8. Linear Contracts under Risk Neutrality

Size: px
Start display at page:

Download "8. Linear Contracts under Risk Neutrality"

Transcription

1 8. Lnr Contrcts undr Rsk Nutrlty Lnr contrcts r th smplst form of contrcts nd thy r vry populr n pplctons. Thy offr smpl ncntv mchnsm. Exmpls of lnr contrcts r mny: contrctul jont vnturs, quty jont vnturs, crop-shrng contrcts, nd fxd-prc contrcts, tc. Km nd Wng (998), nd Wng nd Zhu (005) provd som of th bst rfrncs. A ky thortcl quston s: undr wht condtons s lnr contrct optml? Whn both prts n contrctul rltonshp r rsk nutrl, w sy thr s doubl rsk nutrlty; smlrly, whn both prts n contrctul rltonshp hv morl hzrd, w sy thr s doubl morl hzrd. Ths scton shows tht, wth morl hzrd nd uncrtnty, lnr contrct cn b optml only undr doubl rsk nutrlty, nd t cn b th frst bst only undr sngl morl hzrd. From (.), w know tht th optml contrct s gnrlly nonlnr f on of th prts s rsk vrs. For xmpl, f th prncpl s rsk nutrl wth utlty functon uz ( ) = z for ll z, thn (.) mpls é - - æ ( ) f ( x; ) ö ù s ( x) = u l m ç +. çè f( x; ) ø êë úû For som populr output dstrbutons, f ( x; )/ f( x; ) s lnr n x. For xmpl, f output follows th norml dstrbuton Ns (, ), thn f ( x; )/ f( x; ) = ( x- )/ s. If tht s th cs, th optml contrct s nonlnr for rsk-vrs gnt. Hnc, to fnd optml lnr contrcts, w ssum doubl rsk nutrlty n ths scton nd spcfy utlty functons uz ( ) = z nd vz ( ) = z, for ll z Î, for th gnt nd prncpl, rspctvly. 8.. Sngl Morl Hzrd Lt b th gnt s ffort nd f( x; ) b th dnsty functon of output x. Lt R( ) b th xpctd rvnu R( ) = xf( x; ) dx. Th Frst Bst Wth vrfbl ffort, th prncpl offrs contrct of th form ( s, ()). Hnc, th prncpl s problm s p = mx [ x-s( x)] f( x; ) dx st.. s( x) f( x; ) dx³ c( ) Pg 8 of 66

2 Snc th IR condton must b bndng, ths problm bcoms problm of socl wlfr mxmzton: p = mx R ( ) -c ( ) -u st.. s( x) f( x; ) dx³ c( ) Snc th prncpl s objctv functon s ndpndnt of th contrct s( x ), ths problm cn b solvd n two stps. Frst, by mxmzng R( ) -c( ) - u, th frst-bst ffort s dtrmnd by R ( ) = c ( ). Scond, gvn th optml ffort, n optml contrct wll hv to stsfy th IR condton only. To fnd n optml contrct, consdr fxd contrct sx ( ) = g. By th bndng IR con- dton, s ( x) = c( ) + u s such contrct. Ths s frst-bst contrct snc t supports th frst-bst ffort. Th Scond Bst Wth unvrfbl ffort, th prncpl wll stll offr contrct of th form ( s, ()). But th prncpl hs to provd ncntvs for th gnt to ccpt ths. For ths purpos, n IC s ntroducd. Hnc, th prncpl s problm s p = mx [ x-s( x)] f( x; ) dx st.. IC : s( x) f ( x; ) dx = c ( ) IR: s( x) f( x; ) dx³ c( ) Snc th IR condton must b bndng, ths problm bcoms problm of socl wlfr mxmzton: p = mx R ( ) -c ( ) -u st.. IC : s( x) f ( x; ) dx = c ( ) IR: s( x) f( x; ) dx= c( ) (.4) Snc th prncpl s objctv functon s ndpndnt of s( x ), ths problm cn b solvd n two stps. Frst, by mxmzng R( ) -c( ) - u, th scond-bst ffort s dtrmnd by R ( ) = c ( ), Pg 9 of 66

3 mplyng =. Scond, gvn th optml ffort, n optml contrct wll hv to stsfy th IC nd IR condtons only. W cn fnd mny contrcts tht cn stsfy ths condtons for gvn. For lnr contrct sx ( ) = bx+ g, th IC nd IR condtons bcom whch mply Ths sx ( ) b xf ( x; ) dx = c ( ), b xf ( x; ) dx + g = c( ) + u, c ( ) b = =, g = u + c( )- br( ) =- p. R ( ) = bx+ g s scond-bst contrct snc t supports th scond-bst ffort. Proposton.4. Wth sngl morl hzrd nd doubl rsk nutrlty, th lnr contrct s ( x) = x- p s optml, mplyng th frst-bst ffort. Intrstngly, ths soluton cn b mplmntd by chng of ownrshp: th prncpl cn smply sll th frm to th gnt for pymnt p. Whn th gnt s th ownr, th ncntv problm dspprs. Ths soluton lds to n mportnt d: ncntv problms my b solvd through n orgnztonl pproch. Cors (960) contrbuts prcsly by proposng ths d. Howvr, n ths chptr, s w mntond t th bgnnng, ll contrcts r trtd s complt contrcts. Wth complt contrcts, n ownrshp trnsfr s not llowd. W wll llow ownrshp trnsfrs from th nxt chptr onwrds whn w us ncomplt contrcts. 8.. Doubl Morl Hzrd W hv so fr llowd th gnt to nvst only. In ths subscton, w llow both prts n jont vntur to nvst. Consdr two gnts, M nd M, nggd n jont projct. Efforts (nvstmnts) nd rspctvly from M nd M r prvt nformton. Lt b th ffort spc. Lt c ( ) nd c( ) b th prvt costs of ffort. Lt h = h(, ) b th jont ffort, nd x = X( w, h) b th x post rvnu dpndng on th stt w nd jont ffort h. Lt x follow dnsty functon f( x, h) x nt. Thus, th xpctd rvnu s R(, ) º xf[ x; h(, )] dx. Assumpton.7. h (, ) s strctly ncrsng n nd. Assumpton.8. c( ) nd c( ) r convx nd strctly ncrsng. Assumpton.9. R(, ) s concv nd strctly ncrsng n nd. Pg 30 of 66

4 Gvn contrct [ s( x), s( x)] tht spcfs pymnts s ( x ) nd s ( ) x to gnts nd, rspctvly, th two gnts ply Nsh gm to dtrmn thr fforts. In othr words, gvn, gnt chooss hs ffort by mxmzng hs own xpctd utlty: mx s ( x) f[ x; h(, )] dx- c ( ), ÎE whch mpls th FOC nd SOC: h s ( x) f [ x; h(, )] dx = c ( ), h h s ( x) f [ x; h(, )] dx+ ( h ) s ( x) f [ x; h(, )] dx< c h hh Smlrly, gvn, gnt chooss hs ffort by mxmzng hs own utlty. Assum tht contrctng ngotton lds to socl wlfr mxmum. Ths ssumpton s stndrd n th ltrtur nd s mposd on ny ngotton outcom. Thn th problm of mxmzng socl wlfr cn b wrttn s V = mx R(, ) -c ( ) -c ( ) s Î S,, Î st.. IC : h s ( x) f [ x; h(, )] dx= c ( ), h IC : h s( x) fh[ x; h(, )] dx= c ( ), SOC:for, SOC :for, RC : s ( x) + s ( x) = x, for ll x Î, + (.4) whr th lst constrnt s th rsourc constrnt (RC). Snc w llow fxd trnsfr n th contrct, IR condtons r unncssry. Th frst-bst problm s mx R (, ) -c( ) -c( ), Î s.t. RC : s ( x) + s ( x) = x, for ll x Î, + whr th contrct nds to stsfy RC only. Proposton.5. Undr Assumptons.7.9, wth doubl morl hzrd nd doubl rsk nutrlty, thr xsts lnr output-shrng rul s ( x) = x, Pg 3 of 66

5 whr c ( ) =, R ( ), tht nducs th scond-bst fforts > 0 dtrmnd by mx R (, ) -c( ) -c( ), Î h (, ) st.. R (, ) = c ( ) + c h (, ) In ddton, 0< <, nd th frst-bst outcom s not obtnbl. Proof. Condtons IC nd IC mply 6 So th problm s quvlnt to h (, ) R (, ) = c ( ) + c sî S,, ÎE h (, ) mx R (, ) -c( ) -c( ) h (, ) st.. R (, ) = c ( ) + c ( ), h (, ) IC, SOC, SOC, RC. (.43) (.44) Ths problm cn b solvd n two stps. Frst, w fnd soluton (, ) from th followng problm: mx R (, ) -c( ) -c( ), ÎE h (, ) st.. R (, ) = c ( ) + c, h( ) (.45) Ths problm s not rltd to contrct. Scond, gvn (, ), w look for contrct s ( x ) tht stsfs IC, SOC, SOC nd RC. Thr r mny such contrcts. Consdr smpl shrng contrct of th form s( x) = x for =, wth c ( ) =. R (, ) It s sy to vrfy tht ths contrct stsfs IC. For RC, by (.43), w hv c c R + =. h h h Thus, 6 Also: h (, ) R (, ) = c ( ) + c h (, ) Pg 3 of 66

6 c c c c R R + = + = + = = =. R R R h xfhdx h xfhdx h xfhdx Condtons IC nd RC hv now bn vrfd. Snc > 0 for both = nd, w must hv 0< <. Furthr, for contrct s( x) = x, w hv ( ) [ ; (, )] = [ ; (, )] = (, ) 0. s x f x h dx xf x h dx R Hnc, by Assumpton.8 nd Assumpton.9, condton SOC s stsfd. Condton SOC cn lso b vrfd smlrly. Fnlly, snc th frst-bst soluton (, ) stsfs R (, ) = c ( ) = c ( ), by condton (.43), th soluton (, ) of problm (.45) cnnot b th frst bst. Th proposton s thus provn. Q.E.D. Th modl n (.4) s modl of two qul prtnrs. An ltrntv stup s prncplgnt modl. If on of th gnts, sy M, s th prncpl nd th othr s th gnt, w nd to dd n IR condton of th form s ( x) f[ x; h(, )] dx- c ( ) ³ u for th gnt nto problm (.4). In ths cs, Proposton.5 stll holds xcpt tht th optml contrct s lnr contrct wth th form s ( x) = x+ b, whr b s dtrmnd by th IR condton. In summry, n optml lnr contrct xsts undr doubl rsk nutrlty; t s th frst bst undr sngl morl hzrd nd t s th scond bst undr doubl morl hzrd. Exmpl.3. Consdr th followng prmtrc cs: h, = +, X h = Ah, c =, ( ) m m ( ) ( ) / whr m, m > 0, A s rndom vrbl wth A > 0 nd E( A ) =. Th scond-bst soluton s Th frst-bst soluton s Q.E.D. 3 3 m + m m + m m + m m m m =, =, =. = m, = m. Pg 33 of 66

7 Thr s no problm of rsk shrng n modl undr doubl rsk nutrlty snc both prts cr bout xpctd ncoms only. Hnc, undr sngl morl hzrd, whn sngl mchnsm ( contrct) s suffcnt to hndl th ncntv problm, th optml soluton chvs th frst bst. Howvr, undr doubl morl hzrd, whn sngl mchnsm s not suffcnt to hndl th two ncntv problms, th optml soluton cnnot chv th frst bst. For th optml lnr soluton n Proposton.5, th vlu of rflcts th rltv mportnc of plyr n th projct. Exmpl.3 ndd shows ths, whr ndvdul s mrgnl contrbuton to th projct s rprsntd by th prmtr m nd th output shr ndd rflcts hs mportnc. Bhttchryy nd Lfontn (995) r th frst to provd such rsult n Proposton.5. Thr rsult s for spcl output procss of th form x = h+ wth spcl dstrbuton functon F( xh ; ) = F ( x-h), whr s rndom shock wth dstrbuton functon F. Km nd Wng (998) r th frst to provd ths gnrl thory on optml lnr contrcts, wth Wng nd Zhu (005) provdng th proof for t. Th optmlty of lnr contrcts n ths scton s bsd on rsk nutrlty. Wthout doubl rsk nutrlty, lnr contrcts r gnrlly not optml. Howvr, lnr contrcts r vry populr n rlty nd most prts nvolvd r lkly to b rsk vrs. Ths s puzzlng wthn th frmwork of complt contrcts. Our thory of ncomplt contrcts n Chptr wll provd rsoluton to ths puzzl. Lnr contrcts must b optml ncomplt contrcts. Pg 34 of 66

A general N-dimensional vector consists of N values. They can be arranged as a column or a row and can be real or complex.

A general N-dimensional vector consists of N values. They can be arranged as a column or a row and can be real or complex. Lnr lgr Vctors gnrl -dmnsonl ctor conssts of lus h cn rrngd s column or row nd cn rl or compl Rcll -dmnsonl ctor cn rprsnt poston, loct, or cclrton Lt & k,, unt ctors long,, & rspctl nd lt k h th componnts

More information

Convergence Theorems for Two Iterative Methods. A stationary iterative method for solving the linear system: (1.1)

Convergence Theorems for Two Iterative Methods. A stationary iterative method for solving the linear system: (1.1) Conrgnc Thors for Two Itrt Mthods A sttonry trt thod for solng th lnr syst: Ax = b (.) ploys n trton trx B nd constnt ctor c so tht for gn strtng stt x of x for = 2... x Bx c + = +. (.2) For such n trton

More information

Preview. Graph. Graph. Graph. Graph Representation. Graph Representation 12/3/2018. Graph Graph Representation Graph Search Algorithms

Preview. Graph. Graph. Graph. Graph Representation. Graph Representation 12/3/2018. Graph Graph Representation Graph Search Algorithms /3/0 Prvw Grph Grph Rprsntton Grph Srch Algorthms Brdth Frst Srch Corrctnss of BFS Dpth Frst Srch Mnmum Spnnng Tr Kruskl s lgorthm Grph Drctd grph (or dgrph) G = (V, E) V: St of vrt (nod) E: St of dgs

More information

Minimum Spanning Trees

Minimum Spanning Trees Mnmum Spnnng Trs Spnnng Tr A tr (.., connctd, cyclc grph) whch contns ll th vrtcs of th grph Mnmum Spnnng Tr Spnnng tr wth th mnmum sum of wghts 1 1 Spnnng forst If grph s not connctd, thn thr s spnnng

More information

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, *

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, * CmSc 365 Thory of Computtion Finit Stt Automt nd Rgulr Exprssions (Chptr 2, Sction 2.3) ALPHABET oprtions: U, conctntion, * otin otin Strings Form Rgulr xprssions dscri Closd undr U, conctntion nd * (if

More information

Errata for Second Edition, First Printing

Errata for Second Edition, First Printing Errt for Scond Edition, First Printing pg 68, lin 1: z=.67 should b z=.44 pg 1: Eqution (.63) should rd B( R) = x= R = θ ( x R) p( x) R 1 x= [1 G( x)] = θp( R) + ( θ R)[1 G( R)] pg 15, problm 6: dmnd of

More information

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II Mcroeconomc Theory I UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS MSc n Economcs MICROECONOMIC THEORY I Techng: A Lptns (Note: The number of ndctes exercse s dffculty level) ()True or flse? If V( y )

More information

Filter Design Techniques

Filter Design Techniques Fltr Dsgn chnqus Fltr Fltr s systm tht psss crtn frquncy componnts n totlly rcts ll othrs Stgs of th sgn fltr Spcfcton of th sr proprts of th systm ppromton of th spcfcton usng cusl scrt-tm systm Rlzton

More information

Errata for Second Edition, First Printing

Errata for Second Edition, First Printing Errt for Scond Edition, First Printing pg 68, lin 1: z=.67 should b z=.44 pg 71: Eqution (.3) should rd B( R) = θ R 1 x= [1 G( x)] pg 1: Eqution (.63) should rd B( R) = x= R = θ ( x R) p( x) R 1 x= [1

More information

Appendix. Each partner receives an equal share of the total efforts, N

Appendix. Each partner receives an equal share of the total efforts, N Appndx In ths ppndx w provd th thortcl rsults on whch our hypothss n th mn ppr r bsd on. Frst w dscrb th modl st-up. roposton nd r lrdy shown by Kndl nd Lzr 99. Th rsults o roposton 3 nd 4 r nw nd show

More information

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture:

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture: Lctur 11 Wvs in Priodic Potntils Tody: 1. Invrs lttic dfinition in 1D.. rphicl rprsnttion of priodic nd -priodic functions using th -xis nd invrs lttic vctors. 3. Sris solutions to th priodic potntil Hmiltonin

More information

te Finance (4th Edition), July 2017.

te Finance (4th Edition), July 2017. Appndx Chaptr. Tchncal Background Gnral Mathmatcal and Statstcal Background Fndng a bas: 3 2 = 9 3 = 9 1 /2 x a = b x = b 1/a A powr of 1 / 2 s also quvalnt to th squar root opraton. Fndng an xponnt: 3

More information

Special Random Variables: Part 1

Special Random Variables: Part 1 Spcl Rndom Vrbls: Prt Dscrt Rndom Vrbls Brnoull Rndom Vrbl (wth prmtr p) Th rndom vrbl x dnots th succss from trl. Th probblty mss functon of th rndom vrbl X s gvn by p X () p X () p p ( E[X ]p Th momnt

More information

Ch 1.2: Solutions of Some Differential Equations

Ch 1.2: Solutions of Some Differential Equations Ch 1.2: Solutions of Som Diffrntil Equtions Rcll th fr fll nd owl/mic diffrntil qutions: v 9.8.2v, p.5 p 45 Ths qutions hv th gnrl form y' = y - b W cn us mthods of clculus to solv diffrntil qutions of

More information

Economics 600: August, 2007 Dynamic Part: Problem Set 5. Problems on Differential Equations and Continuous Time Optimization

Economics 600: August, 2007 Dynamic Part: Problem Set 5. Problems on Differential Equations and Continuous Time Optimization THE UNIVERSITY OF MARYLAND COLLEGE PARK, MARYLAND Economcs 600: August, 007 Dynamc Part: Problm St 5 Problms on Dffrntal Equatons and Contnuous Tm Optmzaton Quston Solv th followng two dffrntal quatons.

More information

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals Intgrtion Continud Intgrtion y Prts Solving Dinit Intgrls: Ar Undr Curv Impropr Intgrls Intgrtion y Prts Prticulrly usul whn you r trying to tk th intgrl o som unction tht is th product o n lgric prssion

More information

Lucas Test is based on Euler s theorem which states that if n is any integer and a is coprime to n, then a φ(n) 1modn.

Lucas Test is based on Euler s theorem which states that if n is any integer and a is coprime to n, then a φ(n) 1modn. Modul 10 Addtonal Topcs 10.1 Lctur 1 Prambl: Dtrmnng whthr a gvn ntgr s prm or compost s known as prmalty tstng. Thr ar prmalty tsts whch mrly tll us whthr a gvn ntgr s prm or not, wthout gvng us th factors

More information

Limits Indeterminate Forms and L Hospital s Rule

Limits Indeterminate Forms and L Hospital s Rule Limits Indtrmint Forms nd L Hospitl s Rul I Indtrmint Form o th Tp W hv prviousl studid its with th indtrmint orm s shown in th ollowin mpls: Empl : Empl : tn [Not: W us th ivn it ] Empl : 8 h 8 [Not:

More information

Fractions. Mathletics Instant Workbooks. Simplify. Copyright

Fractions. Mathletics Instant Workbooks. Simplify. Copyright Frctons Stunt Book - Srs H- Smplfy + Mthltcs Instnt Workbooks Copyrht Frctons Stunt Book - Srs H Contnts Topcs Topc - Equvlnt frctons Topc - Smplfyn frctons Topc - Propr frctons, mpropr frctons n mx numbrs

More information

Grand Canonical Ensemble

Grand Canonical Ensemble Th nsmbl of systms mmrsd n a partcl-hat rsrvor at constant tmpratur T, prssur P, and chmcal potntal. Consdr an nsmbl of M dntcal systms (M =,, 3,...M).. Thy ar mutually sharng th total numbr of partcls

More information

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata CSE303 - Introduction to th Thory of Computing Smpl Solutions for Exrciss on Finit Automt Exrcis 2.1.1 A dtrministic finit utomton M ccpts th mpty string (i.., L(M)) if nd only if its initil stt is finl

More information

Instructions for Section 1

Instructions for Section 1 Instructions for Sction 1 Choos th rspons tht is corrct for th qustion. A corrct nswr scors 1, n incorrct nswr scors 0. Mrks will not b dductd for incorrct nswrs. You should ttmpt vry qustion. No mrks

More information

(A) the function is an eigenfunction with eigenvalue Physical Chemistry (I) First Quiz

(A) the function is an eigenfunction with eigenvalue Physical Chemistry (I) First Quiz 96- Physcl Chmstry (I) Frst Quz lctron rst mss m 9.9 - klogrm, Plnck constnt h 6.66-4 oul scon Sp of lght c. 8 m/s, lctron volt V.6-9 oul. Th functon F() C[cos()+sn()] s n gnfuncton of /. Th gnvlu s (A)

More information

The Hyperelastic material is examined in this section.

The Hyperelastic material is examined in this section. 4. Hyprlastcty h Hyprlastc matral s xad n ths scton. 4..1 Consttutv Equatons h rat of chang of ntrnal nrgy W pr unt rfrnc volum s gvn by th strss powr, whch can b xprssd n a numbr of dffrnt ways (s 3.7.6):

More information

1.9 Cartesian Tensors

1.9 Cartesian Tensors Scton.9.9 Crtsn nsors s th th ctor, hghr ordr) tnsor s mthmtc obct hch rprsnts mny physc phnomn nd hch xsts ndpndnty of ny coordnt systm. In ht foos, Crtsn coordnt systm s sd to dscrb tnsors..9. Crtsn

More information

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 2: Derivation of Ideal MHD Equation

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 2: Derivation of Ideal MHD Equation .65, MHD Thory of Fuson Systms Prof. Frdbrg Lctur : Drvton of Idl MHD Equton Rvw of th Drvton of th Momnt Equton. Strtng Pont: Boltzmnn Equton for lctrons, ons nd Mxwll Equtons. Momnts of Boltzmnn Equton:

More information

Spanning Tree. Preview. Minimum Spanning Tree. Minimum Spanning Tree. Minimum Spanning Tree. Minimum Spanning Tree 10/17/2017.

Spanning Tree. Preview. Minimum Spanning Tree. Minimum Spanning Tree. Minimum Spanning Tree. Minimum Spanning Tree 10/17/2017. 0//0 Prvw Spnnng Tr Spnnng Tr Mnmum Spnnng Tr Kruskl s Algorthm Prm s Algorthm Corrctnss of Kruskl s Algorthm A spnnng tr T of connctd, undrctd grph G s tr composd of ll th vrtcs nd som (or prhps ll) of

More information

Fitting Compartmental Models to Multiple Dose Pharmacokinetic Data using SAS PROC NLMIXED

Fitting Compartmental Models to Multiple Dose Pharmacokinetic Data using SAS PROC NLMIXED Ppr SP-2009 Fttng Comprtmntl Modls to Multpl Dos Phrmcokntc Dt usng SAS PROC NLMIXED Jng Su, Png Sun, Xodong L nd Aln H. Hrtford Mrck & Co., Inc, North Wls, PA ABSTRACT Phrmcokntc (PK) modlng uss systms

More information

Vowel package manual

Vowel package manual Vwl pckg mnl FUKUI R Grdt Schl f Hmnts nd Sclgy Unvrsty f Tky 28 ctbr 2001 1 Drwng vwl dgrms 1.1 Th vwl nvrnmnt Th gnrl frmt f th vwl nvrnmnt s s fllws. [ptn(,ptn,)] cmmnds fr npttng vwls ptns nd cmmnds

More information

, between the vertical lines x a and x b. Given a demand curve, having price as a function of quantity, p f (x) at height k is the curve f ( x,

, between the vertical lines x a and x b. Given a demand curve, having price as a function of quantity, p f (x) at height k is the curve f ( x, Clculus for Businss nd Socil Scincs - Prof D Yun Finl Em Rviw vrsion 5/9/7 Chck wbsit for ny postd typos nd updts Pls rport ny typos This rviw sht contins summris of nw topics only (This rviw sht dos hv

More information

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x) Chptr 7 INTEGRALS 7. Ovrviw 7.. Lt d d F () f (). Thn, w writ f ( ) d F () + C. Ths intgrls r clld indfinit intgrls or gnrl intgrls, C is clld constnt of intgrtion. All ths intgrls diffr y constnt. 7..

More information

Optimal Ordering Policy in a Two-Level Supply Chain with Budget Constraint

Optimal Ordering Policy in a Two-Level Supply Chain with Budget Constraint Optmal Ordrng Polcy n a Two-Lvl Supply Chan wth Budgt Constrant Rasoul aj Alrza aj Babak aj ABSTRACT Ths papr consdrs a two- lvl supply chan whch consst of a vndor and svral rtalrs. Unsatsfd dmands n rtalrs

More information

Walk Like a Mathematician Learning Task:

Walk Like a Mathematician Learning Task: Gori Dprtmnt of Euction Wlk Lik Mthmticin Lrnin Tsk: Mtrics llow us to prform mny usful mthmticl tsks which orinrily rquir lr numbr of computtions. Som typs of problms which cn b on fficintly with mtrics

More information

ME 522 PRINCIPLES OF ROBOTICS. FIRST MIDTERM EXAMINATION April 19, M. Kemal Özgören

ME 522 PRINCIPLES OF ROBOTICS. FIRST MIDTERM EXAMINATION April 19, M. Kemal Özgören ME 522 PINCIPLES OF OBOTICS FIST MIDTEM EXAMINATION April 9, 202 Nm Lst Nm M. Kml Özgörn 2 4 60 40 40 0 80 250 USEFUL FOMULAS cos( ) cos cos sin sin sin( ) sin cos cos sin sin y/ r, cos x/ r, r 0 tn 2(

More information

A Note on Estimability in Linear Models

A Note on Estimability in Linear Models Intrnatonal Journal of Statstcs and Applcatons 2014, 4(4): 212-216 DOI: 10.5923/j.statstcs.20140404.06 A Not on Estmablty n Lnar Modls S. O. Adymo 1,*, F. N. Nwob 2 1 Dpartmnt of Mathmatcs and Statstcs,

More information

The Mathematics of Harmonic Oscillators

The Mathematics of Harmonic Oscillators Th Mhcs of Hronc Oscllors Spl Hronc Moon In h cs of on-nsonl spl hronc oon (SHM nvolvng sprng wh sprng consn n wh no frcon, you rv h quon of oon usng Nwon's scon lw: con wh gvs: 0 Ths s sos wrn usng h

More information

Review - Probabilistic Classification

Review - Probabilistic Classification Mmoral Unvrsty of wfoundland Pattrn Rcognton Lctur 8 May 5, 6 http://www.ngr.mun.ca/~charlsr Offc Hours: Tusdays Thursdays 8:3-9:3 PM E- (untl furthr notc) Gvn lablld sampls { ɛc,,,..., } {. Estmat Rvw

More information

ERDOS-SMARANDACHE NUMBERS. Sabin Tabirca* Tatiana Tabirca**

ERDOS-SMARANDACHE NUMBERS. Sabin Tabirca* Tatiana Tabirca** ERDO-MARANDACHE NUMBER b Tbrc* Tt Tbrc** *Trslv Uvrsty of Brsov, Computr cc Dprtmt **Uvrsty of Mchstr, Computr cc Dprtmt Th strtg pot of ths rtcl s rprstd by rct work of Fch []. Bsd o two symptotc rsults

More information

10/7/14. Mixture Models. Comp 135 Introduction to Machine Learning and Data Mining. Maximum likelihood estimation. Mixture of Normals in 1D

10/7/14. Mixture Models. Comp 135 Introduction to Machine Learning and Data Mining. Maximum likelihood estimation. Mixture of Normals in 1D Comp 35 Introducton to Machn Larnng and Data Mnng Fall 204 rofssor: Ron Khardon Mxtur Modls Motvatd by soft k-mans w dvlopd a gnratv modl for clustrng. Assum thr ar k clustrs Clustrs ar not rqurd to hav

More information

Last time: introduced our first computational model the DFA.

Last time: introduced our first computational model the DFA. Lctur 7 Homwork #7: 2.2.1, 2.2.2, 2.2.3 (hnd in c nd d), Misc: Givn: M, NFA Prov: (q,xy) * (p,y) iff (q,x) * (p,) (follow proof don in clss tody) Lst tim: introducd our first computtionl modl th DFA. Tody

More information

Fundamentals of Continuum Mechanics. Seoul National University Graphics & Media Lab

Fundamentals of Continuum Mechanics. Seoul National University Graphics & Media Lab Fndmntls of Contnm Mchncs Sol Ntonl Unvrsty Grphcs & Md Lb Th Rodmp of Contnm Mchncs Strss Trnsformton Strn Trnsformton Strss Tnsor Strn T + T ++ T Strss-Strn Rltonshp Strn Enrgy FEM Formlton Lt s Stdy

More information

TOPIC 5: INTEGRATION

TOPIC 5: INTEGRATION TOPIC 5: INTEGRATION. Th indfinit intgrl In mny rspcts, th oprtion of intgrtion tht w r studying hr is th invrs oprtion of drivtion. Dfinition.. Th function F is n ntidrivtiv (or primitiv) of th function

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY HAYSTACK OBSERVATORY WESTFORD, MASSACHUSETTS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY HAYSTACK OBSERVATORY WESTFORD, MASSACHUSETTS VSRT MEMO #05 MASSACHUSETTS INSTITUTE OF TECHNOLOGY HAYSTACK OBSERVATORY WESTFORD, MASSACHUSETTS 01886 Fbrury 3, 009 Tlphon: 781-981-507 Fx: 781-981-0590 To: VSRT Group From: Aln E.E. Rogrs Subjct: Simplifid

More information

CIVL 8/ D Boundary Value Problems - Rectangular Elements 1/7

CIVL 8/ D Boundary Value Problems - Rectangular Elements 1/7 CIVL / -D Boundr Vlu Prolms - Rctngulr Elmnts / RECANGULAR ELEMENS - In som pplictions, it m mor dsirl to us n lmntl rprsnttion of th domin tht hs four sids, ithr rctngulr or qudriltrl in shp. Considr

More information

Lecture contents. Bloch theorem k-vector Brillouin zone Almost free-electron model Bands Effective mass Holes. NNSE 508 EM Lecture #9

Lecture contents. Bloch theorem k-vector Brillouin zone Almost free-electron model Bands Effective mass Holes. NNSE 508 EM Lecture #9 Lctur contnts Bloch thorm -vctor Brillouin zon Almost fr-lctron modl Bnds ffctiv mss Hols Trnsltionl symmtry: Bloch thorm On-lctron Schrödingr qution ch stt cn ccommo up to lctrons: If Vr is priodic function:

More information

ON THE COMPLEXITY OF K-STEP AND K-HOP DOMINATING SETS IN GRAPHS

ON THE COMPLEXITY OF K-STEP AND K-HOP DOMINATING SETS IN GRAPHS MATEMATICA MONTISNIRI Vol XL (2017) MATEMATICS ON TE COMPLEXITY OF K-STEP AN K-OP OMINATIN SETS IN RAPS M FARAI JALALVAN AN N JAFARI RA partmnt of Mathmatcs Shahrood Unrsty of Tchnology Shahrood Iran Emals:

More information

Lecture 14. Relic neutrinos Temperature at neutrino decoupling and today Effective degeneracy factor Neutrino mass limits Saha equation

Lecture 14. Relic neutrinos Temperature at neutrino decoupling and today Effective degeneracy factor Neutrino mass limits Saha equation Lctur Rlc nutrnos mpratur at nutrno dcoupln and today Effctv dnracy factor Nutrno mass lmts Saha quaton Physcal Cosmoloy Lnt 005 Rlc Nutrnos Nutrnos ar wakly ntractn partcls (lptons),,,,,,, typcal ractons

More information

CHAPTER 33: PARTICLE PHYSICS

CHAPTER 33: PARTICLE PHYSICS Collg Physcs Studnt s Manual Chaptr 33 CHAPTER 33: PARTICLE PHYSICS 33. THE FOUR BASIC FORCES 4. (a) Fnd th rato of th strngths of th wak and lctromagntc forcs undr ordnary crcumstancs. (b) What dos that

More information

CONTINUITY AND DIFFERENTIABILITY

CONTINUITY AND DIFFERENTIABILITY MCD CONTINUITY AND DIFFERENTIABILITY NCERT Solvd mpls upto th sction 5 (Introduction) nd 5 (Continuity) : Empl : Chck th continuity of th function f givn by f() = + t = Empl : Emin whthr th function f

More information

A Solution for multi-evaluator AHP

A Solution for multi-evaluator AHP ISAHP Honoll Hw Jly 8- A Solton for lt-vltor AHP Ms Shnohr Kch Osw Yo Hd Nhon Unvrsty Nhon Unvrsty Nhon Unvrsty Iz-cho Nrshno Iz-cho Nrshno Iz-cho Nrshno hb 7-87 Jpn hb 7-87 Jpn M7snoh@ct.nhon-.c.p 7oosw@ct.nhon-.c.p

More information

Linear Algebra Existence of the determinant. Expansion according to a row.

Linear Algebra Existence of the determinant. Expansion according to a row. Lir Algbr 2270 1 Existc of th dtrmit. Expsio ccordig to row. W dfi th dtrmit for 1 1 mtrics s dt([]) = (1) It is sy chck tht it stisfis D1)-D3). For y othr w dfi th dtrmit s follows. Assumig th dtrmit

More information

Demand. Demand and Comparative Statics. Graphically. Marshallian Demand. ECON 370: Microeconomic Theory Summer 2004 Rice University Stanley Gilbert

Demand. Demand and Comparative Statics. Graphically. Marshallian Demand. ECON 370: Microeconomic Theory Summer 2004 Rice University Stanley Gilbert Demnd Demnd nd Comrtve Sttcs ECON 370: Mcroeconomc Theory Summer 004 Rce Unversty Stnley Glbert Usng the tools we hve develoed u to ths ont, we cn now determne demnd for n ndvdul consumer We seek demnd

More information

The Dynamic Multi-Task Supply Chain Principal-Agent Analysis

The Dynamic Multi-Task Supply Chain Principal-Agent Analysis J. Servce Scence & Mngement 009 : 9- do:0.46/jssm.009.409 Publshed Onlne December 009 www.scp.org/journl/jssm) 9 he Dynmc Mult-sk Supply Chn Prncpl-Agent Anlyss Shnlng LI Chunhu WANG Dol ZHU Mngement School

More information

Capital Allocation and International Equilibrium with Pollution Permits *

Capital Allocation and International Equilibrium with Pollution Permits * Modrn conomy 3 87-99 http://dx.do.org/.436/m..36 Publshd Onln March (http://www.scrp.org/journal/m) Captal Allocaton Intrnatonal qulbrum wth Polluton Prmts * Prr-André Jouvt Glls Rotllon conomx Unvrsty

More information

Approximately Maximizing Efficiency and Revenue in Polyhedral Environments

Approximately Maximizing Efficiency and Revenue in Polyhedral Environments Approxmatly Maxmzng Effcncy and Rvnu n olyhdral Envronmnts Thành Nguyn Cntr for Appld Mathmatcs Cornll Unvrsty Ithaca, NY, USA. thanh@cs.cornll.du Éva Tardos Computr Scnc Dpartmnt Cornll Unvrsty Ithaca,

More information

Using SIP techniques to verify the trade-off between SNR and information capacity of a sigma delta modulator

Using SIP techniques to verify the trade-off between SNR and information capacity of a sigma delta modulator Audo Engnrng Socty Convnton Ppr 6697 Prsntd t th 0th Convnton 006 y 0 3 Prs, Frnc hs convnton ppr hs bn rproducd from th uthor's dvnc mnuscrpt, wthout dtng, corrctons, or consdrton by th Rvw Bord. h AES

More information

Multi-Section Coupled Line Couplers

Multi-Section Coupled Line Couplers /0/009 MultiSction Coupld Lin Couplrs /8 Multi-Sction Coupld Lin Couplrs W cn dd multipl coupld lins in sris to incrs couplr ndwidth. Figur 7.5 (p. 6) An N-sction coupld lin l W typiclly dsign th couplr

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

Present state Next state Q + M N

Present state Next state Q + M N Qustion 1. An M-N lip-lop works s ollows: I MN=00, th nxt stt o th lip lop is 0. I MN=01, th nxt stt o th lip-lop is th sm s th prsnt stt I MN=10, th nxt stt o th lip-lop is th omplmnt o th prsnt stt I

More information

Section 3: Antiderivatives of Formulas

Section 3: Antiderivatives of Formulas Chptr Th Intgrl Appli Clculus 96 Sction : Antirivtivs of Formuls Now w cn put th is of rs n ntirivtivs togthr to gt wy of vluting finit intgrls tht is ct n oftn sy. To vlut finit intgrl f(t) t, w cn fin

More information

Discrete Shells Simulation

Discrete Shells Simulation Dscrt Shlls Smulaton Xaofng M hs proct s an mplmntaton of Grnspun s dscrt shlls, th modl of whch s govrnd by nonlnar mmbran and flxural nrgs. hs nrgs masur dffrncs btwns th undformd confguraton and th

More information

The University of Sydney MATH 2009

The University of Sydney MATH 2009 T Unvrsty o Syny MATH 2009 APH THEOY Tutorl 7 Solutons 2004 1. Lt t sonnt plnr rp sown. Drw ts ul, n t ul o t ul ( ). Sow tt s sonnt plnr rp, tn s onnt. Du tt ( ) s not somorp to. ( ) A onnt rp s on n

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

a b c cat CAT A B C Aa Bb Cc cat cat Lesson 1 (Part 1) Verbal lesson: Capital Letters Make The Same Sound Lesson 1 (Part 1) continued...

a b c cat CAT A B C Aa Bb Cc cat cat Lesson 1 (Part 1) Verbal lesson: Capital Letters Make The Same Sound Lesson 1 (Part 1) continued... Progrssiv Printing T.M. CPITLS g 4½+ Th sy, fun (n FR!) wy to tch cpitl lttrs. ook : C o - For Kinrgrtn or First Gr (not for pr-school). - Tchs tht cpitl lttrs mk th sm souns s th littl lttrs. - Tchs th

More information

Heisenberg Model. Sayed Mohammad Mahdi Sadrnezhaad. Supervisor: Prof. Abdollah Langari

Heisenberg Model. Sayed Mohammad Mahdi Sadrnezhaad. Supervisor: Prof. Abdollah Langari snbrg Modl Sad Mohammad Mahd Sadrnhaad Survsor: Prof. bdollah Langar bstract: n ths rsarch w tr to calculat analtcall gnvalus and gnvctors of fnt chan wth ½-sn artcls snbrg modl. W drov gnfuctons for closd

More information

September 27, Introduction to Ordinary Differential Equations. ME 501A Seminar in Engineering Analysis Page 1. Outline

September 27, Introduction to Ordinary Differential Equations. ME 501A Seminar in Engineering Analysis Page 1. Outline Introucton to Ornar Dffrntal Equatons Sptmbr 7, 7 Introucton to Ornar Dffrntal Equatons Larr artto Mchancal Engnrng AB Smnar n Engnrng Analss Sptmbr 7, 7 Outln Rvw numrcal solutons Bascs of ffrntal quatons

More information

Load Equations. So let s look at a single machine connected to an infinite bus, as illustrated in Fig. 1 below.

Load Equations. So let s look at a single machine connected to an infinite bus, as illustrated in Fig. 1 below. oa Euatons Thoughout all of chapt 4, ou focus s on th machn tslf, thfo w wll only pfom a y smpl tatmnt of th ntwok n o to s a complt mol. W o that h, but alz that w wll tun to ths ssu n Chapt 9. So lt

More information

Analyzing Frequencies

Analyzing Frequencies Frquncy (# ndvduals) Frquncy (# ndvduals) /3/16 H o : No dffrnc n obsrvd sz frquncs and that prdctd by growth modl How would you analyz ths data? 15 Obsrvd Numbr 15 Expctd Numbr from growth modl 1 1 5

More information

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1 CSC 00 Disrt Struturs : Introuon to Grph Thory Grphs Grphs CSC 00 Disrt Struturs Villnov Univrsity Grphs r isrt struturs onsisng o vrs n gs tht onnt ths vrs. Grphs n us to mol: omputr systms/ntworks mthml

More information

Section 5.1/5.2: Areas and Distances the Definite Integral

Section 5.1/5.2: Areas and Distances the Definite Integral Scto./.: Ars d Dstcs th Dt Itgrl Sgm Notto Prctc HW rom Stwrt Ttook ot to hd p. #,, 9 p. 6 #,, 9- odd, - odd Th sum o trms,,, s wrtt s, whr th d o summto Empl : Fd th sum. Soluto: Th Dt Itgrl Suppos w

More information

UNIT # 08 (PART - I)

UNIT # 08 (PART - I) . r. d[h d[h.5 7.5 mol L S d[o d[so UNIT # 8 (PRT - I CHEMICL INETICS EXERCISE # 6. d[ x [ x [ x. r [X[C ' [X [[B r '[ [B [C. r [NO [Cl. d[so d[h.5 5 mol L S d[nh d[nh. 5. 6. r [ [B r [x [y r' [x [y r'

More information

Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1

Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1 Prctic qustions W now tht th prmtr p is dirctl rltd to th mplitud; thrfor, w cn find tht p. cos d [ sin ] sin sin Not: Evn though ou might not now how to find th prmtr in prt, it is lws dvisl to procd

More information

ELEG 413 Lecture #6. Mark Mirotznik, Ph.D. Professor The University of Delaware

ELEG 413 Lecture #6. Mark Mirotznik, Ph.D. Professor The University of Delaware LG 43 Lctur #6 Mrk Mirtnik, Ph.D. Prfssr Th Univrsity f Dlwr mil: mirtni@c.udl.du Wv Prpgtin nd Plritin TM: Trnsvrs lctrmgntic Wvs A md is prticulr fild cnfigurtin. Fr givn lctrmgntic bundry vlu prblm,

More information

Soft k-means Clustering. Comp 135 Machine Learning Computer Science Tufts University. Mixture Models. Mixture of Normals in 1D

Soft k-means Clustering. Comp 135 Machine Learning Computer Science Tufts University. Mixture Models. Mixture of Normals in 1D Comp 35 Machn Larnng Computr Scnc Tufts Unvrsty Fall 207 Ron Khardon Th EM Algorthm Mxtur Modls Sm-Suprvsd Larnng Soft k-mans Clustrng ck k clustr cntrs : Assocat xampls wth cntrs p,j ~~ smlarty b/w cntr

More information

Theories of Vowel Systems: Quantal Theory and Adaptive Dispersion

Theories of Vowel Systems: Quantal Theory and Adaptive Dispersion L105/205 Phontcs Scrborough Hndout 8 10/25/05 Rdng: Stvns, Lljncrnts & Lndblom (tody) Thors of Vowl Systms: Quntl Thory nd Adptv Dsprson 1. Thr r hug (vn nfnt) numbr of dffrnt rtcultons tht cn b md. Obvously,

More information

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1. Why th Juntion Tr lgorithm? Th Juntion Tr lgorithm hris Willims 1 Shool of Informtis, Univrsity of Einurgh Otor 2009 Th JT is gnrl-purpos lgorithm for omputing (onitionl) mrginls on grphs. It os this y

More information

Folding of Regular CW-Complexes

Folding of Regular CW-Complexes Ald Mathmatcal Scncs, Vol. 6,, no. 83, 437-446 Foldng of Rgular CW-Comlxs E. M. El-Kholy and S N. Daoud,3. Dartmnt of Mathmatcs, Faculty of Scnc Tanta Unvrsty,Tanta,Egyt. Dartmnt of Mathmatcs, Faculty

More information

Shortest Paths in Graphs. Paths in graphs. Shortest paths CS 445. Alon Efrat Slides courtesy of Erik Demaine and Carola Wenk

Shortest Paths in Graphs. Paths in graphs. Shortest paths CS 445. Alon Efrat Slides courtesy of Erik Demaine and Carola Wenk S 445 Shortst Paths n Graphs lon frat Sls courtsy of rk man an arola Wnk Paths n raphs onsr a raph G = (V, ) wth -wht functon w : R. Th wht of path p = v v v k s fn to xampl: k = w ( p) = w( v, v + ).

More information

Fakultät III Univ.-Prof. Dr. Jan Franke-Viebach

Fakultät III Univ.-Prof. Dr. Jan Franke-Viebach Unv.Prof. r. J. FrankVbach WS 067: Intrnatonal Economcs ( st xam prod) Unvrstät Sgn Fakultät III Unv.Prof. r. Jan FrankVbach Exam Intrnatonal Economcs Wntr Smstr 067 ( st Exam Prod) Avalabl tm: 60 mnuts

More information

This Week. Computer Graphics. Introduction. Introduction. Graphics Maths by Example. Graphics Maths by Example

This Week. Computer Graphics. Introduction. Introduction. Graphics Maths by Example. Graphics Maths by Example This Wk Computr Grphics Vctors nd Oprtions Vctor Arithmtic Gomtric Concpts Points, Lins nd Plns Eploiting Dot Products CSC 470 Computr Grphics 1 CSC 470 Computr Grphics 2 Introduction Introduction Wh do

More information

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari Grphs CSC 1300 Disrt Struturs Villnov Univrsity Grphs Grphs r isrt struturs onsis?ng of vr?s n gs tht onnt ths vr?s. Grphs n us to mol: omputr systms/ntworks mthm?l rl?ons logi iruit lyout jos/prosss f

More information

ON EISENSTEIN-DUMAS AND GENERALIZED SCHÖNEMANN POLYNOMIALS

ON EISENSTEIN-DUMAS AND GENERALIZED SCHÖNEMANN POLYNOMIALS ON EISENSTEIN-DUMAS AND GENERALIZED SCHÖNEMANN POLYNOMIALS Anuj Bshno and Sudsh K. Khanduja Dpartmnt of Mathmatcs, Panjab Unvrsty, Chandgarh-160014, Inda. E-mal: anuj.bshn@gmal.com, skhand@pu.ac.n ABSTRACT.

More information

COMP108 Algorithmic Foundations

COMP108 Algorithmic Foundations Grdy mthods Prudn Wong http://www.s.liv..uk/~pwong/thing/omp108/01617 Coin Chng Prolm Suppos w hv 3 typs of oins 10p 0p 50p Minimum numr of oins to mk 0.8, 1.0, 1.? Grdy mthod Lrning outoms Undrstnd wht

More information

Electrochemical Equilibrium Electromotive Force. Relation between chemical and electric driving forces

Electrochemical Equilibrium Electromotive Force. Relation between chemical and electric driving forces C465/865, 26-3, Lctur 7, 2 th Sp., 26 lctrochmcal qulbrum lctromotv Forc Rlaton btwn chmcal and lctrc drvng forcs lctrochmcal systm at constant T and p: consdr G Consdr lctrochmcal racton (nvolvng transfr

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

arxiv: v1 [math.pr] 28 Jan 2019

arxiv: v1 [math.pr] 28 Jan 2019 CRAMÉR-TYPE MODERATE DEVIATION OF NORMAL APPROXIMATION FOR EXCHANGEABLE PAIRS arxv:190109526v1 [mathpr] 28 Jan 2019 ZHUO-SONG ZHANG Abstract In Stn s mthod, an xchangabl par approach s commonly usd to

More information

Advanced Macroeconomics

Advanced Macroeconomics Advancd Macroconomcs Chaptr 18 INFLATION, UNEMPLOYMENT AND AGGREGATE SUPPLY Thms of th chaptr Nomnal rgdts, xpctatonal rrors and mploymnt fluctuatons. Th short-run trad-off btwn nflaton and unmploymnt.

More information

Outlier-tolerant parameter estimation

Outlier-tolerant parameter estimation Outlr-tolrant paramtr stmaton Baysan thods n physcs statstcs machn larnng and sgnal procssng (SS 003 Frdrch Fraundorfr fraunfr@cg.tu-graz.ac.at Computr Graphcs and Vson Graz Unvrsty of Tchnology Outln

More information

Group Codes Define Over Dihedral Groups of Small Order

Group Codes Define Over Dihedral Groups of Small Order Malaysan Journal of Mathmatcal Scncs 7(S): 0- (0) Spcal Issu: Th rd Intrnatonal Confrnc on Cryptology & Computr Scurty 0 (CRYPTOLOGY0) MALAYSIA JOURAL OF MATHEMATICAL SCIECES Journal hompag: http://nspm.upm.du.my/ournal

More information

The model proposed by Vasicek in 1977 is a yield-based one-factor equilibrium model given by the dynamic

The model proposed by Vasicek in 1977 is a yield-based one-factor equilibrium model given by the dynamic h Vsick modl h modl roosd by Vsick in 977 is yild-bsd on-fcor quilibrium modl givn by h dynmic dr = b r d + dw his modl ssums h h shor r is norml nd hs so-clld "mn rvring rocss" (undr Q. If w u r = b/,

More information

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018 CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

More information

Relate p and T at equilibrium between two phases. An open system where a new phase may form or a new component can be added

Relate p and T at equilibrium between two phases. An open system where a new phase may form or a new component can be added 4.3, 4.4 Phas Equlbrum Dtrmn th slops of th f lns Rlat p and at qulbrum btwn two phass ts consdr th Gbbs functon dg η + V Appls to a homognous systm An opn systm whr a nw phas may form or a nw componnt

More information

Minimum Spanning Trees

Minimum Spanning Trees Minimum Spnning Trs Minimum Spnning Trs Problm A town hs st of houss nd st of rods A rod conncts nd only houss A rod conncting houss u nd v hs rpir cost w(u, v) Gol: Rpir nough (nd no mor) rods such tht:

More information

Smart Motorways HADECS 3 and what it means for your drivers

Smart Motorways HADECS 3 and what it means for your drivers Vehcle Rentl Smrt Motorwys HADECS 3 nd wht t mens for your drvers Vehcle Rentl Smrt Motorwys HADECS 3 nd wht t mens for your drvers You my hve seen some news rtcles bout the ntroducton of Hghwys Englnd

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

h Summary Chapter 7.

h Summary Chapter 7. Summry Chptr 7. In Chptr 7 w dscussd byond th fr lctron modl of chptr 6. In prtculrly w focusd on th nflunc of th prodc potntl of th on cors on th nrgy lvl dgrm of th outr lctrons of th toms. It wll hlp

More information

Quantum Mechanics & Spectroscopy Prof. Jason Goodpaster. Problem Set #2 ANSWER KEY (5 questions, 10 points)

Quantum Mechanics & Spectroscopy Prof. Jason Goodpaster. Problem Set #2 ANSWER KEY (5 questions, 10 points) Chm 5 Problm St # ANSWER KEY 5 qustios, poits Qutum Mchics & Spctroscopy Prof. Jso Goodpstr Du ridy, b. 6 S th lst pgs for possibly usful costts, qutios d itgrls. Ths will lso b icludd o our futur ms..

More information

Jean Fernand Nguema LAMETA UFR Sciences Economiques Montpellier. Abstract

Jean Fernand Nguema LAMETA UFR Sciences Economiques Montpellier. Abstract Stochstc domnnce on optml portfolo wth one rsk less nd two rsky ssets Jen Fernnd Nguem LAMETA UFR Scences Economques Montpeller Abstrct The pper provdes restrctons on the nvestor's utlty functon whch re

More information

Winter 2016 COMP-250: Introduction to Computer Science. Lecture 23, April 5, 2016

Winter 2016 COMP-250: Introduction to Computer Science. Lecture 23, April 5, 2016 Wintr 2016 COMP-250: Introduction to Computr Scinc Lctur 23, April 5, 2016 Commnt out input siz 2) Writ ny lgorithm tht runs in tim Θ(n 2 log 2 n) in wors cs. Explin why this is its running tim. I don

More information

Theoretical Study on the While Drilling Electromagnetic Signal Transmission of Horizontal Well

Theoretical Study on the While Drilling Electromagnetic Signal Transmission of Horizontal Well 7 nd ntrntionl Confrnc on Softwr, Multimdi nd Communiction Enginring (SMCE 7) SBN: 978--6595-458-5 Thorticl Study on th Whil Drilling Elctromgntic Signl Trnsmission of Horizontl Wll Y-huo FAN,,*, Zi-ping

More information