability distributions of a random vector X: an n-dimensional vector of random variables, ie, X = (X 1,, X n ), where all X is are

More information

Recitation 2: Probability

Recitation 2: Probability Recitation 2: Probability Colin White, Kenny Marino January 23, 2018 Outline Facts about sets Definitions and facts about probability Random Variables and Joint Distributions Characteristics of distributions

More information

Lecture 3. Dynamical Systems in Continuous Time

Lecture 3. Dynamical Systems in Continuous Time Lecture 3. Dynamical Systems in Continuous Time University of British Columbia, Vancouver Yue-Xian Li November 2, 2017 1 3.1 Exponential growth and decay A Population With Generation Overlap Consider a

More information

Expect Values and Probability Density Functions

Expect Values and Probability Density Functions Intelligent Systems: Reasoning and Recognition James L. Crowley ESIAG / osig Second Semester 00/0 Lesson 5 8 april 0 Expect Values and Probability Density Functions otation... Bayesian Classification (Reminder...3

More information

conditional cdf, conditional pdf, total probability theorem?

conditional cdf, conditional pdf, total probability theorem? 6 Multiple Random Variables 6.0 INTRODUCTION scalar vs. random variable cdf, pdf transformation of a random variable conditional cdf, conditional pdf, total probability theorem expectation of a random

More information

Multivariate probability distributions and linear regression

Multivariate probability distributions and linear regression Multivariate probability distributions and linear regression Patrik Hoyer 1 Contents: Random variable, probability distribution Joint distribution Marginal distribution Conditional distribution Independence,

More information

ECE Homework Set 2

ECE Homework Set 2 1 Solve these problems after Lecture #4: Homework Set 2 1. Two dice are tossed; let X be the sum of the numbers appearing. a. Graph the CDF, FX(x), and the pdf, fx(x). b. Use the CDF to find: Pr(7 X 9).

More information