Background problem The following preliminary coding exercise will be helpful in completing this weeks homework. Let 3 Y * * 2 e. 2 (1 + ν) 3(1 2 ν)

Size: px
Start display at page:

Download "Background problem The following preliminary coding exercise will be helpful in completing this weeks homework. Let 3 Y * * 2 e. 2 (1 + ν) 3(1 2 ν)"

Transcription

1 E4: Computtonl mthods n Structurl nd Sold Mchncs Homwork 9: Explct Dynmcs: modlng dynmc ductl rctur Du Wd ov 8, 5 School o Engnrng Brown Unvrsty Bckground problm Th ollowng prlmnry codng xrcs wll b hlpul n compltng ths wks homwork. Lt / s * p * s (, p) = + q cosh q ( + q ) Y Y * Whr q, q, q,, Y r constnts. Lt * E * E σ = σ p= p v ( + ν) ( ν) whr σ * *, p, E, ν r constnts. Wrt MATLAB cod to solv th ollowng qutons or εv by wton-rphson trton (wrt your own wton-rphson loop, don t us th mtlb quton solvrs. Th gol s to gt th wton loop to work so you cn trnsr t nto your Fortrn cod) / σ 9 p t σ φ φ φ m F (, v) = + φ = / v 9 p t p φ φ φ m F (, v) = + φ = σ whr ε, m, t r constnts. Us th ollowng vlus or th constnts (you cn chck wth othr vlus * * too but not tht solutons only xst or φσ (, p ) > ): E =, ν =., Y = 8, =., m= 5, q =.5, q =., q =.5, * * * σ =.5, = 85, p =, t =. Th wton trtons rqur rptdly solvng th ollowng lnr qutons or corrctons d, d v F F v d F = F F d v F v Th hrd prt o ths problm s clcultng nd typng n th drvtvs o F corrctly (not tht φ s uncton o, v so th drvtvs o F contn scond drvtvs o φ ). You nd to b xtrmly orgnzd n both your clcultons nd dsgnng th cod to mk th stps trnsprnt. Fortuntly s long s th trtons convrg sucntly rpdly (4-5 trtons r typcl) you cn somtms gt wy wth w smll rrors, s long s F s corrctly clcultd!

2 In th rmndr o ths homwork you wll mplmnt n xplct dynmc smulton o ductl rctur n polycrystlln mtl, usng th mous Gurson plstcty modl, whch ccounts or nuclton nd growth o vods n mtl. You cn nd short dscusson o th Gurson modl hr, nd som mor dtl o th modl tht wll b mplmntd hr n th ABAQUS thory mnul. Implct dynmcs wth nt strns: Bcus ductl rctur gnrlly nvolvs lrg plstc strns, w must mplmnt nt strn vrson o th xplct dynmc nt lmnt mthod. Th procdur ollowd hr s somwht smlr to ABAQUS/Explct, xcpt tht w wll us th Jumnn rthr thn Grn-ghd msur o strss rt ( mor xtnsv dscusson o strss rt msurs nd th drnc btwn thm cn b ound hr) Th nt-strn vrson o xplct dynmcs s bsd on th prncpl o vrtul powr v td LdV + ρ dv tdv = t V V A whr τ s th Krchho strss; δ v s vrtul vlocty ( tst uncton) nd δl =δv / yj s th vrtul vlocty grdnt. Snc w r solvng mtl plstcty problm w ntrpolt dsplcmnt nd vrtul vlocty lds usng th nt-strn vrson o th B-br mthod, whch ylds systm o qutons or th cclrtons b d u M b = R + F dt b d mj M b = dv R tmj[ Fkl ] d = m + dv y V j n y y V Whr n = or D problm nd n= or D problm. E4FEA ntgrts ths qutons wth rspct to tm usng wmrk schm, wth lumpd mss mtrx, β = nd β =. Ths gvs th ollowng lgorthm: At tm t= th vlocts v () nd cclrtons () r ntlzd (th usr cn spcy th vlocty; th cclrtons r zro). Th tm ncrmntton loop procds s ollows: t. Clcult u = t v () t + () t ; mpos ny prscrbd dsplcmnts. b. Clcult R ( u ) k

3 . Clcult ( t+ t) = ( R + F )/ M + = = + 4. Updt v ( t t) v ( t) t ( t t) 5. Updt u ( t t) u () t u Ths procdur s lrdy codd n E4FEA (th cod s n xplct_dynmc_stp.9). You only nd b to wrt cod to clcult R ( u ), through th usr subroutn. k To mplmnt ny nw mtrl modl, you must clcult th Krchho strss τ mj[ Fkl ] gvn b dsplcmnt ncrmnt u, nd hnc clcult th nodl orcs R ( uk). Onc τ mj[ Fkl ] hs bn b ound, you cn nd R ( u ) usng th usul mthod. k In ths homwork, th strss wll b clcultd rom th dsplcmnts usng th consttutv rltons or porous plstcty modl known s th Extndd Gurson modl. Ths s vry smlr to th rt-dpndnt vscoplstc consttutv quton dscussd n clss, xcpt tht t lso ccounts or th nuclton, growth nd colscnc o vods. Summry o th Gurson modl: Followng th stndrd procdur n nt strn plstcty, w dcompos th dormton grdnt nto lstc nd plstc prts, whch thn llows us to dcompos th totl strn rt nto lstc nd plstc prts p F = F F k kj = sym( F kfkj ) W = skw( F kfkj ) p = + Th plstc strn rt s rltd to th Krcho strss by φ < m D p φ φ τ φ = + δ φ > σ σ p () φ φ + σ 9 p whr Y s th yld strss o th mtrx (w nglct strn hrdnng, so Y s constnt), ε,m r two mtrl constnts ( chrctrstc strn rt nd th strss xponnt), nd / s * p * = + q cosh q ( + q ) Y Y D D D kk kk τ = τ τ δ / s = t t / p = t / Hr, q, q, q r thr mtrl proprts, nd * s uncton tht qunts th loss o strngth rsultng rom vod growth. It s rltd to th volum rcton o vods n th mtrl V by V V < c * F c = c + ( V c) c < V < F () F c F V > F

4 Hr, c, F r two mtrl prmtrs tht rprsnt th crtcl vod volum rcton whn vods strt to colsc, nd whn th mtrl ultmtly ls ntrly, nd q+ q q F = q Th volum rcton o vods s zro n th ntl mtrl. As th mtrl s plstclly dormd, vods nuclt nd grow, whch cuss V to ncrs. It s govrnd by dv p dmtrx mtrx = ( V ) kk + xp () dt dt s s p whr, s, ε r mtrl proprts controllng th rt o vod nuclton wth plstc strn (vods nuclt rpdly whn th strn rchs ε ), nd ε mtrx s th totl ccumultd plstc strn n th mtrx, whch volvs ccordng to / d mtrx m σ = + + p dt V σ 9 p σ p Th lstc strn rt s rltd to th so clld co-rottonl strss rt by E ν τ = + kkδ + ν ν whr dt t = + tkwkj Wktkj dt (or mor dtld dscusson o rt orms o consttutv qutons or lstc-plstc sold s hr) Implmntng th dynmc rctur/plstcty modl rqurs thr stps: () Gvn th dsplcmnt ncrmnt u nd th dsplcmnt u t th strt o th stp, you must clcult th strn ncrmnt ε, th spn ncrmnt W nd th rotton ncrmnt R () Gvn ε, R, th strss, nd stt vrbls t th strt o th ncrmnt, clcult th strss nd stt vrbls t th nd o th ncrmnt d mj () Clcult th lmnt rsdul orcs R = τmj[ Fkl ] d m + dv y V j n y y Ths stps r dscrbd n mor dtl blow, wth rough cod tmplt:

5 Loop ovr th ntgrton ponts:. Clcult th ncrmnt n dormton grdnt snc ths s th chng n F) F = u x j ( t+ t/) = δ + + x j (not thr s no dntty ddd,. Clcult th md-pont dormton grdnt F ( u u ) nd th ssoctd ( t+ t/) Jcobn J= dt( F ). Comput th contrbuton rom th currnt ntgrton pont to th volum vrgd Jcobn nd th vrg volumtrc strn ncrmnt η = JdV V l V l + η = J L dv L = F F η V l V l ( t t/) kk k kj 4. Comput th contrbuton rom th currnt ntgrton pont to th volum vrgd sptl shp uncton drvtvs ( t+ t/) = J dv = F y k ηv l y V y xk l 5. Comput th contrbuton rom th currnt ntgrton pont to th lmnt volum. End ntgrton pont loop Dvd th volum vrgd quntts by th lmnt volum Loop ovr th ntgrton ponts scond tm. Clcult th ncrmnt n dormton grdnt. Clcult th md-pont dormton grdnt F = u x j ( t+ t/) = δ + + x j F ( u u ). Comput th corrctd vlocty grdnt ncrmnt ( t+ t/) ( t+ t/) L = Fk Fkj + ( η Flk Fkl ) δ / 4. Comput th strn nd spn ncrmnts ε = ( L + L )/ W = ( L L )/ j j t+ t 5. Clcult th rotton ncrmnt ssoctd wth th spn, whch s gvn by R = d + W R dt. Th ntgrl cn b pproxmtd usng md-pont rul WI ( + R) RR = W R I + W W R ( I ) I+ k kj t

6 whr I s th dntty mtrx. 6. Clcult th Krcho strss t th nd o th ncrmnt τ ( n+ ) nd clcult th vlus o th updtd mtrl stt vrbls or th currnt ntgrton pont (do ths nsd subroutn s blow or th stps) 7. Clcult th contrbuton to th lmnt orc vctor rom th currnt ntgrton pont T R = B τ dv whr B cn b ssmbld s + + y y y y y y y y y y y + tc y y y y y y y = y y y y y y V B Ths s th sm B-br mtrx you usd rlr, xcpt tht th drvtvs r wth rspct to y nstd o x. End ntgrton pont loop Strss updt lgorthm Th strss s updtd usng th pproch dscussd n clss or smll-strn plstcty problms (som o you ( ) ( ) ( ) my hv mplmntd smll strn plstcty modl n HW6 lrdy). Gvn ε, t n, ε n, V n, w ( ) ( ) ( ) wsh to dtrmn n +, n + t, n εmtrx V +, s ollows:. Comput th lstc prdctors or th dvtorc nd hydrosttc strss * E Dn * ( n) E S = D +DR τ D R p = τ kk + D + n ( n) Dn ( n) ( n) D =D D kkδ / τ = τ τ kk. Clcult / * * s * p * = + q cosh q ( + q ) Y Y ( ) k kl jl kk s * * * = SS / mtrx

7 V V < V V V ( n) ( n) c * F c ( n) ( n) = c + ( c) c < < F F c ( n) F > F I φ <, th ncrmnt s lstc, nd th strss ollows mmdtly s n+ * * τ = S + p δ. I φ >, solv th ollowng two qutons or th mgntuds o th dvtorc nd volumtrc plstc strns, (usng wton-rphson trton you dd ths n MATLAB lrdy) v / σ 9 p t σ φ φ φ m + φ = / v 9 p t p φ φ φ φ m + = σ whr φ s computd usng th vod volum rcton t th strt o th ncrmnt, togthr wth th ollowng xprssons or p nd σ * E * E σ = σ p= p v ( + ν) ( ν) 4. Th strss t th nd o th ncrmnt cn thn b clcultd rom * n+ * E S * E τ = S + p * v δ + n σ ( n) 5. Fnlly, th vod volum rcton nd mtrx strn cn b updtd s ( n+ ) ( n) = + mtrx mtrx mtrx ( n) n+ ( n) mtrx mtrx V = + ( V ) xp( v) + xp s s p < / mtrx = t m s ( n) + + p > V s 9 p s p Implmntton ots To mplmnt n xplct dynmc lmnt n E4FEA, you must wrt two usr-subroutns () routn to comput th lmnt rsdul orc (thr s n xmpl n th l_lnlst_dbsc.9 l). Ths routn must lso comput vlus or th updtd mtrl stt vrbls. Th subroutn rgumnts r shown blow. subroutn l_lnlst_dbsc_dynmc(lmn, lmnt_dntr, n_nods, nod_proprty_lst, & n_proprts, lmnt_proprts,lmnt_coords, lngth_coord_rry, & do_ncrmnt, do_totl, lngth_do_rry, & n_stt_vrbls, ntl_stt_vrbls, updtd_stt_vrbls,lmnt_rsdul,lmnt_dltd)! Output vrbls

8 () th usul routn to projct strsss nd othr ld vrbls (g th vod volum rcton) to th nods. Th Gurson mtrl hs mtrl proprts: E, ν, Y,, mq,, q, q,,, s, c, F Th mtrl hs th ollowng stt vrbls: strss componnts τ, th mtrx strn ε mtrx nd th vod volum rcton V. Th vlus o ths vrbls nd to b stord, nd updtd, or t ch ntgrton pont n th lmnt. In E4FEA, ll stt vrbls or n lmnt r stord n two -D vctors: th usr subroutn wll provd th vlus o stt vrbls t th strt o th stp n vctor clld ntl_stt_vrbls; your usr-subroutn must rturn thr vlus t th nd o th stp n vrbl clld updtd_stt_vrbls. You cn us ny storg schm you lk or your vrbls s long s thy r consstnt. For xmpl, n my cod I xtrct th stt vrbls or th rst ntgrton pont s strss = ntl_stt_vrbls(:6)! Strss t strt o ncrmnt mtrx = ntl_stt_vrbls(7) V = ntl_stt_vrbls(8) Th dt or th scond ntgrton pont strts t ntl_stt_vrbls(9), nd so on. It s bst to sprt th clcultons nto lmnt oprtons (clcultng shp uncton drvtvs, dormton msurs, tc) nd mtrl oprtons (clcultng th strss). Thr r vrous wys to do ths, but th bsc d s to wrt subroutn tht clcults th updtd strss nd updtd stt vrbls or just on ntgrton pont, gvn vlus o th stt vrbls, th strn ncrmnt, nd th rotton ncrmnt, wth subroutn o th orm subroutn gurson(lmnt_proprts,n_proprts,n_stt_vrbls,ntl_stt_vrbls, & updtd_stt_vrbls,dstrn,drot,strss) us Typs us PrmIO us Globls, only : TIME, DTIME mplct non ntgr, ntnt( n ) ntgr, ntnt( n ) rl (prc), ntnt( n ) rl (prc), ntnt( n ) rl (prc), ntnt( n ) rl (prc), ntnt( n ) :: n_proprts :: n_stt_vrbls :: lmnt_proprts(n_proprts) :: ntl_stt_vrbls(n_stt_vrbls) :: dstrn(,) :: drot(,) rl (prc), ntnt( out ) :: strss(6) rl (prc), ntnt( out ) :: updtd_stt_vrbls(n_stt_vrbls) ot tht n_stt_vrbls hr s th numbr o stt vrbls or OE ITEGRATIO POIT, not ll o thm, nd you must slc th vctor tht stors th ull st o vrbls or ll th ntgrton ponts to pss th corrct st to ths subroutn. Th condton φ > s bst chckd numrclly s φ > ps, whr ps s smll numbr ( -8 ) to vod dvd by zro rrors. Dn Th Elmnt Utlts modul n E4FEA dns uncton to comput DRkτkl D Rjl strss = rottsymvc(strss,dr) Hr dr s x orthogonl mtrx nd strss s vctor contnng componnts o symmtrc tnsor s= [s,s,s,s,s,s]. Both E4FEA nd ABAQUS llow lmnts to b dltd durng n xplct dynmc computton, to smult mtrl lur. In E4FEA ths s ccomplshd by sttng th

9 lmnt_dltd vrbl to.tru. nsd th usr-lmnt subroutn. You could dlt lmnts whn V > F or ll th ntgrton ponts n th lmnt. You r codng nd runnng rly sophstctd FEA modl n ths homwork, so dbuggng mght tk bt o work. Th ollowng procdur wll tst your cod n stgs:. Run your cod wth only two lmnts (g wth th msh n Gurson_d_dynmc.n), nd prmtr vlus tht wll produc n lstc mtrl, g E =, ν =., Y = 8, ε =., m= 5, q =.5, q =., q =.5, =, ε.5, s =.5, c =.5, F =.5 Us mss dnsty ρ = nd tm-stp o. unts. You cn pply ny snsbl boundry condtons. Your cod should rproduc th rsults n lnr_lstc_dynmc_d.n (wth th sm boundry condtons).. Run your lmnt tst wth plstcty, but no vod nuclton, g. E =, ν =., Y =.8, ε =., m= 5, q =.5, q =., q =.5, =, ε.5, s =.5, c =.5, F =.5 Chck th convrgnc o th wton trtons n th plstcty modl thy should convrg tr -4 trtons. I ths dos not hppn thr s probbly n rror n th drvtvs you r usng n th wton-rphson loop (but hopully you cught ny problms n th prlmnry MATLAB cod you wrot, so ths prt should work.. I stp () works rpt th lmnt tst wth vod nuclton try prmtrs E =, ν =., Y =.8, ε =., m= 5, q =.5, q =., q =.5, =.5, ε =.5, s =.5, c =.5, F =.5 (supprss lmnt dlton or ths tst). Chck th convrgnc o your wton trtons. In ths smulton you should s th strss n th lmnts drop s th mtrl ls. 4. I tst () works, you cn try runnng th smulton shown n th gur. An nput l clld notch_rctur_dynmc.n hs bn provdd or ths purpos. You my nd to chng th ordr o th mtrl proprty dnton to b consstnt wth your cod. 5. Optonl: you r curous you cn mk your own rctur spcmn nd (vrtully) brk t. Th smulton wll run str you compl nd run your cod n rls mod nstd o dbug mod.

Minimum Spanning Trees

Minimum Spanning Trees Mnmum Spnnng Trs Spnnng Tr A tr (.., connctd, cyclc grph) whch contns ll th vrtcs of th grph Mnmum Spnnng Tr Spnnng tr wth th mnmum sum of wghts 1 1 Spnnng forst If grph s not connctd, thn thr s spnnng

More information

Fundamentals of Continuum Mechanics. Seoul National University Graphics & Media Lab

Fundamentals of Continuum Mechanics. Seoul National University Graphics & Media Lab Fndmntls of Contnm Mchncs Sol Ntonl Unvrsty Grphcs & Md Lb Th Rodmp of Contnm Mchncs Strss Trnsformton Strn Trnsformton Strss Tnsor Strn T + T ++ T Strss-Strn Rltonshp Strn Enrgy FEM Formlton Lt s Stdy

More information

A general N-dimensional vector consists of N values. They can be arranged as a column or a row and can be real or complex.

A general N-dimensional vector consists of N values. They can be arranged as a column or a row and can be real or complex. Lnr lgr Vctors gnrl -dmnsonl ctor conssts of lus h cn rrngd s column or row nd cn rl or compl Rcll -dmnsonl ctor cn rprsnt poston, loct, or cclrton Lt & k,, unt ctors long,, & rspctl nd lt k h th componnts

More information

Minimum Spanning Trees

Minimum Spanning Trees Minimum Spnning Trs Minimum Spnning Trs Problm A town hs st of houss nd st of rods A rod conncts nd only houss A rod conncting houss u nd v hs rpir cost w(u, v) Gol: Rpir nough (nd no mor) rods such tht:

More information

Preview. Graph. Graph. Graph. Graph Representation. Graph Representation 12/3/2018. Graph Graph Representation Graph Search Algorithms

Preview. Graph. Graph. Graph. Graph Representation. Graph Representation 12/3/2018. Graph Graph Representation Graph Search Algorithms /3/0 Prvw Grph Grph Rprsntton Grph Srch Algorthms Brdth Frst Srch Corrctnss of BFS Dpth Frst Srch Mnmum Spnnng Tr Kruskl s lgorthm Grph Drctd grph (or dgrph) G = (V, E) V: St of vrt (nod) E: St of dgs

More information

Definition of vector and tensor. 1. Vector Calculus and Index Notation. Vector. Special symbols: Kronecker delta. Symbolic and Index notation

Definition of vector and tensor. 1. Vector Calculus and Index Notation. Vector. Special symbols: Kronecker delta. Symbolic and Index notation Dfnton of vctor nd tnsor. Vctor Clculus nd Indx Notton Crtsn nsor only Pnton s Chp. Vctor nd ordr tnsor v = c v, v = c v = c c, = c c k l kl kl k l m physcl vrbl, sm symbolc form! Cn b gnrlzd to hghr ordr

More information

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals Intgrtion Continud Intgrtion y Prts Solving Dinit Intgrls: Ar Undr Curv Impropr Intgrls Intgrtion y Prts Prticulrly usul whn you r trying to tk th intgrl o som unction tht is th product o n lgric prssion

More information

The Hyperelastic material is examined in this section.

The Hyperelastic material is examined in this section. 4. Hyprlastcty h Hyprlastc matral s xad n ths scton. 4..1 Consttutv Equatons h rat of chang of ntrnal nrgy W pr unt rfrnc volum s gvn by th strss powr, whch can b xprssd n a numbr of dffrnt ways (s 3.7.6):

More information

Spanning Tree. Preview. Minimum Spanning Tree. Minimum Spanning Tree. Minimum Spanning Tree. Minimum Spanning Tree 10/17/2017.

Spanning Tree. Preview. Minimum Spanning Tree. Minimum Spanning Tree. Minimum Spanning Tree. Minimum Spanning Tree 10/17/2017. 0//0 Prvw Spnnng Tr Spnnng Tr Mnmum Spnnng Tr Kruskl s Algorthm Prm s Algorthm Corrctnss of Kruskl s Algorthm A spnnng tr T of connctd, undrctd grph G s tr composd of ll th vrtcs nd som (or prhps ll) of

More information

(A) the function is an eigenfunction with eigenvalue Physical Chemistry (I) First Quiz

(A) the function is an eigenfunction with eigenvalue Physical Chemistry (I) First Quiz 96- Physcl Chmstry (I) Frst Quz lctron rst mss m 9.9 - klogrm, Plnck constnt h 6.66-4 oul scon Sp of lght c. 8 m/s, lctron volt V.6-9 oul. Th functon F() C[cos()+sn()] s n gnfuncton of /. Th gnvlu s (A)

More information

Filter Design Techniques

Filter Design Techniques Fltr Dsgn chnqus Fltr Fltr s systm tht psss crtn frquncy componnts n totlly rcts ll othrs Stgs of th sgn fltr Spcfcton of th sr proprts of th systm ppromton of th spcfcton usng cusl scrt-tm systm Rlzton

More information

CIVL 8/ D Boundary Value Problems - Rectangular Elements 1/7

CIVL 8/ D Boundary Value Problems - Rectangular Elements 1/7 CIVL / -D Boundr Vlu Prolms - Rctngulr Elmnts / RECANGULAR ELEMENS - In som pplictions, it m mor dsirl to us n lmntl rprsnttion of th domin tht hs four sids, ithr rctngulr or qudriltrl in shp. Considr

More information

1.9 Cartesian Tensors

1.9 Cartesian Tensors Scton.9.9 Crtsn nsors s th th ctor, hghr ordr) tnsor s mthmtc obct hch rprsnts mny physc phnomn nd hch xsts ndpndnty of ny coordnt systm. In ht foos, Crtsn coordnt systm s sd to dscrb tnsors..9. Crtsn

More information

CHAPTER 7d. DIFFERENTIATION AND INTEGRATION

CHAPTER 7d. DIFFERENTIATION AND INTEGRATION CHAPTER 7d. DIFFERENTIATION AND INTEGRATION A. J. Clark School o Engnrng Dpartmnt o Cvl and Envronmntal Engnrng by Dr. Ibrahm A. Assakka Sprng ENCE - Computaton Mthods n Cvl Engnrng II Dpartmnt o Cvl and

More information

Section 5.1/5.2: Areas and Distances the Definite Integral

Section 5.1/5.2: Areas and Distances the Definite Integral Scto./.: Ars d Dstcs th Dt Itgrl Sgm Notto Prctc HW rom Stwrt Ttook ot to hd p. #,, 9 p. 6 #,, 9- odd, - odd Th sum o trms,,, s wrtt s, whr th d o summto Empl : Fd th sum. Soluto: Th Dt Itgrl Suppos w

More information

, between the vertical lines x a and x b. Given a demand curve, having price as a function of quantity, p f (x) at height k is the curve f ( x,

, between the vertical lines x a and x b. Given a demand curve, having price as a function of quantity, p f (x) at height k is the curve f ( x, Clculus for Businss nd Socil Scincs - Prof D Yun Finl Em Rviw vrsion 5/9/7 Chck wbsit for ny postd typos nd updts Pls rport ny typos This rviw sht contins summris of nw topics only (This rviw sht dos hv

More information

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 2: Derivation of Ideal MHD Equation

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 2: Derivation of Ideal MHD Equation .65, MHD Thory of Fuson Systms Prof. Frdbrg Lctur : Drvton of Idl MHD Equton Rvw of th Drvton of th Momnt Equton. Strtng Pont: Boltzmnn Equton for lctrons, ons nd Mxwll Equtons. Momnts of Boltzmnn Equton:

More information

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x) Chptr 7 INTEGRALS 7. Ovrviw 7.. Lt d d F () f (). Thn, w writ f ( ) d F () + C. Ths intgrls r clld indfinit intgrls or gnrl intgrls, C is clld constnt of intgrtion. All ths intgrls diffr y constnt. 7..

More information

Errata for Second Edition, First Printing

Errata for Second Edition, First Printing Errt for Scond Edition, First Printing pg 68, lin 1: z=.67 should b z=.44 pg 1: Eqution (.63) should rd B( R) = x= R = θ ( x R) p( x) R 1 x= [1 G( x)] = θp( R) + ( θ R)[1 G( R)] pg 15, problm 6: dmnd of

More information

8. Linear Contracts under Risk Neutrality

8. Linear Contracts under Risk Neutrality 8. Lnr Contrcts undr Rsk Nutrlty Lnr contrcts r th smplst form of contrcts nd thy r vry populr n pplctons. Thy offr smpl ncntv mchnsm. Exmpls of lnr contrcts r mny: contrctul jont vnturs, quty jont vnturs,

More information

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture:

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture: Lctur 11 Wvs in Priodic Potntils Tody: 1. Invrs lttic dfinition in 1D.. rphicl rprsnttion of priodic nd -priodic functions using th -xis nd invrs lttic vctors. 3. Sris solutions to th priodic potntil Hmiltonin

More information

Ch 1.2: Solutions of Some Differential Equations

Ch 1.2: Solutions of Some Differential Equations Ch 1.2: Solutions of Som Diffrntil Equtions Rcll th fr fll nd owl/mic diffrntil qutions: v 9.8.2v, p.5 p 45 Ths qutions hv th gnrl form y' = y - b W cn us mthods of clculus to solv diffrntil qutions of

More information

Linear Algebra Existence of the determinant. Expansion according to a row.

Linear Algebra Existence of the determinant. Expansion according to a row. Lir Algbr 2270 1 Existc of th dtrmit. Expsio ccordig to row. W dfi th dtrmit for 1 1 mtrics s dt([]) = (1) It is sy chck tht it stisfis D1)-D3). For y othr w dfi th dtrmit s follows. Assumig th dtrmit

More information

INF5820/INF9820 LANGUAGE TECHNOLOGICAL APPLICATIONS. Jan Tore Lønning, Lecture 4, 14 Sep

INF5820/INF9820 LANGUAGE TECHNOLOGICAL APPLICATIONS. Jan Tore Lønning, Lecture 4, 14 Sep INF5820/INF9820 LANGUAGE TECHNOLOGICAL ALICATIONS Jn Tor Lønning Lctur 4 4 Sp. 206 tl@ii.uio.no Tody 2 Sttisticl chin trnsltion: Th noisy chnnl odl Word-bsd Trining IBM odl 3 SMT xpl 4 En kokk lgd n rtt

More information

Instructions for Section 1

Instructions for Section 1 Instructions for Sction 1 Choos th rspons tht is corrct for th qustion. A corrct nswr scors 1, n incorrct nswr scors 0. Mrks will not b dductd for incorrct nswrs. You should ttmpt vry qustion. No mrks

More information

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, *

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, * CmSc 365 Thory of Computtion Finit Stt Automt nd Rgulr Exprssions (Chptr 2, Sction 2.3) ALPHABET oprtions: U, conctntion, * otin otin Strings Form Rgulr xprssions dscri Closd undr U, conctntion nd * (if

More information

Errata for Second Edition, First Printing

Errata for Second Edition, First Printing Errt for Scond Edition, First Printing pg 68, lin 1: z=.67 should b z=.44 pg 71: Eqution (.3) should rd B( R) = θ R 1 x= [1 G( x)] pg 1: Eqution (.63) should rd B( R) = x= R = θ ( x R) p( x) R 1 x= [1

More information

TOPIC 5: INTEGRATION

TOPIC 5: INTEGRATION TOPIC 5: INTEGRATION. Th indfinit intgrl In mny rspcts, th oprtion of intgrtion tht w r studying hr is th invrs oprtion of drivtion. Dfinition.. Th function F is n ntidrivtiv (or primitiv) of th function

More information

UNIT # 08 (PART - I)

UNIT # 08 (PART - I) . r. d[h d[h.5 7.5 mol L S d[o d[so UNIT # 8 (PRT - I CHEMICL INETICS EXERCISE # 6. d[ x [ x [ x. r [X[C ' [X [[B r '[ [B [C. r [NO [Cl. d[so d[h.5 5 mol L S d[nh d[nh. 5. 6. r [ [B r [x [y r' [x [y r'

More information

Convergence Theorems for Two Iterative Methods. A stationary iterative method for solving the linear system: (1.1)

Convergence Theorems for Two Iterative Methods. A stationary iterative method for solving the linear system: (1.1) Conrgnc Thors for Two Itrt Mthods A sttonry trt thod for solng th lnr syst: Ax = b (.) ploys n trton trx B nd constnt ctor c so tht for gn strtng stt x of x for = 2... x Bx c + = +. (.2) For such n trton

More information

Static/Dynamic Deformation with Finite Element Method. Graphics & Media Lab Seoul National University

Static/Dynamic Deformation with Finite Element Method. Graphics & Media Lab Seoul National University Statc/Dynamc Dormaton wth Fnt Elmnt Mthod Graphcs & Mda Lab Sol Natonal Unvrsty Statc/Dynamc Dormaton Statc dormaton Dynamc dormaton ndormd shap ntrnal + = nrta = trnal dormd shap statc qlbrm dynamc qlbrm

More information

Last time: introduced our first computational model the DFA.

Last time: introduced our first computational model the DFA. Lctur 7 Homwork #7: 2.2.1, 2.2.2, 2.2.3 (hnd in c nd d), Misc: Givn: M, NFA Prov: (q,xy) * (p,y) iff (q,x) * (p,) (follow proof don in clss tody) Lst tim: introducd our first computtionl modl th DFA. Tody

More information

Discrete Shells Simulation

Discrete Shells Simulation Dscrt Shlls Smulaton Xaofng M hs proct s an mplmntaton of Grnspun s dscrt shlls, th modl of whch s govrnd by nonlnar mmbran and flxural nrgs. hs nrgs masur dffrncs btwns th undformd confguraton and th

More information

Walk Like a Mathematician Learning Task:

Walk Like a Mathematician Learning Task: Gori Dprtmnt of Euction Wlk Lik Mthmticin Lrnin Tsk: Mtrics llow us to prform mny usful mthmticl tsks which orinrily rquir lr numbr of computtions. Som typs of problms which cn b on fficintly with mtrics

More information

First derivative analysis

First derivative analysis Robrto s Nots on Dirntial Calculus Chaptr 8: Graphical analysis Sction First drivativ analysis What you nd to know alrady: How to us drivativs to idntiy th critical valus o a unction and its trm points

More information

This Week. Computer Graphics. Introduction. Introduction. Graphics Maths by Example. Graphics Maths by Example

This Week. Computer Graphics. Introduction. Introduction. Graphics Maths by Example. Graphics Maths by Example This Wk Computr Grphics Vctors nd Oprtions Vctor Arithmtic Gomtric Concpts Points, Lins nd Plns Eploiting Dot Products CSC 470 Computr Grphics 1 CSC 470 Computr Grphics 2 Introduction Introduction Wh do

More information

8-node quadrilateral element. Numerical integration

8-node quadrilateral element. Numerical integration Fnt Elmnt Mthod lctur nots _nod quadrlatral lmnt Pag of 0 -nod quadrlatral lmnt. Numrcal ntgraton h tchnqu usd for th formulaton of th lnar trangl can b formall tndd to construct quadrlatral lmnts as wll

More information

ERDOS-SMARANDACHE NUMBERS. Sabin Tabirca* Tatiana Tabirca**

ERDOS-SMARANDACHE NUMBERS. Sabin Tabirca* Tatiana Tabirca** ERDO-MARANDACHE NUMBER b Tbrc* Tt Tbrc** *Trslv Uvrsty of Brsov, Computr cc Dprtmt **Uvrsty of Mchstr, Computr cc Dprtmt Th strtg pot of ths rtcl s rprstd by rct work of Fch []. Bsd o two symptotc rsults

More information

3.4 Properties of the Stress Tensor

3.4 Properties of the Stress Tensor cto.4.4 Proprts of th trss sor.4. trss rasformato Lt th compots of th Cauchy strss tsor a coordat systm wth bas vctors b. h compots a scod coordat systm wth bas vctors j,, ar gv by th tsor trasformato

More information

Abstract Interpretation: concrete and abstract semantics

Abstract Interpretation: concrete and abstract semantics Abstract Intrprtation: concrt and abstract smantics Concrt smantics W considr a vry tiny languag that manags arithmtic oprations on intgrs valus. Th (concrt) smantics of th languags cab b dfind by th funzcion

More information

SAMPLE CSc 340 EXAM QUESTIONS WITH SOLUTIONS: part 2

SAMPLE CSc 340 EXAM QUESTIONS WITH SOLUTIONS: part 2 AMPLE C EXAM UETION WITH OLUTION: prt. It n sown tt l / wr.7888l. I Φ nots orul or pprotng t vlu o tn t n sown tt t trunton rror o ts pproton s o t or or so onstnts ; tt s Not tt / L Φ L.. Φ.. /. /.. Φ..787.

More information

Special Random Variables: Part 1

Special Random Variables: Part 1 Spcl Rndom Vrbls: Prt Dscrt Rndom Vrbls Brnoull Rndom Vrbl (wth prmtr p) Th rndom vrbl x dnots th succss from trl. Th probblty mss functon of th rndom vrbl X s gvn by p X () p X () p p ( E[X ]p Th momnt

More information

Basic Polyhedral theory

Basic Polyhedral theory Basic Polyhdral thory Th st P = { A b} is calld a polyhdron. Lmma 1. Eithr th systm A = b, b 0, 0 has a solution or thr is a vctorπ such that π A 0, πb < 0 Thr cass, if solution in top row dos not ist

More information

Quantum Mechanics & Spectroscopy Prof. Jason Goodpaster. Problem Set #2 ANSWER KEY (5 questions, 10 points)

Quantum Mechanics & Spectroscopy Prof. Jason Goodpaster. Problem Set #2 ANSWER KEY (5 questions, 10 points) Chm 5 Problm St # ANSWER KEY 5 qustios, poits Qutum Mchics & Spctroscopy Prof. Jso Goodpstr Du ridy, b. 6 S th lst pgs for possibly usful costts, qutios d itgrls. Ths will lso b icludd o our futur ms..

More information

Rate of Molecular Exchange Through the Membranes of Ionic Liquid Filled. Polymersomes Dispersed in Water

Rate of Molecular Exchange Through the Membranes of Ionic Liquid Filled. Polymersomes Dispersed in Water Supportng Informton for: Rt of Molculr Exchng hrough th Mmrns of Ionc Lqud Flld olymrsoms Dsprsd n Wtr Soonyong So nd mothy. Lodg *,, Dprtmnt of Chmcl Engnrng & Mtrls Scnc nd Dprtmnt of Chmstry, Unvrsty

More information

Lecture 20: Minimum Spanning Trees (CLRS 23)

Lecture 20: Minimum Spanning Trees (CLRS 23) Ltur 0: Mnmum Spnnn Trs (CLRS 3) Jun, 00 Grps Lst tm w n (wt) rps (unrt/rt) n ntrou s rp voulry (vrtx,, r, pt, onnt omponnts,... ) W lso suss jny lst n jny mtrx rprsntton W wll us jny lst rprsntton unlss

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

Depth First Search. Yufei Tao. Department of Computer Science and Engineering Chinese University of Hong Kong

Depth First Search. Yufei Tao. Department of Computer Science and Engineering Chinese University of Hong Kong Dprtmnt o Computr Sn n Ennrn Cns Unvrsty o Hon Kon W v lry lrn rt rst sr (BFS). Toy, w wll suss ts sstr vrson : t pt rst sr (DFS) lortm. Our susson wll on n ous on rt rps, us t xtnson to unrt rps s strtorwr.

More information

Lucas Test is based on Euler s theorem which states that if n is any integer and a is coprime to n, then a φ(n) 1modn.

Lucas Test is based on Euler s theorem which states that if n is any integer and a is coprime to n, then a φ(n) 1modn. Modul 10 Addtonal Topcs 10.1 Lctur 1 Prambl: Dtrmnng whthr a gvn ntgr s prm or compost s known as prmalty tstng. Thr ar prmalty tsts whch mrly tll us whthr a gvn ntgr s prm or not, wthout gvng us th factors

More information

In which direction do compass needles always align? Why?

In which direction do compass needles always align? Why? AQA Trloy Unt 6.7 Mntsm n Eltromntsm - Hr 1 Complt t p ll: Mnt or s typ o or n t s stronst t t o t mnt. Tr r two typs o mnt pol: n. Wrt wt woul ppn twn t pols n o t mnt ntrtons low: Drw t mnt l lns on

More information

Finite Strain Elastic-Viscoplastic Model

Finite Strain Elastic-Viscoplastic Model Finit Strain Elastic-Viscoplastic Modl Pinksh Malhotra Mchanics of Solids,Brown Univrsity Introduction Th main goal of th projct is to modl finit strain rat-dpndnt plasticity using a modl compatibl for

More information

PH427/PH527: Periodic systems Spring Overview of the PH427 website (syllabus, assignments etc.) 2. Coupled oscillations.

PH427/PH527: Periodic systems Spring Overview of the PH427 website (syllabus, assignments etc.) 2. Coupled oscillations. Dy : Mondy 5 inuts. Ovrviw of th PH47 wsit (syllus, ssignnts tc.). Coupld oscilltions W gin with sss coupld y Hook's Lw springs nd find th possil longitudinl) otion of such syst. W ll xtnd this to finit

More information

Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1

Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1 Prctic qustions W now tht th prmtr p is dirctl rltd to th mplitud; thrfor, w cn find tht p. cos d [ sin ] sin sin Not: Evn though ou might not now how to find th prmtr in prt, it is lws dvisl to procd

More information

FOURIER SERIES. Series expansions are a ubiquitous tool of science and engineering. The kinds of

FOURIER SERIES. Series expansions are a ubiquitous tool of science and engineering. The kinds of Do Bgyoko () FOURIER SERIES I. INTRODUCTION Srs psos r ubqutous too o scc d grg. Th kds o pso to utz dpd o () th proprts o th uctos to b studd d (b) th proprts or chrctrstcs o th systm udr vstgto. Powr

More information

Lecture contents. Bloch theorem k-vector Brillouin zone Almost free-electron model Bands Effective mass Holes. NNSE 508 EM Lecture #9

Lecture contents. Bloch theorem k-vector Brillouin zone Almost free-electron model Bands Effective mass Holes. NNSE 508 EM Lecture #9 Lctur contnts Bloch thorm -vctor Brillouin zon Almost fr-lctron modl Bnds ffctiv mss Hols Trnsltionl symmtry: Bloch thorm On-lctron Schrödingr qution ch stt cn ccommo up to lctrons: If Vr is priodic function:

More information

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata CSE303 - Introduction to th Thory of Computing Smpl Solutions for Exrciss on Finit Automt Exrcis 2.1.1 A dtrministic finit utomton M ccpts th mpty string (i.., L(M)) if nd only if its initil stt is finl

More information

AS 5850 Finite Element Analysis

AS 5850 Finite Element Analysis AS 5850 Finit Elmnt Analysis Two-Dimnsional Linar Elasticity Instructor Prof. IIT Madras Equations of Plan Elasticity - 1 displacmnt fild strain- displacmnt rlations (infinitsimal strain) in matrix form

More information

Limits Indeterminate Forms and L Hospital s Rule

Limits Indeterminate Forms and L Hospital s Rule Limits Indtrmint Forms nd L Hospitl s Rul I Indtrmint Form o th Tp W hv prviousl studid its with th indtrmint orm s shown in th ollowin mpls: Empl : Empl : tn [Not: W us th ivn it ] Empl : 8 h 8 [Not:

More information

Constructive Geometric Constraint Solving

Constructive Geometric Constraint Solving Construtiv Gomtri Constrint Solving Antoni Soto i Rir Dprtmnt Llngutgs i Sistms Inormàtis Univrsitt Politèni Ctluny Brlon, Sptmr 2002 CGCS p.1/37 Prliminris CGCS p.2/37 Gomtri onstrint prolm C 2 D L BC

More information

b.) v d =? Example 2 l = 50 m, D = 1.0 mm, E = 6 V, " = 1.72 #10 $8 % & m, and r = 0.5 % a.) R =? c.) V ab =? a.) R eq =?

b.) v d =? Example 2 l = 50 m, D = 1.0 mm, E = 6 V,  = 1.72 #10 $8 % & m, and r = 0.5 % a.) R =? c.) V ab =? a.) R eq =? xmpl : An 8-gug oppr wr hs nomnl mtr o. mm. Ths wr rrs onstnt urrnt o.67 A to W lmp. Th nsty o r ltrons s 8.5 x 8 ltrons pr u mtr. Fn th mgntu o. th urrnt nsty. th rt vloty xmpl D. mm,.67 A, n N 8.5" 8

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY HAYSTACK OBSERVATORY WESTFORD, MASSACHUSETTS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY HAYSTACK OBSERVATORY WESTFORD, MASSACHUSETTS VSRT MEMO #05 MASSACHUSETTS INSTITUTE OF TECHNOLOGY HAYSTACK OBSERVATORY WESTFORD, MASSACHUSETTS 01886 Fbrury 3, 009 Tlphon: 781-981-507 Fx: 781-981-0590 To: VSRT Group From: Aln E.E. Rogrs Subjct: Simplifid

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

Name: SID: Discussion Session:

Name: SID: Discussion Session: Nme: SID: Dscusson Sesson: hemcl Engneerng hermodynmcs -- Fll 008 uesdy, Octoer, 008 Merm I - 70 mnutes 00 onts otl losed Book nd Notes (5 ponts). onsder n del gs wth constnt het cpctes. Indcte whether

More information

Fractions. Mathletics Instant Workbooks. Simplify. Copyright

Fractions. Mathletics Instant Workbooks. Simplify. Copyright Frctons Stunt Book - Srs H- Smplfy + Mthltcs Instnt Workbooks Copyrht Frctons Stunt Book - Srs H Contnts Topcs Topc - Equvlnt frctons Topc - Smplfyn frctons Topc - Propr frctons, mpropr frctons n mx numbrs

More information

CONTINUITY AND DIFFERENTIABILITY

CONTINUITY AND DIFFERENTIABILITY MCD CONTINUITY AND DIFFERENTIABILITY NCERT Solvd mpls upto th sction 5 (Introduction) nd 5 (Continuity) : Empl : Chck th continuity of th function f givn by f() = + t = Empl : Emin whthr th function f

More information

Magnetic Suspension System Control Using Jacobian and Input State Linearisation. D. Giaouris, J.W. Finch

Magnetic Suspension System Control Using Jacobian and Input State Linearisation. D. Giaouris, J.W. Finch Mntc Sspnson Systm Control Usn Jcobn n Inpt Stt nrston D. Gors J.W. Fnch School o Elctrcl Elctronc & Comptr Ennrn Unvrsty o Nwcstl pon Tyn Nwcstl pon Tyn NE 7RU UK mls: Dmn.Gors@ncl.c. j.w.nch@ncl.c. BSTRCT

More information

1. Stefan-Boltzmann law states that the power emitted per unit area of the surface of a black

1. Stefan-Boltzmann law states that the power emitted per unit area of the surface of a black Stf-Boltzm lw stts tht th powr mttd pr ut r of th surfc of blck body s proportol to th fourth powr of th bsolut tmprtur: 4 S T whr T s th bsolut tmprtur d th Stf-Boltzm costt= 5 4 k B 3 5c h ( Clcult 5

More information

Journal of Theoretical and Applied Information Technology 10 th January Vol. 47 No JATIT & LLS. All rights reserved.

Journal of Theoretical and Applied Information Technology 10 th January Vol. 47 No JATIT & LLS. All rights reserved. Journal o Thortcal and Appld Inormaton Tchnology th January 3. Vol. 47 No. 5-3 JATIT & LLS. All rghts rsrvd. ISSN: 99-8645 www.att.org E-ISSN: 87-395 RESEARCH ON PROPERTIES OF E-PARTIAL DERIVATIVE OF LOGIC

More information

The physics models. Chapter Outline

The physics models. Chapter Outline yscs modls Ctr Outln. Ht low undmntls 2.. Bsc qutons 2..2 Boundry condtons 2..3 Wk orms o t trml quton 3..4 s unctons or FEM 3..5 Formultons n mtrx orm 4..6 nonlnrty n trml nlyss 5..7 Stblzton mtod or

More information

Having a glimpse of some of the possibilities for solutions of linear systems, we move to methods of finding these solutions. The basic idea we shall

Having a glimpse of some of the possibilities for solutions of linear systems, we move to methods of finding these solutions. The basic idea we shall Hvn lps o so o t posslts or solutons o lnr systs, w ov to tos o nn ts solutons. T s w sll us s to try to sply t syst y lntn so o t vrls n so ts qutons. Tus, w rr to t to s lnton. T prry oprton nvolv s

More information

Appendix. Each partner receives an equal share of the total efforts, N

Appendix. Each partner receives an equal share of the total efforts, N Appndx In ths ppndx w provd th thortcl rsults on whch our hypothss n th mn ppr r bsd on. Frst w dscrb th modl st-up. roposton nd r lrdy shown by Kndl nd Lzr 99. Th rsults o roposton 3 nd 4 r nw nd show

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

Derivation of Eigenvalue Matrix Equations

Derivation of Eigenvalue Matrix Equations Drivation of Eignvalu Matrix Equations h scalar wav quations ar φ φ η + ( k + 0ξ η β ) φ 0 x y x pq ε r r whr for E mod E, 1, y pq φ φ x 1 1 ε r nr (4 36) for E mod H,, 1 x η η ξ ξ n [ N ] { } i i i 1

More information

Direct Approach for Discrete Systems One-Dimensional Elements

Direct Approach for Discrete Systems One-Dimensional Elements CONTINUUM & FINITE ELEMENT METHOD Dirct Approach or Discrt Systms On-Dimnsional Elmnts Pro. Song Jin Par Mchanical Enginring, POSTECH Dirct Approach or Discrt Systms Dirct approach has th ollowing aturs:

More information

Section 11.6: Directional Derivatives and the Gradient Vector

Section 11.6: Directional Derivatives and the Gradient Vector Sction.6: Dirctional Drivativs and th Gradint Vctor Practic HW rom Stwart Ttbook not to hand in p. 778 # -4 p. 799 # 4-5 7 9 9 35 37 odd Th Dirctional Drivativ Rcall that a b Slop o th tangnt lin to th

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

Chapter 5. Introduction. Introduction. Introduction. Finite Element Modelling. Finite Element Modelling

Chapter 5. Introduction. Introduction. Introduction. Finite Element Modelling. Finite Element Modelling Chaptr 5 wo-dimnsional problms using Constant Strain riangls (CS) Lctur Nots Dr Mohd Andi Univrsiti Malasia Prlis EN7 Finit Elmnt Analsis Introction wo-dimnsional init lmnt ormulation ollows th stps usd

More information

Note If the candidate believes that e x = 0 solves to x = 0 or gives an extra solution of x = 0, then withhold the final accuracy mark.

Note If the candidate believes that e x = 0 solves to x = 0 or gives an extra solution of x = 0, then withhold the final accuracy mark. . (a) Eithr y = or ( 0, ) (b) Whn =, y = ( 0 + ) = 0 = 0 ( + ) = 0 ( )( ) = 0 Eithr = (for possibly abov) or = A 3. Not If th candidat blivs that = 0 solvs to = 0 or givs an tra solution of = 0, thn withhold

More information

Elliptical motion, gravity, etc

Elliptical motion, gravity, etc FW Physics 130 G:\130 lctur\ch 13 Elliticl motion.docx g 1 of 7 11/3/010; 6:40 PM; Lst rintd 11/3/010 6:40:00 PM Fig. 1 Elliticl motion, grvity, tc minor xis mjor xis F 1 =A F =B C - D, mjor nd minor xs

More information

Improving Union. Implementation. Union-by-size Code. Union-by-Size Find Analysis. Path Compression! Improving Find find(e)

Improving Union. Implementation. Union-by-size Code. Union-by-Size Find Analysis. Path Compression! Improving Find find(e) POW CSE 36: Dt Struturs Top #10 T Dynm (Equvln) Duo: Unon-y-Sz & Pt Comprsson Wk!! Luk MDowll Summr Qurtr 003 M! ZING Wt s Goo Mz? Mz Construton lortm Gvn: ollton o rooms V Conntons twn t rooms (ntlly

More information

Heisenberg Model. Sayed Mohammad Mahdi Sadrnezhaad. Supervisor: Prof. Abdollah Langari

Heisenberg Model. Sayed Mohammad Mahdi Sadrnezhaad. Supervisor: Prof. Abdollah Langari snbrg Modl Sad Mohammad Mahd Sadrnhaad Survsor: Prof. bdollah Langar bstract: n ths rsarch w tr to calculat analtcall gnvalus and gnvctors of fnt chan wth ½-sn artcls snbrg modl. W drov gnfuctons for closd

More information

COMP108 Algorithmic Foundations

COMP108 Algorithmic Foundations Grdy mthods Prudn Wong http://www.s.liv..uk/~pwong/thing/omp108/01617 Coin Chng Prolm Suppos w hv 3 typs of oins 10p 0p 50p Minimum numr of oins to mk 0.8, 1.0, 1.? Grdy mthod Lrning outoms Undrstnd wht

More information

CS September 2018

CS September 2018 Loil los Distriut Systms 06. Loil los Assin squn numrs to msss All ooprtin prosss n r on orr o vnts vs. physil los: rport tim o y Assum no ntrl tim sour Eh systm mintins its own lol lo No totl orrin o

More information

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC Introducton Rnk One Updte And the Google Mtrx y Al Bernsten Sgnl Scence, LLC www.sgnlscence.net here re two dfferent wys to perform mtrx multplctons. he frst uses dot product formulton nd the second uses

More information

Jones vector & matrices

Jones vector & matrices Jons vctor & matrcs PY3 Colást na hollscol Corcagh, Ér Unvrst Collg Cork, Irland Dpartmnt of Phscs Matr tratmnt of polarzaton Consdr a lght ra wth an nstantanous -vctor as shown k, t ˆ k, t ˆ k t, o o

More information

EEO 401 Digital Signal Processing Prof. Mark Fowler

EEO 401 Digital Signal Processing Prof. Mark Fowler EEO 401 Digital Signal Procssing Prof. Mark Fowlr Dtails of th ot St #19 Rading Assignmnt: Sct. 7.1.2, 7.1.3, & 7.2 of Proakis & Manolakis Dfinition of th So Givn signal data points x[n] for n = 0,, -1

More information

Higher-Order Discrete Calculus Methods

Higher-Order Discrete Calculus Methods Highr-Ordr Discrt Calculus Mthods J. Blair Prot V. Subramanian Ralistic Practical, Cost-ctiv, Physically Accurat Paralll, Moving Msh, Complx Gomtry, Slid 1 Contxt Discrt Calculus Mthods Finit Dirnc Mimtic

More information

September 27, Introduction to Ordinary Differential Equations. ME 501A Seminar in Engineering Analysis Page 1. Outline

September 27, Introduction to Ordinary Differential Equations. ME 501A Seminar in Engineering Analysis Page 1. Outline Introucton to Ornar Dffrntal Equatons Sptmbr 7, 7 Introucton to Ornar Dffrntal Equatons Larr artto Mchancal Engnrng AB Smnar n Engnrng Analss Sptmbr 7, 7 Outln Rvw numrcal solutons Bascs of ffrntal quatons

More information

UNTYPED LAMBDA CALCULUS (II)

UNTYPED LAMBDA CALCULUS (II) 1 UNTYPED LAMBDA CALCULUS (II) RECALL: CALL-BY-VALUE O.S. Basic rul Sarch ruls: (\x.) v [v/x] 1 1 1 1 v v CALL-BY-VALUE EVALUATION EXAMPLE (\x. x x) (\y. y) x x [\y. y / x] = (\y. y) (\y. y) y [\y. y /

More information

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018 CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II COLLECTION OF SUPPLEMENTARY PROBLEMS I. CHAPTER 6 --- Trscdtl Fuctios CALCULUS II A. FROM CALCULUS BY J. STEWART:. ( How is th umbr dfid? ( Wht is pproimt vlu for? (c ) Sktch th grph of th turl potil fuctios.

More information

FINITE ELEMENT ANALYSIS OF

FINITE ELEMENT ANALYSIS OF FINIT LMNT NLYSIS OF D MODL PROBLM WITH SINGL VRIBL Fnt lmnt modl dvlopmnt of lnr D modl dffrntl qton nvolvng sngl dpndnt nknown govrnng qtons F modl dvlopmnt wk form. JN Rddy Modlqn D - GOVRNING TION

More information

Multi-Section Coupled Line Couplers

Multi-Section Coupled Line Couplers /0/009 MultiSction Coupld Lin Couplrs /8 Multi-Sction Coupld Lin Couplrs W cn dd multipl coupld lins in sris to incrs couplr ndwidth. Figur 7.5 (p. 6) An N-sction coupld lin l W typiclly dsign th couplr

More information

Electrical Systems Peter Avitabile Mechanical Engineering Department University of Massachusetts Lowell

Electrical Systems Peter Avitabile Mechanical Engineering Department University of Massachusetts Lowell Elctrcl Systms Ptr Avtbl Mchncl Engnrng Dprtmnt Unvrsty of Msschustts owll.45 Dynmc Systms Elctrcl Dr. Ptr Avtbl Modl Anlyss & Controls bortory Elctrcl Systms Pssv Elctrcl Elmnts sstor, Inductor, Cpctor

More information

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths. How os it work? Pl vlu o imls rprsnt prts o whol numr or ojt # 0 000 Tns o thousns # 000 # 00 Thousns Hunrs Tns Ons # 0 Diml point st iml pl: ' 0 # 0 on tnth n iml pl: ' 0 # 00 on hunrth r iml pl: ' 0

More information

Grand Canonical Ensemble

Grand Canonical Ensemble Th nsmbl of systms mmrsd n a partcl-hat rsrvor at constant tmpratur T, prssur P, and chmcal potntal. Consdr an nsmbl of M dntcal systms (M =,, 3,...M).. Thy ar mutually sharng th total numbr of partcls

More information

Consider a system of 2 simultaneous first order linear equations

Consider a system of 2 simultaneous first order linear equations Soluon of sysms of frs ordr lnar quaons onsdr a sysm of smulanous frs ordr lnar quaons a b c d I has h alrna mar-vcor rprsnaon a b c d Or, n shorhand A, f A s alrady known from con W know ha h abov sysm

More information

Designing A Concrete Arch Bridge

Designing A Concrete Arch Bridge This is th mous Shwnh ri in Switzrln, sin y Rort Millrt in 1933. It spns 37.4 mtrs (122 t) n ws sin usin th sm rphil mths tht will monstrt in this lsson. To pro with this lsson, lik on th Nxt utton hr

More information

this is called an indeterninateformof-oior.fi?afleleitns derivatives can now differentiable and give 0 on on open interval containing I agree to.

this is called an indeterninateformof-oior.fi?afleleitns derivatives can now differentiable and give 0 on on open interval containing I agree to. hl sidd r L Hospitl s Rul 11/7/18 Pronouncd Loh mtims splld Non p t mtims w wnt vlut limit ii m itn ) but irst indtrnintmori?lltns indtrmint t inn gl in which cs th clld n i 9kt ti not ncssrily snsign

More information