Some Results Concerning Uniqueness of Triangle Sequences

Size: px
Start display at page:

Download "Some Results Concerning Uniqueness of Triangle Sequences"

Transcription

1 Some Results Concerning Uniqueness of Triangle Sequences T. Cheslack-Postava A. Diesl M. Lepinski A. Schuyler August Abstract In this paper we will begin by reviewing the triangle iteration. We will then investigate the question of when a triangle sequence corresponds to a unique ordered pair α β. It will be shown that certain classes of triangle sequences most importantly those that are bounded do yield unique ordered pairs. As a corollary to our work on uniqueness we will also show some clean relations dealing with the geometry of the partition triangles. 1 Introduction This paper will start with an overview of the standard triangle iteration as outlined in work by Garrity [1]. We will begin with the geometrical interpretation of triangle sequences. We define an iteration T on the triangle = {x y : 1 x y > 0}. This triangle is partitioned into an infinite set of disjoint subtriangles k = {x y : 1 x ky 0 > 1 x k + 1y} where k is any nonnegative integer. Given α β k define the map T : {x 0 : 0 x 1} by β T α β = α 1 α kβ. α The triangle sequence is recovered from this iteration by keeping track of the number of the triangle that the point is mapped into at each step. In other words if T k 1 α β ak then the point α β will have the triangle sequence a 1 a We will recursively define a sequence of vectors as follows: Set C 2 = C 1 = and C 0 = Let the components of C n be denoted by C n = p n q n r n. Then let C n = C n 3 C n 2 a n C n 1. 1

2 These C n vectors can be thought of as integer vectors approximating the plane x + αy + βz = 0. We thus refer to the C n vectors as approximation vectors. We define positive numbers d n in the following manner: d n = 1 α β C n. These are interpreted as the distance from the vector C n to the plane x + αy + βz = 0. It is then easy to see that the following recursion relations hold: d n = d n 3 d n 2 a n d n 1 p n = p n 3 p n 2 a n p n 1 q n = q n 3 q n 2 a n q n 1 r n = r n 3 r n 2 a n r n 1 This paper will focus on the problem of discovering when a particular sequence a 1 a 2... corresponds to a unique pair α β which has implications in determining if α and β are cubic irrationals. We consider only the case of infinite triangle sequences because it is trivial to show that all finite triangle sequences correspond to an infinite number of points and are thus not unique. The proof of this assertion will appear in section 2 after appropriate notation has been introduced. There are two main ways to frame the question of uniqueness. The first relies on vector algebra. We know that the vectors C n are approaching the plane x + αy + βz = 0. It is also easy to see that the C n vectors are determined completely by the sequence a 1 a Thus if it can be shown that the cross product C n C n+1 of two successive approximation vectors approaches the vector 1 α β then the sequence is unique. In other words if lim C n C n+1 = 1 α β C n C n+1 then the numbers α and β will be uniquely determined by the triangle sequence a 1 a The second approach to understanding the uniqueness problem relies on the geometry of the actual triangle iteration. We consider the original partitioning of the triangle into an infinite disjoint union of subtriangles: = k=0 It is clear from the definition of triangle sequences that k consists of all points α β whose triangle sequences have first term equal to k. In other words k k = {x y : a 1 = k}. 2

3 We can further partition each k in a way similar to that in which we partitioned. Define kl in the following way: kl = {x y k : T x y l }. Thus kl is the set of all points in k that map to l. We can think of this set in the following way: kl = {x y : a 1 = k and a 2 = l}. We can further partition the triangles in the same way. We define a1 a 2... a n to be the set of points α β whose triangle sequences have a 1 a 2... a n as their first n terms. This gives us a method for investigating uniqueness. If we can say that the set of points with the infinite triangle sequence a 1 a 2... consists of only one point α β then we can say that α β is the unique point with that triangle sequence. One way of investigating the set a1a 2... is to look at the limit of the sets a1 a 2... a n as n approaches infinity. Section 2 of this paper uses a geometric argument to show that there do in fact exist certain infinite triangle sequences which correspond to an infinite number of points α β. This will be demonstrated by showing that in certain cases the set a1 a 2... consists of an entire line segment. Section 3 is devoted to a development of the vector approach to the uniqueness problem. We will define new notation for cross products of successive approximation vectors. We will then prove a new recursion relation and develop algebraic conditions that guarantee uniqueness. Section 4 uses the algebraic conditions developed in section 3 in order to prove uniqueness of certain bounded triangle sequences. Specifically we prove that an infinite triangle sequence a 1 a 2... corresponds to a unique ordered pair α β for the case a i = A for all i and some positive integer A. Section 5 explores the connections between the vector algebra and the geometry of the partitioning of the triangles. We show that there is a clean relation between the cross product vectors and the vertices of the partition triangles a1 a 2... a n. We will also show that there is an interesting relationship between the vertices of a1 a 2... a n and the vertices of an a n 1... a 1. These results are interesting in their own right but will be mainly used as technical lemmae in proving the main theorem of section 6. Section 6 deals with the case of proving the uniqueness of a larger class of triangle sequences including the entire bounded case. Specifically we show that for any infinite sequence in which the integer C appears infinitely many times that sequence corresponds to a unique pair α β. We use both geometric and algebraic arguments to prove this result. 2 Existence of Non-unique Triangle Sequences In this section we show using arguments based on the geometry of the triangle iteration that there exist infinite sets of points that all have the same infi- 3

4 nite triangle sequence. We begin with some notation to describe the partition triangles. Definition 1 Define T n a 1...a n α β to be the unique point x y a1... a n such that T n x y = α β. Proposition 1 Given any finite triangle sequence a 1... a n there exists a line segment such that all points on that segment have the sequence a 1... a n. The set Ta n 1...a n I where I is the interval 0 1 is precisely the set of all points with triangle sequence equal to a 1... a n. Definition 2 For any finite sequence of nonnegative integers a 1... a n let da 1... a n = min{lengthta n 1...a n I lengthta n 1...a n 1a n+1 I} where I is the interval 0 1. In the figure below we have A = Ta n 1...a n I a = Ta n 1...a n +1 B = Ta n 1...a n+1 I b = n T C = T n a 1...a n +1 m = T n a 1...a n +1 1 l T n a 1...a n 1 0 c = T n 1 0 a 1...a n 1 0 a 1...a n 0 0 x 0 0 n = T n a 1...a n +1 Note: 0 < 1 l+1 < x < 1 Figure 1: Triangle created by the consecutive partition lines Ta n 1...a n I and Ta n I. 1...a n+1 4

5 Lemma 1 For any small ɛ > 0 and any sequence a 1... a n of nonnegative integers there exists a nonnegative integer l such that da 1... a n l da 1... a n ɛ. Case I: Consider the case where the angle at c is obtuse. Then all line segments from b to a point on B will be longer than A. Since the endpoints of consecutive partition lines are getting closer to c we have: da 1... a n l = lengtht n+1 a 1...a n l+1 I lengtht n a 1...a n I da 1... a n ɛ Therefore the lemma holds when c is obtuse. Case II: Consider the case where the angle at c is acute. Consider a line segment N in a1...a n with the following properties: i One endpoint is at Ta n 1...a n 1 0 point b in Figure 1. ii The other endpoint is at Ta n 1...a n+1 x 0 for some x 1 0 on line B in Figure 1. iii The length of the line segment is at least lengthta n 1...a n I ɛ. iv Given any m on the segment cn M > N. Properties i and ii will clearly be able to be satisfied. Since our line segment N gets longer as the endpoint n approaches c we know that we can satisfy property iii. By the above reasoning we also know that we will satisy property iv when m gets sufficiently close to c. Choose l Z + 1 n so that l+1 x. Then Ta 1...a n +1 1 l+1 0 point m in Figure 1 lies between c and n. So the line segment from b to m has length at least lengthta n 1...a n I ɛ = A ɛ. But this line segment is also T n+1 a I. 1...a nl Then since lengtht n+1 n+1 a 1...a n l+1i > lengthta 1...a n li we have: da 1... a n l = lengtht n+1 a 1...a n l I lengthta n 1...a n I ɛ da 1... a n ɛ 5

6 Theorem 1 There exist distinct points α 1 β 1 and α 2 β 2 in with identical infinite triangle sequences. Consider a triangle sequence constructed in the following manner: Choose a 1 so that da Choose a 2 so that da 1 a 2 da Choose a n so that da 1... a n da 1... a n n+1 for n 2. Our lemma guarantees that a sequence may be constructed in this way. Then for all n da 1... a n > 1 n+1 2. Therefore there is some line segment of length 1 2 which is inside any triangle a 1...a n. Thus every point on this line segment has the infinite triangle sequence a 1 a Properties of Cross Products of Approximation Vectors 3.1 Motivation We know that the approximation vectors C n approach the plane given by x + αy+βz = 0. Thus it is reasonable to suppose that the cross-products C n C n+1 would approach the vector 1 α β which is normal to the plane. Since the approximation vectors are completely determined by the sequence it is easy to see that the relation lim C n C n+1 = 1 α β C n C n+1 implies that the pair α β is completely determined by the sequence and thus that the sequence is unique. The above limit relation is in fact equivalent to the uniqueness of the sequence. As was shown in section 2 since a triangle sequence does not necessarily uniquely determine the pair α β it is not always true that the cross product approaches the normal vector 1 α β. However it is still useful to investigate the properties of these cross products as an approach to answering questions of uniqueness. 6

7 3.2 Notation and Results Definition 3 Let X n = C n C n+1. Set X n = x n y n z n. Lemma 2 X n+1 = X n 2 + a n+1 X n 1 + X n X n+1 = C n+1 C n+2 = C n+1 C n 1 C n a n+2 C n+1 = C n+1 C n 1 + C n C n+1 = C n 2 C n 1 a n+1 C n C n 1 + C n C n+1 = C n 2 C n 1 + a n+1 C n 1 C n + C n C n+1 = X n 2 + a n+1 X n 1 + X n Lemma 3 X n X n+1 = C n+1 We know that x n = q n r n+1 q n+1 r n y n = r n p n+1 r n+1 p n z n = p n q n+1 p n+1 q n Let us refer to the third component of X n X n+1 as w n+1. Then we know that w n+1 = x n y n+1 y n x n+1 = q n r n+1 q n+1 r n r n+1 p n+2 r n+2 p n+1 r n p n+1 r n+1 p n q n+1 r n+2 q n+2 r n+1 = r n+1 p n+2 q n r n+1 q n p n+1 r n+2 r n q n+1 p n+2 + r n r n+2 q n+1 p n+1 r n+1 r n+1 p n q n+2 p n q n+1 r n+2 r n q n+2 p n+1 r n r n+2 q n+1 p n+1 = r n+1 p n+2 q n r n+1 + p n q n+1 r n+2 + r n q n+2 p n+1 r n+1 p n q n+2 q n p n+1 r n+2 r n q n+1 p n+2 Therefore since detc n C n+1 C n+2 = 1 w n+1 = r n+1. Now since X n and X n+1 are both perpendicular to C n+1 we know that X n X n+1 = kc n+1 for some k. However since w n+1 = r n+1 we know that k = 1 and hence that X n X n+1 = C n+1. 7

8 Corollary 1 detx n 2 X n 1 X n = 1 detx n 2 X n 1 X n = X n 2 X n 1 X n = X n 2 C n Corollary 2 yn 1 x n 1 yn x n = r n x nx n 1 From Lemma 3 we know that = C n 2 C n 1 C n = detc n 2 C n 1 C n = 1 x n y n 1 y n x n 1 = r n. Dividing this expression by yields y n 1 y n x n 1 = r n. x n Definition 4 Let α n be defined so that d n 3 d n 2 α n d n 1 = 0. Definition 5 Let C n = C n 3 C n 2 α n C n 1. Definition 6 Let ɛ n = α n a n. From these definitions it should be clear that a n α n < a n ɛ n < 1 Additionally if we let C n 1 α β = 0 C n C n+1 X n x n ỹ n z n. Then and α = ỹn x n β = z n x n. 8

9 Lemma 4 X n = X n + α n ɛ n X n 1 + ɛ n X n 2 X n = C n C n+1 = C n 3 C n 2 α n C n 1 C n 2 C n 1 α n+1 C n = C n 3 C n 2 C n 3 C n 1 α n+1 C n 3 C n + C n 2 C n 1 α n+1 C n 2 C n α n C n 1 C n 2 + α n α n+1 C n 1 C n We now compute the following: C n 3 C n 1 = C n 3 C n 4 C n 3 a n 1 C n 2 = X n 4 a n 1 X n 3 C n 3 C n = C n 3 C n 3 C n 2 a n C n 1 = X n 3 a n C n 3 C n 1 = X n 3 + a n X n 4 + a n a n 1 X n 3 C n 2 C n = C n 2 C n 3 C n 2 a n C n 1 Therefore we have that = X n 3 a n X n 2 X n = X n 3 + X n 4 + a n 1 X n 3 α n+1 X n 3 + a n X n 4 + a n a n 1 X n 3 X n 2 + α n+1 X n 3 a n X n 2 + α n X n 2 + α n α n+1 X n 1 = α n α n+1 X n 1 + α n + 1 α n+1 a n X n a n 1 α n+1 a n a n 1 X n α n+1 a n X n 4 = α n α n+1 X n 1 α n+1 a n X n 2 + a n 1 X n 3 + X n 4 +X n 2 + a n 1 X n 3 + X n 4 + a n X n 2 + X n 3 + ɛ n X n 2 = α n+1 ɛ n X n 1 + X n 1 + a n X n 2 + X n 3 + ɛ n X n 2 = X n + α n+1 ɛ n X n 1 + ɛ n X n 2 Lemma 5 y n 1 x n 1 α r n + r n 1 We know that α = ỹn x n = y n + α n+1 ɛ n y n 1 + ɛ n y n 2 x n + α n+1 ɛ n x n 1 + ɛ n x n 2. 9

10 Hence y n 1 α x n 1 = y n 1 y n + α n+1 ɛ n y n 1 + ɛ n y n 2 x n 1 x n + α n+1 ɛ n x n 1 + ɛ n x n 2 = x ny n 1 y n x n 1 + y n 1 x n 2 x n 1 y n 2 ɛ n x n 1 x n + α n+1 ɛ n x n 1 + ɛ n x n 2 Therefore since α n 0 ɛ n 0 and x n 0 then y n 1 α x n 1 r n 1ɛ n r n y n 1 α x n 1 r n + r n 1 Lemma 6 zn 1 x n 1 β qn + qn 1 x nx n 1 The proof of this lemma is similar to the proof of the previous lemma. r Lemma 7 If lim n q x nx n 1 = 0 and lim n sequence is unique. x nx n 1 = 0 then the triangle r Since lim n = 0 we know that lim lim lim r n 1 x n 1 x n 2 = 0 r n 1 = 0 r n + r n 1 = 0 q Similarily since lim n = 0 we know that lim lim lim q n 1 x n 1 x n 2 = 0 q n 1 = 0 q n + q n 1 = 0 10

11 Therefore by the two previous lemmas y n lim lim Hence the triangle sequence is unique. = α x n z n = β x n 4 Uniqueness of Certain Bounded Triangle Sequences 4.1 Review of Key Ideas In section 3 we demonstrated that the relations lim lim r n = 0 q n = 0 are equivalent to uniqueness. Now we will use this formulation to prove the uniqueness of certain bounded infinte triangle sequences in the two main theorems of this section. 4.2 Proof of the Theorem We prove the following theorems by finding lower bounds on the growth of and upper bounds on the growth of r n and q n in order to show that the appropriate limit relations hold. Theorem 2 The infinite triangle sequence given by a i = A for all i is unique. First we shall bound r n and q n from above. We know that r n+1 = r n 2 r n 1 a n+1 r n Additionally r n+1 r n 1 + r n 1 + A r n q n+1 = q n 2 q n 1 a n+1 q n 11

12 q n+1 q n 1 + q n 1 + A q n Consider the case where A 1. We will show that r n A + 1 n. r 0 = 1 A r 1 = A A r 2 = A 2 1 A Suppose that r k A + 1 k for all k n. Then r n+1 r n 2 + r n 1 + A r n A + 1 n 2 + A + 1 n 1 + AA + 1 n = A + 1 n A A A A + 1 n+1 Note that the last of the above steps is justified since A 1 implies that A A Therefore by induction r n A + 1 n for all n. Similarily we will show that q n A + 1 n. q 0 = 0 A q 1 = 1 A q 2 = A + 1 A Suppose that q k A + 1 k for all k n. Then q n+1 q n 2 + q n 1 + A q n A + 1 n 2 + A + 1 n 1 + AA + 1 n = A + 1 n A A A A + 1 n+1 Therefore by induction q n A + 1 n for all n. Consider the case where A = 0. We will show that r n A n = 3 2 n. 3 r 0 = r 1 = r 2 =

13 Suppose that r k 3 2 k for all k n. Then r n+1 r n 2 + r n 1 n n = n n Therefore by induction r n 3 2 n for all n. Similarily we will show that q n A n = 3 2 n. 0 3 q 0 = q 1 = q 2 = 1 2 Suppose that q k 3 2 k for all k n. Then q n+1 q n 2 + q n 1 n n = n n 1 Therefore by induction q n 3 2 n for all n. This means that for all A 0 we have that r n+1 A + 3 n+1 2 q n+1 A + 3 n Next we will bound x n from below. We will show that x n CA + 2 n/2. x 0 = 1 x 1 = 1 + A x 2 = 2 + 2A x 3 = 3 + 3A + A 2 13

14 Therefore x 2 A + 2x 0 x 3 A + 2x 1 Suppose that x k A + 2x k 2 x k+1 A + 2x k 1 We will show that x k+2 A+2x k. Since the x n are increasing we know that x k+2 = x k+1 + Ax k + x k 1 = x k + Ax k 1 + x k 2 + Ax k + x k 1 = A + 1x k + x k 1 + Ax k 1 + x k 2 A + 1x k + x k 1 + Ax k 2 + x k 3 = A + 1x k + x k = A + 2x k Therefore by induction we have that x n+2 A + 2x n for all n. This implies that x n CA + 2 n/2 for all n. r Finally we will show that n q and n approach 0 as n grows without bound. Recall that Therefore we have that r n q n A + 3 n 2 A + 3 n 2 x n CA + 2 n/2 x n 1 CA + 2 n/2 1/2 DA + 2 n/2 lim lim r n lim q n lim A n CDA + 2 n = 0 A n CDA + 2 n = 0 Thus by Lemma 7 the triangle sequence a i = A is unique for all A 0. This establishes uniqueness for the very particular case where a i = A for all i. Although we have made only partial progress toward an extension of this method we do believe that it can be extended to prove uniqueness of all bounded triangle sequences. 14

15 5 Relationships Between Cross Product Vectors and Vertices of Partition Triangles 5.1 Overview In order to understand the uniqueness question through the geometry of the iteration we need to investigate the partition triangles a1... a n. In particular we need to study the vertices of these triangles. In the following section we begin by stating and proving a lemma that relates the vertices of a1... a n to those of an... a 1. This result is interesting in its own right but it is most useful to us as a tool in proving the main theorem of the section. This main theorem shows that there is a clean relation between the vertices of a1... a n and the coordinates of the vectors X n associated with the sequence a 1... a n. Finally as a corollary to this theorem we will construct a formula for the area of a1... a n. 5.2 Proofs of the Relations The main theorem of this paper concerns a direct relationship between the vertices of the partition triangles and the coordinates of the cross product vectors in three dimensions. Lemma 8 Reversing Let a1 a 2... a n be the set of points whose triangle sequences have first n terms equal to a 1 a 2... a n. Suppose the vertices of a1a 2... a n are written as Then the vertices of an a n 1... a 1 T n a 1 a 2... a n 0 0 = y 00 x 00 z 00 x 00 T n a 1 a 2... a n 1 0 = y 10 x 10 z 10 x 10 T n a 1a 2... a n 1 1 = y 11 x 11 z 11 x 11 are equal to T n a n a n 1... a = y 00 y 10 y 11 y 10 y 10 T n a n a n 1... a = x 00 x 10 x 11 x 10 x 10 T n a n a n 1... a = z 00 + x 00 z 10 + x 10 z 11 z 10 + x 11 x 10 z 10 + x 10 15

16 In order to prove this lemma it is necessary to ensure that this notation for the vertices is well-defined. It is easy to see that the vertices of the partition triangles will always be of the form u v where u and v are rational. Write u v in the form y x z x where xy and z are integers and x is as small as possible. This will ensure that x y z = 1 unless of course either u or v is zero. The proof of the reversing lemma will proceed by induction on n the length of the sequence. We will begin by establishing the base cases where n = 0 and n = 1. Case n = 0 It is natural to consider the case n = 0 to be the entire triangle. We will denote this triangle by. The vertices of are It is easy to compute that = = = This proves the lemma for the case n = 0 since is the reverse of itself. 16

17 Case n = 1 The vertices of a1 are a a a a It is again easy to compute that = a a a = a a a a a a = 1 + a a a This proves the lemma for the case n = 1 since a1 is the reverse of itself. Now we assume that the theorem holds true for all triangle sequences of length k with 0 k n 1 and show that the theorem holds true for sequences of length n. The structure of the proof will be as follows. We will begin with the coordinates of the vertices of a2... a n 1 and construct the coordinates of the vertices of both a1... a n and an... a 1. We will then demonstrate that the appropriate relation occurs between the coordinates of the vertices of the two triangles. In order to construct the vertices we need the following relation which follows easily from the definition of the mapping T. y T 1 k x x z x = ky + z + x y ky + z + x This notation refers to the preimage of the point y x z x in triangle k. We also need to check that the operations of reversing and applying T 1 k preserve the reduced fractional form of the vertex coordinates. This means 17

18 that we need to check that under one of these operations a pair y x z x with x y z = 1 will produce another pair y couple of propositions. x z y ky+x+z is in re- Proposition 2 If x y z = 1 then T 1 k y x z x = x duced fractional form. x with x y z = 1. We need a ky+x+z x Suppose ky+x+z y ky+x+z is not in reduced fractional form. Then there is an positive integer m 1 such that m x m y and m ky + x + z. This implies that m z which contradicts the assumption that x y z = 1. This proves the proposition. Proposition 3 If the points y00 z 00 x 00 x 00 y10 z 10 x 10 x 10 y11 z 11 x 11 x 11 are in reduced fractional form then y00 y 11 y 10 y 10 y 10 x00 x 11 x 10 x 10 x 10 z00 + x 00 z 11 z 10 + x 11 x 10 z 10 + x 10 z 10 + x 10 are in reduced fractional form. It suffices to show that y 00 y 10 y 11 y 10 = x 00 x 10 x 11 x 10 = z 00 +x 00 z 10 +x 10 z 11 z 10 +x 11 x 10 = 1 This is equivalent to showing that y 00 y 10 y 11 = x 00 x 10 x 11 = z 00 + x 00 z 10 + x 10 z 11 + x 11 = 1 18

19 We claim that This implies that det det x 00 x 10 x 11 y 00 y 10 y 11 z 00 z 10 z 11 = 1 x 00 x 10 x 11 y 00 y 10 y 11 x 00 + z 10 x 01 + z 01 x 11 + z 11 x k 00 = 1 which proves the lemma. To prove the claim we use induction on n the length of the sequence. We define the vertices of a1... a k in reduced fractional form as follows: y k 00 zk 00 x k and let M k = y k 10 x k 10 y k 11 x k zk 10 x k 10 zk 11 x k 11 x k 00 x k 10 x k 11 y k 00 y k 10 y k 11 z k 00 z k 10 z k 11 We start with the case k=0. The vertices of are: Then det M 0 = det = 1 19

20 Now suppose that det M n 1 = 1. The matrix for T a 1 n [T 1 a n ] = 1 a n is as follows: Thus det[t 1 a n ] = 1 Since M n = [T 1 a n ]M n 1 this implies that det M n = 1 This proves the claim and thus completes the proof of the proposition. Now we are ready to construct the proof of the reversing lemma. have vertices equal to y00 z 00 x 00 a2... a n 1 x 00 y10 z 10 x 10 x 10 y11 z 11 x 11 x 11 Now if we apply the mapping Ta 1 1 to each of these points we recover the vertices of a1... a n 1 which are calculated to be: x 00 y 00 a 1 y 00 + z 00 + x 00 a 1 y 00 + z 00 + x 00 x 10 y 10 a 1 y 10 + z 10 + x 10 a 1 y 10 + z 10 + x 10 x 11 a 1 y 11 + z 11 + x 11 y 11 a 1 y 11 + z 11 + x 11 These are the vertices of a triangle whose sequence has n 1 terms. We then apply the reversing lemma to the vertices to yield the vertices of an 1... a 1 shown below. x00 x 11 x 10 x 10 x 10 a1 y 00 + z 00 + x 00 a 1 y 10 + z 10 + x 10 a 1y 11 a 1 y 10 + z 11 z 10 + x 11 x 10 a 1 y 10 + z 10 + x 10 y00 + a 1 y 00 + z 00 + x 00 y 11 y 10 + a 1 y 11 a 1 y 10 + z 11 z 10 + x 11 x 10 y 10 + a 1 y 10 + z 10 + x 10 y 10 + a 1 y 10 + z 10 + x 10 Let 20

21 Applying Ta 1 n to these points yields the vertices of an... a 1 : x 10 x 00 a n x 00 + x 11 a n x 00 + x 11 a 1 y 10 + z 10 + x 10 a 1 y 00 + z 00 + x 00 a n a 1 y 00 + a n z 00 + a n x 00 + a 1 y 11 + z 11 + x 11 a n a 1 y 00 + a n z 00 + a n x 00 + a 1 y 11 + z 11 + x 11 y 10 + a 1 y 10 + z 10 + x 10 a n y 00 + a n a 1 y 00 + a n z 00 + a n x 00 + y 11 + a 1 y 11 + z 11 + x 11 y 00 + a 1 y 00 + z 00 + x 00 a n y 00 + a n a 1 y 00 + a n z 00 + a n x 00 + y 11 + a 1 y 11 + z 11 + x 11 Now we will similarly construct the vertices of a1... a n. First we use the reversing lemma to calculate the vertices of an 1... a 2 to be: y00 y 11 y 10 y 10 y 10 x00 x 10 x 11 x 10 x 10 z00 + x 00 z 10 + x 10 z 11 z 10 + x 11 + x 10 z 10 + x 10 Applying Ta 1 n yields the vertices of an... a 2 : y 10 y 00 a n y 00 + y 11 a n y 00 + y 11 x 10 x 00 a n x 00 + x 11 a n x 00 + x 11 z 10 + x 10 z 00 + x 00 a n z 00 + a n x 00 + z 11 + x 11 a n z 00 + a n x 00 + z 11 + x 11 Now we apply the reversing lemma to calculate the vertices of a2... a n : y10 z 10 x 10 x 10 an y 00 + y 11 a n x 00 + x 11 a nz 00 + z 11 a n x 00 + x 11 an y 00 + y 00 + y 11 a n x 00 + x 00 + x 11 a nz 00 + z 00 + z 11 a n x 00 + x 00 + x 11 21

22 Finally we apply Ta 1 1 to yield the vertices of a1... a n : x 10 y 10 a 1 y 10 + x 10 + z 10 a 1 y 10 + x 10 + z 10 a n x 00 + x 11 a n y 00 + y 11 a 1 a n y 00 + a 1 y 11 + a n z 00 + z 11 + a n x 00 + x 11 a 1 a n y 00 + a 1 y 11 + a n z 00 + z 11 + a n x 00 + x 11 x 00 + a n x 00 + x 11 a 1 y 00 + a 1 a n y 00 + a 1 y 11 + x 00 + a n x 00 + x 11 + z 00 + a n z 00 + z 11 y 00 + a n y 00 + y 11 a 1 y 00 + a 1 a n y 00 + a 1 y 11 + x 00 + a n x 00 + x 11 + z 00 + a n z 00 + z 11 But this is what you get if you apply the reversing lemma to an... a 1. Thus the lemma is true for sequences of length n and is thus true by induction for all sequences. Now we are ready to prove the main theorem of this exposition: Theorem 3 Let X n = C n C n+1 = x n y n z n. Then the vertices of a1... a n are given by: Ta n yn a n 0 0 = z n 1 x n 1 x n 1 Ta n yn 1... a n 0 1 = z n x n x n Ta n yn 2 + y n 1... a n 1 1 = z n 2 + z n x n 2 + x n x n 2 + x n This theorem is proven by induction on n the number of terms in the sequence. We consider first the case n = 1. The vertices of a1 are: a a a a

23 We also know that: X 1 = x 1 y 1 z 1 = X 0 = x 0 y 0 z 0 = We check that: X 1 = x 1 y 1 z 1 = a y0 z 0 1 = x 0 x = y1 z 1 1 = x 1 x 1 a a y 1 + y 1 z 1 + z = x 1 + x 1 x 1 + x 1 a a = 1 a a Now we assume that the theorem holds for the vertices of all triangles with sequences of length k with 1 k n 1. Suppose the vertices of a1... a n 1 are yn 2 z n 2 x n 2 x n 2 yn 1 z n 1 x n 1 x n 1 yn 3 + y n 1 x n 3 + x n 1 z n 3 + z n 1 x n 3 + x n 1 We will then construct the vertices of a1... a n by applying the reversing lemma and the map Ta 1 n. First the reversing lemma gives us the vertices of an 1... a 1 yn 2 y n 3 y n 1 y n 1 xn 2 x n 1 x n 3 x n 1 zn 2 + x n 2 z n 1 + x n 1 z n 3 + x n 3 z n 1 + x n 1 23

24 Next we apply the map Ta 1 n to give the vertices of an... a 1 y n 1 y n 2 y n 1 + a n y n 2 + y n 3 y n 1 + a n y n 2 + y n 3 x n 1 x n 1 + a n x n 2 + x n 3 x n 2 x n 1 + a n x n 2 + x n 3 x n 1 + z n 1 x n 2 + z n 2 x n 1 + a n x n 2 + x n 3 + z n 1 + a n z n 2 + z n 3 x n 1 + a n x n 2 + x n 3 + z n 1 + a n z n 2 + z n 3 By using the recursion relation X n = X n 1 +a n X n 2 +X n 3 we can simplify this yn 1 y n 2 y n y n xn 1 x n 2 x n x n xn 1 + z n 1 x n 2 + z n 2 x n + z n x n + z n Finally we apply the reversing lemma to these points to yield the vertices of a1... a n. They are yn 1 z n 1 x n 1 x n 1 yn z n x n x n yn 2 + y n x n 2 + x n z n 2 + z n x n 2 + x n This shows that the theorem is true for sequences of length n. This proves the theorem for all n. Corollary 3 The area of a1... a n is equal to 1 2x nx n 1x n+x n 2. We know from the previous theorem that the vertices of a1... a n yn 1 z n 1 x n 1 x n 1 are: 24

25 yn z n x n x n yn 2 + y n x n 2 + x n z n 2 + z n x n 2 + x n Therefore we can calculate the area as one-half of the length of the crossproduct of two edge vectors. The edge vectors are calculated to be: yn 2 + y n E 1 = y n z n 2 + z n z n 0 x n 2 + x n x n x n 2 + x n x n E 2 = yn 1 y n z n 1 z n 0 x n 1 x n Combining the fractions yields: yn 2 x n x n 2 y n E 1 = x n x n 2 + x n z n 2x n x n 2 z n x n x n 2 + x n 0 yn 1 x n x n 1 y n E 1 = z n 1x n x n 1 z n 0 Now we know that y n 1 x n x n 1 y n = r n and that z n 1 x n x n 1 z n = q n. We can also calculate the other two numerators by using the recursion relation X n = X n 1 + a n X n 2 + X n 3 y n 2 x n x n 2 y n = y n 2 x n 1 + a n x n 2 + x n 3 x n 2 y n 1 + a n y n 2 + y n 3 = y n 2 x n 1 x n 2 y n 1 + y n 2 x n 3 x n 2 y n 3 = r n 1 + r n 2 Similarly z n 2 x n x n 2 z n = q n 1 q n 2. Thus we can rewrite E 1 and E 2 in the following way: rn 1 + r n 2 E 1 = x n x n 2 + x n q n 1 q n 2 x n x n 2 + x n 0 E 2 = rn q n 0 25

26 Therefore E 1 E 2 = = = = = = = 0 0 q n r n 1 + r n 2 r n q n q n 2 x 2 nx n 1 x n + x n r nq n 1 q n r n 1 + q n r n 2 r n q n 2 x 2 nx n 1 x n + x n x n 1 + q n 3 q n 2 a n q n 1 r n 2 r n 3 r n 2 a n r n 1 q n 2 x 2 nx n 1 x n + x n x n 1 + r n 2 q n 3 r n 3 q n 2 + a n r n 1 q n 2 r n 2 q n 1 x 2 nx n 1 x n + x n x n 1 + a n x n 2 + x n 3 x 2 nx n 1 x n + x n 2 x n 0 0 x 2 nx n 1 x n + x n x n + x n 2 Thus Area of a1... a n = 1 2 E 1 E 2 = 1 2 x n +x n 2 Corollary 4 The set of all points α β with triangle sequence equal to a 1 a 2... consists of at most a line segment. It is easy to show that if you have any two points α 1 β 1 and α 2 β 2 that have the same triangle sequence then every point on the line segment connecting them will also have that same triangle sequence. Now suppose there are three non-collinear points that all have the same triangle sequence. Clearly all points on the triangular perimeter defined by these three points will have the same triangle sequence. Then given any point in the interior of this region we can construct a line segment containing this point with endpoints on the perimeter. This implies that there exists a region with nonzero area in which every point has the same triangle sequence. However this contradicts corollary 3. 6 Uniqueness of Triangle Sequences in Which the Integer C Appears Infinitely Often This section uses a geometric argument to show that in the case that any integer C appears infintely often in a triangle sequence a 1 a 2... the partition 26

27 Figure 2: Triangle corresponding to Lemma 9 triangles a1... a n converge to the unique point with that triangle sequence. We begin with a couple of definitions. Definition 7 For any vector V = v 1 v 2 let V = max v 1 v 2. Definition 8 For any two points A and B let AB be the vector from A to B. Definition 9 Let the distance between two points A and B be defined as AB. Lemma 9 Let ABC be a triangle and let M and N be two points such that M lies on the line segment between B and N. Then AM AN AM AB. Since B M and N are colinear and since M lies between N and B then BM = a MN for some a 0. Let m 1 be the largest component of the vector AM. Without loss of generality assume let m 1 be non-negative. Then AM = m 1. Now let x 1 n 1 and b 1 be the corresponding components of MN AN and AB respectively. Then AM AN m 1 n 1 Therefore since AN = AM + MN we know that x 1 0. Additionally since AB = AM a MN we know that b 1 m 1. This implies that AB AM. 27

28 Lemma 10 Let ABC be a triangle with AC AB then for any point M on the line segment between B and C AM AB. Case1: AM AC This case follows immediately by letting N = C in the previous lemma. Case2: AM < AC Since AC AB and AM < AC then AM AB as desired. Definition 10 Let s 0 n be the length of the side connecting Ta n 1...a n 0 0 and Ta n 1...a n 1 0. Lemma 11 For any n 3 one of the following is true: Let s 0 n s 0 n 1 s 0 n s 0 n 2 s 0 n s 0 n 3 Analogously let A = T n a 1...a n B = T n a 1...a n C = T n a 1...a n A = T n a 1...a n B = T n a 1...a n C = T n a 1...a n A = T n a 1...a n B = T n a 1...a n C = T n a 1...a n Where Ta n 1...a 0 is the identity transformation. Note that B = A and B = A. Case 1: AB AC By Lemma 10 s 0 n AB = s 0 n 1 Note that s 0 n is the length of a line segment connents to A to a point on the line segment between B and C. 28

29 Case 2: AC AB and BC AC. Since BC is the longest side of ABC and s 0 n lies within ABC then s 0 n BC. Note that A and C are both points on the line segment connenting B and C and that C lies between B and A. Therefore by Lemma 9 since BC AC s 0 n 2 = A B A C = BC s 0 n Case 3: BC AC AB AC and B A B C. Recall that the side between B and C contains the points A and C. Therefore s 0 n 2 = B A B C AC We know that AC is the longest side of ABC in which s 0 n lies. Therefore s 0 n 2 AC s 0 n Case 4: BC AC AB AC and B A B C. Note that A and C are points on the line segment connecting B and C with C between B and A. Therefore by Lemma 9 since B C B A s 0 n 3 = A B A C = B C Since AC is the longest side of ABC and since the side between B and C contains the points A and C then s 0 n 3 B C AC s 0 n Definition 11 Let F n = max Definition 12 Let G n = max r n 4 x n 4 x n 5 q n 4 x n 4 x n 5 Lemma 12 If a n = C and a n 1 > C then r n 3 x n 3 x n 4 q n 3 x n 3 x n 4 r n 2 x n 2 x n 3. q n 2 x n 2 x n 3. r n C2 +3C+2 C 2 +4C+4 F n. To prove this lemma we will bound r n from above in terms of max r n 2 r n 3 r n 4 and bound from below in terms of x n 2 x n 3. We will then use these two bounds fact that F n max r n 2 r n 3 r n 4 x n 2 x n 3 in terms of F n. Recall that r n = r n 3 r n 2 a n r n 1 to bound r n from above 29

30 By making the substitution r n 1 = r n 4 r n 3 a n 1 r n 2 we get r n = r n 3 r n 2 a n r n 4 + a n r n 3 + a n a n 1 r n 2 1 By using the triangle inequality and that a n = C we get Additionally r n Ca n 1 + 2C + 2 max r n 2 r n 3 r n 4 = x n 3 + a n x n 2 + x n 1 x n 1 By making the substitution x n 1 = x n 4 + a n 1 x n 3 + x n 2 we get = x n 4 + a n 1 + 1x n 3 + a n + 1x n 2 By dropping the x n 4 terms and using that a n = C we get x n 4 + a n 1 x n 3 + x n 2 2 a n 1 + 1x n 3 + C + 1x n 2 a n 1 x n 3 + x n 2 By dropping the x 2 n 3 terms we get Therefore Ca n 1 + 2a n 1 + C + 2x n 2 x n 3 r n = Ca n 1 + 2C + 2 max r n 2 r n 3 r n 4 Ca n 1 + 2a n 1 + C + 2x n 2 x n 3 Ca n 1 + 2C + 2 Ca n 1 + 2a n 1 + C + 2 F n Since the derivative of the above expression with respect to a n 1 is always negative in the region a n 1 C + 1 then the above expression achieves its maximum in the region a n 1 C + 1 when a n 1 = C + 1. Therefore r n C2 + 3C + 2 C 2 + 4C + 4 F n 30

31 Lemma 13 If a n = C and a n 1 > C then q n x nx n 1 C2 +3C+2 C 2 +4C+4 G n The proof holds for q n because in the proof of the previous lemma nothing is used about r n except that it satisfies the recurrence r n = r n 3 r n 2 a n r n 1 which q n satisfies as well. Lemma 14 If a n = C a n 1 > C and a n+1 C then By replacing n with n + 1 in Equation 1 we get r n+1 x n+1x n C2 +3C+2 C 2 +4C+4 F n r n+1 = a n+1 r n 3 + a n+1 + 1r n 2 + a n a n+1 1r n 1 By making the substitution r n 1 = r n 4 r n 3 a n 1 r n 2 we get r n+1 = a n a n+1 1r n a n+1 Ca n+1 r n 3 + a n a n 1 Ca n+1 a n 1 r n 2 3 By using the triangle inequality and that a n = C we get r n+1 = 2Ca n+1 + a n 1 Ca n+1 + 2a n+1 + a n max r n 2 r n 3 r n 4 Additionally by replacing n with n + 1 in Equation 2 we get x n+1 x n = x n 3 + a n + 1x n 2 + a n+1 + 1x n 1 x n 3 + a n x n 2 + x n 1 By making the substitution x n 1 = x n 4 + a n 1 x n 3 + x n 2 we get x n+1 x n = a n+1 + 1x 4 + a n 1 + a n 1 a n+1 + 1x n 3 + a n+1 + a n + 2x n 2 x n 4 + a n 1 + 1x n 3 + a n + 1x n 2 4 By dropping the x n 4 terms and using that a n = C we get x n+1 x n a n 1 + a n 1 a n+1 + 1x n 3 + a n+1 + C + 2x n 2 a n 1 + 1x n 3 + C + 1x n 2 By dropping the x 2 n 3 terms we get x n+1 x n Ca n 1 a n+1 + 2Ca n 1 + Ca n+1 + C 2 + 5C + 2a n 1 a n+1 + 3a n 1 + 2a n+1 + 5x n 2 x n 3 Therefore r n 2Ca n+1 + a n 1 Ca n+1 + 2a n+1 + a n x n+1 x n Ca n 1 a n+1 + 2Ca n 1 + Ca n+1 + C 2 + 5C + 2a n 1 a n+1 + 3a n 1 + 2a n F n 31

32 Since the derivative of the above expression with respect to a n 1 is always negative when a n 1 C + 1 and a n+1 C then the above expression achieves its maximum in the region bounded by a n 1 C + 1 and a n+1 C when a n 1 = C + 1. Therefore r n 3Ca n+1 + C 2 a n+1 + C + 2a n x n+1 x n C 2 a n+1 + 3C 2 + 4Ca n C + 4a n F n Since the derivative of the above expression with respect to a n+1 is always positive when a n+1 C we can replace the right hand side of the above inequality with its limit as a n+1. Therefore r n C2 + 3C + 2 x n+1 x n C 2 + 4C + 4 F n Lemma 15 If a n = C a n 1 > C and a n+1 C then q n+1 x n+1 x n C2 +3C+2 C 2 +4C+4 G n The proof of this lemma is identical to the proof of the previous lemma with all references to r i replaced by references to q i. Lemma 16 If a n = C a n 1 > C a n+1 C and a n+2 C then C2 +3C+2 C 2 +4C+4 F n r n+2 x n+2 x n+1 By replacing n with n + 1 in Equation 3 we get r n+2 = a n+2 a n+1 1r n+3 a n+2 + a n+2 a n+1 1r n 2 + a n a n+2 a n+1 a n + a n r n 1 By making the substitution r n 1 = r n 4 r n 3 a n 1 r n 2 we get r n+2 = a n a n+2 a n+1 C + Cr n 4 + a n+2 a n+1 a n a n+2 a n+1 C Cr n 3 a n+2 + a n+2 a n a n+2 a n 1 + a n 1 a n+2 a n+1 a n 1 C + Ca n 1 r n 2 By using the triangle inequality and that a n = C we get r n+2 a n+2 a n+1 a n 1 C + 2a n+2 a n+1 C + Ca n 1 + 2C + 2a n+2 a n+1 + a n+2 a n 1 + a n 1 + 3a n max r n 2 r n 3 r n

33 Additionally by replacing n with n + 1 in Equation 4 we get x n+2 x n+1 = a n+2 +1x n 3 +a n a n+2 +a n +1x n 2 +a n+1 +a n+2 +2x n 1 x n 3 + a n + 1x n 2 + a n+1 + 1x n 1 By making the substitution x n 1 = x n 4 + a n 1 x n 3 + x n 2 we get x n+2 x n+1 = a n+1 +a n+2 +2x n 4 +a n+2 +1+a n+1 a n 1 +a n+2 a n 1 +2a n 1 x n 3 + a n+1 + a n a n+2 + a n+2 + a n + 3x n 2 a n+1 + 1x n a n+1 a n 1 + a n 1 x n 3 + a n a n+1 x n 2 By dropping the x n 4 terms and using that a n = C we get x n+2 x n+1 a n+2 +1+a n+1 a n 1 +a n+2 a n 1 +2a n 1 x n 3 +a n+1 +Ca n+2 +a n+2 +C+3x n a n+1 a n 1 + a n 1 x n 3 + C a n+1 x n 2 By dropping the x 2 n 3 terms we get x n+2 x n+1 a n 1 Ca n+2 a n+1 +2Ca n+1 +2Ca n+2 +3C+2a n+2 a n+1 +2a 2 n+1+3a n+2 +8a n Ca n+2 a n+1 + C 2 a n+2 + C 2 + 6Ca n+2 + 2Ca n+1 + 7C + a 2 n+1 + 2a n+2 a n+1 + 5a n+2 + 7a n x n 2 x n 3 6 Now let J = a n 1 Ca n+2 a n+1 + C + a n Ca n+2 a n+1 + 2C + 2a n+2 a n+1 + 3a n and K = a n 1 Ca n+2 a n+1 +2Ca n+1 +2Ca n+2 +3C+2a n+2 a n+1 +2a 2 n+1+3a n+2 +8a n Ca n+2 a n+1 + C 2 a n+2 + C 2 + 6Ca n+2 + 2Ca n+1 + 7C + a 2 n+1 + 2a n+2 a n+1 + 5a n+2 + 7a n Then Equation 5 can be rewritten as r n+2 J max r n 2 r n 3 r n 4 and Equation 6 can be rewritten as Therefore x n+2 x n+1 Kx n 2 x n 3 r n+2 x n+2 x n+1 J K F n 33

34 Since the derivative of J K F n with respect to a n 1 is always negative when a n 1 C+1 a n+1 C and a n+2 C then the above expression achieves its maximum in the region bounded by a n 1 C + 1 a n+1 C and a n+2 C when a n 1 = C + 1. By making the substitution a n 1 = C + 1 in the expression J we get J 1 = a n+2 C 2 a n+1 + 3Ca n+1 + C + 2a n C 2 + 4C + 5 By making the substitution a n 1 = C + 1 in the expression K we get K 1 = a n+2 C 2 a n+1 + 3C 2 + 4Ca n C + 4a n C 2 a n+1 + 4C 2 + 2Ca 2 n Ca n C + 3a 2 n a n Therefore we have r n+2 x n+2 x n+1 J 1 K 1 F n Since the derivative of J1 K 1 F n with respect to a n+2 is always positive when a n+1 C and a n+2 C then we can replace the right hand side of the above inequality with its limit as a n+2. Therefore r n+2 a n+1 C 2 + 3a n+1 C + 2a n+1 + C + 4 x n+2 x n+1 a n+1 C 2 + 4a n+1 C + 4a n+1 + 3C C + 8 Since the derivative of the above expression with respect to a n+1 is always positive when a n+1 C then we can replace the right hand side of the above inequality with its limit as a n+1. Therefore r n+2 C2 + 3C + 2 x n+2 x n+1 C 2 + 4C + 4 Lemma 17 If a n = C a n 1 > C a n+1 C and a n+2 C then C 2 +3C+2 C 2 +4C+4 G n q n+2 x n+2 x n+1 The proof of this lemma is identical to the proof of the previous lemma with all references to r i replaced by references to q i. 34

35 Lemma 18 s 0 n = rn q n From Lemma 3 we know that: T n a 1...a n 0 0 = T n a 1...a n 1 0 = yn 1 z n 1 x n 1 x n 1 yn z n x n x n Therefore yn 1 s 0 n = z n 1 yn z n x n 1 x n 1 x n x n yn x n 1 x n y n 1 = z nx n 1 x n z n 1 rn q n = Lemma 19 If a n = C a n 1 > C a n+1 C and a n+2 C then s 0 i C 2 +3C+2 C 2 +4C+4 maxs 0n 2 s 0 n 3 s 0 n 4 for all i {n n + 1 n + 2}. From Lemma 18 we know that maxs 0 n 2 s 0 n 3 s 0 n 4 = max r n 2 x n 2 x n 3 q n 2 x n 2 x n 3 r n 3 x n 3 x n 4 q n 3 x n 3 x n 4 r n 4 x n 4 x n 5 q n 4 x n 4 x n 5 and ri q i s 0 i = max x i x i 1 x i x i 1 From Lemmas 12 through 17 we know that for all i {n n + 1 n + 2} r i C2 + 3C + 2 x i x i 1 C 2 + 4C + 4 max r n 2 x n 2 x n 3 q i C2 + 3C + 2 x i x i 1 C 2 + 4C + 4 max q n 2 x n 2 x n 3 r n 3 x n 3 x n 4 q n 3 x n 3 x n 4 r n 4 x n 4 x n 5 q n 4 x n 4 x n 5 35

36 Therefore for all i {n n + 1 n + 2} s 0 i C2 + 3C + 2 C 2 + 4C + 4 maxs 0n 2 s 0 n 3 s 0 n 4 Lemma 20 If lim s 0 n = 0 then the triangle sequence a 1 a 2 a 3... is unique. From Lemma 18 we know that s 0 n = max rn q x nx n 1 n x nx n 1. Therefore This that lim s 0 n = 0 implies s 0 n r n s 0 n q n lim s 0n = 0 lim s 0n = 0 Hence by Lemma 7 we know that the triangle sequence is unique. Theorem 4 If any number occurs infinitely many times in a triangle sequence then that triangle sequence is unique. Given a triangle sequence a 1 a 2 a 3... let C be the smallest term that occurs infinitely many times in the sequence. Case 1: The sequence contains only finitely many terms a i such that a i C. Then there must exist an a N such that for all a i where i > N the terms in the sequence are C. By some Lemma 2 i the sequence C C C... is unique. Therefore the triangle sequence a 1 a 2 a 3... is unique. Case 2: The sequence contains infinitely many terms a i such that a i C. By assumption C is the smallest term that appears infinitely often in the sequence. Therefore there are only finitely many terms less than C in the triangle sequence. Let a m be the last term in the sequence that is less than C. Since there are infinitely many C terms in the sequence and infinitely many terms greater than C it is possible to select an infinite sequence of N 1 N 2 N

37 such that N 1 > m + 1 and for all i a Ni = C and a Ni 1 > C. Note that since N 1 > m + 1 it follows immediately that a Ni +1 C and a Ni +1 C. Let We will show that for all n N i M = maxs 0 N 0 2 s 0 N 0 3 s 0 N 0 4 s 0 n C 2 i + 3C + 2 C 2 M + 4C + 4 First consider the base case where i = 0. By Lemma 11 for all s 0 n N 0 Now assume that for all n N k Therefore we know that s 0 n s 0 n M C 2 k + 3C + 2 C 2 M + 4C + 4 maxs 0 N k+1 2 s 0 N k+1 3 s 0 N k+1 4 So by Lemma 19 we know that C 2 k+1 + 3C + 2 s 0 N k+1 C 2 M + 4C + 4 C 2 k+1 + 3C + 2 s 0 N k C 2 M + 4C + 4 C 2 k+1 + 3C + 2 s 0 N k C 2 M + 4C + 4 Hence by Lemma 11 we know that for all n N k+1 C 2 k+1 + 3C + 2 s 0 n C 2 M + 4C + 4 C 2 k + 3C + 2 C 2 M + 4C + 4 Therefore by induction we have that for all i and for all n N i C 2 i + 3C + 2 s 0 n C 2 M + 4C + 4 Therefore we know that C 2 i lim s + 3C + 2 0n lim i C 2 M + 4C + 4 Therefore since C2 +3C+2 C 2 +4C+4 < 1 lim s 0n = 0 Thus by Lemma 20 the triangle sequence is unique. 37

38 References [1] Thomas Garrity. On periodic sequences for algebraic numbers

A Bound on the Distance from Approximation Vectors to the Plane

A Bound on the Distance from Approximation Vectors to the Plane A Bound on the Distance from Approximation Vectors to the Plane T. Cheslack-Postava, A. Diesl, M. Lepinski, A. Schuyler August 2, 999 Abstract In this paper, we will begin by reviewing triangle sequences.

More information

arxiv:math/ v2 [math.nt] 18 Jun 1999

arxiv:math/ v2 [math.nt] 18 Jun 1999 arxiv:math/9906016v2 [math.nt] 18 Jun 1999 On periodic sequences for algebraic numbers Thomas Garrity Department of Mathematics Williams College Williamstown, MA 01267 email:tgarrity@williams.edu Abstract

More information

Real Analysis Math 131AH Rudin, Chapter #1. Dominique Abdi

Real Analysis Math 131AH Rudin, Chapter #1. Dominique Abdi Real Analysis Math 3AH Rudin, Chapter # Dominique Abdi.. If r is rational (r 0) and x is irrational, prove that r + x and rx are irrational. Solution. Assume the contrary, that r+x and rx are rational.

More information

Mini-Course on Limits and Sequences. Peter Kwadwo Asante. B.S., Kwame Nkrumah University of Science and Technology, Ghana, 2014 A REPORT

Mini-Course on Limits and Sequences. Peter Kwadwo Asante. B.S., Kwame Nkrumah University of Science and Technology, Ghana, 2014 A REPORT Mini-Course on Limits and Sequences by Peter Kwadwo Asante B.S., Kwame Nkrumah University of Science and Technology, Ghana, 204 A REPORT submitted in partial fulfillment of the requirements for the degree

More information

Solutions for Homework Assignment 2

Solutions for Homework Assignment 2 Solutions for Homework Assignment 2 Problem 1. If a,b R, then a+b a + b. This fact is called the Triangle Inequality. By using the Triangle Inequality, prove that a b a b for all a,b R. Solution. To prove

More information

MATH 117 LECTURE NOTES

MATH 117 LECTURE NOTES MATH 117 LECTURE NOTES XIN ZHOU Abstract. This is the set of lecture notes for Math 117 during Fall quarter of 2017 at UC Santa Barbara. The lectures follow closely the textbook [1]. Contents 1. The set

More information

5 Set Operations, Functions, and Counting

5 Set Operations, Functions, and Counting 5 Set Operations, Functions, and Counting Let N denote the positive integers, N 0 := N {0} be the non-negative integers and Z = N 0 ( N) the positive and negative integers including 0, Q the rational numbers,

More information

Chapter. Triangles. Copyright Cengage Learning. All rights reserved.

Chapter. Triangles. Copyright Cengage Learning. All rights reserved. Chapter 3 Triangles Copyright Cengage Learning. All rights reserved. 3.5 Inequalities in a Triangle Copyright Cengage Learning. All rights reserved. Inequalities in a Triangle Important inequality relationships

More information

,... We would like to compare this with the sequence y n = 1 n

,... We would like to compare this with the sequence y n = 1 n Example 2.0 Let (x n ) n= be the sequence given by x n = 2, i.e. n 2, 4, 8, 6,.... We would like to compare this with the sequence = n (which we know converges to zero). We claim that 2 n n, n N. Proof.

More information

Some notes on Coxeter groups

Some notes on Coxeter groups Some notes on Coxeter groups Brooks Roberts November 28, 2017 CONTENTS 1 Contents 1 Sources 2 2 Reflections 3 3 The orthogonal group 7 4 Finite subgroups in two dimensions 9 5 Finite subgroups in three

More information

ELEMENTARY LINEAR ALGEBRA

ELEMENTARY LINEAR ALGEBRA ELEMENTARY LINEAR ALGEBRA K R MATTHEWS DEPARTMENT OF MATHEMATICS UNIVERSITY OF QUEENSLAND First Printing, 99 Chapter LINEAR EQUATIONS Introduction to linear equations A linear equation in n unknowns x,

More information

a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2.

a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2. Chapter 1 LINEAR EQUATIONS 11 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,, a n, b are given real

More information

ELEMENTARY LINEAR ALGEBRA

ELEMENTARY LINEAR ALGEBRA ELEMENTARY LINEAR ALGEBRA K. R. MATTHEWS DEPARTMENT OF MATHEMATICS UNIVERSITY OF QUEENSLAND Second Online Version, December 1998 Comments to the author at krm@maths.uq.edu.au Contents 1 LINEAR EQUATIONS

More information

A matrix over a field F is a rectangular array of elements from F. The symbol

A matrix over a field F is a rectangular array of elements from F. The symbol Chapter MATRICES Matrix arithmetic A matrix over a field F is a rectangular array of elements from F The symbol M m n (F ) denotes the collection of all m n matrices over F Matrices will usually be denoted

More information

1 Take-home exam and final exam study guide

1 Take-home exam and final exam study guide Math 215 - Introduction to Advanced Mathematics Fall 2013 1 Take-home exam and final exam study guide 1.1 Problems The following are some problems, some of which will appear on the final exam. 1.1.1 Number

More information

arxiv:math/ v3 [math.nt] 13 Aug 1999 On periodic sequences for algebraic numbers

arxiv:math/ v3 [math.nt] 13 Aug 1999 On periodic sequences for algebraic numbers arxiv:math/9906016v3 [math.nt] 13 Aug 1999 On periodic sequences for algebraic numbers Thomas Garrity Department of Mathematics Williams College Williamstown, MA 01267 email:tgarrity@williams.edu Abstract

More information

2. Two binary operations (addition, denoted + and multiplication, denoted

2. Two binary operations (addition, denoted + and multiplication, denoted Chapter 2 The Structure of R The purpose of this chapter is to explain to the reader why the set of real numbers is so special. By the end of this chapter, the reader should understand the difference between

More information

PUTNAM PROBLEMS SEQUENCES, SERIES AND RECURRENCES. Notes

PUTNAM PROBLEMS SEQUENCES, SERIES AND RECURRENCES. Notes PUTNAM PROBLEMS SEQUENCES, SERIES AND RECURRENCES Notes. x n+ = ax n has the general solution x n = x a n. 2. x n+ = x n + b has the general solution x n = x + (n )b. 3. x n+ = ax n + b (with a ) can be

More information

Continued fractions for complex numbers and values of binary quadratic forms

Continued fractions for complex numbers and values of binary quadratic forms arxiv:110.3754v1 [math.nt] 18 Feb 011 Continued fractions for complex numbers and values of binary quadratic forms S.G. Dani and Arnaldo Nogueira February 1, 011 Abstract We describe various properties

More information

Chapter 1. Sets and Numbers

Chapter 1. Sets and Numbers Chapter 1. Sets and Numbers 1. Sets A set is considered to be a collection of objects (elements). If A is a set and x is an element of the set A, we say x is a member of A or x belongs to A, and we write

More information

L p Spaces and Convexity

L p Spaces and Convexity L p Spaces and Convexity These notes largely follow the treatments in Royden, Real Analysis, and Rudin, Real & Complex Analysis. 1. Convex functions Let I R be an interval. For I open, we say a function

More information

A misère-play -operator

A misère-play -operator A misère-play -operator Matthieu Dufour Silvia Heubach Urban Larsson arxiv:1608.06996v1 [math.co] 25 Aug 2016 July 31, 2018 Abstract We study the -operator (Larsson et al, 2011) of impartial vector subtraction

More information

ALGEBRA. 1. Some elementary number theory 1.1. Primes and divisibility. We denote the collection of integers

ALGEBRA. 1. Some elementary number theory 1.1. Primes and divisibility. We denote the collection of integers ALGEBRA CHRISTIAN REMLING 1. Some elementary number theory 1.1. Primes and divisibility. We denote the collection of integers by Z = {..., 2, 1, 0, 1,...}. Given a, b Z, we write a b if b = ac for some

More information

Pigeonhole Principle and Ramsey Theory

Pigeonhole Principle and Ramsey Theory Pigeonhole Principle and Ramsey Theory The Pigeonhole Principle (PP) has often been termed as one of the most fundamental principles in combinatorics. The familiar statement is that if we have n pigeonholes

More information

EUCLID S ALGORITHM AND THE FUNDAMENTAL THEOREM OF ARITHMETIC after N. Vasiliev and V. Gutenmacher (Kvant, 1972)

EUCLID S ALGORITHM AND THE FUNDAMENTAL THEOREM OF ARITHMETIC after N. Vasiliev and V. Gutenmacher (Kvant, 1972) Intro to Math Reasoning Grinshpan EUCLID S ALGORITHM AND THE FUNDAMENTAL THEOREM OF ARITHMETIC after N. Vasiliev and V. Gutenmacher (Kvant, 1972) We all know that every composite natural number is a product

More information

MATH 324 Summer 2011 Elementary Number Theory. Notes on Mathematical Induction. Recall the following axiom for the set of integers.

MATH 324 Summer 2011 Elementary Number Theory. Notes on Mathematical Induction. Recall the following axiom for the set of integers. MATH 4 Summer 011 Elementary Number Theory Notes on Mathematical Induction Principle of Mathematical Induction Recall the following axiom for the set of integers. Well-Ordering Axiom for the Integers If

More information

Sequences. Chapter 3. n + 1 3n + 2 sin n n. 3. lim (ln(n + 1) ln n) 1. lim. 2. lim. 4. lim (1 + n)1/n. Answers: 1. 1/3; 2. 0; 3. 0; 4. 1.

Sequences. Chapter 3. n + 1 3n + 2 sin n n. 3. lim (ln(n + 1) ln n) 1. lim. 2. lim. 4. lim (1 + n)1/n. Answers: 1. 1/3; 2. 0; 3. 0; 4. 1. Chapter 3 Sequences Both the main elements of calculus (differentiation and integration) require the notion of a limit. Sequences will play a central role when we work with limits. Definition 3.. A Sequence

More information

Limits and Continuity

Limits and Continuity Chapter Limits and Continuity. Limits of Sequences.. The Concept of Limit and Its Properties A sequence { } is an ordered infinite list x,x,...,,... The n-th term of the sequence is, and n is the index

More information

Walk through Combinatorics: Sumset inequalities.

Walk through Combinatorics: Sumset inequalities. Walk through Combinatorics: Sumset inequalities (Version 2b: revised 29 May 2018) The aim of additive combinatorics If A and B are two non-empty sets of numbers, their sumset is the set A+B def = {a+b

More information

5 Birkhoff s Ergodic Theorem

5 Birkhoff s Ergodic Theorem 5 Birkhoff s Ergodic Theorem Birkhoff s Ergodic Theorem extends the validity of Kolmogorov s strong law to the class of stationary sequences of random variables. Stationary sequences occur naturally even

More information

M17 MAT25-21 HOMEWORK 6

M17 MAT25-21 HOMEWORK 6 M17 MAT25-21 HOMEWORK 6 DUE 10:00AM WEDNESDAY SEPTEMBER 13TH 1. To Hand In Double Series. The exercises in this section will guide you to complete the proof of the following theorem: Theorem 1: Absolute

More information

Chapter 3. Betweenness (ordering) A system satisfying the incidence and betweenness axioms is an ordered incidence plane (p. 118).

Chapter 3. Betweenness (ordering) A system satisfying the incidence and betweenness axioms is an ordered incidence plane (p. 118). Chapter 3 Betweenness (ordering) Point B is between point A and point C is a fundamental, undefined concept. It is abbreviated A B C. A system satisfying the incidence and betweenness axioms is an ordered

More information

NORMS ON SPACE OF MATRICES

NORMS ON SPACE OF MATRICES NORMS ON SPACE OF MATRICES. Operator Norms on Space of linear maps Let A be an n n real matrix and x 0 be a vector in R n. We would like to use the Picard iteration method to solve for the following system

More information

SOLUTIONS TO ADDITIONAL EXERCISES FOR II.1 AND II.2

SOLUTIONS TO ADDITIONAL EXERCISES FOR II.1 AND II.2 SOLUTIONS TO ADDITIONAL EXERCISES FOR II.1 AND II.2 Here are the solutions to the additional exercises in betsepexercises.pdf. B1. Let y and z be distinct points of L; we claim that x, y and z are not

More information

8 th December th December 2018 Junior Category. a 2 + b + c = 1 a, b 2 + c + a = 1 b, c 2 + a + b = 1 c.

8 th December th December 2018 Junior Category. a 2 + b + c = 1 a, b 2 + c + a = 1 b, c 2 + a + b = 1 c. 7 th European Mathematical Cup 8 th December 018-16 th December 018 Junior Category MLADI NADARENI MATEMATIČARI Marin Getaldic Problems and Solutions Problem 1. Let a, b, c be non-zero real numbers such

More information

ELEMENTARY LINEAR ALGEBRA

ELEMENTARY LINEAR ALGEBRA ELEMENTARY LINEAR ALGEBRA K R MATTHEWS DEPARTMENT OF MATHEMATICS UNIVERSITY OF QUEENSLAND Second Online Version, December 998 Comments to the author at krm@mathsuqeduau All contents copyright c 99 Keith

More information

Math 324 Summer 2012 Elementary Number Theory Notes on Mathematical Induction

Math 324 Summer 2012 Elementary Number Theory Notes on Mathematical Induction Math 4 Summer 01 Elementary Number Theory Notes on Mathematical Induction Principle of Mathematical Induction Recall the following axiom for the set of integers. Well-Ordering Axiom for the Integers If

More information

The Lebesgue Integral

The Lebesgue Integral The Lebesgue Integral Brent Nelson In these notes we give an introduction to the Lebesgue integral, assuming only a knowledge of metric spaces and the iemann integral. For more details see [1, Chapters

More information

Chapter 2. Real Numbers. 1. Rational Numbers

Chapter 2. Real Numbers. 1. Rational Numbers Chapter 2. Real Numbers 1. Rational Numbers A commutative ring is called a field if its nonzero elements form a group under multiplication. Let (F, +, ) be a filed with 0 as its additive identity element

More information

THE UNIT GROUP OF A REAL QUADRATIC FIELD

THE UNIT GROUP OF A REAL QUADRATIC FIELD THE UNIT GROUP OF A REAL QUADRATIC FIELD While the unit group of an imaginary quadratic field is very simple the unit group of a real quadratic field has nontrivial structure Its study involves some geometry

More information

Seunghee Ye Ma 8: Week 2 Oct 6

Seunghee Ye Ma 8: Week 2 Oct 6 Week 2 Summary This week, we will learn about sequences and real numbers. We first define what we mean by a sequence and discuss several properties of sequences. Then, we will talk about what it means

More information

In N we can do addition, but in order to do subtraction we need to extend N to the integers

In N we can do addition, but in order to do subtraction we need to extend N to the integers Chapter The Real Numbers.. Some Preliminaries Discussion: The Irrationality of 2. We begin with the natural numbers N = {, 2, 3, }. In N we can do addition, but in order to do subtraction we need to extend

More information

CS 6820 Fall 2014 Lectures, October 3-20, 2014

CS 6820 Fall 2014 Lectures, October 3-20, 2014 Analysis of Algorithms Linear Programming Notes CS 6820 Fall 2014 Lectures, October 3-20, 2014 1 Linear programming The linear programming (LP) problem is the following optimization problem. We are given

More information

UNDERSTANDING RULER AND COMPASS CONSTRUCTIONS WITH FIELD THEORY

UNDERSTANDING RULER AND COMPASS CONSTRUCTIONS WITH FIELD THEORY UNDERSTANDING RULER AND COMPASS CONSTRUCTIONS WITH FIELD THEORY ISAAC M. DAVIS Abstract. By associating a subfield of R to a set of points P 0 R 2, geometric properties of ruler and compass constructions

More information

Topological properties

Topological properties CHAPTER 4 Topological properties 1. Connectedness Definitions and examples Basic properties Connected components Connected versus path connected, again 2. Compactness Definition and first examples Topological

More information

Standard forms for writing numbers

Standard forms for writing numbers Standard forms for writing numbers In order to relate the abstract mathematical descriptions of familiar number systems to the everyday descriptions of numbers by decimal expansions and similar means,

More information

arxiv: v1 [math.fa] 14 Jul 2018

arxiv: v1 [math.fa] 14 Jul 2018 Construction of Regular Non-Atomic arxiv:180705437v1 [mathfa] 14 Jul 2018 Strictly-Positive Measures in Second-Countable Locally Compact Non-Atomic Hausdorff Spaces Abstract Jason Bentley Department of

More information

0 Sets and Induction. Sets

0 Sets and Induction. Sets 0 Sets and Induction Sets A set is an unordered collection of objects, called elements or members of the set. A set is said to contain its elements. We write a A to denote that a is an element of the set

More information

Bounded Derivatives Which Are Not Riemann Integrable. Elliot M. Granath. A thesis submitted in partial fulfillment of the requirements

Bounded Derivatives Which Are Not Riemann Integrable. Elliot M. Granath. A thesis submitted in partial fulfillment of the requirements Bounded Derivatives Which Are Not Riemann Integrable by Elliot M. Granath A thesis submitted in partial fulfillment of the requirements for graduation with Honors in Mathematics. Whitman College 2017 Certificate

More information

Unique Expansions of Real Numbers

Unique Expansions of Real Numbers ESI The Erwin Schrödinger International Boltzmanngasse 9 Institute for Mathematical Physics A-1090 Wien, Austria Unique Expansions of Real Numbers Martijn de Vries Vilmos Komornik Vienna, Preprint ESI

More information

1 Topology Definition of a topology Basis (Base) of a topology The subspace topology & the product topology on X Y 3

1 Topology Definition of a topology Basis (Base) of a topology The subspace topology & the product topology on X Y 3 Index Page 1 Topology 2 1.1 Definition of a topology 2 1.2 Basis (Base) of a topology 2 1.3 The subspace topology & the product topology on X Y 3 1.4 Basic topology concepts: limit points, closed sets,

More information

1 Homework. Recommended Reading:

1 Homework. Recommended Reading: Analysis MT43C Notes/Problems/Homework Recommended Reading: R. G. Bartle, D. R. Sherbert Introduction to real analysis, principal reference M. Spivak Calculus W. Rudin Principles of mathematical analysis

More information

Exercise Solutions to Functional Analysis

Exercise Solutions to Functional Analysis Exercise Solutions to Functional Analysis Note: References refer to M. Schechter, Principles of Functional Analysis Exersize that. Let φ,..., φ n be an orthonormal set in a Hilbert space H. Show n f n

More information

= 1 2x. x 2 a ) 0 (mod p n ), (x 2 + 2a + a2. x a ) 2

= 1 2x. x 2 a ) 0 (mod p n ), (x 2 + 2a + a2. x a ) 2 8. p-adic numbers 8.1. Motivation: Solving x 2 a (mod p n ). Take an odd prime p, and ( an) integer a coprime to p. Then, as we know, x 2 a (mod p) has a solution x Z iff = 1. In this case we can suppose

More information

Complex numbers, the exponential function, and factorization over C

Complex numbers, the exponential function, and factorization over C Complex numbers, the exponential function, and factorization over C 1 Complex Numbers Recall that for every non-zero real number x, its square x 2 = x x is always positive. Consequently, R does not contain

More information

This section is devoted to a very quick discussion of sequences and series of complex numbers.

This section is devoted to a very quick discussion of sequences and series of complex numbers. 1.3. Complex sequences and series: a snapshot This section is devoted to a very quick discussion of sequences and series of complex numbers. Formally a sequence of complex numbers is a function from the

More information

CONTINUED FRACTIONS, PELL S EQUATION, AND TRANSCENDENTAL NUMBERS

CONTINUED FRACTIONS, PELL S EQUATION, AND TRANSCENDENTAL NUMBERS CONTINUED FRACTIONS, PELL S EQUATION, AND TRANSCENDENTAL NUMBERS JEREMY BOOHER Continued fractions usually get short-changed at PROMYS, but they are interesting in their own right and useful in other areas

More information

CHAPTER 8: EXPLORING R

CHAPTER 8: EXPLORING R CHAPTER 8: EXPLORING R LECTURE NOTES FOR MATH 378 (CSUSM, SPRING 2009). WAYNE AITKEN In the previous chapter we discussed the need for a complete ordered field. The field Q is not complete, so we constructed

More information

ON THE POSSIBLE QUANTITIES OF FIBONACCI NUMBERS THAT OCCUR IN SOME TYPES OF INTERVALS

ON THE POSSIBLE QUANTITIES OF FIBONACCI NUMBERS THAT OCCUR IN SOME TYPES OF INTERVALS Acta Math. Univ. Comenianae Vol. LXXXVII, 2 (2018), pp. 291 299 291 ON THE POSSIBLE QUANTITIES OF FIBONACCI NUMBERS THAT OCCUR IN SOME TYPES OF INTERVALS B. FARHI Abstract. In this paper, we show that

More information

PUTNAM TRAINING EASY PUTNAM PROBLEMS

PUTNAM TRAINING EASY PUTNAM PROBLEMS PUTNAM TRAINING EASY PUTNAM PROBLEMS (Last updated: September 24, 2018) Remark. This is a list of exercises on Easy Putnam Problems Miguel A. Lerma Exercises 1. 2017-A1. Let S be the smallest set of positive

More information

Generating Functions of Partitions

Generating Functions of Partitions CHAPTER B Generating Functions of Partitions For a complex sequence {α n n 0,, 2, }, its generating function with a complex variable q is defined by A(q) : α n q n α n [q n ] A(q). When the sequence has

More information

(1) A frac = b : a, b A, b 0. We can define addition and multiplication of fractions as we normally would. a b + c d

(1) A frac = b : a, b A, b 0. We can define addition and multiplication of fractions as we normally would. a b + c d The Algebraic Method 0.1. Integral Domains. Emmy Noether and others quickly realized that the classical algebraic number theory of Dedekind could be abstracted completely. In particular, rings of integers

More information

Introduction to Real Analysis Alternative Chapter 1

Introduction to Real Analysis Alternative Chapter 1 Christopher Heil Introduction to Real Analysis Alternative Chapter 1 A Primer on Norms and Banach Spaces Last Updated: March 10, 2018 c 2018 by Christopher Heil Chapter 1 A Primer on Norms and Banach Spaces

More information

Notes on Continued Fractions for Math 4400

Notes on Continued Fractions for Math 4400 . Continued fractions. Notes on Continued Fractions for Math 4400 The continued fraction expansion converts a positive real number α into a sequence of natural numbers. Conversely, a sequence of natural

More information

1 Directional Derivatives and Differentiability

1 Directional Derivatives and Differentiability Wednesday, January 18, 2012 1 Directional Derivatives and Differentiability Let E R N, let f : E R and let x 0 E. Given a direction v R N, let L be the line through x 0 in the direction v, that is, L :=

More information

Handout #6 INTRODUCTION TO ALGEBRAIC STRUCTURES: Prof. Moseley AN ALGEBRAIC FIELD

Handout #6 INTRODUCTION TO ALGEBRAIC STRUCTURES: Prof. Moseley AN ALGEBRAIC FIELD Handout #6 INTRODUCTION TO ALGEBRAIC STRUCTURES: Prof. Moseley Chap. 2 AN ALGEBRAIC FIELD To introduce the notion of an abstract algebraic structure we consider (algebraic) fields. (These should not to

More information

Real Analysis - Notes and After Notes Fall 2008

Real Analysis - Notes and After Notes Fall 2008 Real Analysis - Notes and After Notes Fall 2008 October 29, 2008 1 Introduction into proof August 20, 2008 First we will go through some simple proofs to learn how one writes a rigorous proof. Let start

More information

Foundations of Neutral Geometry

Foundations of Neutral Geometry C H A P T E R 12 Foundations of Neutral Geometry The play is independent of the pages on which it is printed, and pure geometries are independent of lecture rooms, or of any other detail of the physical

More information

2. Prime and Maximal Ideals

2. Prime and Maximal Ideals 18 Andreas Gathmann 2. Prime and Maximal Ideals There are two special kinds of ideals that are of particular importance, both algebraically and geometrically: the so-called prime and maximal ideals. Let

More information

GENERALIZED CANTOR SETS AND SETS OF SUMS OF CONVERGENT ALTERNATING SERIES

GENERALIZED CANTOR SETS AND SETS OF SUMS OF CONVERGENT ALTERNATING SERIES Journal of Applied Analysis Vol. 7, No. 1 (2001), pp. 131 150 GENERALIZED CANTOR SETS AND SETS OF SUMS OF CONVERGENT ALTERNATING SERIES M. DINDOŠ Received September 7, 2000 and, in revised form, February

More information

In N we can do addition, but in order to do subtraction we need to extend N to the integers

In N we can do addition, but in order to do subtraction we need to extend N to the integers Chapter 1 The Real Numbers 1.1. Some Preliminaries Discussion: The Irrationality of 2. We begin with the natural numbers N = {1, 2, 3, }. In N we can do addition, but in order to do subtraction we need

More information

Notes for Math 290 using Introduction to Mathematical Proofs by Charles E. Roberts, Jr.

Notes for Math 290 using Introduction to Mathematical Proofs by Charles E. Roberts, Jr. Notes for Math 290 using Introduction to Mathematical Proofs by Charles E. Roberts, Jr. Chapter : Logic Topics:. Statements, Negation, and Compound Statements.2 Truth Tables and Logical Equivalences.3

More information

A proof of a partition conjecture of Bateman and Erdős

A proof of a partition conjecture of Bateman and Erdős proof of a partition conjecture of Bateman and Erdős Jason P. Bell Department of Mathematics University of California, San Diego La Jolla C, 92093-0112. US jbell@math.ucsd.edu 1 Proposed Running Head:

More information

The Real Number System

The Real Number System MATH 337 The Real Number System Sets of Numbers Dr. Neal, WKU A set S is a well-defined collection of objects, with well-defined meaning that there is a specific description from which we can tell precisely

More information

Classification of Isometries

Classification of Isometries Chapter 3 Classification of Isometries From our work in Chapter 1 we know that reflections, translations, glide reflections and rotations are isometries. Furthermore, the Fundamental Theorem tells us that

More information

Definitions, Theorems and Exercises. Abstract Algebra Math 332. Ethan D. Bloch

Definitions, Theorems and Exercises. Abstract Algebra Math 332. Ethan D. Bloch Definitions, Theorems and Exercises Abstract Algebra Math 332 Ethan D. Bloch December 26, 2013 ii Contents 1 Binary Operations 3 1.1 Binary Operations............................... 4 1.2 Isomorphic Binary

More information

The 4-periodic spiral determinant

The 4-periodic spiral determinant The 4-periodic spiral determinant Darij Grinberg rough draft, October 3, 2018 Contents 001 Acknowledgments 1 1 The determinant 1 2 The proof 4 *** The purpose of this note is to generalize the determinant

More information

AN EXPLORATION OF THE METRIZABILITY OF TOPOLOGICAL SPACES

AN EXPLORATION OF THE METRIZABILITY OF TOPOLOGICAL SPACES AN EXPLORATION OF THE METRIZABILITY OF TOPOLOGICAL SPACES DUSTIN HEDMARK Abstract. A study of the conditions under which a topological space is metrizable, concluding with a proof of the Nagata Smirnov

More information

Homework 4, 5, 6 Solutions. > 0, and so a n 0 = n + 1 n = ( n+1 n)( n+1+ n) 1 if n is odd 1/n if n is even diverges.

Homework 4, 5, 6 Solutions. > 0, and so a n 0 = n + 1 n = ( n+1 n)( n+1+ n) 1 if n is odd 1/n if n is even diverges. 2..2(a) lim a n = 0. Homework 4, 5, 6 Solutions Proof. Let ɛ > 0. Then for n n = 2+ 2ɛ we have 2n 3 4+ ɛ 3 > ɛ > 0, so 0 < 2n 3 < ɛ, and thus a n 0 = 2n 3 < ɛ. 2..2(g) lim ( n + n) = 0. Proof. Let ɛ >

More information

Problem List MATH 5143 Fall, 2013

Problem List MATH 5143 Fall, 2013 Problem List MATH 5143 Fall, 2013 On any problem you may use the result of any previous problem (even if you were not able to do it) and any information given in class up to the moment the problem was

More information

MATH 301 INTRO TO ANALYSIS FALL 2016

MATH 301 INTRO TO ANALYSIS FALL 2016 MATH 301 INTRO TO ANALYSIS FALL 016 Homework 04 Professional Problem Consider the recursive sequence defined by x 1 = 3 and +1 = 1 4 for n 1. (a) Prove that ( ) converges. (Hint: show that ( ) is decreasing

More information

A proof of Freiman s Theorem, continued. An analogue of Freiman s Theorem in a bounded torsion group

A proof of Freiman s Theorem, continued. An analogue of Freiman s Theorem in a bounded torsion group A proof of Freiman s Theorem, continued Brad Hannigan-Daley University of Waterloo Freiman s Theorem Recall that a d-dimensional generalized arithmetic progression (GAP) in an abelian group G is a subset

More information

2.2 Some Consequences of the Completeness Axiom

2.2 Some Consequences of the Completeness Axiom 60 CHAPTER 2. IMPORTANT PROPERTIES OF R 2.2 Some Consequences of the Completeness Axiom In this section, we use the fact that R is complete to establish some important results. First, we will prove that

More information

Minimizing Cubic and Homogeneous Polynomials over Integers in the Plane

Minimizing Cubic and Homogeneous Polynomials over Integers in the Plane Minimizing Cubic and Homogeneous Polynomials over Integers in the Plane Alberto Del Pia Department of Industrial and Systems Engineering & Wisconsin Institutes for Discovery, University of Wisconsin-Madison

More information

Course 212: Academic Year Section 1: Metric Spaces

Course 212: Academic Year Section 1: Metric Spaces Course 212: Academic Year 1991-2 Section 1: Metric Spaces D. R. Wilkins Contents 1 Metric Spaces 3 1.1 Distance Functions and Metric Spaces............. 3 1.2 Convergence and Continuity in Metric Spaces.........

More information

Analytic Number Theory Solutions

Analytic Number Theory Solutions Analytic Number Theory Solutions Sean Li Cornell University sxl6@cornell.edu Jan. 03 Introduction This document is a work-in-progress solution manual for Tom Apostol s Introduction to Analytic Number Theory.

More information

Mathematics Course 111: Algebra I Part I: Algebraic Structures, Sets and Permutations

Mathematics Course 111: Algebra I Part I: Algebraic Structures, Sets and Permutations Mathematics Course 111: Algebra I Part I: Algebraic Structures, Sets and Permutations D. R. Wilkins Academic Year 1996-7 1 Number Systems and Matrix Algebra Integers The whole numbers 0, ±1, ±2, ±3, ±4,...

More information

Notes on Complex Analysis

Notes on Complex Analysis Michael Papadimitrakis Notes on Complex Analysis Department of Mathematics University of Crete Contents The complex plane.. The complex plane...................................2 Argument and polar representation.........................

More information

4 Countability axioms

4 Countability axioms 4 COUNTABILITY AXIOMS 4 Countability axioms Definition 4.1. Let X be a topological space X is said to be first countable if for any x X, there is a countable basis for the neighborhoods of x. X is said

More information

Chapter 8. P-adic numbers. 8.1 Absolute values

Chapter 8. P-adic numbers. 8.1 Absolute values Chapter 8 P-adic numbers Literature: N. Koblitz, p-adic Numbers, p-adic Analysis, and Zeta-Functions, 2nd edition, Graduate Texts in Mathematics 58, Springer Verlag 1984, corrected 2nd printing 1996, Chap.

More information

Spring 2014 Advanced Probability Overview. Lecture Notes Set 1: Course Overview, σ-fields, and Measures

Spring 2014 Advanced Probability Overview. Lecture Notes Set 1: Course Overview, σ-fields, and Measures 36-752 Spring 2014 Advanced Probability Overview Lecture Notes Set 1: Course Overview, σ-fields, and Measures Instructor: Jing Lei Associated reading: Sec 1.1-1.4 of Ash and Doléans-Dade; Sec 1.1 and A.1

More information

Immerse Metric Space Homework

Immerse Metric Space Homework Immerse Metric Space Homework (Exercises -2). In R n, define d(x, y) = x y +... + x n y n. Show that d is a metric that induces the usual topology. Sketch the basis elements when n = 2. Solution: Steps

More information

A Review of Linear Programming

A Review of Linear Programming A Review of Linear Programming Instructor: Farid Alizadeh IEOR 4600y Spring 2001 February 14, 2001 1 Overview In this note we review the basic properties of linear programming including the primal simplex

More information

ALGEBRAIC GEOMETRY COURSE NOTES, LECTURE 2: HILBERT S NULLSTELLENSATZ.

ALGEBRAIC GEOMETRY COURSE NOTES, LECTURE 2: HILBERT S NULLSTELLENSATZ. ALGEBRAIC GEOMETRY COURSE NOTES, LECTURE 2: HILBERT S NULLSTELLENSATZ. ANDREW SALCH 1. Hilbert s Nullstellensatz. The last lecture left off with the claim that, if J k[x 1,..., x n ] is an ideal, then

More information

Shortest paths with negative lengths

Shortest paths with negative lengths Chapter 8 Shortest paths with negative lengths In this chapter we give a linear-space, nearly linear-time algorithm that, given a directed planar graph G with real positive and negative lengths, but no

More information

When are Sums Closed?

When are Sums Closed? Division of the Humanities and Social Sciences Ec 181 KC Border Convex Analysis and Economic Theory Fall 2018 Winter 2019 Topic 20: When are Sums Closed? 20.1 Is a sum of closed sets closed? Example 0.2.2

More information

THE INVERSE FUNCTION THEOREM

THE INVERSE FUNCTION THEOREM THE INVERSE FUNCTION THEOREM W. PATRICK HOOPER The implicit function theorem is the following result: Theorem 1. Let f be a C 1 function from a neighborhood of a point a R n into R n. Suppose A = Df(a)

More information

Recall the convention that, for us, all vectors are column vectors.

Recall the convention that, for us, all vectors are column vectors. Some linear algebra Recall the convention that, for us, all vectors are column vectors. 1. Symmetric matrices Let A be a real matrix. Recall that a complex number λ is an eigenvalue of A if there exists

More information

µ (X) := inf l(i k ) where X k=1 I k, I k an open interval Notice that is a map from subsets of R to non-negative number together with infinity

µ (X) := inf l(i k ) where X k=1 I k, I k an open interval Notice that is a map from subsets of R to non-negative number together with infinity A crash course in Lebesgue measure theory, Math 317, Intro to Analysis II These lecture notes are inspired by the third edition of Royden s Real analysis. The Jordan content is an attempt to extend the

More information

Lecture 3 - Tuesday July 5th

Lecture 3 - Tuesday July 5th Lecture 3 - Tuesday July 5th jacques@ucsd.edu Key words: Identities, geometric series, arithmetic series, difference of powers, binomial series Key concepts: Induction, proofs of identities 3. Identities

More information