High energy QCD: when CGC meets experiment

Size: px
Start display at page:

Download "High energy QCD: when CGC meets experiment"

Transcription

1 High energy QCD: when CGC meets experiment Javier L. Albacete IPhT CEA/Saclay Excited QCD Les Houches, February

2 OUTLINE Brief Intro [cf Larry s Talk] Running coupling corrections to the BK equation. Fits e+p data (in coll with N. Armesto, JG Milhano, P. Quiroga and C. Salgado) RHIC: Single and double inclusive yields at forward rapidities (in coll with C. Marquet) rcbk Monte Carlo: Pb+Pb multiplicities at the LHC (in coll with A. Dumitru) See also T. Ullrich s talk tomorrow

3 At high energies, or small Bjorken-x, hadron s gluon densities are large k + n = x n p + k + = x p + xg /0 xu k + 1 = x 1 p + p + xs xd Probability of n-soft gluon emission P (α s ln 1/x) n proton ugd from HERA x Multiple small-x gluon emissions are resummed by the BFKL equation φ(x, k t ) ln(x 0 /x) K φ(x, k t)

4 Non-linear QCD evolution: At small-x gluon both radiative and recombination processes Y=ln (1/x) High density CGC: JIMWLK BK Q(x) S BK-JIMWLK p + φ(x, k t ) ln(x 0 /x) K φ(x, k t) φ(x, k t ) NON PERTURBATIVE BFKL Low density Non-linear recombination corrections are demanded by UNITARITY lnλ QCD ln Q Saturation scale: transverse momentum scale which marks the onset of non-linear corrections K φ(x, Q s ) φ(x, Q s ) Nuclear enhancement: Q sa A 1/3 Q sp

5 CGC evolution: The BK equation Balitsky 96, Kovchegov 99 ln 1 x ln s Y ( large-nc limit of full JIMWLK evolution) γ q x S(x, y; Y ) = 1 N c tr{u x U y} Y = 1 N (x, y; Y ) q P y unintegrated WW gluon distribution: d r ϕ(x, k t )= eik r π r N (r, x) Increase the collision energy and resum small-x gluon radiation N (r, x) ln(x 0 /x) = d r 1 K(r, r 1,r )[N(r 1,x)+N(r,x) N (r, x) N (r 1,x)N(r,x)] perturbative kernel non-linear term The kernel: probability of small-x gluon emission at leading-logarithmic accuracy in α s ln(1/x) : K(x, y, z) = α s N c (x y) z π (x z) (z y) = + y x 5 + all possible permutations

6 NLO corrections to BK-JIMWLK equations have been calculated recently (Balitsky-Chirilli; Kovchegov-Weigert, Gardi et al). Phenomenological tool: The BK equation including only running coupling corrections in Balitsky s scheme grasps most of the NLO corrections (JLA-Kovchegov) BK eqn: N (r, x) ln(x 0 /x) = Running coupling kernel: d r 1 K(r, r 1,r )[N (r 1,x)+N (r,x) N (r, x) N (r 1,x)N (r,x)] K run (r, r 1, r )= N c α s (r ) π [ r r 1 r + 1 r 1 ( αs (r1) ) α s (r ) r ( αs (r) )] α s (r1 ) 1 LO: αs ln(1/x) small-x gluon emission NLO : αs Nf Quark loops resummed to all orders Gluon contribution: N f 6πβ

7 Running coupling corrections are large, rendering evolution compatible with experimental data. λ(y ) = d ln Q s(y ) dy λ LO 4.8 α s values compatible with DIS and HIC data Free parameters in the (x,kt)-dependence of unintegrated gluon distributions corresponds to freedom in the choice of initial conditions: MV + anomalous dimension [ ( r Q γ N (r, x = x 0 )=1 exp s0) 4 ln ( ) ] 1 r Λ + e 7

8 AAMQS Fits to e+p data: JLA, N. Armesto, J.G. Milhano, P Quiroga and C. Salgado γ q q x y σ γ h T,L (x,q )= flavours d r 1 0 dz T,L (z, r, Q ) σ dip (r, x) Ψ f,γ q q QED piece Strong interactions are here P dipole cross section: σ dip (r, x) = d b N (b, r, x) σ 0 N (b, r, x) Experimental data: ZEUS & H1 (HERA) combined data on reduced cross sections + older NMC (CERN-SPS) and E665 (Fermilab) coll. at x< x0= - and Q < 50 GeV Regularization of the coupling: α s (r ) = 1 π ( (11 N c N f ) ln ) 4 C r Λ QCD for r < r fr, with α s(rfr) α fr = 0.7 Charm contribution: Including charm in the sum over flavors we are account for charm contribution (~% of total e+p cross section) and also describe available data on Fc (extra parameters). Variable flavour number scheme for the running of the coupling

9 Reduced cross section Charm structure function c F Q =1.5 GeV Q =3.5 GeV c F Q =4 GeV Q =6.5 GeV c F Q =7 GeV Q =8.5 GeV - c F Q =11 GeV Q =1 GeV - c F Q =18 GeV Q =0 GeV - fit GBW χ c d.o.f Q s0 σ 0 γ Q s0c σ 0c γ c C m l a α fr = fixed F Q =5 GeV a α fr =0.7 (Λ mτ ) fixed b α fr = E- c α fr = fixed d χ αfit fr =1 1.1 d.o.f 0.95 Q s σ γ 0.74 Q s0c 0.6 σ 0c 0.94 γ c 3.75 C 1.351E- m l MV GBW ea α fr = fixed fa α fr =0.7 (Λ mτ ) E- fixed gb α fr =0.7 = E- fixed hc α fr = E- fixed d α fr = E- Table : Parameters from fits including charm and beauty contributions to data with x MV and and Q e α 50 GeV for different initial conditions and fixed values of the coupling in the infrared fr = fixed α fr =0.7 and. Light quark masses are fixed to m l =4 GeV in some fits and left as a free f α fr = E- -4 Q =45 GeV x - -

10 d+au and p+p collisions at RHIC RHIC Kinematics: single particle production: Small-x ~ forward production (k, y) x 1() m t s exp(± y h ) double inclusive production: Small-x ~ two particles in the forward region! (k1, y1), (k, y) x p = k 1 e y 1 + k e y s x A = k 1 e y 1 + k e y s At RHIC energies, forward measurements needed to isolate small-x (<0.01) effects

11 Forward hadron production in the CGC (Dumitru, Jalilian-Marian) large-x parton from proj. (pdf) small-x glue from target (CGC) dn h dy h d p t = K (π) q 1 x F Unintegrated gluon from running coupling BK MV Initial conditions: JLA & C. Marquet dz [ z x 1 f q / p (x 1,p t ) ÑF + x 1 f g / p (x 1,p t ) ÑA Ñ F (A) (x, k) = ( x, p t z ( x, p t z N (r, x = x 0 ) = 1 exp ) D h/q (z, p t ) ) ] D h/g (z, p t ) fragmentation d r e ik r [ 1 N F (A) (r, Y =ln(x 0 /x)) ] [ r Q 0 4 ln Two free parameters: (x0, Q0) ( )] 1 r Λ + e We use CTEQ6 pdf s and de Florian-Sassot ff s Alternative approaches: Modelization of quantum corrections (Dumitru-JalilianMarian-Hayashigaki; De Boer-Utermann-Wessels; Goncalves et al; Kharzeev-Kovchegov-Tuchin) 11

12 Comparison to RHIC forward data [ JLA, C. Marquet ] - Very good description of forward yields in proton+proton and d+au collisions - K=1 for h -. K= (0.3) for neutral pions in p+p (d+au)?? - Energy loss related to high-xf effects not taken into account ) - (GeV T p N/d!/d d proton-proton BRAHMS - h (x00);!=.; K=1 - h (x50);!=3.; K=1 STAR " 0 (x0);!=3.3; K= 0 " (x);!=3.8; K= 0 " ;!=4; K= ) - (GeV p N/d!/d d T d-au BRAHMS - h (x0);!=.; K=1 - h (x4);!=3.; K=1 STAR 0 " ;!=4; K= p (GeV) T p (GeV) T x Q s0 =0. GeV 0.01 x x Q s0 =GeV Q s0 =GeV Q s0 gluon =0.9GeV Q s0, gluon =1.15 GeV 1

13 -...by simply taking the ratio of d+au and p+p spectra we get a good description of the nuclear modification factor (not a trivial statement!!) RHIC d+au LHC p+pb R d+au 1.8 h! =.; BRAHMS h 0 "!=3.; BRAHMS <!> =4; STAR NLO-CGC JLA & C. Marquet p (GeV/c) T - We predict a similar suppression in p+pb collisions at the LHC already at central rapidities 13

14 Double Inclusive forward hadron production in the CGC x p = k 1 e y 1 + k e y s x A = k 1 e y 1 + k e y s (k1, y1), (k, y) Cyrille Marquet 07: hard quark initiating scattering Fourier transfrom coordinate space to momentum q-> qg splitting (pqcd) { Scattering of the -parton system with the CGC target Involves more than 3 and 4 point functions. Calculated in the large Nc limit 14

15 Monojets in d+au collisions at RHIC at forward rapidity Coincidence probability measured by STAR Coll. at forward rapidities: trigger φ CP( φ) = 1 dn pair N trig d φ trigger Dependence on the saturation scale of the target (centrality) CP("!) [JLA C. Marquet ] 0.0 p > GeV/c STAR PRELIMINARY T,L p+p ( ) 1 GeV/c < p <p T,S T,L d+au central ( ) Increasing Qs d+au p+p "! Effect of enhanced pedestal due to double parton interactions not taken into account 15

16 Multiplicities at RHIC and the LHC - Most of particles produced in the collision originate from small-x gluons in the saturation domain - Other sources (genuinely soft processes, contribution from valence quarks etc) neglected - Initial gluon production is calculated via kt-factorization and then mapped to final hadron spectra assuming local parton-hadron duality KLN model ϕ A (x, p t,b) dσ A+B g dy d p t d R = κ 1 C F p t pt d k t 4 h x 1() =(p t / s NN ) exp(±y) d b α s (Q) ϕ( p t + k t,x 1 ; b) ϕ( p t k t,x ; R b), unintegrated gluon distributions ϕ B (x, p t,b) Observed hadrons Hadron phase Scaling toy model: N_part scaling: dn AA dη Q sa( s, b) s λ N part η=0 QGP

17 Nuclear geometry in rcbk approaches JLA 007 JLA & Dumitru 0 Homogeneous disk nucleus characterized by a single initial saturation scale, Qs ~ 1 GeV, adjusted to reproduce RHIC most central data Q sa Monte Carlo treatment of nuclear geometry x y Q sa(r) r i R This approach underestimates data 17

18 y x r i rcbk Monte Carlo (JLA & Dumitru 0) R 1. Generate configurations for the positions of nucleons in the transverse plane (ri, i=1...a). Wood-Saxons thickness function TA(R). Count the number of nucleons at every point in the transverse grid, R. N(R) = A Θ i=1 ( ) σ0 π R r i independent σ 0 4 mb 3. Assign a local initial (x=x0=0.01) saturation scale at every point in the transverse grid, R: Q s0 (R) =N(R) Q s0, nucl Q s0, nucl =0. GeV, ven nucleus which o ϕ(x 0 =0.01,k t, R) ϕ(x, k t, R) rcbk equation

19 y x r i R rcbk Monte Carlo 1. Generate configurations for the positions of nucleons in the transverse plane (ri, i=1...a). Wood-Saxons thickness function TA(R). Count the number of nucleons at every point in the transverse grid, R. N(R) = A Θ i=1 ( ) σ0 π R r i independent σ 0 4 mb 3. Assign a local initial (x=x0=0.01) saturation scale at every point in the transverse grid, R: Q s0 (R) =N(R) Q s0, nucl Q s0, nucl =0. GeV, ven nucleus which o ϕ(x 0 =0.01,k t, R) rcbk equation ϕ(x, k t, R) 4. Gluon production is calculated at each transverse point according to kt-factorization r i b R dσ A+B g dy d p t d R = κ 1 C F dn ch dη = p t pt d k t 4 ± cosh η dn ch cosh η + m /P dy d b α s (Q) ϕ( p t + k t,x 1 ; b) ϕ( p t k t,x ; R b), m = 350 MeV and P = 400 MeV

20 rcbk Monte Carlo dn ch /d! / N part MV initial conditions: Good description of Npart dependence of RHIC Au+Au and Cu+Cu and LHC Pb+Pb multiplicities: RHIC Au+Au, 00 GeV Cu+Cu, 00 GeV rcbk Au rcbk Cu KLN Au KLN Cu N part ( ) - Systematics: Changing the model parameters (average hadron mass, pt-cutoff...) yield an equally good description of RHIC and LHC data by just adjusting the normalization (i.e the gluon to hadron ratio) κ 4.5 7

21 dn ch /d!d p T (1/GeV ) Constraining the initial conditions: p+p yields at the LHC Steeper initial conditions than the MV model are needed to get a good description of p+p yields MV CMS NSD! =, 7 TeV CMS NSD! <.4, 7 TeV rcbk-disc rcbk-g0 rcbk-g p T (GeV) dn ch /d!d p T (1/GeV ) MV + gamma=1.119 CMS NSD! =, 7 TeV CMS NSD! <.4, 7 TeV MV + rcbk p T (GeV) Steeper initial conditions also provide a good description of RHIC and LHC multiplicity data: /N part dn ch /d! LHC Pb+Pb.76 TeV RHIC Au+Au 00 GeV N part

22 Conclusions Running coupling corrections bring the CGC to a new period of quantitative and predictive phenomenology The CGC at its present degree of accuracy consistently describes data in the small-x region for a variety of colliding systems (e+p, p+p d+au) However: - Alternative physics scenarios have been proposed for those different observables - HERA and RHIC data probe a relatively small range of energy evolution. - LHC data should offer much more constraints to model - A first successful test: description of multiplicities Still, many things remain to be done to refine the CGC as a precise phenomenological tool... Thanks!!!

23 Back up slides

Testing Saturation Physics with pa collisions at NLO Accuracy

Testing Saturation Physics with pa collisions at NLO Accuracy Testing Saturation Physics with pa collisions at NLO Accuracy David Zaslavsky with Anna Staśto and Bo-Wen Xiao Penn State University January 24, 2014 Prepared for University of Jyväskylä HEP group seminar

More information

Long-range rapidity correlations in high multiplicity p-p collisions

Long-range rapidity correlations in high multiplicity p-p collisions Long-range rapidity correlations in high multiplicity p-p collisions Kevin Dusling North Carolina State University Raleigh, NC 7695 kevin dusling@ncsu.edu May 9, Contents. Overview of the Ridge. Long range

More information

Opportunities in low x physics at a future Electron-Ion Collider (EIC) facility

Opportunities in low x physics at a future Electron-Ion Collider (EIC) facility 1 Opportunities in low x physics at a future Electron-Ion Collider (EIC) facility Motivation Quantum Chromo Dynamics Proton=uud Visible Universe Galaxies, stars, people, Silent Partners: Protons & Neutrons

More information

Matching collinear and small x factorization calculations for inclusive hadron production in pa collisions

Matching collinear and small x factorization calculations for inclusive hadron production in pa collisions Matching collinear and small x factorization calculations for inclusive hadron production in pa collisions The Pennsylvania State University, Physics Department, University Park, PA 16802 H. Niewodniczański

More information

Phenomenology of prompt photon production. in p A and A A collisions

Phenomenology of prompt photon production. in p A and A A collisions Phenomenology of prompt photon production in p A and A A collisions François Arleo LAPTH, Annecy LPT Orsay April 2011 Francois Arleo (LAPTH) Prompt γ in p A and A A collisions LPT Orsay April 2011 1 /

More information

using photons in p A and A A collisions

using photons in p A and A A collisions Probing parton densities and energy loss processes using photons in p A and A A collisions François Arleo LAPTH, Annecy High p Probes of High Density QCD May 2011 Francois Arleo (LAPTH) Prompt γ in p A

More information

Probing small-x gluons in hadrons and nuclei. Kazuhiro Watanabe. Old Dominion University. Jan 4, 2017 Jefferson Lab

Probing small-x gluons in hadrons and nuclei. Kazuhiro Watanabe. Old Dominion University. Jan 4, 2017 Jefferson Lab Probing small-x gluons in hadrons and nuclei Kazuhiro Watanabe Old Dominion University Jan 4, 2017 Jefferson Lab Kazuhiro Watanabe (ODU) Probing gluon saturation dynamics at small-x Jan 4, 2017 1 / 16

More information

Adrian Dumitru. pp, pa, AA: - forward dijets - near-side long-range rapidity correlations

Adrian Dumitru. pp, pa, AA: - forward dijets - near-side long-range rapidity correlations Small Small xx QCD: QCD: from from pa/aa pa/aa at at RHIC/LHC RHIC/LHC to to the the eic eic Adrian Dumitru RIKEN-BNL and Baruch College/CUNY AA: dn/dy, det/dy, eccentricity ε pa: forward dn/dpt2 2-point

More information

Introduction to Saturation Physics

Introduction to Saturation Physics Introduction to Saturation Physics Introduction to Saturation Physics April 4th, 2016 1 / 32 Bibliography F. Gelis, E. Iancu, J. Jalilian-Marian and R. Venugopalan, Ann. Rev. Nucl. Part. Sci. 60, 463 (2010)

More information

Saturation Physics and Di-Hadron Correlations

Saturation Physics and Di-Hadron Correlations Saturation Physics and Di-Hadron Correlations Bo-Wen Xiao Pennsylvania State University and Institute of Particle Physics, Central China Normal University POETIC August 2012 1 / 24 Outline 1 Introduction

More information

arxiv: v1 [nucl-ex] 7 Nov 2009

arxiv: v1 [nucl-ex] 7 Nov 2009 Low-x QCD at the LHC with the ALICE detector Magdalena Malek for the ALICE Collaboration arxiv:0911.1458v1 [nucl-ex] 7 Nov 2009 Institut de Physique Nucléaire d Orsay (IPNO) - France CNRS: UMR8608 - IN2P3

More information

How can we prove/disprove the relevance of Color Glass Condensate/saturation physics at the LHC? Javier L Albacete

How can we prove/disprove the relevance of Color Glass Condensate/saturation physics at the LHC? Javier L Albacete How can we prove/disprove the relevance of Color Glass Condensate/saturation physics at the LHC? Javier L Albacete Hard Probes, Cagliari, Italy, 7 May- June What the CGC is about : coherence effects in

More information

CGC effects on J/ψ production

CGC effects on J/ψ production CGC effects on J/ψ production Kirill Tuchin based on work with D. Kharzeev, G. Levin and M. Nardi 6th Winter Workshop on Nuclear Dynamics Jan.-9 Ocho Rios, Jamaica Introduction I Inclusive light hadron

More information

PoS(DIS2015)084. Saturation and geometrical scaling from small x deep inelastic ep scattering to high energy proton-proton and heavy ion collisions

PoS(DIS2015)084. Saturation and geometrical scaling from small x deep inelastic ep scattering to high energy proton-proton and heavy ion collisions Saturation and geometrical scaling from small x deep inelastic ep scattering to high energy proton-proton and heavy ion collisions M. Smoluchowski Institute of Physics, Jagiellonian University, ul. S.

More information

Probing parton densities with γ and γ +Q production. in p A collisions. François Arleo. Workshop on proton-nucleus collisions at the LHC

Probing parton densities with γ and γ +Q production. in p A collisions. François Arleo. Workshop on proton-nucleus collisions at the LHC Probing parton densities with γ and γ +Q production in p A collisions François Arleo LLR Palaiseau & LAPTh, Annecy Workshop on proton-nucleus collisions at the LHC Trento, May 2013 Francois Arleo (LLR

More information

Gluon density and gluon saturation

Gluon density and gluon saturation Gluon density and gluon saturation Narodowe Centrum Nauki Krzysztof Kutak Supported by NCN with Sonata BIS grant Based on: Small-x dynamics in forward-central dijet decorrelations at the LHC A. van Hameren,

More information

Factorization in high energy nucleus-nucleus collisions

Factorization in high energy nucleus-nucleus collisions Factorization in high energy nucleus-nucleus collisions ISMD, Kielce, September 2012 François Gelis IPhT, Saclay 1 / 30 Outline 1 Color Glass Condensate 2 Factorization in Deep Inelastic Scattering 3 Factorization

More information

arxiv: v1 [nucl-th] 25 Sep 2017

arxiv: v1 [nucl-th] 25 Sep 2017 Nuclear Physics A (217) 1 1 Sub-leading correction of two-gluon rapidity correlations of strong colour field Ye-Yin Zhao, Ming-Mei Xu, Heng-Ying Zhang and Yuan-Fang Wu Key Laboratory of Quark and Lepton

More information

Heavy Ions: theory. Carlos A. Salgado Universidade de Santiago de Compostela

Heavy Ions: theory. Carlos A. Salgado Universidade de Santiago de Compostela Carlos A. Salgado Universidade de Santiago de Compostela I will mostly refer to the new theoretical needs in view of the LHC capabilities Europhysics Conference on High-Energy Physics 011. Grenoble - France

More information

Zhong-Bo Kang Los Alamos National Laboratory

Zhong-Bo Kang Los Alamos National Laboratory Introduction to pqcd and Jets: lecture 3 Zhong-Bo Kang Los Alamos National Laboratory Jet Collaboration Summer School University of California, Davis July 19 21, 2014 Selected references on QCD QCD and

More information

NLO Calculations of Particle Productions in pa Collisions

NLO Calculations of Particle Productions in pa Collisions NLO Calculations of Particle Productions in pa Collisions Bo-Wen Xiao Institute of Particle Physics, Central China Normal University Detroit, Wayne State, August 22nd, 2013 1 / 38 Introduction 1 Introduction

More information

Results with Hard Probes High p T Particle & Jet Suppression from RHIC to LHC

Results with Hard Probes High p T Particle & Jet Suppression from RHIC to LHC Results with Hard Probes High p T Particle & Jet Suppression from RHIC to LHC PHENIX! AGS! RHIC! STAR! Cover 3 decades of energy in center-of-mass s NN = 2.76 TeV 5.5 TeV (2015) CMS LHC! s NN = 5-200 GeV

More information

Many body QCD, the Glasma and a near side ridge in heavy ion. Raju Venugopalan Brookhaven National Laboratory

Many body QCD, the Glasma and a near side ridge in heavy ion. Raju Venugopalan Brookhaven National Laboratory Many body QCD, the Glasma and a near side ridge in heavy ion collisions Raju Venugopalan Brookhaven National Laboratory Theory Seminar, U. Va., March 17, 2010 What does a heavy ion collision look like?

More information

The Electron-Ion Collider at BNL: Capabilities and Physics Highlights

The Electron-Ion Collider at BNL: Capabilities and Physics Highlights Hadron 2011 Munich 1 The Electron-Ion Collider at BNL: Capabilities and Physics Highlights D. Leinweber J.H. Lee Brookhaven National Laboratory Outline Why do we need electron-ion collider What can we

More information

Probing the small-x regime through photonuclear reactions at LHC

Probing the small-x regime through photonuclear reactions at LHC Probing the small-x regime through photonuclear reactions at LHC 1/ 26 Probing the small-x regime through photonuclear reactions at LHC G.G. Silveira gustavo.silveira@ufrgs.br High Energy Physics Phenomenology

More information

QCD saturation predictions in momentum space: heavy quarks at HERA

QCD saturation predictions in momentum space: heavy quarks at HERA QCD saturation predictions in momentum space: heavy quarks at HERA J. T. S. Amaral, E. A. F. Basso and M. B. Gay Ducati thiago.amaral@ufrgs.br, andre.basso@if.ufrgs.br, beatriz.gay@ufrgs.br High Energy

More information

+ High p T with ATLAS and CMS in Heavy-Ion 2.76TeV

+ High p T with ATLAS and CMS in Heavy-Ion 2.76TeV + High p T with ATLAS and CMS in Heavy-Ion Collisions @ 2.76TeV Lamia Benhabib On behalf of ATLAS and CMS HCP 2011, Paris lamia.benhabib@llr.in2p3.fr +Outlook Introduction : hard probes Strongly interacting

More information

Quarkonia physics in Heavy Ion Collisions. Hugo Pereira Da Costa CEA/IRFU Rencontres LHC France Friday, April

Quarkonia physics in Heavy Ion Collisions. Hugo Pereira Da Costa CEA/IRFU Rencontres LHC France Friday, April Quarkonia physics in Heavy Ion Collisions Hugo Pereira Da Costa CEA/IRFU Rencontres LHC France Friday, April 5 2013 1 2 Contents Introduction (QGP, Heavy Ion Collisions, Quarkonia) Quarkonia at the SPS

More information

Charged particle production in Pb-Pb and p-pb collisions at ALICE

Charged particle production in Pb-Pb and p-pb collisions at ALICE Journal of Physics: Conference Series OPEN ACCESS Charged particle production in Pb-Pb and p-pb collisions at To cite this article: Chiara Oppedisano and the Collaboration J. Phys.: Conf. Ser. View the

More information

Zhong-Bo Kang Los Alamos National Laboratory

Zhong-Bo Kang Los Alamos National Laboratory Introduction to pqcd and Jets: lecture 1 Zhong-Bo Kang Los Alamos National Laboratory Jet Collaboration Summer School University of California, Davis July 19 1, 014 Selected references on QCD! QCD and

More information

Q a u r a k k m a m t a t t e t r e p r p ob o e b d e d b y b y di d l i e l p e t p o t n o s

Q a u r a k k m a m t a t t e t r e p r p ob o e b d e d b y b y di d l i e l p e t p o t n o s Quark matter probed by dileptons Olena Linnyk July 02, 2010 Information from photons and dileptons 14 12 10 ε/t 4 8 6 4 2 Lattice QCD: µ B =0 µ B =530 MeV 0 0.5 1.0 1.5 2.0 2.5 3.0 T/T c But what are the

More information

arxiv: v1 [hep-ph] 27 Dec 2018

arxiv: v1 [hep-ph] 27 Dec 2018 Rare fluctuations of the S-matrix at NLO in QCD arxiv:8.739v hep-ph] 7 Dec 8 Wenchang Xiang,,, Yanbing Cai,, Mengliang Wang,, and Daicui Zhou 3, Guizhou Key Laboratory in Physics and Related Areas, Guizhou

More information

Di-hadron Angular Correlations as a Probe of Saturation Dynamics

Di-hadron Angular Correlations as a Probe of Saturation Dynamics Di-hadron Angular Correlations as a Probe of Saturation Dynamics Jamal Jalilian-Marian Baruch College Hard Probes 2012, Cagliari, Italy Many-body dynamics of universal gluonic matter How does this happen?

More information

Review of photon physics results at Quark Matter 2012

Review of photon physics results at Quark Matter 2012 Review of photon physics results at Quark Matter 2012 Jet Gustavo Conesa Balbastre 1/28 Why photons? Direct thermal: Produced by the QGP Measure medium temperature R AA > 1, v 2 > 0 Direct prompt: QCD

More information

Extracting ˆq from single inclusive data at RHIC and at the LHC for different centralities: a new puzzle?

Extracting ˆq from single inclusive data at RHIC and at the LHC for different centralities: a new puzzle? Extracting ˆq from single inclusive data at RHIC and at the LHC for different centralities: a new puzzle? Carlota Andrés Universidade de Santiago de Compostela Hard Probes 2016, Wuhan, China N. Armesto,

More information

SCET approach to energy loss. Zhongbo Kang Los Alamos National Laboratory

SCET approach to energy loss. Zhongbo Kang Los Alamos National Laboratory SCET approach to energy loss Zhongbo Kang Los Alamos National Laboratory Symposium on Jet and Electromagnetic Tomography of Dense Matter June 26-27, 2015 Outline Introduction SCET G = SCET with Glauber

More information

The Quark-Gluon Plasma and the ALICE Experiment

The Quark-Gluon Plasma and the ALICE Experiment The Quark-Gluon Plasma and the ALICE Experiment David Evans The University of Birmingham IoP Nuclear Physics Conference 7 th April 2009 David Evans IoP Nuclear Physics Conference 2009 1 Outline of Talk

More information

Opportunities with diffraction

Opportunities with diffraction Opportunities with diffraction Krzysztof Golec-Biernat Institute of Nuclear Physics in Kraków IWHSS17, Cortona, 2 5 April 2017 Krzysztof Golec-Biernat Opportunities with diffraction 1 / 29 Plan Diffraction

More information

The ALICE experiment at LHC. Experimental conditions at LHC The ALICE detector Some physics observables Conclusions

The ALICE experiment at LHC. Experimental conditions at LHC The ALICE detector Some physics observables Conclusions The ALICE experiment at LHC Experimental conditions at LHC The ALICE detector Some physics observables Conclusions ALICE @ LHC PbPb collisions at 1150 TeV = 0.18 mj Experimental conditions @LHC 2007 start

More information

Bo-Wen Xiao. Penn State

Bo-Wen Xiao. Penn State Penn State F. Dominguez, BX and F. Yuan, Phys.Rev.Lett.106:022301,2011. F.Dominguez, C.Marquet, BX and F. Yuan, Phys.Rev.D83:105005,2011. F. Dominguez, A. Mueller, S. Munier and BX, Phys.Lett. B705 (2011)

More information

Baryon stopping and saturation physics in relativistic collisions

Baryon stopping and saturation physics in relativistic collisions PHYSICAL REVIEW C 8, 5495 (9) Baryon stopping and saturation physics in relativistic collisions Yacine Mehtar-Tani and Georg Wolschin Institut für Theoretische Physik der Universität Heidelberg, Philosophenweg

More information

Results on the proton structure from HERA

Results on the proton structure from HERA Results on the proton structure from HERA Shima Shimizu (CERN) 7/Jan/ @ KEK The world only e-p collider: HERA electron proton A unique collider at DESY, Hamburg H ZEUS Circumference: 6.3 km Operated since

More information

Generalizing the DGLAP Evolution of Fragmentation Functions to the Smallest x Values

Generalizing the DGLAP Evolution of Fragmentation Functions to the Smallest x Values Generalizing the DGLAP Evolution of Fragmentation Functions to the Smallest x Values Bernd Kniehl 1 2nd Institute for Theoretical Physics, University of Hamburg Describe inclusive hadron production,...

More information

Lecture 2: Single and di-hadron measurements and energy loss modelling

Lecture 2: Single and di-hadron measurements and energy loss modelling Lecture 2: Single and di-hadron measurements and energy loss modelling Marco van Leeuwen,! Nikhef and Utrecht University Helmholtz School Manigod! 17-21 February 2014 From RHIC to LHC RHIC LHC RHIC: n

More information

Glauber modelling in high-energy nuclear collisions. Jeremy Wilkinson

Glauber modelling in high-energy nuclear collisions. Jeremy Wilkinson Glauber modelling in high-energy nuclear collisions Jeremy Wilkinson 16/05/2014 1 Introduction: Centrality in Pb-Pb collisions Proton-proton collisions: large multiplicities of charged particles produced

More information

25th International Nuclear Physics Conference INPC2013 Firenze, June 4th (GeV. at the LHeC: Néstor Armesto

25th International Nuclear Physics Conference INPC2013 Firenze, June 4th (GeV. at the LHeC: Néstor Armesto 5th International Nuclear Physics Conference INPC013 Firenze, June 4th 013 LHeC - Low x Kinematics Q /GeV e Small-x Physics in ea 6 nuclear DIS - F,A (x,q ) Proposed facilities: 5 LHeC at the LHeC: Fixed-target

More information

Heavy Ions at the LHC: First Results

Heavy Ions at the LHC: First Results Heavy Ions at the LHC: First Results Thomas Schaefer North Carolina State University Heavy ion collision: Geometry R Au /γ y R Au x b z rapidity : y = 1 2 log ( E + pz E p z ) transverse momentum : p 2

More information

Open Issues in DIS The High Energy Perspective

Open Issues in DIS The High Energy Perspective Open Issues in DIS The High Energy Perspective My private point of view using data from DIS in collider mode: Accelerator and Experiments HERA success story: Precision cross sections, structure functions

More information

Introduction to Relativistic Heavy Ion Physics

Introduction to Relativistic Heavy Ion Physics 1 Introduction to Relativistic Heavy Ion Physics Lecture 2: Experimental Discoveries Columbia University Reminder- From Lecture 1 2 General arguments suggest that for temperatures T ~ 200 MeV, nuclear

More information

Quarkonia and heavy-quark production in proton and nuclear collisions at the LHC

Quarkonia and heavy-quark production in proton and nuclear collisions at the LHC Quarkonia and heavy-quark production in proton and nuclear collisions at the LHC Michael Schmelling / MPI for Nuclear Physics Introduction Double Parton Scattering Cold Nuclear Matter Effects Quark Gluon

More information

Introduction to High Energy Nuclear Collisions I (QCD at high gluon density) Jamal Jalilian-Marian Baruch College, City University of New York

Introduction to High Energy Nuclear Collisions I (QCD at high gluon density) Jamal Jalilian-Marian Baruch College, City University of New York Introduction to High Energy Nuclear Collisions I (QCD at high gluon density) Jamal Jalilian-Marian Baruch College, City University of New York Many thanks to my colleagues, A. Deshpande, F. Gelis, B. Surrow

More information

arxiv:hep-ph/ v1 13 Nov 2003

arxiv:hep-ph/ v1 13 Nov 2003 Unintegrated parton distributions and particle production in hadronic collisions arxiv:hep-ph/0311175v1 13 Nov 2003 Antoni Szczurek Institute of Nuclear Physics PL-31-342 Cracow, Poland Rzeszów University

More information

2. HEAVY QUARK PRODUCTION

2. HEAVY QUARK PRODUCTION 2. HEAVY QUARK PRODUCTION In this chapter a brief overview of the theoretical and experimental knowledge of heavy quark production is given. In particular the production of open beauty and J/ψ in hadronic

More information

Nuclear PDFs: latest update

Nuclear PDFs: latest update Nuclear PDFs: latest update (and future facilities) P. Zurita February 16th, 2017 Wright laboratory, Yale University, CT, USA Disclaimer I will talk only about observables included in PDFs and npdfs fits,

More information

Lecture 3 Cross Section Measurements. Ingredients to a Cross Section

Lecture 3 Cross Section Measurements. Ingredients to a Cross Section Lecture 3 Cross Section Measurements Ingredients to a Cross Section Prerequisites and Reminders... Natural Units Four-Vector Kinematics Lorentz Transformation Lorentz Boost Lorentz Invariance Rapidity

More information

arxiv: v1 [nucl-ex] 7 Jan 2019

arxiv: v1 [nucl-ex] 7 Jan 2019 Open Heavy Flavour: Experimental summary arxiv:9.95v [nucl-ex] 7 Jan 9 Deepa homas he University of exas at Austin E-mail: deepa.thomas@cern.ch In this paper I will review a few of the latest experimental

More information

Multiplicity distributions for jet parton showers in the medium

Multiplicity distributions for jet parton showers in the medium Multiplicity distributions for jet parton showers in the medium Nicolas BORGHINI in collaboration with U.A. WIEDEMANN CERN N. BORGHINI, Multiplicity distributions for jet parton showers in the medium p.1/17

More information

Heavy ion physics at LHCb

Heavy ion physics at LHCb J/ψ in ppb, 8 ev D in ppb, 5 ev Λ+ c in ppb, 5 ev Heavy flavour with SMOG data Conclusion Heavy ion physics at E milie Maurice on behalf of the collaboration ICFNP 25th August 217, Kolymbari, Creta August

More information

Sub-hadronic degrees of freedom in ultrarelativistic nuclear collisions at RHIC and beyond

Sub-hadronic degrees of freedom in ultrarelativistic nuclear collisions at RHIC and beyond Sub-hadronic degrees of freedom in ultrarelativistic nuclear collisions at RHIC and beyond Lawrence Berkeley National Laboratory Berkeley, US 1 Introduction: Heavy Ion Physics Today t = 5 10 17 sec T=1

More information

arxiv: v1 [nucl-ex] 11 Jul 2011

arxiv: v1 [nucl-ex] 11 Jul 2011 Bulk Properties of Pb-Pb collisions at snn = 2.76 TeV measured by ALICE arxiv:17.1973v1 [nucl-ex] 11 Jul 2011 Alberica Toia for the ALICE Collaboration CERN Div. PH, 1211 Geneva 23 E-mail: alberica.toia@cern.ch

More information

Heavy-flavour meson production at RHIC

Heavy-flavour meson production at RHIC Heavy-flavour meson production at RHIC André Mischke ERC-Starting Independent Research Group QGP - Utrecht 1 Outline Introduction - heavy-flavour production and energy loss in QCD matter Total charm production

More information

High-p T Neutral Pion Production in Heavy Ion Collisions at SPS and RHIC

High-p T Neutral Pion Production in Heavy Ion Collisions at SPS and RHIC High- Neutral Pion Production in Heavy Ion Collisions at SPS and RHIC K. Reygers for the WA98 and the PHENIX collaboration Institut für Kernphysik der Universität Münster Wilhelm-Klemm-Str. 9, D-4849 Münster,

More information

arxiv: v1 [nucl-ex] 12 May 2008

arxiv: v1 [nucl-ex] 12 May 2008 1 Highlights from PHENIX - II arxiv:0805.1636v1 [nucl-ex] 12 May 2008 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Terry C. Awes (for the PHENIX Collaboration ) Oak

More information

Charmonium production in heavy ion collisions.

Charmonium production in heavy ion collisions. Charmonium production in heavy ion collisions. N.S.Topilskaya and A.B.Kurepin INR RAS, Moscow 1. Physical motivaion. 2. Experimental situation. 3. Fixed target suggestion. 3. Summary. N.S.Topilskaya, ISHEPP

More information

arxiv: v2 [hep-ph] 28 Mar 2013

arxiv: v2 [hep-ph] 28 Mar 2013 Inclusive hadron and photon production at LHC in dipole momentum space E. A. F. Basso and M. B. Gay Ducati Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 505, 950-970 Porto

More information

Novel Measurements of Proton Structure at HERA

Novel Measurements of Proton Structure at HERA Introduction Combined Cross Sections & QCD Fits NC & CC Cross Section Measurements F L Summary Novel Measurements of Proton Structure at HERA Katie Oliver University of Oxford On behalf of the H1 and ZEUS

More information

Improving the kinematics in BK/BFKL to resum the dominant part of higher orders

Improving the kinematics in BK/BFKL to resum the dominant part of higher orders Improving the kinematics in BK/BFKL to resum the dominant part of higher orders Guillaume Beuf Brookhaven National Laboratory QCD Evolution Workshop: from collinear to non collinear case Jefferson Lab,

More information

Measurement of Quenched Energy Flow for Dijets in PbPb collisions with CMS

Measurement of Quenched Energy Flow for Dijets in PbPb collisions with CMS Measurement of Quenched Energy Flow for Dijets in PbPb collisions with CMS For the CMS Collaboration NPA Seminar Yale, USA 15 October, 2015 Relativistic Heavy Ion Collisions Trying to answer two important

More information

Electromagnetic emission from the CGC at early stages of heavy ion collisions

Electromagnetic emission from the CGC at early stages of heavy ion collisions Electromagnetic emission from the CGC at early stages of heavy ion collisions François Gelis CEA / DSM / SPhT François Gelis 2005 Electromagnetic Probes of Hot and Dense Matter, ECT*, Trento, June 2005

More information

Multiple Parton-Parton Interactions: from pp to A-A

Multiple Parton-Parton Interactions: from pp to A-A Multiple Parton-Parton Interactions: from pp to A-A Andreas Morsch CERN QCD Challenges at LHC Taxco, Mexico, Jan 18-22 (2016) Multiple Parton-Parton Interactions Phys. Lett. B 167 (1986) 476 Q i 2 Λ QCD

More information

Recent Results from RHIC: On the trail of the Quark-Gluon Plasma

Recent Results from RHIC: On the trail of the Quark-Gluon Plasma Recent Results from RHIC: On the trail of the Quark-Gluon Plasma Single Au+Au Collision seen by STAR@RHIC Gunther Roland Gunther Roland/MIT July 15 2003 MPI Munich 15/7/2003 Gunther Roland/MIT www.spiegel.de

More information

In-Medium Energy Loss and Correlations in Pb-Pb Collisions at 2.76 TeV with ALICE

In-Medium Energy Loss and Correlations in Pb-Pb Collisions at 2.76 TeV with ALICE In-Medium Energy Loss and Correlations in Pb-Pb Collisions at 2.76 TeV with ALICE Jan Fiete Grosse-Oetringhaus CERN/PH for the ALICE Collaboration Heavy Ions: Experiments Confront Theory Copenhagen, 8th

More information

Proton-lead measurements using the ATLAS detector

Proton-lead measurements using the ATLAS detector Proton-lead measurements using the ATLAS detector Martin Spousta for the ATLAS Collaboration Charles University in Prague DOI: http://dx.doi.org/10.3204/desy-proc-2014-04/275 Measurements of soft and hard

More information

Photon and neutral meson production in pp and PbPb collisions at ALICE

Photon and neutral meson production in pp and PbPb collisions at ALICE Photon and neutral meson production in pp and PbPb collisions at ALICE Dieter Roehrich University of Bergen, Norway for the ALICE Collaboration Nuclear collisions at the LHC Photons as a probe for the

More information

Topics on QCD and Spin Physics

Topics on QCD and Spin Physics Topics on QCD and Spin Physics (sixth lecture) Rodolfo Sassot Universidad de Buenos Aires HUGS 21, JLAB June 21 Spin (revisited)? naive quark spin parton spin QCD parton spin polarized DIS:? EMC experiment:

More information

Experimental Overview on Heavy Flavor Production in Heavy Ion Collisions.

Experimental Overview on Heavy Flavor Production in Heavy Ion Collisions. Experimental Overview on Heavy Flavor Production in Heavy Ion Collisions. Cesar L. da Silva 1, 1 Los Alamos National Lab - USA Abstract. The use of probes containing heavy quarks is one of the pillars

More information

Perturbative origin of azimuthal anisotropy in nuclear collisions

Perturbative origin of azimuthal anisotropy in nuclear collisions Perturbative origin of azimuthal anisotropy in nuclear collisions Amir H. Rezaeian Uiversidad Tecnica Federico Santa Maria, Valparaiso Sixth International Conference on Perspectives in Hadronic Physics

More information

QCD Factorization Approach to Cold Nuclear Matter Effect

QCD Factorization Approach to Cold Nuclear Matter Effect Physics Division Seminar April 25, 2016 Mini-symposium on Cold Nuclear Matter from Fixed-Target Energies to the LHC SCGP: Small Auditorium Rm 102, October 9-10, 2016 QCD Factorization Approach to Cold

More information

Hadron Mass Effects on Kaon Multiplicities: HERMES vs. COMPASS

Hadron Mass Effects on Kaon Multiplicities: HERMES vs. COMPASS Hadron Mass Effects on Kaon Multiplicities: HERMES vs. COMPASS Juan Guerrero Hampton University & Jefferson Lab QCD evolution 2017 May 26, 2017 Based on: J. G., J. Ethier, A. Accardi, S. Casper,W. Melnitchouk,

More information

Perspectives for the measurement of beauty production via semileptonic decays in ALICE

Perspectives for the measurement of beauty production via semileptonic decays in ALICE Perspectives for the measurement of beauty production via semileptonic decays in ALICE Rosario Turrisi INFN Padova (Italy for the ALICE collaboration Contents Motivation: energy loss ALICE detector highlights

More information

Jet Evolution in Hot and Cold Matter

Jet Evolution in Hot and Cold Matter Jet Evolution in Hot and Cold Matter Hans J. Pirner (September 2010, Heidelberg) with S. Domdey, B. Kopeliovich, K. Zapp, J. Stachel, G. Ingelman. J. Rathsman, A. Accardi, D. Gruenewald, V. Muccifora Outline

More information

Testing QCD at the LHC and the Implications of HERA DIS 2004

Testing QCD at the LHC and the Implications of HERA DIS 2004 Testing QCD at the LHC and the Implications of HERA DIS 2004 Jon Butterworth Impact of the LHC on QCD Impact of QCD (and HERA data) at the LHC Impact of the LHC on QCD The LHC will have something to say

More information

Physics at Extreme Temperatures and Energy Densities

Physics at Extreme Temperatures and Energy Densities Physics at Extreme Temperatures and Energy Densities APS Meeting Jacksonville, April 14, 2007 MIT Special thanks to APS David Jacksonville, d Enterria, April 14, 2007 CERN 1 The "Little Bang" in the laboratory:

More information

Shingo Sakai Univ. of California, Los Angeles

Shingo Sakai Univ. of California, Los Angeles Shingo Sakai Univ. of California, Los Angeles Non-photonic e result in AuAu b/c separation in non-photonic electron by electron-hadron correlations @ pp Bottom production Discuss heavy flavor energy loss

More information

arxiv: v2 [hep-ph] 15 Apr 2009

arxiv: v2 [hep-ph] 15 Apr 2009 APS/123-QED Charm and longitudinal structure functions with the KLN model arxiv:0812.0780v2 [hep-ph] 15 Apr 2009 F. Carvalho 1, 3, F.O. Durães 2, F.S. Navarra 3 and S. Szpigel 2 1 Dep. de Metemática e

More information

High energy factorization in Nucleus-Nucleus collisions

High energy factorization in Nucleus-Nucleus collisions High energy factorization in Nucleus-Nucleus collisions François Gelis CERN and CEA/Saclay François Gelis 2008 Symposium on Fundamental Problems in Hot and/or Dense QCD, YITP, Kyoto, March 2008 - p. 1

More information

Bulk matter formed in Pb Pb collisions at the LHC

Bulk matter formed in Pb Pb collisions at the LHC Bulk matter formed in Pb Pb collisions at the LHC Introductory remarks is quark matter at LHC in equilibrium? Energy dependence of hadron production and the quark hadron phase boundary The fireball expands

More information

QCD in Heavy-ion collisions

QCD in Heavy-ion collisions QCD in Heavy-ion collisions RPP 2012, Montpellier transition t p z q IPhT, Saclay 1 Outline 1 2 3 4 5 6 7 transition 2 1 transition 2 3 4 5 6 transition 7 2 Asymptotic freedom Running coupling : α s =

More information

Penetrating probe of the hot, dense medium

Penetrating probe of the hot, dense medium Penetrating probe of the hot, dense medium Low mass dileptons (M ll

More information

Based on work in progress in collaboration with: F. Scardina, S. Plumari and V. Greco

Based on work in progress in collaboration with: F. Scardina, S. Plumari and V. Greco Marco Ruggieri Dipartimento di Fisica e Astronomia, Università degli Studi di Catania, Catania (Italy) Based on work in progress in collaboration with: F. Scardina, S. Plumari and V. Greco Bari, 2012 December

More information

Selected Topics in the Theory of Heavy Ion Collisions Lecture 3

Selected Topics in the Theory of Heavy Ion Collisions Lecture 3 Selected Topics in the Theory of Heavy Ion Collisions Lecture 3 Urs Achim Wiedemann CERN Physics Department TH Division Varenna, 20 July 2010 Based on http://cdsweb.cern.ch/record/1143387/files/p277.pdf

More information

Global QCD Analysis of Nucleon Structure: Progress and Prospects

Global QCD Analysis of Nucleon Structure: Progress and Prospects Global QCD Analysis of Nucleon Structure: Progress and Prospects Recent Past (say, up to DIS2002): Experiment: More precision DIS measurements (mainly HERA) and Tevatron inclusive jet production (CDF,

More information

PHENIX measurements of bottom and charm quark production

PHENIX measurements of bottom and charm quark production Journal of Physics: Conference Series PAPER OPEN ACCESS PHENIX measurements of bottom and charm quark production To cite this article: Timothy Rinn and PHENIX Collaboration 2018 J. Phys.: Conf. Ser. 1070

More information

Experimental summary: heavy-flavour production at the LHC

Experimental summary: heavy-flavour production at the LHC Experimental summary: heavy-flavour production at the LHC Gian Michele Innocenti Massachusetts Institute of Technology (MIT) 8th International Conference on Hard and Electromagnetic Probes of High-energy

More information

Jet quenching in pa and AA

Jet quenching in pa and AA Jet quenching in pa and AA Jefferson Lab Electron Ion Collider User Group Meeting Catholic University of America, Washington D.C, USA July 30 - August 2, 2018 Collectivity in AA and pa CMS Collaboration,

More information

Duke University Chiho NONAKA. in Collaboration with R. J. Fries (Duke), S. A. Bass (Duke & RIKEN), B. Muller (Duke) nucl-th/ to appear in PRL

Duke University Chiho NONAKA. in Collaboration with R. J. Fries (Duke), S. A. Bass (Duke & RIKEN), B. Muller (Duke) nucl-th/ to appear in PRL Duke University Chiho NONAKA in Collaboration with R. J. Fries (Duke), S. A. Bass (Duke & RIKEN), B. Muller (Duke) nucl-th/00108 to appear in PRL May 1, 00@INT, University of Washington, Seattle Introduction

More information

Jet and bulk observables within a partonic transport approach

Jet and bulk observables within a partonic transport approach Jet and bulk observables within a partonic transport approach Florian Senzel with J. Uphoff, O. Fochler, C. Wesp, Z. Xu and C. Greiner based on Phys.Rev.Lett. 4 (25) 23 Transport meeting, 29.4.25 Outline

More information

QCD and jets physics at the LHC with CMS during the first year of data taking. Pavel Demin UCL/FYNU Louvain-la-Neuve

QCD and jets physics at the LHC with CMS during the first year of data taking. Pavel Demin UCL/FYNU Louvain-la-Neuve QCD and jets physics at the LHC with CMS during the first year of data taking Pavel Demin UCL/FYNU Louvain-la-Neuve February 8, 2006 Bon appétit! February 8, 2006 Pavel Demin UCL/FYNU 1 Why this seminar?

More information

First results with heavy-ion collisions at the LHC with ALICE

First results with heavy-ion collisions at the LHC with ALICE First results with heavy-ion collisions at the LHC with ALICE Domenico Elia INFN, Bari (Italy) on behalf of the ALICE Collaboration D. Elia (INFN Bari, Italy) PANIC 011 / Boston, MA (USA) July 4-9, 011

More information

Paul Newman Birmingham University. Can we add ep and ea collisions to the existing LHC pp, AA and pa programme?

Paul Newman Birmingham University. Can we add ep and ea collisions to the existing LHC pp, AA and pa programme? Paul Newman Birmingham University for the LHeC Study Group Strangeness in Quark Matter Birmingham, Tues 23 July 2013 Can we add ep and ea collisions to the existing LHC pp, AA and pa programme? towards

More information