THE MOVING FRAME METHOD

Size: px
Start display at page:

Download "THE MOVING FRAME METHOD"

Transcription

1 THE MOVING FRAME METHOD To Infuse Subsea Engineering Analyses with A.I. THOMAS J. IMPELLUSO WESTERN NORWAY UNIVERSITY OF APPLIED SCIENCES

2 About myself Columbia University, New York City Art History B.A Columbia University, New York City Civil Engineering B.S Columbia University, New York City Bioengineering M.S University of California, San Diego Computational Mechanics Ph.D USGS Coded Seismic Data Acquisition, Visualization software. DARPA Battlefield Surgery Project Tenured, full professor: San Diego State University. Force Feedback VR Married a woman from Bergen, Norway. Professor HVL

3 About this presentation New mathematics for 3D Dynamic analysis of Subsea vehicles. New mathematics for 3D Dynamic analysis of cranes on ships. New mathematics for Gyroscopic wave energy converters (fish farms, rigs. New programming styles to endow machines with artificial intelligence. Dynamics is the underlying process.

4 What is Dynamics Rigid body dynamics is the study of the motion in which deformation is neglected. But it has gone off the rails. How do we put it back on track? Need to understand the history of the discipline.

5 Galileo: ( Formulated Galilean relativity: The laws of motion are the same in all inertial frames.

6 Newton: Vector Dynamics Formulated the laws of motion for particles in the inertial frame First law Second law Third law 0 = ma F = ma What happens when there is no force? What happens when there is a force (gravity? Free Body Diagrams Vector Dynamics

7 Leonard Euler:( Formulated the laws of motion for bodies in an inertial frame

8 Industrial Revolution: ( Flawed Pedagogy formed Limited to Planar Analyses Limited to Inertial Observer

9 Flawed Approach to Problem Solving P P / A + Ω rp / A + 2 ( vp / A ( P A xyz / xyz a ( t = Ω Ω r Ω + a Centripetal Angular Coriolis Linear ONLY 2D

10 Summary of the State of the Discipline Perspective: Inertial Frames as the formative element Math: Vectors and Cross product (not associative Dimension: 2D Motion; Angular velocity in a plane How do we put dynamics back on track?

11 Elie Cartan ( Élie Cartan studied the change of a frame in terms of the frame. The MFM extends Cartan s views by placing a moving frame of reference on every moving body. But how do we relate the frames?

12 Sophus Lie ( Lie Groups and Lie Algebra: SO(3 is the Group of Rotations so(3 the Algebra ofangular Velocities The MFM adopts the machinery of SO(3/so(3, distilled to matrices. It abandons vectors (which cannot easily model rotations in 3D. It simplifies the math to matrix multiplications (coding. But will this lead to complicated notation?

13 Theodore Frankel ( Frames to the left v1 ( t v( t = ( e1 ( t e2 ( t e 3 ( t v2 ( t v ( t = e( t v( t v ( t Linguistics Algebra ( t ( ( t 1 = ( 1 ( 2 ( 3 ( 2 ω( t e t e t e t t 3 3 Compact Notation 0 = Non-associative cross product Associative matrix multiplication v( t = ω( t r( t v( t = e( t ( t r( t

14 Assertion The Moving Frame method, poised to be a 3D textbook, models 3D Dynamics easily. We have undergraduate students doing the coding and mathematics for ship roll, pitch and yaw. The method is eminently programmable. It will open the door to AI coding.

15 ሶ ሶ Lie Group Theory of SO(3 e(t = (e 1 (t e 2 (t e 3 (t e I = e 1 (0 e 2 (0 e 3 (0 e(t = e I R(t Orthogonality of SO(3 e I = e(tr T (t Rate of change of frame e (t = e I R(t e I 3 e I 1 e 3 e 1 e 2 e I 2 Insert Orthogonality e ሶ (t = e(tr T (t ሶ R(t e ሶ (t = e(tω (t

16 The Fictious Forces (d'alembert forces P P / A + Ω rp / A + 2 ( vp / A ( P A xyz / xyz a ( t = Ω Ω r Ω + a Angular Centripetal ( a ( t = a + e( t s ( t + 2 ( t s ( t + ( t s ( t + ( t ( t s ( t B A B B B B One frame; Time Dependent (not «at this instant»; No Cross Product Matrices: easily programmed 2D and 3D Coriolis Linear

17 Kinetics M C ( ( m v ( t + ( tv ( t F( t = e( t C C ( J ( t +( t J ( ( t = e( t t C C Moment of Inertia explicitly stated in moving body frame Can construct laws for a frame at fixed point of rotation Can construct laws at an inertial frame Can apply Newton at one frame and Euler at another.

18 But can we make it more powerful? Yes!! We exploit the Special Euclidean Group: SE(3 We combine both translation and rotation into ONE data structure. The resulting data structure will act EXACTLY the same as the rotation data structure very little new learning!

19 SE(3 R T 0 v 1 3 R s E = T 0 1 R SO(3, E v R R R R s R R R s = R31 R32 R33 s As with the rotation matrix, the inverse of E, is analytically known. T T 1 R R s E = T 0 1 And so are the rates R s E = T 0 0

20 Frame Connection Rate: W W ( t E ( t E ( t ( ( 1 ( SE(3: for translation and rotation ( t R ( t R ( t ( ( 1 ( SO(3: for rotation

21 Analytical Dynamics Hamilton s Principle: Calculus ofvariations Minimize the Action in the Direction of a «test» variation Gateaux/Frechet Derivative δ Take derivatives in variational directions.

22 Restriction on the Variation Translational Velocity ( d ( xc ( t = xc ( t dt Restriction on the Variation Restriction Angular Velocity ( ( t = d dt ( ( T ( ( ( ( ( ( T ( R R t t R R ( t +

23 Virtual Rotation ( ( t = d dt ( ( T ( ( ( ( ( ( T ( R R t t R R ( t + e Moment vs. virtual rotation is a natural pair, which yields Euler s equation. This was the weakest point in the classical multibody dynamics. Wittenburg postulated the principle of virtual power to use the weighted form of Euler's equation by the virtual angular velocity. We must use moment and virtual rotation as the natural pair (( T ( t = e ( t R R ( t ( ( ( (

24 Get the Frame Connection Structures ( ( = ( ( ( ( 2 (3/ (2 (2 (3 (3 d I R h I t t t t c c r e r e ( ( ( ( 1 ( ( t E t E t W = W 0 0 ( ( ( ( ( ( T v C t t t ( ( (3 (3 (2 (2 (2/1 ( ( ( ( ( c c t t t t E t = e r e r

25 ROV Motion using Moving Frames

26 After the Variation Process (10 pages M ( t q + C( t q F = 0 * M ( t = B M B T T ( C( t = B M B+ D M B B

27 JOURNAL OF ENERGY RESOURCES TECHNOLOGY

28 JOURNAL OF OFFSHORE MECHANICS AND ARCTIC ENGINEERING

29 JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS

30 JOURNAL OF DYNAMICS AND CONTROL

31 JOURNAL OF DYNAMIC SYSTEMS MEASUREMENTS AND CONTROL

32 Laying Cables Frobenius Theorem: topological manifolds

33 Swimming Robots

34 Modern Mathematics We abandon Newton s Vectorial Dynamics. We embrace Hamilton s Analytical Dynamics, supplemented with: Free Body Diagrams SO(3 as matrices for rotations so(3 as matrices for angular velocity SE(3 as matrices for structured data. Proper restriction on the angular velocity Moving Frames Notational Consistency across dynamics Class Structures (C++

35 So why should a company switch? Machines think (CPU. Machines communicate (IP Address. Machines learn: (Artficial Intelligence/Data Base Access. Old codes (ADAMS, DADS, etc. will not work. New codes must be written. Need modular coding. Need deployable coding. Need codes for multi-phase mechanics. Consistent notation.

36 Textbook pending: will change the discipline

37 MFM EMPOWERS MODULAR CODING HVL Server HVL Server A.I. Massively Parallel Accept( Listen( Bind( Socket( Fork( Exec( bash( Cell phone PM Client Web page Shared Memory Semaphore control Dynamics PG FEM PG Socket( Connect( A.I. Thermal PG CFD PG Learning PG

38 Thank you Thomas J. Impelluso

Introduction MEAM 535. What is MEAM 535? Audience. Advanced topics in dynamics

Introduction MEAM 535. What is MEAM 535? Audience. Advanced topics in dynamics What is MEAM 535? Advanced topics in dynamics Audience Review of Newtonian mechanics MEAM 535 Introduction Analytical mechanics: Lagrangian and Hamiltonian Special topics: Stability of dynamical systems,

More information

Artificial Intelligence & Neuro Cognitive Systems Fakultät für Informatik. Robot Dynamics. Dr.-Ing. John Nassour J.

Artificial Intelligence & Neuro Cognitive Systems Fakultät für Informatik. Robot Dynamics. Dr.-Ing. John Nassour J. Artificial Intelligence & Neuro Cognitive Systems Fakultät für Informatik Robot Dynamics Dr.-Ing. John Nassour 25.1.218 J.Nassour 1 Introduction Dynamics concerns the motion of bodies Includes Kinematics

More information

FINAL EXAM GROUND RULES

FINAL EXAM GROUND RULES PHYSICS 507 Fall 2011 FINAL EXAM Room: ARC-108 Time: Wednesday, December 21, 10am-1pm GROUND RULES There are four problems based on the above-listed material. Closed book Closed notes Partial credit will

More information

Advanced mechanics. Physics 302

Advanced mechanics. Physics 302 Advanced mechanics Physics 302 Instructor: Dr. Alexey Belyanin http://faculty.physics.tamu.edu/belyanin/ Office: MIST 426 Office Phone: (979) 845-7785 Email: belyanin@tamu.edu Office Hours: any time when

More information

Robot Dynamics II: Trajectories & Motion

Robot Dynamics II: Trajectories & Motion Robot Dynamics II: Trajectories & Motion Are We There Yet? METR 4202: Advanced Control & Robotics Dr Surya Singh Lecture # 5 August 23, 2013 metr4202@itee.uq.edu.au http://itee.uq.edu.au/~metr4202/ 2013

More information

41514 Dynamics of Machinery

41514 Dynamics of Machinery 41514 Dynamics of Machinery Theory, Experiment, Phenomenology and Industrial Applications Ilmar (Iumár) Ferreira Santos 1. Course Structure 2. Objectives 3. Theoretical and Experimental Example 4. Industrial

More information

Dynamics. Basilio Bona. Semester 1, DAUIN Politecnico di Torino. B. Bona (DAUIN) Dynamics Semester 1, / 18

Dynamics. Basilio Bona. Semester 1, DAUIN Politecnico di Torino. B. Bona (DAUIN) Dynamics Semester 1, / 18 Dynamics Basilio Bona DAUIN Politecnico di Torino Semester 1, 2016-17 B. Bona (DAUIN) Dynamics Semester 1, 2016-17 1 / 18 Dynamics Dynamics studies the relations between the 3D space generalized forces

More information

Chapter 8 Lecture Notes

Chapter 8 Lecture Notes Chapter 8 Lecture Notes Physics 2414 - Strauss Formulas: v = l / t = r θ / t = rω a T = v / t = r ω / t =rα a C = v 2 /r = ω 2 r ω = ω 0 + αt θ = ω 0 t +(1/2)αt 2 θ = (1/2)(ω 0 +ω)t ω 2 = ω 0 2 +2αθ τ

More information

Introduction to Robotics

Introduction to Robotics J. Zhang, L. Einig 277 / 307 MIN Faculty Department of Informatics Lecture 8 Jianwei Zhang, Lasse Einig [zhang, einig]@informatik.uni-hamburg.de University of Hamburg Faculty of Mathematics, Informatics

More information

Course syllabus Engineering Mechanics - Dynamics

Course syllabus Engineering Mechanics - Dynamics Course syllabus Engineering Mechanics - Dynamics COURSE DETAILS Type of study programme Study programme Course title Course code ECTS (Number of credits allocated) Course status Year of study Course Web

More information

Kinematics. Chapter Multi-Body Systems

Kinematics. Chapter Multi-Body Systems Chapter 2 Kinematics This chapter first introduces multi-body systems in conceptual terms. It then describes the concept of a Euclidean frame in the material world, following the concept of a Euclidean

More information

In this section of notes, we look at the calculation of forces and torques for a manipulator in two settings:

In this section of notes, we look at the calculation of forces and torques for a manipulator in two settings: Introduction Up to this point we have considered only the kinematics of a manipulator. That is, only the specification of motion without regard to the forces and torques required to cause motion In this

More information

General Theoretical Concepts Related to Multibody Dynamics

General Theoretical Concepts Related to Multibody Dynamics General Theoretical Concepts Related to Multibody Dynamics Before Getting Started Material draws on two main sources Ed Haug s book, available online: http://sbel.wisc.edu/courses/me751/2010/bookhaugpointers.htm

More information

September 21, :43pm Holm Vol 2 WSPC/Book Trim Size for 9in by 6in

September 21, :43pm Holm Vol 2 WSPC/Book Trim Size for 9in by 6in 1 GALILEO Contents 1.1 Principle of Galilean relativity 2 1.2 Galilean transformations 3 1.2.1 Admissible force laws for an N-particle system 6 1.3 Subgroups of the Galilean transformations 8 1.3.1 Matrix

More information

ME451 Kinematics and Dynamics of Machine Systems

ME451 Kinematics and Dynamics of Machine Systems ME451 Kinematics and Dynamics of Machine Systems Introduction to Dynamics 6.1 October 30, 2014 Dan Negrut ME451, Fall 2014 University of Wisconsin-Madison Quote of the day: Computer science education cannot

More information

Approach based on Cartesian coordinates

Approach based on Cartesian coordinates GraSMech course 2005-2006 Computer-aided analysis of rigid and flexible multibody systems Approach based on Cartesian coordinates Prof. O. Verlinden Faculté polytechnique de Mons Olivier.Verlinden@fpms.ac.be

More information

Multibody simulation

Multibody simulation Multibody simulation Dynamics of a multibody system (Newton-Euler formulation) Dimitar Dimitrov Örebro University June 8, 2012 Main points covered Newton-Euler formulation forward dynamics inverse dynamics

More information

Physical Dynamics (PHY-304)

Physical Dynamics (PHY-304) Physical Dynamics (PHY-304) Gabriele Travaglini March 31, 2012 1 Review of Newtonian Mechanics 1.1 One particle Lectures 1-2. Frame, velocity, acceleration, number of degrees of freedom, generalised coordinates.

More information

Video 2.1a Vijay Kumar and Ani Hsieh

Video 2.1a Vijay Kumar and Ani Hsieh Video 2.1a Vijay Kumar and Ani Hsieh Robo3x-1.3 1 Introduction to Lagrangian Mechanics Vijay Kumar and Ani Hsieh University of Pennsylvania Robo3x-1.3 2 Analytical Mechanics Aristotle Galileo Bernoulli

More information

41514 Dynamics of Machinery

41514 Dynamics of Machinery 41514 Dynamics of Machinery Theory, Experiment, Phenomenology and Industrial Applications Ilmar Ferreira Santos 1. Recapitulation Mathematical Modeling & Steps 2. Example System of Particle 3. Example

More information

Dynamics 12e. Copyright 2010 Pearson Education South Asia Pte Ltd. Chapter 20 3D Kinematics of a Rigid Body

Dynamics 12e. Copyright 2010 Pearson Education South Asia Pte Ltd. Chapter 20 3D Kinematics of a Rigid Body Engineering Mechanics: Dynamics 12e Chapter 20 3D Kinematics of a Rigid Body Chapter Objectives Kinematics of a body subjected to rotation about a fixed axis and general plane motion. Relative-motion analysis

More information

Gyroscopes and statics

Gyroscopes and statics Gyroscopes and statics Announcements: Welcome back from Spring Break! CAPA due Friday at 10pm We will finish Chapter 11 in H+R on angular momentum and start Chapter 12 on stability. Friday we will begin

More information

Chapter 1. Preliminaries

Chapter 1. Preliminaries Chapter 1 Preliminaries 1.1 The Vector Concept Revisited The concept of a vector has been one of the most fruitful ideas in all of mathematics, and it is not surprising that we receive repeated exposure

More information

THE MECHANICAL UNIVERSE

THE MECHANICAL UNIVERSE THE MECHANICAL UNIVERSE MECHANICS AND HEAT, ADVANCED EDITION STEVEN С FRAUTSCHI PROFESSOR OF THEORETICAL PHYSICS CALIFORNIA INSTITUTE OF TECHNOLOGY RICHARD P. OLENICK ASSISTANT PROFESSOR OF PHYSICS, UNIVERSITY

More information

Physical Simulation. October 19, 2005

Physical Simulation. October 19, 2005 Physical Simulation October 19, 2005 Objects So now that we have objects, lets make them behave like real objects Want to simulate properties of matter Physical properties (dynamics, kinematics) [today

More information

SAN DIEGO COMMUNITY COLLEGE DISTRICT CITY, MESA, AND MIRAMAR COLLEGES ASSOCIATE DEGREE COURSE OUTLINE

SAN DIEGO COMMUNITY COLLEGE DISTRICT CITY, MESA, AND MIRAMAR COLLEGES ASSOCIATE DEGREE COURSE OUTLINE PHYS 195 CIC Approval: 04/27/2006 BOT APPROVAL: 05/25/2006 STATE APPROVAL: EFFECTIVE TERM: Fall 2006 SECTION I SAN DIEGO COMMUNITY COLLEGE DISTRICT CITY, MESA, AND MIRAMAR COLLEGES ASSOCIATE DEGREE COURSE

More information

Geometric Mechanics and Global Nonlinear Control for Multi-Body Dynamics

Geometric Mechanics and Global Nonlinear Control for Multi-Body Dynamics Geometric Mechanics and Global Nonlinear Control for Multi-Body Dynamics Harris McClamroch Aerospace Engineering, University of Michigan Joint work with Taeyoung Lee (George Washington University) Melvin

More information

Lecture PowerPoints. Chapter 11. Physics for Scientists and Engineers, with Modern Physics, 4 th edition Giancoli

Lecture PowerPoints. Chapter 11. Physics for Scientists and Engineers, with Modern Physics, 4 th edition Giancoli Lecture PowerPoints Chapter 11 Physics for Scientists and Engineers, with Modern Physics, 4 th edition Giancoli 2009 Pearson Education, Inc. This work is protected by United States copyright laws and is

More information

CLASSICAL MECHANICS. The author

CLASSICAL MECHANICS.  The author CLASSICAL MECHANICS Gregory s Classical Mechanics is a major new textbook for undergraduates in mathematics and physics. It is a thorough, self-contained and highly readable account of a subject many students

More information

Rigid bodies - general theory

Rigid bodies - general theory Rigid bodies - general theory Kinetic Energy: based on FW-26 Consider a system on N particles with all their relative separations fixed: it has 3 translational and 3 rotational degrees of freedom. Motion

More information

Physical Dynamics (SPA5304) Lecture Plan 2018

Physical Dynamics (SPA5304) Lecture Plan 2018 Physical Dynamics (SPA5304) Lecture Plan 2018 The numbers on the left margin are approximate lecture numbers. Items in gray are not covered this year 1 Advanced Review of Newtonian Mechanics 1.1 One Particle

More information

Class 4 Newton s laws of motion. I : Newton s laws of motion

Class 4 Newton s laws of motion. I : Newton s laws of motion Class 4 Newton s laws of motion Newton s laws of motion Momentum and a second way to look at Newton s laws Frames of reference, symmetry and (Galilean) relativity yet another way to look at Newton s law

More information

Quadrotor Modeling and Control

Quadrotor Modeling and Control 16-311 Introduction to Robotics Guest Lecture on Aerial Robotics Quadrotor Modeling and Control Nathan Michael February 05, 2014 Lecture Outline Modeling: Dynamic model from first principles Propeller

More information

DYNAMICS OF SERIAL ROBOTIC MANIPULATORS

DYNAMICS OF SERIAL ROBOTIC MANIPULATORS DYNAMICS OF SERIAL ROBOTIC MANIPULATORS NOMENCLATURE AND BASIC DEFINITION We consider here a mechanical system composed of r rigid bodies and denote: M i 6x6 inertia dyads of the ith body. Wi 6 x 6 angular-velocity

More information

u (surge) X o p (roll) Body-fixed r o v (sway) w (heave) Z o Earth-fixed X Y Z r (yaw) (pitch)

u (surge) X o p (roll) Body-fixed r o v (sway) w (heave) Z o Earth-fixed X Y Z r (yaw) (pitch) Nonlinear Modelling of Marine Vehicles in Degrees of Freedom Thor I. Fossen and Ola-Erik Fjellstad The Norwegian Institute of Technology Department of Engineering Cybernetics N-0 Trondheim, NORWAY (E-mail:tif@itk.unit.no)

More information

Lecture PowerPoints. Chapter 10 Physics for Scientists and Engineers, with Modern Physics, 4 th edition Giancoli

Lecture PowerPoints. Chapter 10 Physics for Scientists and Engineers, with Modern Physics, 4 th edition Giancoli Lecture PowerPoints Chapter 10 Physics for Scientists and Engineers, with Modern Physics, 4 th edition Giancoli 2009 Pearson Education, Inc. This work is protected by United States copyright laws and is

More information

PLANAR KINETIC EQUATIONS OF MOTION (Section 17.2)

PLANAR KINETIC EQUATIONS OF MOTION (Section 17.2) PLANAR KINETIC EQUATIONS OF MOTION (Section 17.2) We will limit our study of planar kinetics to rigid bodies that are symmetric with respect to a fixed reference plane. As discussed in Chapter 16, when

More information

Physics 106b/196b Problem Set 9 Due Jan 19, 2007

Physics 106b/196b Problem Set 9 Due Jan 19, 2007 Physics 06b/96b Problem Set 9 Due Jan 9, 2007 Version 3: January 8, 2007 This problem set focuses on dynamics in rotating coordinate systems (Section 5.2), with some additional early material on dynamics

More information

Lecture 4: Newton s Laws & Galilean Relativity

Lecture 4: Newton s Laws & Galilean Relativity Lecture 4: Newton s Laws & Galilean Relativity Newton s profound perspective Newton s Laws of Motion 3 ways Newton s Law of Gravitation 9/8/10 1 Newton s profound perspective Newton formulated a universal

More information

A MULTI-BODY ALGORITHM FOR WAVE ENERGY CONVERTERS EMPLOYING NONLINEAR JOINT REPRESENTATION

A MULTI-BODY ALGORITHM FOR WAVE ENERGY CONVERTERS EMPLOYING NONLINEAR JOINT REPRESENTATION Proceedings of the ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering OMAE2014 June 8-13, 2014, San Francisco, California, USA OMAE2014-23864 A MULTI-BODY ALGORITHM FOR WAVE

More information

STATICS & DYNAMICS. Engineering Mechanics. Gary L. Gray. Francesco Costanzo. Michael E. Plesha. University of Wisconsin-Madison

STATICS & DYNAMICS. Engineering Mechanics. Gary L. Gray. Francesco Costanzo. Michael E. Plesha. University of Wisconsin-Madison Engineering Mechanics STATICS & DYNAMICS SECOND EDITION Francesco Costanzo Department of Engineering Science and Mechanics Penn State University Michael E. Plesha Department of Engineering Physics University

More information

PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 5 Lecture RANDALL D. KNIGHT Chapter 5 Force and Motion IN THIS CHAPTER, you will learn about the connection between force and motion.

More information

COLLEGE OF THE DESERT

COLLEGE OF THE DESERT COLLEGE OF THE DESERT Course Code ENGR-011 Course Outline of Record 1. Course Code: ENGR-011 2. a. Long Course Title: Statics b. Short Course Title: STATICS 3. a. Catalog Course Description: This course

More information

Phys101 Lectures 19, 20 Rotational Motion

Phys101 Lectures 19, 20 Rotational Motion Phys101 Lectures 19, 20 Rotational Motion Key points: Angular and Linear Quantities Rotational Dynamics; Torque and Moment of Inertia Rotational Kinetic Energy Ref: 10-1,2,3,4,5,6,8,9. Page 1 Angular Quantities

More information

EQUATIONS OF MOTION: ROTATION ABOUT A FIXED AXIS (Section 17.4) Today s Objectives: Students will be able to analyze the planar kinetics of a rigid

EQUATIONS OF MOTION: ROTATION ABOUT A FIXED AXIS (Section 17.4) Today s Objectives: Students will be able to analyze the planar kinetics of a rigid EQUATIONS OF MOTION: ROTATION ABOUT A FIXED AXIS (Section 17.4) Today s Objectives: Students will be able to analyze the planar kinetics of a rigid body undergoing rotational motion. APPLICATIONS The crank

More information

PHYSICS 206, Spring 2019

PHYSICS 206, Spring 2019 PHYSICS 206, Spring 2019 Instructor: Gregory Christian Lecture times: TR 9:35 10:50, room MPHY 203 Office: MIST M320 Phone: 979-845-1411 Email: gchristian@tamu.edu Homepage: http://faculty.physics.tamu.edu/christian/teaching.html

More information

Video 1.1 Vijay Kumar and Ani Hsieh

Video 1.1 Vijay Kumar and Ani Hsieh Video 1.1 Vijay Kumar and Ani Hsieh 1 Robotics: Dynamics and Control Vijay Kumar and Ani Hsieh University of Pennsylvania 2 Why? Robots live in a physical world The physical world is governed by the laws

More information

Chapter 8 Rotational Motion

Chapter 8 Rotational Motion Chapter 8 Rotational Motion Chapter 8 Rotational Motion In this chapter you will: Learn how to describe and measure rotational motion. Learn how torque changes rotational velocity. Explore factors that

More information

Multibody simulation

Multibody simulation Multibody simulation Dynamics of a multibody system (Euler-Lagrange formulation) Dimitar Dimitrov Örebro University June 16, 2012 Main points covered Euler-Lagrange formulation manipulator inertia matrix

More information

1/30. Rigid Body Rotations. Dave Frank

1/30. Rigid Body Rotations. Dave Frank . 1/3 Rigid Body Rotations Dave Frank A Point Particle and Fundamental Quantities z 2/3 m v ω r y x Angular Velocity v = dr dt = ω r Kinetic Energy K = 1 2 mv2 Momentum p = mv Rigid Bodies We treat a rigid

More information

General Physics I. Lecture 9: Vector Cross Product. Prof. WAN, Xin ( 万歆 )

General Physics I. Lecture 9: Vector Cross Product. Prof. WAN, Xin ( 万歆 ) General Physics I Lecture 9: Vector Cross Product Prof. WAN, Xin ( 万歆 ) xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ Outline Examples of the rotation of a rigid object about a fixed axis Force/torque

More information

SYLLABUS FORM WESTCHESTER COMMUNITY COLLEGE Valhalla, NY lo595. l. Course #: PHYSC NAME OF ORIGINATOR /REVISOR: ALENA O CONNOR

SYLLABUS FORM WESTCHESTER COMMUNITY COLLEGE Valhalla, NY lo595. l. Course #: PHYSC NAME OF ORIGINATOR /REVISOR: ALENA O CONNOR SYLLABUS FORM WESTCHESTER COMMUNITY COLLEGE Valhalla, NY lo595 l. Course #: PHYSC 121 2. NAME OF ORIGINATOR /REVISOR: ALENA O CONNOR NAME OF COURSE ENGINEERING PHYSICS 1 WITH LAB 3. CURRENT DATE: SUMMER

More information

PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 5 Lecture RANDALL D. KNIGHT Chapter 5 Force and Motion IN THIS CHAPTER, you will learn about the connection between force and motion.

More information

Kinetic Energy of Rolling

Kinetic Energy of Rolling Kinetic Energy of Rolling A solid disk and a hoop (with the same mass and radius) are released from rest and roll down a ramp from a height h. Which one is moving faster at the bottom of the ramp? A. they

More information

Rigid Body Dynamics and Beyond

Rigid Body Dynamics and Beyond Rigid Body Dynamics and Beyond 1 Rigid Bodies 3 A rigid body Collection of particles Distance between any two particles is always constant What types of motions preserve these constraints? Translation,

More information

Autonomous Underwater Vehicles: Equations of Motion

Autonomous Underwater Vehicles: Equations of Motion Autonomous Underwater Vehicles: Equations of Motion Monique Chyba - November 18, 2015 Departments of Mathematics, University of Hawai i at Mānoa Elective in Robotics 2015/2016 - Control of Unmanned Vehicles

More information

Motion of deformable bodies

Motion of deformable bodies Karlstad university Faculty for health, science and technology FYGB08 Motion of deformable bodies Author: Axel Hedengren. Supervisor Professor Jürgen Fuchs. - January 23, 2017 Abstract Abstract This work

More information

Classical Mechanics III (8.09) Fall 2014 Assignment 3

Classical Mechanics III (8.09) Fall 2014 Assignment 3 Classical Mechanics III (8.09) Fall 2014 Assignment 3 Massachusetts Institute of Technology Physics Department Due September 29, 2014 September 22, 2014 6:00pm Announcements This week we continue our discussion

More information

CEE 271: Applied Mechanics II, Dynamics Lecture 25: Ch.17, Sec.4-5

CEE 271: Applied Mechanics II, Dynamics Lecture 25: Ch.17, Sec.4-5 1 / 36 CEE 271: Applied Mechanics II, Dynamics Lecture 25: Ch.17, Sec.4-5 Prof. Albert S. Kim Civil and Environmental Engineering, University of Hawaii at Manoa Date: 2 / 36 EQUATIONS OF MOTION: ROTATION

More information

6. 3D Kinematics DE2-EA 2.1: M4DE. Dr Connor Myant

6. 3D Kinematics DE2-EA 2.1: M4DE. Dr Connor Myant DE2-EA 2.1: M4DE Dr Connor Myant 6. 3D Kinematics Comments and corrections to connor.myant@imperial.ac.uk Lecture resources may be found on Blackboard and at http://connormyant.com Contents Three-Dimensional

More information

Contents. Dynamics and control of mechanical systems. Focus on

Contents. Dynamics and control of mechanical systems. Focus on Dynamics and control of mechanical systems Date Day 1 (01/08) Day 2 (03/08) Day 3 (05/08) Day 4 (07/08) Day 5 (09/08) Day 6 (11/08) Content Review of the basics of mechanics. Kinematics of rigid bodies

More information

DEVIL PHYSICS BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS BADDEST CLASS ON CAMPUS IB PHYSICS OPTION B-1A: ROTATIONAL DYNAMICS Essential Idea: The basic laws of mechanics have an extension when equivalent principles are applied to rotation. Actual

More information

Bergen Community College Division of Math, Science and Technology Department of Physical Sciences. Course Syllabus PHY 294 Engineering Mechanics

Bergen Community College Division of Math, Science and Technology Department of Physical Sciences. Course Syllabus PHY 294 Engineering Mechanics Bergen Community College Division of Math, Science and Technology Department of Physical Sciences Course Syllabus PHY 294 Engineering Mechanics Semester and year: Course Number: Meeting Times and Locations:

More information

Lecture 9 - Rotational Dynamics

Lecture 9 - Rotational Dynamics Lecture 9 - Rotational Dynamics A Puzzle... Angular momentum is a 3D vector, and changing its direction produces a torque τ = dl. An important application in our daily lives is that bicycles don t fall

More information

ELEMENTARY ENGINEERING MECHANICS

ELEMENTARY ENGINEERING MECHANICS ELEMENTARY ENGINEERING MECHANICS Other title by the same author Applied Mechanics Made Simple (Heinemann: 'Made Simple' series) Other Macmllian titles of related interest Basic Engineering Mechanics J.

More information

CS491/691: Introduction to Aerial Robotics

CS491/691: Introduction to Aerial Robotics CS491/691: Introduction to Aerial Robotics Topic: Midterm Preparation Dr. Kostas Alexis (CSE) Areas of Focus Coordinate system transformations (CST) MAV Dynamics (MAVD) Navigation Sensors (NS) State Estimation

More information

Lab Partner(s) TA Initials (on completion) EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE

Lab Partner(s) TA Initials (on completion) EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE TA name Lab section Date TA Initials (on completion) Name UW Student ID # Lab Partner(s) EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE 117 Textbook Reference: Walker, Chapter 10-1,2, Chapter 11-1,3 SYNOPSIS

More information

Modesto Junior College Course Outline of Record PHYS 101

Modesto Junior College Course Outline of Record PHYS 101 Modesto Junior College Course Outline of Record PHYS 101 I. OVERVIEW The following information will appear in the 2011-2012 catalog PHYS 101 General Physics: Mechanics 5 Units Prerequisite: Satisfactory

More information

STATICS Chapter 1 Introductory Concepts

STATICS Chapter 1 Introductory Concepts Contents Preface to Adapted Edition... (v) Preface to Third Edition... (vii) List of Symbols and Abbreviations... (xi) PART - I STATICS Chapter 1 Introductory Concepts 1-1 Scope of Mechanics... 1 1-2 Preview

More information

Position and orientation of rigid bodies

Position and orientation of rigid bodies Robotics 1 Position and orientation of rigid bodies Prof. Alessandro De Luca Robotics 1 1 Position and orientation right-handed orthogonal Reference Frames RF A A p AB B RF B rigid body position: A p AB

More information

Dynamics and control of mechanical systems

Dynamics and control of mechanical systems Dynamics and control of mechanical systems Date Day 1 (03/05) - 05/05 Day 2 (07/05) Day 3 (09/05) Day 4 (11/05) Day 5 (14/05) Day 6 (16/05) Content Review of the basics of mechanics. Kinematics of rigid

More information

Physics 141 Dynamics 1 Page 1. Dynamics 1

Physics 141 Dynamics 1 Page 1. Dynamics 1 Physics 141 Dynamics 1 Page 1 Dynamics 1... from the same principles, I now demonstrate the frame of the System of the World.! Isaac Newton, Principia Reference frames When we say that a particle moves

More information

Physics I. Unit 1 Methods in Science (Systems of Units) Competencies (Do) Students should be able to demonstrate scientific methods.

Physics I. Unit 1 Methods in Science (Systems of Units) Competencies (Do) Students should be able to demonstrate scientific methods. Physics I Unit 1 Methods in Science (Systems of Units) Estimated Time Frame Big Ideas for Units 10 Days Tools are needed for the study of Physics, such as measurement, conversions, significant figures,

More information

Lecture Outline Chapter 10. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 10. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 10 Physics, 4 th Edition James S. Walker Chapter 10 Rotational Kinematics and Energy Units of Chapter 10 Angular Position, Velocity, and Acceleration Rotational Kinematics Connections

More information

inertia of a body, principal axes of inertia, invariants of an inertia tensor, and inertia triangle inequalities are illustrated and discussed.

inertia of a body, principal axes of inertia, invariants of an inertia tensor, and inertia triangle inequalities are illustrated and discussed. Preface This book belongs to a series of three books written simultaneously (the remaining two are titled Classical Mechanics: Dynamics and Classical Mechanics: Applied MechanicsandMechatronics). This

More information

Chapter 9: Rotational Dynamics Tuesday, September 17, 2013

Chapter 9: Rotational Dynamics Tuesday, September 17, 2013 Chapter 9: Rotational Dynamics Tuesday, September 17, 2013 10:00 PM The fundamental idea of Newtonian dynamics is that "things happen for a reason;" to be more specific, there is no need to explain rest

More information

A Numerical Integration Scheme For The Dynamic Motion Of Rigid Bodies Using The Euler Parameters

A Numerical Integration Scheme For The Dynamic Motion Of Rigid Bodies Using The Euler Parameters International Journal of Research in Engineering and Science (IJRES) ISSN (Online): 30-9364, ISSN (Print): 30-9356 Volume Issue 8 ǁ August 014 ǁ PP30-37 A Numerical Integration Scheme For The Dynamic Motion

More information

MEAM 520. Homogenous Transformations

MEAM 520. Homogenous Transformations MEAM 520 Homogenous Transformations Katherine J. Kuchenbecker, Ph.D. General Robotics, Automation, Sensing, and Perception Lab (GRASP) MEAM Department, SEAS, University of Pennsylvania Lecture 3: September

More information

Translational and Rotational Dynamics!

Translational and Rotational Dynamics! Translational and Rotational Dynamics Robert Stengel Robotics and Intelligent Systems MAE 345, Princeton University, 217 Copyright 217 by Robert Stengel. All rights reserved. For educational use only.

More information

Engineering Mechanics Prof. U. S. Dixit Department of Mechanical Engineering Indian Institute of Technology, Guwahati

Engineering Mechanics Prof. U. S. Dixit Department of Mechanical Engineering Indian Institute of Technology, Guwahati Engineering Mechanics Prof. U. S. Dixit Department of Mechanical Engineering Indian Institute of Technology, Guwahati Module No. - 01 Basics of Statics Lecture No. - 01 Fundamental of Engineering Mechanics

More information

Mechanics. In the Science Program, Mechanics contributes to the following program goals described in the Exit Profile:

Mechanics. In the Science Program, Mechanics contributes to the following program goals described in the Exit Profile: Mechanics Objectives: 00UR Discipline: Physics Ponderation: 3-2-3 Course Code: 203-NYA-05 Prerequisite: Sec. V Physics 534, Mathematics 536 (or equivalent) Course Credit: 2 2/3 Corequisite: 00UP (Calculus

More information

Physics for Scientists and Engineers 4th Edition, 2017

Physics for Scientists and Engineers 4th Edition, 2017 A Correlation of Physics for Scientists and Engineers 4th Edition, 2017 To the AP Physics C: Mechanics Course Descriptions AP is a trademark registered and/or owned by the College Board, which was not

More information

EQUATIONS OF MOTION: GENERAL PLANE MOTION (Section 17.5) Today s Objectives: Students will be able to analyze the planar kinetics of a rigid body

EQUATIONS OF MOTION: GENERAL PLANE MOTION (Section 17.5) Today s Objectives: Students will be able to analyze the planar kinetics of a rigid body EQUATIONS OF MOTION: GENERAL PLANE MOTION (Section 17.5) Today s Objectives: Students will be able to analyze the planar kinetics of a rigid body undergoing general plane motion. APPLICATIONS As the soil

More information

Lecture PowerPoints. Chapter 8 Physics: Principles with Applications, 6 th edition Giancoli

Lecture PowerPoints. Chapter 8 Physics: Principles with Applications, 6 th edition Giancoli Lecture PowerPoints Chapter 8 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the

More information

PLANAR KINETICS OF A RIGID BODY FORCE AND ACCELERATION

PLANAR KINETICS OF A RIGID BODY FORCE AND ACCELERATION PLANAR KINETICS OF A RIGID BODY FORCE AND ACCELERATION I. Moment of Inertia: Since a body has a definite size and shape, an applied nonconcurrent force system may cause the body to both translate and rotate.

More information

Concepts in Newtonian mechanics

Concepts in Newtonian mechanics Concepts in ewtonian mechanics For each question, fill in the blank, circle true or false, circle one (or more) of the multiple choice answers, write the definition, or complete the drawing. The percentages

More information

Dynamic Systems. Modeling and Analysis. Hung V. Vu. Ramin S. Esfandiari. THE McGRAW-HILL COMPANIES, INC. California State University, Long Beach

Dynamic Systems. Modeling and Analysis. Hung V. Vu. Ramin S. Esfandiari. THE McGRAW-HILL COMPANIES, INC. California State University, Long Beach Dynamic Systems Modeling and Analysis Hung V. Vu California State University, Long Beach Ramin S. Esfandiari California State University, Long Beach THE McGRAW-HILL COMPANIES, INC. New York St. Louis San

More information

Newton-Euler Dynamics of Robots

Newton-Euler Dynamics of Robots 4 NewtonEuler Dynamics of Robots Mark L. Nagurka Marquette University BenGurion University of the Negev 4.1 Introduction Scope Background 4.2 Theoretical Foundations NewtonEuler Equations Force and Torque

More information

Origin, Development, and Dissemination of Differential Geometry in Mathema

Origin, Development, and Dissemination of Differential Geometry in Mathema Origin, Development, and Dissemination of Differential Geometry in Mathematical History The Borough of Manhattan Community College -The City University of New York Fall 2016 Meeting of the Americas Section

More information

Rotation Basics. I. Angular Position A. Background

Rotation Basics. I. Angular Position A. Background Rotation Basics I. Angular Position A. Background Consider a student who is riding on a merry-go-round. We can represent the student s location by using either Cartesian coordinates or by using cylindrical

More information

Most people said that they understand force and acceleration. GOOD!

Most people said that they understand force and acceleration. GOOD! Questions and Answers on Dynamics 3/17/98 Thanks to the students who submitted questions and comments! I have grouped them by topic and shortened some of the long questions/comments. Please feel free to

More information

Torque and Rotation Lecture 7

Torque and Rotation Lecture 7 Torque and Rotation Lecture 7 ˆ In this lecture we finally move beyond a simple particle in our mechanical analysis of motion. ˆ Now we consider the so-called rigid body. Essentially, a particle with extension

More information

Acceleration and rotation in a pendulum ride, measured using an iphone 4

Acceleration and rotation in a pendulum ride, measured using an iphone 4 F EATURES www.iop.org/journals/physed Acceleration and rotation in a pendulum ride, measured using an iphone 4 Ann-Marie Pendrill 1,2 and Johan Rohlén 1 1 Department of Physics, University of Gothenburg,

More information

Dynamics. describe the relationship between the joint actuator torques and the motion of the structure important role for

Dynamics. describe the relationship between the joint actuator torques and the motion of the structure important role for Dynamics describe the relationship between the joint actuator torques and the motion of the structure important role for simulation of motion (test control strategies) analysis of manipulator structures

More information

Chapter 8: Momentum, Impulse, & Collisions. Newton s second law in terms of momentum:

Chapter 8: Momentum, Impulse, & Collisions. Newton s second law in terms of momentum: linear momentum: Chapter 8: Momentum, Impulse, & Collisions Newton s second law in terms of momentum: impulse: Under what SPECIFIC condition is linear momentum conserved? (The answer does not involve collisions.)

More information

Lecture 14. Rotational dynamics Torque. Give me a lever long enough and a fulcrum on which to place it, and I shall move the world.

Lecture 14. Rotational dynamics Torque. Give me a lever long enough and a fulcrum on which to place it, and I shall move the world. Lecture 14 Rotational dynamics Torque Give me a lever long enough and a fulcrum on which to place it, and I shall move the world. Archimedes, 87 1 BC EXAM Tuesday March 6, 018 8:15 PM 9:45 PM Today s Topics:

More information

Quaternion Feedback Regulation of Underwater Vehicles Ola-Erik FJELLSTAD and Thor I. FOSSEN Abstract: Position and attitude set-point regulation of au

Quaternion Feedback Regulation of Underwater Vehicles Ola-Erik FJELLSTAD and Thor I. FOSSEN Abstract: Position and attitude set-point regulation of au Quaternion Feedback Regulation of Underwater Vehicles Ola-Erik Fjellstad Dr.Ing. EE Seatex AS Trondheim NORWAY Thor I. Fossen Dr.Ing EE, M.Sc Naval Architecture Assistant Professor Telephone: +7 7 9 6

More information

Rotational & Rigid-Body Mechanics. Lectures 3+4

Rotational & Rigid-Body Mechanics. Lectures 3+4 Rotational & Rigid-Body Mechanics Lectures 3+4 Rotational Motion So far: point objects moving through a trajectory. Next: moving actual dimensional objects and rotating them. 2 Circular Motion - Definitions

More information

Lecture 9 Kinetics of rigid bodies: Impulse and Momentum

Lecture 9 Kinetics of rigid bodies: Impulse and Momentum Lecture 9 Kinetics of rigid bodies: Impulse and Momentum Momentum of 2-D Rigid Bodies Recall that in lecture 5, we discussed the use of momentum of particles. Given that a particle has a, and is travelling

More information

Chapter 10.A. Rotation of Rigid Bodies

Chapter 10.A. Rotation of Rigid Bodies Chapter 10.A Rotation of Rigid Bodies P. Lam 7_23_2018 Learning Goals for Chapter 10.1 Understand the equations govern rotational kinematics, and know how to apply them. Understand the physical meanings

More information