A Bound on the Distance from Approximation Vectors to the Plane

Size: px
Start display at page:

Download "A Bound on the Distance from Approximation Vectors to the Plane"

Transcription

1 A Bound on the Distance from Approximation Vectors to the Plane T. Cheslack-Postava, A. Diesl, M. Lepinski, A. Schuyler August 2, 999 Abstract In this paper, we will begin by reviewing triangle sequences. One interpretation of these sequences is as a sequence of approximation vectors approaching the plane x + αy + βz = 0. This paper establishes an upper bound on the distance from the n th approximation vector to the plane x + αy + βz = 0. Introduction This paper will start with an overview of triangle sequences as outlined in work by Garrity [2]. We begin with a geometrical interpretation of triangle sequences. We define an iteration T on the triangle: = (x, y) : x y > 0. This triangle is partitioned into an infinite set of disjoint subtriangles k = (x, y) : x ky 0 > x (k + )y, where k is any nonnegative integer. Define the map T : (x, 0) : 0 x by ( β T (α, β) = α, α kβ ), α where (α, β) k. The triangle sequence is recovered from this iteration by keeping track of the number of the triangle that the point is mapped into at each step. In other words, if T k (α, β) ak, then the point (α, β) will have the triangle sequence (a, a 2, a 3,... ). We will recursively define a sequence of vectors as follows: SetC 2 = (, 0, 0), C = (0,, 0), C 0 = (0, 0, ) and C n = C n 3 C n 2 a n C n

2 Let the components of C n be denoted by C n = (p n, q n, r n ). These vectors C n can be thought of as integer vectors approximating the plane x + αy + βz = 0. We thus refer to the C n vectors as approximation vectors. We define positive numbers d n in the following manner: d n = (, α, β) C n These numbers are an indication of close the approximation vectors are to the plane x+αy+βz = 0. (In fact, these numbers differ from the Euclidean distance to the plane by a constant factor). The rest of the paper concerns itself with bounding d n from above. Let X n = C n C n+ as defined in []. We shall denote the components of X n as (x n, y n, z n ). In the next section we establish the bound of: d n < x n+ 2 A Bound on d n Let N n be the matrix, x n y n z n x n x n y n y n z n z n x n 2 y n 2 z n 2 We set M n = (C n 2, C n, C n ). Recall from [2] that det(m n ) = C n 2 (C n C n ) =. Lemma M n = N n Proof: We know that x n y n z n p n 2 p n p n N n M n = x n x n y n y n z n z n q n 2 q n q n x n 2 y n 2 z n 2 r n 2 r n r n By performing the above multiplication, we get C n 2 X n C n X n C n X n N n M n = C n 2 X n C n 2 X n C n X n C n X n C n X n C n X n C n 2 X n 2 C n X n 2 C n X n 2 Since for all k, we know that X k = C k C k+, then C k X k = 0 C k X k = 0 C k X k+ = 2

3 Additionally, C n 2 X n = C n 2 (X n 3 + a n X n 2 + X n ) and C n 2 X n = C n 2 X n 3 + a n C n 2 X n 2 + C n 2 X n C n 2 X n = C n X n 2 = (C n 3 C n 2 a n C n ) X n 2 Therefore, C n X n 2 = C n 3 X n 2 C n 2 X n 2 + a n C n X n 2 C n X n 2 = Hence, N n = M n N n M n = Lemma 2 The following three equalities are true: Proof: We know that Therefore, since M n = N n, Therefore, = d n x n 2 + x n + d n x n d n x n α = d n y n 2 + y n + d n y n d n y n β = d n z n 2 + z n + d n z n d n z n (, α, β)m n = (, d n, d n ) (, α, β) = (, d n, d n )N n = d n x n 2 + x n + d n x n d n x n α = d n y n 2 + y n + d n y n d n y n β = d n z n 2 + z n + d n z n d n z n Lemma 3 α = y n + β n y n 2 + α n y n α n y n x n + β n x n 2 + α n x n α n x n β = z n + β n z n 2 + α n z n α n z n x n + β n x n 2 + α n x n α n x n 3

4 Proof: From Lemma 2, we know that = x n + d n x n 2 + d n x n d n x n By recalling that α n = d n and β n = d n, we can divide through by to get = x n + β n x n 2 + α n x n α n x n Or equivalently, = Also from Lemma 2, we have that x n + β n x n 2 + α n x n α n x n () α = y n + d n y n 2 + d n y n d n y n β = z n + d n z n 2 + d n z n d n z n Factoring out a from the right hand sides yields α = (y n + β n y n 2 + α n y n α n y n ) β = (z n + β n z n 2 + α n z n α n z n ) Substituting in for from Equation (), we get α = y n + β n y n 2 + α n y n α n y n x n + β n x n 2 + α n x n α n x n β = z n + β n z n 2 + α n z n α n z n x n + β n x n 2 + α n x n α n x n Theorem d n < x n+ Proof: From Lemma 2, we know that d n+ x n + d n x n + d n x n+ d n x n = Since d n+ > 0 and x n > 0, we can write the inequality: d n x n + d n x n+ d n x n < Since the d n terms are decreasing, we can substitute d n for d n and maintain the inequality: d n x n + d n x n+ d n x n < This implies that d n < x n+ 4

5 References [] T. Cheslack-Postava, A. Diesl, M. Lepinski, and A. Schuyler. Some results concerning uniqueness of triangle sequences [2] Thomas Garrity. On periodic sequences for algebraic numbers

Some Results Concerning Uniqueness of Triangle Sequences

Some Results Concerning Uniqueness of Triangle Sequences Some Results Concerning Uniqueness of Triangle Sequences T. Cheslack-Postava A. Diesl M. Lepinski A. Schuyler August 12 1999 Abstract In this paper we will begin by reviewing the triangle iteration. We

More information

arxiv:math/ v2 [math.nt] 18 Jun 1999

arxiv:math/ v2 [math.nt] 18 Jun 1999 arxiv:math/9906016v2 [math.nt] 18 Jun 1999 On periodic sequences for algebraic numbers Thomas Garrity Department of Mathematics Williams College Williamstown, MA 01267 email:tgarrity@williams.edu Abstract

More information

arxiv:math/ v3 [math.nt] 13 Aug 1999 On periodic sequences for algebraic numbers

arxiv:math/ v3 [math.nt] 13 Aug 1999 On periodic sequences for algebraic numbers arxiv:math/9906016v3 [math.nt] 13 Aug 1999 On periodic sequences for algebraic numbers Thomas Garrity Department of Mathematics Williams College Williamstown, MA 01267 email:tgarrity@williams.edu Abstract

More information

A DUAL APPROACH TO TRIANGLE SEQUENCES: A MULTIDIMENSIONAL CONTINUED FRACTION ALGORITHM. Sami Assaf. Li-Chung Chen

A DUAL APPROACH TO TRIANGLE SEQUENCES: A MULTIDIMENSIONAL CONTINUED FRACTION ALGORITHM. Sami Assaf. Li-Chung Chen INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 5 2005), #A08 A DUAL APPROACH TO TRIANGLE SEQUENCES: A MULTIDIMENSIONAL CONTINUED FRACTION ALGORITHM Sami Assaf University of Notre Dame Li-Chung

More information

Introduction to Proofs

Introduction to Proofs Real Analysis Preview May 2014 Properties of R n Recall Oftentimes in multivariable calculus, we looked at properties of vectors in R n. If we were given vectors x =< x 1, x 2,, x n > and y =< y1, y 2,,

More information

Lecture 5. Ch. 5, Norms for vectors and matrices. Norms for vectors and matrices Why?

Lecture 5. Ch. 5, Norms for vectors and matrices. Norms for vectors and matrices Why? KTH ROYAL INSTITUTE OF TECHNOLOGY Norms for vectors and matrices Why? Lecture 5 Ch. 5, Norms for vectors and matrices Emil Björnson/Magnus Jansson/Mats Bengtsson April 27, 2016 Problem: Measure size of

More information

CSE 20 DISCRETE MATH SPRING

CSE 20 DISCRETE MATH SPRING CSE 20 DISCRETE MATH SPRING 2016 http://cseweb.ucsd.edu/classes/sp16/cse20-ac/ Today's learning goals Describe computer representation of sets with bitstrings Define and compute the cardinality of finite

More information

Theorem 1.7 [Bayes' Law]: Assume that,,, are mutually disjoint events in the sample space s.t.. Then Pr( )

Theorem 1.7 [Bayes' Law]: Assume that,,, are mutually disjoint events in the sample space s.t.. Then Pr( ) Theorem 1.7 [Bayes' Law]: Assume that,,, are mutually disjoint events in the sample space s.t.. Then Pr Pr = Pr Pr Pr() Pr Pr. We are given three coins and are told that two of the coins are fair and the

More information

a. Define a function called an inner product on pairs of points x = (x 1, x 2,..., x n ) and y = (y 1, y 2,..., y n ) in R n by

a. Define a function called an inner product on pairs of points x = (x 1, x 2,..., x n ) and y = (y 1, y 2,..., y n ) in R n by Real Analysis Homework 1 Solutions 1. Show that R n with the usual euclidean distance is a metric space. Items a-c will guide you through the proof. a. Define a function called an inner product on pairs

More information

Exercises for Unit VI (Infinite constructions in set theory)

Exercises for Unit VI (Infinite constructions in set theory) Exercises for Unit VI (Infinite constructions in set theory) VI.1 : Indexed families and set theoretic operations (Halmos, 4, 8 9; Lipschutz, 5.3 5.4) Lipschutz : 5.3 5.6, 5.29 5.32, 9.14 1. Generalize

More information

Generating Functions of Partitions

Generating Functions of Partitions CHAPTER B Generating Functions of Partitions For a complex sequence {α n n 0,, 2, }, its generating function with a complex variable q is defined by A(q) : α n q n α n [q n ] A(q). When the sequence has

More information

Prof. M. Saha Professor of Mathematics The University of Burdwan West Bengal, India

Prof. M. Saha Professor of Mathematics The University of Burdwan West Bengal, India CHAPTER 9 BY Prof. M. Saha Professor of Mathematics The University of Burdwan West Bengal, India E-mail : mantusaha.bu@gmail.com Introduction and Objectives In the preceding chapters, we discussed normed

More information

Normed Vector Spaces and Double Duals

Normed Vector Spaces and Double Duals Normed Vector Spaces and Double Duals Mathematics 481/525 In this note we look at a number of infinite-dimensional R-vector spaces that arise in analysis, and we consider their dual and double dual spaces

More information

Standard forms for writing numbers

Standard forms for writing numbers Standard forms for writing numbers In order to relate the abstract mathematical descriptions of familiar number systems to the everyday descriptions of numbers by decimal expansions and similar means,

More information

Infinite Continued Fractions

Infinite Continued Fractions Infinite Continued Fractions 8-5-200 The value of an infinite continued fraction [a 0 ; a, a 2, ] is lim c k, where c k is the k-th convergent k If [a 0 ; a, a 2, ] is an infinite continued fraction with

More information

Data representation and classification

Data representation and classification Representation and classification of data January 25, 2016 Outline Lecture 1: Data Representation 1 Lecture 1: Data Representation Data representation The phrase data representation usually refers to the

More information

Theorems. Theorem 1.11: Greatest-Lower-Bound Property. Theorem 1.20: The Archimedean property of. Theorem 1.21: -th Root of Real Numbers

Theorems. Theorem 1.11: Greatest-Lower-Bound Property. Theorem 1.20: The Archimedean property of. Theorem 1.21: -th Root of Real Numbers Page 1 Theorems Wednesday, May 9, 2018 12:53 AM Theorem 1.11: Greatest-Lower-Bound Property Suppose is an ordered set with the least-upper-bound property Suppose, and is bounded below be the set of lower

More information

Division Algorithm B1 Introduction to the Division Algorithm (Procedure) quotient remainder

Division Algorithm B1 Introduction to the Division Algorithm (Procedure) quotient remainder A Survey of Divisibility Page 1 SECTION B Division Algorithm By the end of this section you will be able to apply the division algorithm or procedure Our aim in this section is to show that for any given

More information

Properties of the Integers

Properties of the Integers Properties of the Integers The set of all integers is the set and the subset of Z given by Z = {, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, }, N = {0, 1, 2, 3, 4, }, is the set of nonnegative integers (also called

More information

a + b = b + a and a b = b a. (a + b) + c = a + (b + c) and (a b) c = a (b c). a (b + c) = a b + a c and (a + b) c = a c + b c.

a + b = b + a and a b = b a. (a + b) + c = a + (b + c) and (a b) c = a (b c). a (b + c) = a b + a c and (a + b) c = a c + b c. Properties of the Integers The set of all integers is the set and the subset of Z given by Z = {, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, }, N = {0, 1, 2, 3, 4, }, is the set of nonnegative integers (also called

More information

14 Equivalence Relations

14 Equivalence Relations 14 Equivalence Relations Tom Lewis Fall Term 2010 Tom Lewis () 14 Equivalence Relations Fall Term 2010 1 / 10 Outline 1 The definition 2 Congruence modulo n 3 Has-the-same-size-as 4 Equivalence classes

More information

Sequences and Series. College Algebra

Sequences and Series. College Algebra Sequences and Series College Algebra Sequences A sequence is a function whose domain is the set of positive integers. A finite sequence is a sequence whose domain consists of only the first n positive

More information

MAT 771 FUNCTIONAL ANALYSIS HOMEWORK 3. (1) Let V be the vector space of all bounded or unbounded sequences of complex numbers.

MAT 771 FUNCTIONAL ANALYSIS HOMEWORK 3. (1) Let V be the vector space of all bounded or unbounded sequences of complex numbers. MAT 771 FUNCTIONAL ANALYSIS HOMEWORK 3 (1) Let V be the vector space of all bounded or unbounded sequences of complex numbers. (a) Define d : V V + {0} by d(x, y) = 1 ξ j η j 2 j 1 + ξ j η j. Show that

More information

A Review of Linear Programming

A Review of Linear Programming A Review of Linear Programming Instructor: Farid Alizadeh IEOR 4600y Spring 2001 February 14, 2001 1 Overview In this note we review the basic properties of linear programming including the primal simplex

More information

The simplex algorithm

The simplex algorithm The simplex algorithm The simplex algorithm is the classical method for solving linear programs. Its running time is not polynomial in the worst case. It does yield insight into linear programs, however,

More information

A Characterization of the Hurwitz Stability of Metzler Matrices

A Characterization of the Hurwitz Stability of Metzler Matrices 29 American Control Conference Hyatt Regency Riverfront, St Louis, MO, USA June -2, 29 WeC52 A Characterization of the Hurwitz Stability of Metzler Matrices Kumpati S Narendra and Robert Shorten 2 Abstract

More information

18.175: Lecture 2 Extension theorems, random variables, distributions

18.175: Lecture 2 Extension theorems, random variables, distributions 18.175: Lecture 2 Extension theorems, random variables, distributions Scott Sheffield MIT Outline Extension theorems Characterizing measures on R d Random variables Outline Extension theorems Characterizing

More information

9th and 10th Grade Math Proficiency Objectives Strand One: Number Sense and Operations

9th and 10th Grade Math Proficiency Objectives Strand One: Number Sense and Operations Strand One: Number Sense and Operations Concept 1: Number Sense Understand and apply numbers, ways of representing numbers, the relationships among numbers, and different number systems. Justify with examples

More information

Counting Palindromic Binary Strings Without r-runs of Ones

Counting Palindromic Binary Strings Without r-runs of Ones 1 3 47 6 3 11 Journal of Integer Sequences, Vol. 16 (013), Article 13.8.7 Counting Palindromic Binary Strings Without r-runs of Ones M. A. Nyblom School of Mathematics and Geospatial Science RMIT University

More information

Solutions to Homework 2

Solutions to Homework 2 Solutions to Homewor Due Tuesday, July 6,. Chapter. Problem solution. If the series for ln+z and ln z both converge, +z then we can find the series for ln z by term-by-term subtraction of the two series:

More information

1 Examples of Weak Induction

1 Examples of Weak Induction More About Mathematical Induction Mathematical induction is designed for proving that a statement holds for all nonnegative integers (or integers beyond an initial one). Here are some extra examples of

More information

THE PYTHAGOREAN THEOREM

THE PYTHAGOREAN THEOREM THE STORY SO FAR THE PYTHAGOREAN THEOREM USES OF THE PYTHAGOREAN THEOREM USES OF THE PYTHAGOREAN THEOREM SOLVE RIGHT TRIANGLE APPLICATIONS USES OF THE PYTHAGOREAN THEOREM SOLVE RIGHT TRIANGLE APPLICATIONS

More information

DS-GA 1002 Lecture notes 0 Fall Linear Algebra. These notes provide a review of basic concepts in linear algebra.

DS-GA 1002 Lecture notes 0 Fall Linear Algebra. These notes provide a review of basic concepts in linear algebra. DS-GA 1002 Lecture notes 0 Fall 2016 Linear Algebra These notes provide a review of basic concepts in linear algebra. 1 Vector spaces You are no doubt familiar with vectors in R 2 or R 3, i.e. [ ] 1.1

More information

Lecture Notes. Advanced Discrete Structures COT S

Lecture Notes. Advanced Discrete Structures COT S Lecture Notes Advanced Discrete Structures COT 4115.001 S15 2015-01-13 Recap Divisibility Prime Number Theorem Euclid s Lemma Fundamental Theorem of Arithmetic Euclidean Algorithm Basic Notions - Section

More information

Lecture Notes: Eigenvalues and Eigenvectors. 1 Definitions. 2 Finding All Eigenvalues

Lecture Notes: Eigenvalues and Eigenvectors. 1 Definitions. 2 Finding All Eigenvalues Lecture Notes: Eigenvalues and Eigenvectors Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk 1 Definitions Let A be an n n matrix. If there

More information

Hausdorff Measure. Jimmy Briggs and Tim Tyree. December 3, 2016

Hausdorff Measure. Jimmy Briggs and Tim Tyree. December 3, 2016 Hausdorff Measure Jimmy Briggs and Tim Tyree December 3, 2016 1 1 Introduction In this report, we explore the the measurement of arbitrary subsets of the metric space (X, ρ), a topological space X along

More information

NORMS ON SPACE OF MATRICES

NORMS ON SPACE OF MATRICES NORMS ON SPACE OF MATRICES. Operator Norms on Space of linear maps Let A be an n n real matrix and x 0 be a vector in R n. We would like to use the Picard iteration method to solve for the following system

More information

Spring 2014 Advanced Probability Overview. Lecture Notes Set 1: Course Overview, σ-fields, and Measures

Spring 2014 Advanced Probability Overview. Lecture Notes Set 1: Course Overview, σ-fields, and Measures 36-752 Spring 2014 Advanced Probability Overview Lecture Notes Set 1: Course Overview, σ-fields, and Measures Instructor: Jing Lei Associated reading: Sec 1.1-1.4 of Ash and Doléans-Dade; Sec 1.1 and A.1

More information

INNER PRODUCT SPACE. Definition 1

INNER PRODUCT SPACE. Definition 1 INNER PRODUCT SPACE Definition 1 Suppose u, v and w are all vectors in vector space V and c is any scalar. An inner product space on the vectors space V is a function that associates with each pair of

More information

Markov Chains and Stochastic Sampling

Markov Chains and Stochastic Sampling Part I Markov Chains and Stochastic Sampling 1 Markov Chains and Random Walks on Graphs 1.1 Structure of Finite Markov Chains We shall only consider Markov chains with a finite, but usually very large,

More information

Homework #2 Solutions Due: September 5, for all n N n 3 = n2 (n + 1) 2 4

Homework #2 Solutions Due: September 5, for all n N n 3 = n2 (n + 1) 2 4 Do the following exercises from the text: Chapter (Section 3):, 1, 17(a)-(b), 3 Prove that 1 3 + 3 + + n 3 n (n + 1) for all n N Proof The proof is by induction on n For n N, let S(n) be the statement

More information

CS 6820 Fall 2014 Lectures, October 3-20, 2014

CS 6820 Fall 2014 Lectures, October 3-20, 2014 Analysis of Algorithms Linear Programming Notes CS 6820 Fall 2014 Lectures, October 3-20, 2014 1 Linear programming The linear programming (LP) problem is the following optimization problem. We are given

More information

Walk through Combinatorics: Sumset inequalities.

Walk through Combinatorics: Sumset inequalities. Walk through Combinatorics: Sumset inequalities (Version 2b: revised 29 May 2018) The aim of additive combinatorics If A and B are two non-empty sets of numbers, their sumset is the set A+B def = {a+b

More information

Stat 451: Solutions to Assignment #1

Stat 451: Solutions to Assignment #1 Stat 451: Solutions to Assignment #1 2.1) By definition, 2 Ω is the set of all subsets of Ω. Therefore, to show that 2 Ω is a σ-algebra we must show that the conditions of the definition σ-algebra are

More information

Eigenspaces in Recursive Sequences

Eigenspaces in Recursive Sequences Eigenspaces in Recursive Sequences Ben Galin September 5, 005 One of the areas of study in discrete mathematics deals with sequences, in particular, infinite sequences An infinite sequence can be defined

More information

THE FUNDAMENTAL GROUP OF THE DOUBLE OF THE FIGURE-EIGHT KNOT EXTERIOR IS GFERF

THE FUNDAMENTAL GROUP OF THE DOUBLE OF THE FIGURE-EIGHT KNOT EXTERIOR IS GFERF THE FUNDAMENTAL GROUP OF THE DOUBLE OF THE FIGURE-EIGHT KNOT EXTERIOR IS GFERF D. D. LONG and A. W. REID Abstract We prove that the fundamental group of the double of the figure-eight knot exterior admits

More information

arxiv: v1 [math.fa] 14 Jul 2018

arxiv: v1 [math.fa] 14 Jul 2018 Construction of Regular Non-Atomic arxiv:180705437v1 [mathfa] 14 Jul 2018 Strictly-Positive Measures in Second-Countable Locally Compact Non-Atomic Hausdorff Spaces Abstract Jason Bentley Department of

More information

Tomáš Madaras Congruence classes

Tomáš Madaras Congruence classes Congruence classes For given integer m 2, the congruence relation modulo m at the set Z is the equivalence relation, thus, it provides a corresponding partition of Z into mutually disjoint sets. Definition

More information

Chapter 6 Expectation and Conditional Expectation. Lectures Definition 6.1. Two random variables defined on a probability space are said to be

Chapter 6 Expectation and Conditional Expectation. Lectures Definition 6.1. Two random variables defined on a probability space are said to be Chapter 6 Expectation and Conditional Expectation Lectures 24-30 In this chapter, we introduce expected value or the mean of a random variable. First we define expectation for discrete random variables

More information

Introduction to Real Analysis Alternative Chapter 1

Introduction to Real Analysis Alternative Chapter 1 Christopher Heil Introduction to Real Analysis Alternative Chapter 1 A Primer on Norms and Banach Spaces Last Updated: March 10, 2018 c 2018 by Christopher Heil Chapter 1 A Primer on Norms and Banach Spaces

More information

A UNIVERSAL SEQUENCE OF CONTINUOUS FUNCTIONS

A UNIVERSAL SEQUENCE OF CONTINUOUS FUNCTIONS A UNIVERSAL SEQUENCE OF CONTINUOUS FUNCTIONS STEVO TODORCEVIC Abstract. We show that for each positive integer k there is a sequence F n : R k R of continuous functions which represents via point-wise

More information

Homework 4, 5, 6 Solutions. > 0, and so a n 0 = n + 1 n = ( n+1 n)( n+1+ n) 1 if n is odd 1/n if n is even diverges.

Homework 4, 5, 6 Solutions. > 0, and so a n 0 = n + 1 n = ( n+1 n)( n+1+ n) 1 if n is odd 1/n if n is even diverges. 2..2(a) lim a n = 0. Homework 4, 5, 6 Solutions Proof. Let ɛ > 0. Then for n n = 2+ 2ɛ we have 2n 3 4+ ɛ 3 > ɛ > 0, so 0 < 2n 3 < ɛ, and thus a n 0 = 2n 3 < ɛ. 2..2(g) lim ( n + n) = 0. Proof. Let ɛ >

More information

arxiv: v1 [math.nt] 22 Apr 2012

arxiv: v1 [math.nt] 22 Apr 2012 Distributions of missing sums and differences Tiffany C. Inglis University of British Columbia & University of Waterloo NSERC USRA Report August 2, 2007 piffany@gmail.com Introduction arxiv:20.93v math.nt

More information

Doubly Indexed Infinite Series

Doubly Indexed Infinite Series The Islamic University of Gaza Deanery of Higher studies Faculty of Science Department of Mathematics Doubly Indexed Infinite Series Presented By Ahed Khaleel Abu ALees Supervisor Professor Eissa D. Habil

More information

The goal of this chapter is to study linear systems of ordinary differential equations: dt,..., dx ) T

The goal of this chapter is to study linear systems of ordinary differential equations: dt,..., dx ) T 1 1 Linear Systems The goal of this chapter is to study linear systems of ordinary differential equations: ẋ = Ax, x(0) = x 0, (1) where x R n, A is an n n matrix and ẋ = dx ( dt = dx1 dt,..., dx ) T n.

More information

Consider an infinite row of dominoes, labeled by 1, 2, 3,, where each domino is standing up. What should one do to knock over all dominoes?

Consider an infinite row of dominoes, labeled by 1, 2, 3,, where each domino is standing up. What should one do to knock over all dominoes? 1 Section 4.1 Mathematical Induction Consider an infinite row of dominoes, labeled by 1,, 3,, where each domino is standing up. What should one do to knock over all dominoes? Principle of Mathematical

More information

A LATTICE POINT ENUMERATION APPROACH TO PARTITION IDENTITIES

A LATTICE POINT ENUMERATION APPROACH TO PARTITION IDENTITIES A LATTICE POINT ENUMERATION APPROACH TO PARTITION IDENTITIES A thesis presented to the faculty of San Francisco State University In partial fulfilment of The Requirements for The Degree Master of Arts

More information

HOMOLOGY THEORIES INGRID STARKEY

HOMOLOGY THEORIES INGRID STARKEY HOMOLOGY THEORIES INGRID STARKEY Abstract. This paper will introduce the notion of homology for topological spaces and discuss its intuitive meaning. It will also describe a general method that is used

More information

Sum of Squares. Defining Functions. Closed-Form Expression for SQ(n)

Sum of Squares. Defining Functions. Closed-Form Expression for SQ(n) CS/ENGRD 2110 Object-Oriented Programming and Data Structures Spring 2012 Thorsten Joachims Lecture 22: Induction Overview Recursion A programming strategy that solves a problem by reducing it to simpler

More information

CONVERGENCE OF THE FOURIER SERIES

CONVERGENCE OF THE FOURIER SERIES CONVERGENCE OF THE FOURIER SERIES SHAW HAGIWARA Abstract. The Fourier series is a expression of a periodic, integrable function as a sum of a basis of trigonometric polynomials. In the following, we first

More information

M17 MAT25-21 HOMEWORK 6

M17 MAT25-21 HOMEWORK 6 M17 MAT25-21 HOMEWORK 6 DUE 10:00AM WEDNESDAY SEPTEMBER 13TH 1. To Hand In Double Series. The exercises in this section will guide you to complete the proof of the following theorem: Theorem 1: Absolute

More information

Methods for sparse analysis of high-dimensional data, II

Methods for sparse analysis of high-dimensional data, II Methods for sparse analysis of high-dimensional data, II Rachel Ward May 23, 2011 High dimensional data with low-dimensional structure 300 by 300 pixel images = 90, 000 dimensions 2 / 47 High dimensional

More information

5 Measure theory II. (or. lim. Prove the proposition. 5. For fixed F A and φ M define the restriction of φ on F by writing.

5 Measure theory II. (or. lim. Prove the proposition. 5. For fixed F A and φ M define the restriction of φ on F by writing. 5 Measure theory II 1. Charges (signed measures). Let (Ω, A) be a σ -algebra. A map φ: A R is called a charge, (or signed measure or σ -additive set function) if φ = φ(a j ) (5.1) A j for any disjoint

More information

Mathematical Modelling Lecture 14 Fractals

Mathematical Modelling Lecture 14 Fractals Lecture 14 phil.hasnip@york.ac.uk Overview of Course Model construction dimensional analysis Experimental input fitting Finding a best answer optimisation Tools for constructing and manipulating models

More information

y 1 y 2 . = x 1y 1 + x 2 y x + + x n y n y n 2 7 = 1(2) + 3(7) 5(4) = 4.

y 1 y 2 . = x 1y 1 + x 2 y x + + x n y n y n 2 7 = 1(2) + 3(7) 5(4) = 4. . Length, Angle, and Orthogonality In this section, we discuss the defintion of length and angle for vectors. We also define what it means for two vectors to be orthogonal. Then we see that linear systems

More information

Lecture Notes 1: Vector spaces

Lecture Notes 1: Vector spaces Optimization-based data analysis Fall 2017 Lecture Notes 1: Vector spaces In this chapter we review certain basic concepts of linear algebra, highlighting their application to signal processing. 1 Vector

More information

The Completion of a Metric Space

The Completion of a Metric Space The Completion of a Metric Space Let (X, d) be a metric space. The goal of these notes is to construct a complete metric space which contains X as a subspace and which is the smallest space with respect

More information

USA Mathematical Talent Search Solutions to Problem 4/4/16

USA Mathematical Talent Search Solutions to Problem 4/4/16 4/4/1. Find, with proof, all integers n such that there is a solution in nonnegative real numbers (x, y, z) to the system of equations 2x 2 + y 2 + z 2 = n and x + 4y + 5z = 2. Credit This problem was

More information

Course 212: Academic Year Section 1: Metric Spaces

Course 212: Academic Year Section 1: Metric Spaces Course 212: Academic Year 1991-2 Section 1: Metric Spaces D. R. Wilkins Contents 1 Metric Spaces 3 1.1 Distance Functions and Metric Spaces............. 3 1.2 Convergence and Continuity in Metric Spaces.........

More information

Math 564 Homework 1. Solutions.

Math 564 Homework 1. Solutions. Math 564 Homework 1. Solutions. Problem 1. Prove Proposition 0.2.2. A guide to this problem: start with the open set S = (a, b), for example. First assume that a >, and show that the number a has the properties

More information

C.7. Numerical series. Pag. 147 Proof of the converging criteria for series. Theorem 5.29 (Comparison test) Let a k and b k be positive-term series

C.7. Numerical series. Pag. 147 Proof of the converging criteria for series. Theorem 5.29 (Comparison test) Let a k and b k be positive-term series C.7 Numerical series Pag. 147 Proof of the converging criteria for series Theorem 5.29 (Comparison test) Let and be positive-term series such that 0, for any k 0. i) If the series converges, then also

More information

UNIONS OF LINES IN F n

UNIONS OF LINES IN F n UNIONS OF LINES IN F n RICHARD OBERLIN Abstract. We show that if a collection of lines in a vector space over a finite field has dimension at least 2(d 1)+β, then its union has dimension at least d + β.

More information

CHAPTER 8: EXPLORING R

CHAPTER 8: EXPLORING R CHAPTER 8: EXPLORING R LECTURE NOTES FOR MATH 378 (CSUSM, SPRING 2009). WAYNE AITKEN In the previous chapter we discussed the need for a complete ordered field. The field Q is not complete, so we constructed

More information

Given a sequence a 1, a 2,...of numbers, the finite sum a 1 + a 2 + +a n,wheren is an nonnegative integer, can be written

Given a sequence a 1, a 2,...of numbers, the finite sum a 1 + a 2 + +a n,wheren is an nonnegative integer, can be written A Summations When an algorithm contains an iterative control construct such as a while or for loop, its running time can be expressed as the sum of the times spent on each execution of the body of the

More information

Missouri Educator Gateway Assessments

Missouri Educator Gateway Assessments Missouri Educator Gateway Assessments June 2014 Content Domain Range of Competencies Approximate Percentage of Test Score I. Number and Operations 0001 0002 19% II. Algebra and Functions 0003 0006 36%

More information

STAT 7032 Probability Spring Wlodek Bryc

STAT 7032 Probability Spring Wlodek Bryc STAT 7032 Probability Spring 2018 Wlodek Bryc Created: Friday, Jan 2, 2014 Revised for Spring 2018 Printed: January 9, 2018 File: Grad-Prob-2018.TEX Department of Mathematical Sciences, University of Cincinnati,

More information

PROPERTIES OF SIMPLE ROOTS

PROPERTIES OF SIMPLE ROOTS PROPERTIES OF SIMPLE ROOTS ERIC BRODER Let V be a Euclidean space, that is a finite dimensional real linear space with a symmetric positive definite inner product,. Recall that for a root system Δ in V,

More information

Definitions and Properties of R N

Definitions and Properties of R N Definitions and Properties of R N R N as a set As a set R n is simply the set of all ordered n-tuples (x 1,, x N ), called vectors. We usually denote the vector (x 1,, x N ), (y 1,, y N ), by x, y, or

More information

Linear Algebra: Homework 3

Linear Algebra: Homework 3 Linear Algebra: Homework 3 Alvin Lin August 206 - December 206 Section.2 Exercise 48 Find all values of the scalar k for which the two vectors are orthogonal. [ ] [ ] 2 k + u v 3 k u v 0 2(k + ) + 3(k

More information

A Brief Introduction to the Theory of Lebesgue Integration

A Brief Introduction to the Theory of Lebesgue Integration A Brief Introduction to the Theory of Lebesgue Integration Kevin Sigler June 8, 25 Introduction Gonzalez-Velasco s paper The Lebesgue Integral as a Riemann Integral provides a non-standard, direct construction

More information

Mini-Course on Limits and Sequences. Peter Kwadwo Asante. B.S., Kwame Nkrumah University of Science and Technology, Ghana, 2014 A REPORT

Mini-Course on Limits and Sequences. Peter Kwadwo Asante. B.S., Kwame Nkrumah University of Science and Technology, Ghana, 2014 A REPORT Mini-Course on Limits and Sequences by Peter Kwadwo Asante B.S., Kwame Nkrumah University of Science and Technology, Ghana, 204 A REPORT submitted in partial fulfillment of the requirements for the degree

More information

Linear chord diagrams with long chords

Linear chord diagrams with long chords Linear chord diagrams with long chords Everett Sullivan arxiv:1611.02771v1 [math.co] 8 Nov 2016 Version 1.0 November 10, 2016 Abstract A linear chord diagram of size n is a partition of the set {1,2,,2n}

More information

Heat Source Identification Based on L 1 Optimization

Heat Source Identification Based on L 1 Optimization Heat Source Identification Based on L 1 Optimization Yingying Li, Stanley Osher and Richard Tsai August 27, 2009 Yingying Li, Stanley Osher and Richard Tsai () L 1 Heat Source Identification Aug 27, 2009

More information

17.1 Hyperplanes and Linear Forms

17.1 Hyperplanes and Linear Forms This is page 530 Printer: Opaque this 17 Appendix 17.1 Hyperplanes and Linear Forms Given a vector space E over a field K, a linear map f: E K is called a linear form. The set of all linear forms f: E

More information

Lecture 10 September 27, 2016

Lecture 10 September 27, 2016 CS 395T: Sublinear Algorithms Fall 2016 Prof. Eric Price Lecture 10 September 27, 2016 Scribes: Quinten McNamara & William Hoza 1 Overview In this lecture, we focus on constructing coresets, which are

More information

Math 209B Homework 2

Math 209B Homework 2 Math 29B Homework 2 Edward Burkard Note: All vector spaces are over the field F = R or C 4.6. Two Compactness Theorems. 4. Point Set Topology Exercise 6 The product of countably many sequentally compact

More information

ON THE POSSIBLE QUANTITIES OF FIBONACCI NUMBERS THAT OCCUR IN SOME TYPES OF INTERVALS

ON THE POSSIBLE QUANTITIES OF FIBONACCI NUMBERS THAT OCCUR IN SOME TYPES OF INTERVALS Acta Math. Univ. Comenianae Vol. LXXXVII, 2 (2018), pp. 291 299 291 ON THE POSSIBLE QUANTITIES OF FIBONACCI NUMBERS THAT OCCUR IN SOME TYPES OF INTERVALS B. FARHI Abstract. In this paper, we show that

More information

Ch 3.2: Direct proofs

Ch 3.2: Direct proofs Math 299 Lectures 8 and 9: Chapter 3 0. Ch3.1 A trivial proof and a vacuous proof (Reading assignment) 1. Ch3.2 Direct proofs 2. Ch3.3 Proof by contrapositive 3. Ch3.4 Proof by cases 4. Ch3.5 Proof evaluations

More information

Induced Cycles of Fixed Length

Induced Cycles of Fixed Length Induced Cycles of Fixed Length Terry McKee Wright State University Dayton, Ohio USA terry.mckee@wright.edu Cycles in Graphs Vanderbilt University 31 May 2012 Overview 1. Investigating the fine structure

More information

) = nlog b ( m) ( m) log b ( ) ( ) = log a b ( ) Algebra 2 (1) Semester 2. Exponents and Logarithmic Functions

) = nlog b ( m) ( m) log b ( ) ( ) = log a b ( ) Algebra 2 (1) Semester 2. Exponents and Logarithmic Functions Exponents and Logarithmic Functions Algebra 2 (1) Semester 2! a. Graph exponential growth functions!!!!!! [7.1]!! - y = ab x for b > 0!! - y = ab x h + k for b > 0!! - exponential growth models:! y = a(

More information

LEBESGUE INTEGRATION. Introduction

LEBESGUE INTEGRATION. Introduction LEBESGUE INTEGATION EYE SJAMAA Supplementary notes Math 414, Spring 25 Introduction The following heuristic argument is at the basis of the denition of the Lebesgue integral. This argument will be imprecise,

More information

Introduction and Preliminaries

Introduction and Preliminaries Chapter 1 Introduction and Preliminaries This chapter serves two purposes. The first purpose is to prepare the readers for the more systematic development in later chapters of methods of real analysis

More information

Academic Outcomes Mathematics

Academic Outcomes Mathematics Academic Outcomes Mathematics Mathematic Content Standards Overview: TK/ Kindergarten Counting and Cardinality: Know number names and the count sequence. Count to tell the number of objects. Compare numbers.

More information

correlated to the Washington D.C. Public Schools Learning Standards Algebra II

correlated to the Washington D.C. Public Schools Learning Standards Algebra II correlated to the Washington D.C. Public Schools Learning Standards Algebra II McDougal Littell Algebra 2 2007 correlated to the Washington DC Public Schools Learning Standards Algebra II NUMBER SENSE

More information

8.1 Sequences. Example: A sequence is a function f(n) whose domain is a subset of the integers. Notation: *Note: n = 0 vs. n = 1.

8.1 Sequences. Example: A sequence is a function f(n) whose domain is a subset of the integers. Notation: *Note: n = 0 vs. n = 1. 8. Sequences Example: A sequence is a function f(n) whose domain is a subset of the integers. Notation: *Note: n = 0 vs. n = Examples: 6. Find a formula for the general term a n of the sequence, assuming

More information

The Lebesgue Integral

The Lebesgue Integral The Lebesgue Integral Brent Nelson In these notes we give an introduction to the Lebesgue integral, assuming only a knowledge of metric spaces and the iemann integral. For more details see [1, Chapters

More information

Immerse Metric Space Homework

Immerse Metric Space Homework Immerse Metric Space Homework (Exercises -2). In R n, define d(x, y) = x y +... + x n y n. Show that d is a metric that induces the usual topology. Sketch the basis elements when n = 2. Solution: Steps

More information

SPACES: FROM ANALYSIS TO GEOMETRY AND BACK

SPACES: FROM ANALYSIS TO GEOMETRY AND BACK SPACES: FROM ANALYSIS TO GEOMETRY AND BACK MASS 2011 LECTURE NOTES 1. Lecture 1 (8/22/11): Introduction There are many problems in analysis which involve constructing a function with desirable properties

More information

BMOS MENTORING SCHEME (Senior Level) February 2011 (Sheet 5) Solutions

BMOS MENTORING SCHEME (Senior Level) February 2011 (Sheet 5) Solutions MOS MENTORING SCHEME (Senior Level) February 011 (Sheet 5) Solutions These solutions represent one way of solving the questions. They are not the only way, and just because your solution is different does

More information