Nuclear Geometry in High Energy Nuclear Collisions

Size: px
Start display at page:

Download "Nuclear Geometry in High Energy Nuclear Collisions"

Transcription

1 Nuclear Geometry in High Energy Nuclear Collisions Wei Zhou School of Physics, Shan Dong University May 20, / 23

2 Outline 1 Some Definition and Experiment issue 2 Nuclear Geometry 3 Glauber Model in Nuclear-Nuclear Collisions 4 Summary and Outlook 2/ 23

3 Outline 1 Some Definition and Experiment issue 2 Nuclear Geometry 3 Glauber Model in Nuclear-Nuclear Collisions 4 Summary and Outlook 3/ 23

4 Some Definition b: impact parameter the distance between two nuclear N part : number of participants nucleons which have encountered at least one binary collision. N bin (N coll ): number of binary collisions inelastic nucleon-nucleon scattering. 4/ 23

5 Experiment issue In experiment, b,n part and N bin can not be measured directly. Their values can be derived by mapping the measured data. dn dn ch (a) 50% 40% 30% 20% 10% 5% Nch PHENIX STAR PHENIX and STAR have different method to determine the centrality in Nuclear-Nuclear collision. In this talk, we will inlustrate the relation between the centrality, b, N part and N bin. 5/ 23

6 Outline 1 Some Definition and Experiment issue 2 Nuclear Geometry 3 Glauber Model in Nuclear-Nuclear Collisions 4 Summary and Outlook 6/ 23

7 Nucleon s Density in Nuclear 1 There are two popular density profiles: Sharp Sphere n A (r) = { n0 r R 0 r > R n 0 = 0.17fm 3,R = ( 3A 4πn 0 ) 1/3 Woods-Saxon n A (r) = n exp( r R d ) n 0 = 0.17fm 3, R = (1.12A 1/3 0.86A 1/3 )fm, d = 0.54fm Both densities should be normalized to the number of nucleons: d 3 rn A (r) = A 7/ 23

8 Nucleon s Density in Nuclear 2 Sharp Sphere: Woods-Saxon: ] ] n[fm 0.18 n[fm = 0.17fm n 0 R = 6.5fm = 0.17fm n 0 R = 6.369fm d = 0.54fm b[fm] b[fm] The nucleon s density in Au(197) Nuclear. The difference between these two profiles is in the peripheral region. 8/ 23

9 Thickness Function 1 The probability of one nucleon can be found at ( b,z): ρ( b,z), ρ( b,z)d bdz = 1 The probability of one nucleon can be found at b: t( b) = ρ( b,z)dz, t( b)d b = 1 Thickness function The density of nucleons at b: T( b) = n( b,z)dz, n( b)d b = A So, we have this relation: t( b) = T( b) A 9/ 23

10 Thickness Function 1 The relation between thickness function T and impact parameter b of Au(197) nuclei: ] -2 T[fm ] -2 T[fm b[fm] b[fm] Sharp Sphere Woods-Saxon 10/ 23

11 Thickness Function 2 In nuclear collision A+B: The probability of one nucleon-nucleon pair can be found when the impact parameter is b: t AB = t A ( s + b)t B ( s)d s, d bt AB = 1 Thickness function in A+B collision: T AB = T A ( s + b)t B ( s)d s, d bt AB = AB It means the density of nucleon-nucleon pairs in A+B collision when impact parameter is b. As above, we have this relation: t AB ( b) = T AB( b) AB 11/ 23

12 Thickness Function 2 The relation between thickness function T AB and impact parameter b in Au+Au collision: ] -2 T AB [fm ] -2 T AB [fm b[fm] b[fm] Sharp Sphere Woods-Saxon 12/ 23

13 Outline 1 Some Definition and Experiment issue 2 Nuclear Geometry 3 Glauber Model in Nuclear-Nuclear Collisions 4 Summary and Outlook 13/ 23

14 Assumptions A nuclear-nuclear collision can be considered to be a series of multiple nucleon-nucleon scattering. The difference between the nucleon and its excited states in successive scattering can be neglected. That means all the inelastic cross-sections of nucleon-nucleon collisions are same. The inelastic cross-section of pp collision: s 56GeV 130GeV 200GeV 5.5TeV σ pp 37mb 41mb 42mb 60mb 14/ 23

15 Glauber Model 1 The probability of n nucleon-nucleon collisions happens in A+B collision: ( ) P(n, AB [ b) = t n AB( n [ b)σ pp] 1 t AB ( ] AB n b)σ pp The total probability of inelastic collision of A+B collision when impact parameter is b: AB n=1 Here we use: P(n, [ b) = 1 1 t AB ( ] AB b)σ pp 1 e T AB ( b)σ pp lim (1 µ n n )n = e µ, AB 1, t AB ( b) = T AB( b) AB 15/ 23

16 Glauber Model 2 The total inelastic cross-section of A+B collision: { σ AB (tot) = d b 1 [1 t AB ( ] } AB b)σ pp d } b {1 e T AB( b)σ pp Then we have: centrality = σab ( b) σ AB (tot) Now, we have derived the relation between impact parameter b and centrality in nuclear-nuclear collision. 16/ 23

17 Glauber Model 2 The relation between impact parameter b and centrality in Au+Au collision at s = 130GeV : centrality(%) b[fm] The nucleon s density profile is Woods-Saxon. 17/ 23

18 Glauber Model 3 Number of binary collisions of A+B collision when the impact parameter is b: N bin ( b) = AB n=1 n P(n, b) = AB t AB ( b)σ pp = T AB ( b)σ pp For one nucleon in nuclear A, the probability of it can have collision with the nucleons in nuclear B: B ( B n )(t B( b)σ pp ) n (1 t B ( b)σ pp ) B n = 1 [1 T B( b)σ pp ] B B n=1 Then we can derive the number of participants in A+B collision: N part ( b) = N parta + N partb = + d s T A ( s){1 [1 T B( s b)σ pp ] B } B d s T B ( s){1 [1 T A( s + b)σ pp ] A } A 18/ 23

19 Glauber Model 3 The relation between Npart, Nbin and impact parameter b in Au+Au collision at s = 130GeV : # Npart Nbin b[fm] The nucleon s density profile is Woods-Saxon. 19/ 23

20 The Monte Carlo Glauber Model Other method to determine b,nbin and Npart in A+B collision: Nuclear A Nuclear B Each possible nucleons are distributed about point (0,0,0) each nucleon is randomly distributed using Woods-Saxon profile, R + 0 d 3 rn(r) = A all nucleons are separated by d > d min where d min = 0.4 is characteristic of the length of the repulsive nucleon-nucleon force. nucleon-nucleon pair is determined to interact if they are separated by the transverse q σpp distance r π nucleons are distributed about point (b,0,0) each nucleon is randomly distributed using Woods-Saxon profile, R + 0 d 3 rn(r) = B all nucleons are separated by d > d min where d min = 0.4 is characteristic of the length of the repulsive nucleon-nucleon force. This process is iterated for an arbitrary number of events, with the impact parameter b for each event randomly chosen from a flat distribution. Then the distributions dσ/dn bin,dσ/dn part and dσ/db are determined. 20/ 23

21 Comparison between two Models Mapping of multiplicity classes to the optical Glauber calculations. Mapping of multiplicity classes to the Monte-Carlo Glauber calculations. The results of two models are consist to each other especial in central collisions. 21/ 23

22 Outline 1 Some Definition and Experiment issue 2 Nuclear Geometry 3 Glauber Model in Nuclear-Nuclear Collisions 4 Summary and Outlook 22/ 23

23 Summary and Outlook We first introduce two profiles to describe the nucleon s distribution in nuclei. We gives the detail description of the optical glauber model. The comparison between the result of two glauber models is presented. This study can be used in the extension of our combination model to nuclear-nuclear collisions. 23/ 23

Glauber modelling in high-energy nuclear collisions. Jeremy Wilkinson

Glauber modelling in high-energy nuclear collisions. Jeremy Wilkinson Glauber modelling in high-energy nuclear collisions Jeremy Wilkinson 16/05/2014 1 Introduction: Centrality in Pb-Pb collisions Proton-proton collisions: large multiplicities of charged particles produced

More information

overlap - nuclear overlap calculation

overlap - nuclear overlap calculation overlap - nuclear overlap calculation D. Miśkowiec July 15, 2004 1 Introduction The nuclear overlap model, introduced by Eskola in Nucl. Phys. B323(1989)37, expresses a nucleus-nucleus collision in terms

More information

CGC effects on J/ψ production

CGC effects on J/ψ production CGC effects on J/ψ production Kirill Tuchin based on work with D. Kharzeev, G. Levin and M. Nardi 6th Winter Workshop on Nuclear Dynamics Jan.-9 Ocho Rios, Jamaica Introduction I Inclusive light hadron

More information

Selected Topics in the Theory of Heavy Ion Collisions Lecture 1

Selected Topics in the Theory of Heavy Ion Collisions Lecture 1 Selected Topics in the Theory of Heavy Ion Collisions Lecture 1 Urs chim Wiedemann CERN Physics Department TH Division Varenna, 19 July 2010 Based on http://cdsweb.cern.ch/record/1143387/files/p277.pdf

More information

arxiv: v1 [nucl-ex] 11 Jul 2011

arxiv: v1 [nucl-ex] 11 Jul 2011 Bulk Properties of Pb-Pb collisions at snn = 2.76 TeV measured by ALICE arxiv:17.1973v1 [nucl-ex] 11 Jul 2011 Alberica Toia for the ALICE Collaboration CERN Div. PH, 1211 Geneva 23 E-mail: alberica.toia@cern.ch

More information

Glauber Monte-Carlo Study of 200 GeV U+U Collisions

Glauber Monte-Carlo Study of 200 GeV U+U Collisions Glauber Monte-Carlo Study of 200 GeV U+U Collisions Christopher E. Flores University of California, Davis REU 2009 Advisers: Daniel Cebra, Manuel Calderon, Jim Draper REU Director: Rena Zieve Collisions

More information

arxiv: v2 [nucl-th] 26 Jan 2011

arxiv: v2 [nucl-th] 26 Jan 2011 NUCLEAR RADII OF UNSTABLE NUCLEI G. D. Alkhazov and Yu. Shabelski Petersburg Nuclear Physics Institute, Gatchina, St.Petersburg 188350, Russia I. S. Novikov Department of Physics and Astronomy, arxiv:1101.4717v2

More information

GLAUBER MODELING OF HIGH ENERGY HEAVY ION COLLISION

GLAUBER MODELING OF HIGH ENERGY HEAVY ION COLLISION GLAUBER MODELING OF HIGH ENERGY HEAVY ION COLLISION Roli Esha Semester 9 Under the guidance of Dr. Bedangadas Mohanty National Institute of Science Education and Research Bhubaneswar November 15, 2012

More information

Selected Topics in the Theory of Heavy Ion Collisions Lecture 1

Selected Topics in the Theory of Heavy Ion Collisions Lecture 1 Selected Topics in the Theory of Heavy Ion Collisions Lecture 1 Urs chim Wiedemann CERN Physics Department TH Division Skeikampen, 4 January 2012 Heavy Ion Collisions - Experiments lternating Gradient

More information

CENTRALITY DETERMINATION IN 15 GeV/u Au-Au COLLISIONS IN CBM EXPERIMENT *

CENTRALITY DETERMINATION IN 15 GeV/u Au-Au COLLISIONS IN CBM EXPERIMENT * Romanian Reports in Physics, Vol. 65, No. 4, P. 1314 1320, 2013 HIGH ENERGY PHYSICS CENTRALITY DETERMINATION IN 15 GeV/u Au-Au COLLISIONS IN CBM EXPERIMENT * VALERICA BABAN 1, ALEXANDRU JIPA 1, CĂTĂLIN

More information

arxiv: v1 [nucl-ex] 28 May 2008

arxiv: v1 [nucl-ex] 28 May 2008 The PHOBOS Glauber Monte Carlo B.Alver 1, M.Baker 2, C.Loizides 1, P.Steinberg 2 1 Massachusetts Institute of Technology, Cambridge, MA 2139, USA 2 Brookhaven National Laboratory, Upton, NY 11973, USA

More information

Initial state anisotropies in ultrarelativistic heavy-ion collisions from the Monte Carlo Glauber model

Initial state anisotropies in ultrarelativistic heavy-ion collisions from the Monte Carlo Glauber model Initial state anisotropies in ultrarelativistic heavy-ion collisions from the Monte Carlo Glauber model ECT*, European Centre for Theoretical Studies in Nuclear Physics and Related Areas Strada delle Tabarelle

More information

Lambda-Lambda correlation from an integrated dynamical model

Lambda-Lambda correlation from an integrated dynamical model ExHIC, March 28, 2016 Lambda-Lambda correlation from an integrated dynamical model Tetsufumi Hirano (Sophia Univ.) Collaborators: Asumi Taniguchi Hiromi Hinohara Koichi Murase References for the model:

More information

Partonic transport simulations of jet quenching

Partonic transport simulations of jet quenching Partonic transport simulations of jet quenching Z. Xu, C. Greiner Institut für Theoretische Physik J. W. Goethe-Universität, Frankfurt Outline motivation introduction to the model simulations of Au+Au

More information

Current Status of QGP hydro + hadron cascade approach

Current Status of QGP hydro + hadron cascade approach Current Status of QGP hydro + hadron cascade approach Tetsufumi Hirano the Univ. of Tokyo/LBNL 6/14/2010 @ INT Introduction Outline Motivation A short history of hybrid approaches Importance of hadronic

More information

Glauber Modeling in High-Energy Nuclear Collisions

Glauber Modeling in High-Energy Nuclear Collisions Annu. Rev. Nucl. Part. Sci. 27.57:25-243. Downloaded from arjournals.annualreviews.org Annu. Rev. Nucl. Part. Sci. 27. 57:25 43 First published online as a Review in Advance on May 9, 27 The Annual Review

More information

Collective and non-flow correlations in event-by-event hydrodynamics

Collective and non-flow correlations in event-by-event hydrodynamics Collective and non-flow correlations in event-by-event hydrodynamics Institute of Nuclear Physics Kraków WPCF 22-2.9.22 3 -D viscous hydrodynamics T T h /- v 3 [%] 25 2 5 5 2 5 5 2 5 5 ideal, e-b-e η/s=.8,

More information

Inclusive distributions at the LHC as predicted from the DPMJET-III model with chain fusion

Inclusive distributions at the LHC as predicted from the DPMJET-III model with chain fusion Inclusive distributions at the LHC as predicted from the DPMJET-III model with chain fusion F.Bopp, R.Engel, J.Ranft and S.Roesler () DPMJET III () Chain fusion in DPMJET III (3) dn/dη cm distributions

More information

Recent Results from RHIC: On the trail of the Quark-Gluon Plasma

Recent Results from RHIC: On the trail of the Quark-Gluon Plasma Recent Results from RHIC: On the trail of the Quark-Gluon Plasma Single Au+Au Collision seen by STAR@RHIC Gunther Roland Gunther Roland/MIT July 15 2003 MPI Munich 15/7/2003 Gunther Roland/MIT www.spiegel.de

More information

Beijing. Charmed hadron signals of partonic medium. Olena Linnyk

Beijing. Charmed hadron signals of partonic medium. Olena Linnyk Beijing Charmed hadron signals of partonic medium Olena Linnyk Our goal properties of partonic matter Hadron-string models Experiment QGP models Observables Hadron abundances J/Ψ anomalous suppression

More information

1992 Predictions for RHIC with HIJING

1992 Predictions for RHIC with HIJING 1992 Predictions for RHIC with HIJING HIJING: A MONTE CARLO MODEL FOR MULTIPLE JET PRODUCTION IN P P, P A AND A A COLLISIONS Phys.Rev.D44:3501-3516,1991 GLUON SHADOWING AND JET QUENCHING IN A + A COLLISIONS

More information

High-p T Neutral Pion Production in Heavy Ion Collisions at SPS and RHIC

High-p T Neutral Pion Production in Heavy Ion Collisions at SPS and RHIC High- Neutral Pion Production in Heavy Ion Collisions at SPS and RHIC K. Reygers for the WA98 and the PHENIX collaboration Institut für Kernphysik der Universität Münster Wilhelm-Klemm-Str. 9, D-4849 Münster,

More information

Alpha clustering from relativistic collisions

Alpha clustering from relativistic collisions Alpha clustering from relativistic collisions Wojciech Broniowski UJK Kielce & IFJ PAN Cracow STAR Regional Meeting: Heavy Quark Production, Jets and Correlations 1-4 January 14, WUT [based on WB& E. Ruiz

More information

Thermal dileptons as fireball probes at SIS energies

Thermal dileptons as fireball probes at SIS energies Thermal dileptons as fireball probes at SIS energies Critical Point and Onset of Deconfinement 2016, Wrocław. Florian Seck TU Darmstadt in collaboration with T. Galatyuk, P. M. Hohler, R. Rapp & J. Stroth

More information

Event-by-event distribution of azimuthal asymmetries in ultrarelativistic heavy-ion collisions

Event-by-event distribution of azimuthal asymmetries in ultrarelativistic heavy-ion collisions Event-by-event distribution of azimuthal asymmetries in ultrarelativistic heavy-ion collisions Hannu Holopainen Frankfurt Institute for Advanced Studies in collaboration with G. S. Denicol, P. Huovinen,

More information

Recent results from the STAR experiment on Vector Meson production in ultra peripheral AuAu collisions at RHIC.

Recent results from the STAR experiment on Vector Meson production in ultra peripheral AuAu collisions at RHIC. Recent results from the STAR experiment on Vector Meson production in ultra peripheral AuAu collisions at RHIC. Leszek Adamczyk On behalf of STAR Collaboration September 7, 2016 RHIC AA: Au+Au, Cu+Cu,

More information

Extracting ˆq from single inclusive data at RHIC and at the LHC for different centralities: a new puzzle?

Extracting ˆq from single inclusive data at RHIC and at the LHC for different centralities: a new puzzle? Extracting ˆq from single inclusive data at RHIC and at the LHC for different centralities: a new puzzle? Carlota Andrés Universidade de Santiago de Compostela Hard Probes 2016, Wuhan, China N. Armesto,

More information

Charged particle production in Pb-Pb and p-pb collisions at ALICE

Charged particle production in Pb-Pb and p-pb collisions at ALICE Journal of Physics: Conference Series OPEN ACCESS Charged particle production in Pb-Pb and p-pb collisions at To cite this article: Chiara Oppedisano and the Collaboration J. Phys.: Conf. Ser. View the

More information

arxiv: v1 [nucl-th] 10 Jul 2009

arxiv: v1 [nucl-th] 10 Jul 2009 NUCLEAR RADII CALCULATIONS IN VARIOUS THEORETICAL APPROACHES FOR NUCLEUS-NUCLEUS INTERACTIONS C. Merino a, I. S. Novikov b, and Yu. M. Shabelski c arxiv:0907.1697v1 [nucl-th] 10 Jul 2009 a Departamento

More information

Transport Theoretical Studies of Hadron Attenuation in Nuclear DIS. Model Results Summary & Outlook

Transport Theoretical Studies of Hadron Attenuation in Nuclear DIS. Model Results Summary & Outlook Transport Theoretical Studies of Hadron Attenuation in Nuclear DIS T. Falter, W. Cassing,, K. Gallmeister,, U. Mosel Contents: Motivation Model Results Summary & Outlook Motivation elementary en reaction

More information

First results with heavy-ion collisions at the LHC with ALICE

First results with heavy-ion collisions at the LHC with ALICE First results with heavy-ion collisions at the LHC with ALICE Domenico Elia INFN, Bari (Italy) on behalf of the ALICE Collaboration D. Elia (INFN Bari, Italy) PANIC 011 / Boston, MA (USA) July 4-9, 011

More information

GLAUBER MODEL FOR HEAVY ION COLLISIONS FROM LOW ENERGIES TO HIGH ENERGIES. P. Shukla. Nuclear Physics Division

GLAUBER MODEL FOR HEAVY ION COLLISIONS FROM LOW ENERGIES TO HIGH ENERGIES. P. Shukla. Nuclear Physics Division GLAUBER MODEL FOR HEAVY ION COLLISIONS FROM LOW ENERGIES TO HIGH ENERGIES P. Shukla Nuclear Physics Division Bhabha Atomic Research Centre,Bombay 400 085 The Glauber model is extensively applied to heavy

More information

Heavy Ions at the LHC: First Results

Heavy Ions at the LHC: First Results Heavy Ions at the LHC: First Results Thomas Schaefer North Carolina State University Heavy ion collision: Geometry R Au /γ y R Au x b z rapidity : y = 1 2 log ( E + pz E p z ) transverse momentum : p 2

More information

Quarkonia physics in Heavy Ion Collisions. Hugo Pereira Da Costa CEA/IRFU Rencontres LHC France Friday, April

Quarkonia physics in Heavy Ion Collisions. Hugo Pereira Da Costa CEA/IRFU Rencontres LHC France Friday, April Quarkonia physics in Heavy Ion Collisions Hugo Pereira Da Costa CEA/IRFU Rencontres LHC France Friday, April 5 2013 1 2 Contents Introduction (QGP, Heavy Ion Collisions, Quarkonia) Quarkonia at the SPS

More information

Heavy quark production and elliptic flow at RHIC and LHC

Heavy quark production and elliptic flow at RHIC and LHC Heavy quark production and elliptic flow at RHIC and LHC Jan Uphoff with O. Fochler, Z. Xu and C. Greiner Institute for Theoretical Physics Hirschegg January 20, 2010 Outline Motivation Charm processes

More information

HOT HADRONIC MATTER. Hampton University and Jefferson Lab

HOT HADRONIC MATTER. Hampton University and Jefferson Lab 200 Cr oss sect ion (m b) 0 K ptotal 20 5 K pelastic 2 1 K N 1 1.6 2 3 4 2 5 6 7 8 9 20 30 3 40 THE ROLE OF BARYON RESONANCES IN Relativistic Heavy Ion Collider (RHIC) HOT HADRONIC MATTER Au+Au K d 2.5

More information

Proton-lead measurements using the ATLAS detector

Proton-lead measurements using the ATLAS detector Proton-lead measurements using the ATLAS detector Martin Spousta for the ATLAS Collaboration Charles University in Prague DOI: http://dx.doi.org/10.3204/desy-proc-2014-04/275 Measurements of soft and hard

More information

The Core Corona Model

The Core Corona Model The Core Corona Model or Is the Centrality Dependence of Observables more than a Core-Corona Effect? inspired by the first multiplicity results in CuCu then used to extract the physics of EPOS simulations

More information

What is a heavy ion? Accelerator terminology: Any ion with A>4, Anything heavier than α-particle

What is a heavy ion? Accelerator terminology: Any ion with A>4, Anything heavier than α-particle Outline Introduction to Relativistic Heavy Ion Collisions and Heavy Ion Colliders. Production of particles with high transverse momentum. Collective Elliptic Flow Global Observables Particle Physics with

More information

Hydrodynamic response to initial state fluctuations

Hydrodynamic response to initial state fluctuations University of Jyväskylä, Department of Physics POETIC Jyväskylä 3.9.203 AA-collisions Initial particle/energy production, followed by Hydrodynamic evolution, followed by Freeze-out/Hadron cascade Goal

More information

Centrality in Hadron-Carbon, Hadron-Lead, and Lead-Lead Reactions at 158 GeV/c

Centrality in Hadron-Carbon, Hadron-Lead, and Lead-Lead Reactions at 158 GeV/c REPORT No 1976/PH Centrality in Hadron-Carbon, Hadron-Lead, and Lead-Lead Reactions at 158 GeV/c Andrzej Rybicki Abstract An introductory study of centrality in p+c, π+c, p+pb, π+pb, and Pb+Pb reactions

More information

Multi-hadron Triggered Azimuthal Correlations in Au+Au Collisions at s NN = 200 GeV from STAR. Brooke Haag UC Davis

Multi-hadron Triggered Azimuthal Correlations in Au+Au Collisions at s NN = 200 GeV from STAR. Brooke Haag UC Davis Multi-hadron Triggered Azimuthal Correlations in Au+Au Collisions at s NN = 200 GeV from STAR Brooke Haag UC Davis Outline Introduction / Analysis Technique Motivation for multi-hadron triggers Explanation

More information

Nuclear Surface Effects in Heavy Ion Collision at RHIC and SPS 1 Klaus Werner

Nuclear Surface Effects in Heavy Ion Collision at RHIC and SPS 1 Klaus Werner 0-0 SQM 2006 Nuclear Surface Effects in Heavy Ion Collision at RHIC and SPS 1 Klaus Werner The fact that nuclei have diffuse surfaces (rather than being simple spheres) has dramatic consequences on the

More information

The effect of the spectator charge on the charged pion spectra in peripheral ultrarelativistic heavy-ion collisions

The effect of the spectator charge on the charged pion spectra in peripheral ultrarelativistic heavy-ion collisions The effect of the spectator charge on the charged pion spectra in peripheral ultrarelativistic heavy-ion collisions Antoni Szczurek and Andrzej Rybicki INSTITUTE OF NUCLEAR PHYSICS POLISH ACADEMY OF SCIENCES

More information

On multiplicity correlations in the STAR data

On multiplicity correlations in the STAR data arxiv:1203.3671v2 [nucl-th] 8 May 2012 On multiplicity correlations in the STAR data K. FIAŁKOWSKI 1, R. WIT 2 M. Smoluchowski Institute of Physics Jagellonian University 30-059 Kraków, ul.reymonta 4,

More information

Predictions for 5.02A TeV Pb+Pb Collisions from A Multi-Phase Transport Model

Predictions for 5.02A TeV Pb+Pb Collisions from A Multi-Phase Transport Model Predictions for 5.02A TeV Pb+Pb Collisions from A Multi-Phase Transport Model Zi-Wei Lin East Carolina University, Greenville, NC Results are mainly based on G.L. Ma & ZWL, Phys Rev C 93 (2016) /arxiv:1601.08160

More information

High Energy Frontier Recent Results from the LHC: Heavy Ions I

High Energy Frontier Recent Results from the LHC: Heavy Ions I High Energy Frontier Recent Results from the LHC: Heavy Ions I Ralf Averbeck ExtreMe Matter Institute EMMI and Research Division GSI Helmholtzzentrum für Schwerionenforschung Darmstadt, Germany Winter

More information

Predictions for hadronic observables from. from a simple kinematic model

Predictions for hadronic observables from. from a simple kinematic model Predictions for hadronic observables from Pb + Pb collisions at sqrt(s NN ) = 2.76 TeV from a simple kinematic model Tom Humanic Ohio State University WPCF-Kiev September 14, 2010 Outline Motivation &

More information

arxiv: v2 [nucl-ex] 3 Jun 2008

arxiv: v2 [nucl-ex] 3 Jun 2008 arxiv:86.4v [nucl-ex] 3 Jun 8 WHERE FEYNMAN, FIELD AND FOX FAILED AND HOW WE FIXED I A RHIC M.J. ANNENBAUM Physics Department, 5c, Brookhaven National Laboratory Upton, NY 973-5, U.S.A. Hard-scattering

More information

arxiv:nucl-ex/ v2 1 Mar 2007

arxiv:nucl-ex/ v2 1 Mar 2007 March, 007 :57 WSPC/INSRUCION FILE International Journal of Modern Physics E c World Scientific Publishing Company arxiv:nucl-ex/070057v Mar 007 SIMULAION OF JE QUENCHING OBSERVABLES IN HEAVY ION COLLISIONS

More information

Lecture 12: Hydrodynamics in heavy ion collisions. Elliptic flow Last lecture we learned:

Lecture 12: Hydrodynamics in heavy ion collisions. Elliptic flow Last lecture we learned: Lecture 12: Hydrodynamics in heavy ion collisions. Elliptic flow Last lecture we learned: Particle spectral shapes in thermal model ( static medium) are exponential in m T with common slope for all particles.

More information

pt-inclusive 2-particle correlations; p-p, Cu-Cu, Au-Au BES

pt-inclusive 2-particle correlations; p-p, Cu-Cu, Au-Au BES pt-inclusive 2-particle correlations; p-p, Cu-Cu, Au-Au BES Duncan May 7, 2012 1 Agenda Review of Methods Minimum-bias Jets in pp - the reference system Review 200, 62 GeV Au-Au Compare Cu-Cu to Au-Au

More information

Multiple Parton-Parton Interactions: from pp to A-A

Multiple Parton-Parton Interactions: from pp to A-A Multiple Parton-Parton Interactions: from pp to A-A Andreas Morsch CERN QCD Challenges at LHC Taxco, Mexico, Jan 18-22 (2016) Multiple Parton-Parton Interactions Phys. Lett. B 167 (1986) 476 Q i 2 Λ QCD

More information

DEPARTMENT OF PHYSICS UNIVERSITY OF JYVÄSKYLÄ RESEARCH REPORT No. 4/2011

DEPARTMENT OF PHYSICS UNIVERSITY OF JYVÄSKYLÄ RESEARCH REPORT No. 4/2011 DEPARTMENT OF PHYSICS UNIVERSITY OF JYVÄSKYLÄ RESEARCH REPORT No. 4/2011 EVENT-BY-EVENT HYDRODYNAMICS AND THERMAL PHOTON PRODUCTION IN ULTRARELATIVISTIC HEAVY ION COLLISIONS BY HANNU HOLOPAINEN Academic

More information

Q a u r a k k m a m t a t t e t r e p r p ob o e b d e d b y b y di d l i e l p e t p o t n o s

Q a u r a k k m a m t a t t e t r e p r p ob o e b d e d b y b y di d l i e l p e t p o t n o s Quark matter probed by dileptons Olena Linnyk July 02, 2010 Information from photons and dileptons 14 12 10 ε/t 4 8 6 4 2 Lattice QCD: µ B =0 µ B =530 MeV 0 0.5 1.0 1.5 2.0 2.5 3.0 T/T c But what are the

More information

Fluctuations and Search for the QCD Critical Point

Fluctuations and Search for the QCD Critical Point Fluctuations and Search for the QCD Critical Point Kensuke Homma Hiroshima University. Integrated multiplicity fluctuations. Differential multiplicity fluctuations 3. K to π and p to π fluctuations 4.

More information

Quarkonium results in pa & AA: from RHIC to LHC

Quarkonium results in pa & AA: from RHIC to LHC International School of Nuclear Physics 38 th course Nuclear matter under extreme conditions relativistic heavy-ion collisions September 2016 Quarkonium results in pa & AA: from RHIC to LHC Roberta Arnaldi

More information

Heavy quarks and charmonium at RHIC and LHC within a partonic transport model

Heavy quarks and charmonium at RHIC and LHC within a partonic transport model within a partonic transport model Institut für Theoretische Physik, Johann Wolfgang Goethe-Universität Frankfurt, Germany E-mail: uphoff@th.physik.uni-frankfurt.de Kai Zhou Physics Department, Tsinghua

More information

Soft physics results from the PHENIX experiment

Soft physics results from the PHENIX experiment Prog. Theor. Exp. Phys. 2015, 03A104 (15 pages) DOI: 10.1093/ptep/ptu069 PHYSICS at PHENIX, 15 years of discoveries Soft physics results from the PHENIX experiment ShinIchi Esumi, Institute of Physics,

More information

Long-range rapidity correlations in high multiplicity p-p collisions

Long-range rapidity correlations in high multiplicity p-p collisions Long-range rapidity correlations in high multiplicity p-p collisions Kevin Dusling North Carolina State University Raleigh, NC 7695 kevin dusling@ncsu.edu May 9, Contents. Overview of the Ridge. Long range

More information

Searches for Chiral Effects and Prospects for Isobaric Collisions at STAR/RHIC

Searches for Chiral Effects and Prospects for Isobaric Collisions at STAR/RHIC Searches for Chiral Effects and Prospects for Isobaric Collisions at STAR/RHIC (for the STAR Collaboration) University of California, Los Angeles E-mail: lwen@physics.ucla.edu Searches for the chiral effects

More information

Magnetic field in HIC in Au-Au, Cu-Cu and isobar collisions

Magnetic field in HIC in Au-Au, Cu-Cu and isobar collisions Magnetic field in HIC in Au-Au, Cu-Cu and isobar collisions Vladimir Skokov March 2, 2016 VSkokov@bnl.gov B in HIC QCD Workshop 1 / 23 Outline Introduction Magnetic field at early stage and evolution Magnetic

More information

Azimuthal angle dependence of HBT radii with respect to the Event Plane in Au+Au collisions at PHENIX

Azimuthal angle dependence of HBT radii with respect to the Event Plane in Au+Au collisions at PHENIX Azimuthal angle dependence of HBT radii with respect to the Event Plane in Au+Au collisions at PHENIX TTaakkaaffuummii NNiiiiddaa ffoorr tthhee PPHHEENNIIXX CCoollllaabboorraattiioonn UUnniivveerrssiittyy

More information

UNIVERSITÀ DEGLI STUDI DI CATANIA INFN SEZIONE DI CATANIA

UNIVERSITÀ DEGLI STUDI DI CATANIA INFN SEZIONE DI CATANIA UNIVERSITÀ DEGLI STUDI DI CATANIA INFN SEZIONE DI CATANIA MOMENTUM ANISOTROPIES IN A TRANSPORT APPROACH V. BARAN, M. DI TORO, V. GRECO, S. PLUMARI Transport Theory with a Mean Field at fixed η/s. Effective

More information

arxiv: v1 [nucl-th] 21 Nov 2018

arxiv: v1 [nucl-th] 21 Nov 2018 arxiv:8.0889v [nucl-th] 2 Nov 208 Strongly intensive fluctuations and correlations in ultrarelativistic nuclear collisions in the model with string fusion Vladimir Kovalenko, Saint Petersburg State University

More information

Perturbative origin of azimuthal anisotropy in nuclear collisions

Perturbative origin of azimuthal anisotropy in nuclear collisions Perturbative origin of azimuthal anisotropy in nuclear collisions Amir H. Rezaeian Uiversidad Tecnica Federico Santa Maria, Valparaiso Sixth International Conference on Perspectives in Hadronic Physics

More information

Constraining the QCD equation of state in hadron colliders

Constraining the QCD equation of state in hadron colliders Constraining the QCD equation of state in hadron colliders Akihiko Monnai (KEK, Japan) with Jean-Yves Ollitrault (IPhT Saclay, France) AM and J.-Y. Ollitrault, Phys. Rev. C 96, 044902 (2017) New Frontiers

More information

arxiv: v2 [hep-ph] 2 Nov 2015

arxiv: v2 [hep-ph] 2 Nov 2015 Charmonium Production with QGP and Hadron Gas Effects at SPS and FAIR Baoyi Chen Department of Physics, Tianjin University, Tianjin 300072, China (Dated: November 28, 2015) arxiv:1510.07902v2 [hep-ph]

More information

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Title High pt inclusive charged hadron spectra from Au+Au collisions at Sqrt(s_NN)=00 Gev Permalink https://escholarship.org/uc/item/3jp4v8vd

More information

+ High p T with ATLAS and CMS in Heavy-Ion 2.76TeV

+ High p T with ATLAS and CMS in Heavy-Ion 2.76TeV + High p T with ATLAS and CMS in Heavy-Ion Collisions @ 2.76TeV Lamia Benhabib On behalf of ATLAS and CMS HCP 2011, Paris lamia.benhabib@llr.in2p3.fr +Outlook Introduction : hard probes Strongly interacting

More information

Heavy Ion Results from the ALICE Experiment

Heavy Ion Results from the ALICE Experiment Heavy Ion Results from the ALICE Experiment Johannes P. Wessels on behalf of the ALICE Collaboration Institute for uclear Physics University of Münster D-89 Münster, Germany and CER, CH- Geneva, Switzerland

More information

Jet and bulk observables within a partonic transport approach

Jet and bulk observables within a partonic transport approach Jet and bulk observables within a partonic transport approach Florian Senzel with J. Uphoff, O. Fochler, C. Wesp, Z. Xu and C. Greiner based on Phys.Rev.Lett. 4 (25) 23 Transport meeting, 29.4.25 Outline

More information

Production of Tetraquarks at the LHC

Production of Tetraquarks at the LHC Production of Tetraquarks at the LHC Alessandro Pilloni HADRON2015 Newport News September 17th, 2015 Esposito, Piccinini, AP, Polosa, JMP 4, 1569 Guerrieri, Piccinini, AP, Polosa, PRD90, 034003 Esposito,

More information

Space-time Evolution of A+A collision

Space-time Evolution of A+A collision Time Space-time Evolution of A+A collision Jets Fluctuations p p K K0* f g e m Hadronization (Freeze-out) + Expansion Mixed phase? QGP phase Thermalization Space (z) A Pre-equilibrium A Hadrons reflect

More information

Event anisotropy at RHIC

Event anisotropy at RHIC Event anisotropy at RHIC Nu Xu - LBNL 1) Introduction 2) Experimental details and 200 GeV results v 2 (m 0, p T, y, b, A) 3) Summary and outlook PHENIX: N. Ajitanand, S. Esumi, R. Lacey, J. Rak PHOBOS:

More information

Heavy quark and quarkonium evolutions in heavy ion collisions

Heavy quark and quarkonium evolutions in heavy ion collisions Heavy quark and quarkonium evolutions in heavy ion collisions Baoyi Chen Tianjin University & Goethe Univeristy Main Collaborators: Pengfei Zhuang, Ralf Rapp, Yunpeng Liu, Xiaojian Du, Wangmei Zha, Carsten

More information

J/Ψ-suppression in the hadron resonance gas

J/Ψ-suppression in the hadron resonance gas J/Ψ-suppression in the hadron resonance gas Dariusz Prorok Institute of Theoretical Physics University of Wroc law Wroc law, 17 February 2014 HECOLS workshop and XXXII Max-Born Symposium Dariusz Prorok

More information

Physics with Tagged Forward Protons using the STAR Detector at RHIC. The Relativistic Heavy Ion Collider The pp2pp Experiment STAR 2009

Physics with Tagged Forward Protons using the STAR Detector at RHIC. The Relativistic Heavy Ion Collider The pp2pp Experiment STAR 2009 Physics with Tagged Forward Protons using the STAR Detector at RHIC The Relativistic Heavy Ion Collider The pp2pp Experiment 2002 2003 STAR 2009 Elastic and Diffractive Processes Elastic scattering Detect

More information

Predictions of the generalized Glauber model for the coherent production at relativistic and ultrarelativistic energies

Predictions of the generalized Glauber model for the coherent production at relativistic and ultrarelativistic energies PHYSICAL REVIEW C 67, 3491 23 Predictions of the generalized Glauber model for the coherent production at relativistic and ultrarelativistic energies L. Frankfurt School of Physics and Astronomy, Raymond

More information

Multipoles and Coherent Gluon Radiation Plenary session

Multipoles and Coherent Gluon Radiation Plenary session Multipoles and Coherent Gluon Radiation Plenary session Lanny Ray, Univ. of Texas at Austin Higher-order harmonics? BFKL Pomeron diagrams and v On to the LHC Summary and Conclusions STAR Collaboration

More information

Summary of First results from Heavy Ion collisions at the LHC (ALICE, ATLAS, CMS)

Summary of First results from Heavy Ion collisions at the LHC (ALICE, ATLAS, CMS) Summary of First results from Heavy Ion collisions at the LHC (ALICE, ATLAS, CMS) Wen-Chen Chang 章文箴 Institute of Physics, Academia Sinica Weekly Journal Club for Medium Energy Physics at IPAS March 21,

More information

Measurement of muon tagged open heavy flavor production in Pb+Pb collisions at 2.76 TeV with ATLAS

Measurement of muon tagged open heavy flavor production in Pb+Pb collisions at 2.76 TeV with ATLAS Measurement of muon tagged open heavy flavor production in Pb+Pb collisions at 2.76 TeV with Dennis V. Perepelitsa Columbia University for the Collaboration Quark Matter 2012 Parallel 7A Washington, D.C.,

More information

Cosmic Ray Physics with the ARGO-YBJ experiment

Cosmic Ray Physics with the ARGO-YBJ experiment Cosmic Ray Physics with the ARGO-YBJ experiment Ivan De Mitri University of Salento and Istituto Nazionale di Fisica Nucleare Lecce, Italy On behalf of the ARGO-YBJ Collaboration Second Roma International

More information

p fluctuations Piotr Bożek with: W. Broniowski, arxiv: and S. Chatterjee in progress AGH University of Science and Technology, Kraków

p fluctuations Piotr Bożek with: W. Broniowski, arxiv: and S. Chatterjee in progress AGH University of Science and Technology, Kraków p fluctuations AGH University of Science and Technology, Kraków with: W. Broniowski, arxiv: 70.0905 and S. Chatterjee in progress Size fluctuations p fluctuations 6 N w 00 r 2 2 3.4fm p 563MeV 6 N w 00

More information

Photo-production of vector mesons in 2.76 TeV ultra-peripheral Pb+Pb collisions at ALICE. Daniel Tapia Takaki. On behalf of the ALICE Collaboration

Photo-production of vector mesons in 2.76 TeV ultra-peripheral Pb+Pb collisions at ALICE. Daniel Tapia Takaki. On behalf of the ALICE Collaboration Photo-production of vector mesons in 2.76 TeV ultra-peripheral Pb+Pb collisions at ALICE On behalf of the ALICE Collaboration Rencontres du Viet Nam: 14th Workshop on Elastic and Diffractive Scattering

More information

A study of φ-meson spin alignment with the AMPT model

A study of φ-meson spin alignment with the AMPT model A study of φ-meson spin alignment with the AMPT model Shaowei Lan 1 Zi-Wei Lin 1,2, Shusu Shi 1, Xu Sun 1 1 Central China Normal University 2 East Carolina University Outline Introduction Modified AMPT

More information

VOL 18, #2 THE JOURNAL OF UNDERGRADUATE RESEARCH IN PHYSICS 39

VOL 18, #2 THE JOURNAL OF UNDERGRADUATE RESEARCH IN PHYSICS 39 VOL 18, #2 THE JOURNAL OF UNDERGRADUATE RESEARCH IN PHYSICS 39 MODELING PION FLOW IN A 139 La + 139 La COLLISION Daniel Valente * Department of Physics and Engineering Hope College Holland, MI 49423 received

More information

Progress in the MC simulation of jets and jet quenching. Abhijit Majumder Wayne State University

Progress in the MC simulation of jets and jet quenching. Abhijit Majumder Wayne State University Progress in the MC simulation of jets and jet quenching Abhijit Majumder Wayne State University 5th JET collaboration meeting, UC Davis, June 17-18, 2013 Outline 1) Outline of project plan 2) Concise description

More information

A Theoretical View on Dilepton Production

A Theoretical View on Dilepton Production A Theoretical View on Dilepton Production Transport Calculations vs. Coarse-grained Dynamics Stephan Endres (in collab. with M. Bleicher, H. van Hees, J. Weil) Frankfurt Institute for Advanced Studies

More information

Hydrodynamical description of ultrarelativistic heavy-ion collisions

Hydrodynamical description of ultrarelativistic heavy-ion collisions Frankfurt Institute for Advanced Studies June 27, 2011 with G. Denicol, E. Molnar, P. Huovinen, D. H. Rischke 1 Fluid dynamics (Navier-Stokes equations) Conservation laws momentum conservation Thermal

More information

Influence of Vibration and Deformation

Influence of Vibration and Deformation Influence of Vibration and Deformation C60 of Nuclei ON the ELLIPTIC FLOW Peter Filip (IP SAS, Bratislava) XXI Baldin Seminar, 10-15. Sept. Dubna 2012 Elliptic Flow Initial eccentricity Deformation effects

More information

High energy QCD: when CGC meets experiment

High energy QCD: when CGC meets experiment High energy QCD: when CGC meets experiment Javier L. Albacete IPhT CEA/Saclay Excited QCD Les Houches, February 0-5 011 OUTLINE Brief Intro [cf Larry s Talk] Running coupling corrections to the BK equation.

More information

Update on the study of the 14 C+n 15 C system. M. McCleskey, A.M. Mukhamedzhanov, V. Goldberg, and R.E. Tribble

Update on the study of the 14 C+n 15 C system. M. McCleskey, A.M. Mukhamedzhanov, V. Goldberg, and R.E. Tribble Update on the study of the 14 C+n 15 C system M. McCleskey, A.M. Mukhamedzhanov, V. Goldberg, and R.E. Tribble The 14 C+n 15 C system has been used to evaluate a new method [1] to obtain spectroscopic

More information

Measurement of light mesons at RHIC by the PHENIX experiment

Measurement of light mesons at RHIC by the PHENIX experiment Eur. Phys. J. C (2009) 61: 835 840 DOI 10.1140/epjc/s10052-009-0879-4 Regular Article - Experimental Physics Measurement of light mesons at RHIC by the PHENIX experiment M. Naglis a for the PHENIX Collaboration

More information

Recent results from relativistic heavy ion collisions

Recent results from relativistic heavy ion collisions Recent results from relativistic heavy ion collisions Camelia Mironov MI at the LHC A teaser talk with very few (though recent) results LHC Heavy-Ion (HI) Program Collision systems Center of mass colliding

More information

Searching For p+ p+ Rapidity Dependent Correlations in Ultra-relativistic Quantum Molecular Data. Abstract

Searching For p+ p+ Rapidity Dependent Correlations in Ultra-relativistic Quantum Molecular Data. Abstract Searching For p+ p+ Rapidity Dependent Correlations in Ultra-relativistic Quantum Molecular Data Isaac Pawling (Dated: August 7, 2015) Abstract Finding rapidity dependent particle correlations in particle

More information

arxiv: v1 [nucl-ex] 13 Jun 2013

arxiv: v1 [nucl-ex] 13 Jun 2013 arxiv:36.36v [nucl-ex] 3 Jun 3 Beam Energy Dependence of Higher Moments of Multiplicity Distributions in Heavy-ion Collisions at RHIC (for the SAR Collaboration) Key Laboratory of Quark and Lepton Physics

More information

Jet Evolution in Hot and Cold Matter

Jet Evolution in Hot and Cold Matter Jet Evolution in Hot and Cold Matter Hans J. Pirner (September 2010, Heidelberg) with S. Domdey, B. Kopeliovich, K. Zapp, J. Stachel, G. Ingelman. J. Rathsman, A. Accardi, D. Gruenewald, V. Muccifora Outline

More information

Charged Particle Production in Pb+Pb Collisions at snn=2.76 TeV with the ATLAS detector at the LHC

Charged Particle Production in Pb+Pb Collisions at snn=2.76 TeV with the ATLAS detector at the LHC Charged Particle Production in Pb+Pb Collisions at snn=2.76 TeV with the ATLAS detector at the LHC Dominik Derendarz for the ATLAS Collaboration Institute of Nuclear Physics PAN, Kraków, Poland Introduction

More information

arxiv:nucl-ex/ v2 3 Mar 2002

arxiv:nucl-ex/ v2 3 Mar 2002 PRAMANA c Indian Academy of Sciences journal of physics pp. 2 Photon Multiplicity Measurements : From SPS to RHIC and LHC arxiv:nucl-ex/222v2 3 Mar 22 Bedangadas Mohanty Institute of Physics, Bhunaneswar

More information